]> Git Repo - qemu.git/blame - translate-all.c
disas/libvixl: Update to libvixl 1.4
[qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
76cad711 36#include "disas/disas.h"
57fec1fe 37#include "tcg.h"
5b6dd868
BS
38#if defined(CONFIG_USER_ONLY)
39#include "qemu.h"
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
0bc3cd62
PB
55#else
56#include "exec/address-spaces.h"
5b6dd868
BS
57#endif
58
022c62cb 59#include "exec/cputlb.h"
5b6dd868 60#include "translate-all.h"
0aa09897 61#include "qemu/timer.h"
5b6dd868
BS
62
63//#define DEBUG_TB_INVALIDATE
64//#define DEBUG_FLUSH
65/* make various TB consistency checks */
66//#define DEBUG_TB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
5b6dd868
BS
75typedef struct PageDesc {
76 /* list of TBs intersecting this ram page */
77 TranslationBlock *first_tb;
78 /* in order to optimize self modifying code, we count the number
79 of lookups we do to a given page to use a bitmap */
80 unsigned int code_write_count;
81 uint8_t *code_bitmap;
82#if defined(CONFIG_USER_ONLY)
83 unsigned long flags;
84#endif
85} PageDesc;
86
87/* In system mode we want L1_MAP to be based on ram offsets,
88 while in user mode we want it to be based on virtual addresses. */
89#if !defined(CONFIG_USER_ONLY)
90#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
91# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
92#else
93# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
94#endif
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
97#endif
98
03f49957
PB
99/* Size of the L2 (and L3, etc) page tables. */
100#define V_L2_BITS 10
101#define V_L2_SIZE (1 << V_L2_BITS)
102
5b6dd868
BS
103/* The bits remaining after N lower levels of page tables. */
104#define V_L1_BITS_REM \
03f49957 105 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
106
107#if V_L1_BITS_REM < 4
03f49957 108#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
109#else
110#define V_L1_BITS V_L1_BITS_REM
111#endif
112
113#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
114
115#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
116
117uintptr_t qemu_real_host_page_size;
118uintptr_t qemu_host_page_size;
119uintptr_t qemu_host_page_mask;
120
121/* This is a multi-level map on the virtual address space.
122 The bottom level has pointers to PageDesc. */
123static void *l1_map[V_L1_SIZE];
124
57fec1fe
FB
125/* code generation context */
126TCGContext tcg_ctx;
d19893da 127
5b6dd868
BS
128static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
129 tb_page_addr_t phys_page2);
a8a826a3 130static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 131
57fec1fe
FB
132void cpu_gen_init(void)
133{
134 tcg_context_init(&tcg_ctx);
57fec1fe
FB
135}
136
d19893da 137/* return non zero if the very first instruction is invalid so that
5fafdf24 138 the virtual CPU can trigger an exception.
d19893da
FB
139
140 '*gen_code_size_ptr' contains the size of the generated code (host
141 code).
142*/
9349b4f9 143int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 144{
57fec1fe 145 TCGContext *s = &tcg_ctx;
1813e175 146 tcg_insn_unit *gen_code_buf;
d19893da 147 int gen_code_size;
57fec1fe
FB
148#ifdef CONFIG_PROFILER
149 int64_t ti;
150#endif
151
152#ifdef CONFIG_PROFILER
b67d9a52
FB
153 s->tb_count1++; /* includes aborted translations because of
154 exceptions */
57fec1fe
FB
155 ti = profile_getclock();
156#endif
157 tcg_func_start(s);
d19893da 158
2cfc5f17
TS
159 gen_intermediate_code(env, tb);
160
ec6338ba 161 /* generate machine code */
57fec1fe 162 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
163 tb->tb_next_offset[0] = 0xffff;
164 tb->tb_next_offset[1] = 0xffff;
57fec1fe 165 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 166#ifdef USE_DIRECT_JUMP
57fec1fe
FB
167 s->tb_jmp_offset = tb->tb_jmp_offset;
168 s->tb_next = NULL;
d19893da 169#else
57fec1fe
FB
170 s->tb_jmp_offset = NULL;
171 s->tb_next = tb->tb_next;
d19893da 172#endif
57fec1fe
FB
173
174#ifdef CONFIG_PROFILER
b67d9a52
FB
175 s->tb_count++;
176 s->interm_time += profile_getclock() - ti;
177 s->code_time -= profile_getclock();
57fec1fe 178#endif
54604f74 179 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 180 *gen_code_size_ptr = gen_code_size;
57fec1fe 181#ifdef CONFIG_PROFILER
b67d9a52
FB
182 s->code_time += profile_getclock();
183 s->code_in_len += tb->size;
184 s->code_out_len += gen_code_size;
57fec1fe
FB
185#endif
186
d19893da 187#ifdef DEBUG_DISAS
8fec2b8c 188 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
189 qemu_log("OUT: [size=%d]\n", gen_code_size);
190 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 191 qemu_log("\n");
31b1a7b4 192 qemu_log_flush();
d19893da
FB
193 }
194#endif
195 return 0;
196}
197
5fafdf24 198/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 199 */
74f10515 200static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 201 uintptr_t searched_pc)
d19893da 202{
74f10515 203 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
204 TCGContext *s = &tcg_ctx;
205 int j;
6375e09e 206 uintptr_t tc_ptr;
57fec1fe
FB
207#ifdef CONFIG_PROFILER
208 int64_t ti;
209#endif
210
211#ifdef CONFIG_PROFILER
212 ti = profile_getclock();
213#endif
214 tcg_func_start(s);
d19893da 215
2cfc5f17 216 gen_intermediate_code_pc(env, tb);
3b46e624 217
2e70f6ef
PB
218 if (use_icount) {
219 /* Reset the cycle counter to the start of the block. */
28ecfd7a 220 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 221 /* Clear the IO flag. */
99df7dce 222 cpu->can_do_io = 0;
2e70f6ef
PB
223 }
224
d19893da 225 /* find opc index corresponding to search_pc */
6375e09e 226 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
227 if (searched_pc < tc_ptr)
228 return -1;
57fec1fe
FB
229
230 s->tb_next_offset = tb->tb_next_offset;
231#ifdef USE_DIRECT_JUMP
232 s->tb_jmp_offset = tb->tb_jmp_offset;
233 s->tb_next = NULL;
234#else
235 s->tb_jmp_offset = NULL;
236 s->tb_next = tb->tb_next;
237#endif
1813e175
RH
238 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
239 searched_pc - tc_ptr);
57fec1fe
FB
240 if (j < 0)
241 return -1;
d19893da 242 /* now find start of instruction before */
ab1103de 243 while (s->gen_opc_instr_start[j] == 0) {
d19893da 244 j--;
ab1103de 245 }
28ecfd7a 246 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 247
e87b7cb0 248 restore_state_to_opc(env, tb, j);
57fec1fe
FB
249
250#ifdef CONFIG_PROFILER
b67d9a52
FB
251 s->restore_time += profile_getclock() - ti;
252 s->restore_count++;
57fec1fe 253#endif
d19893da
FB
254 return 0;
255}
5b6dd868 256
3f38f309 257bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
258{
259 TranslationBlock *tb;
260
261 tb = tb_find_pc(retaddr);
262 if (tb) {
74f10515 263 cpu_restore_state_from_tb(cpu, tb, retaddr);
a8a826a3
BS
264 return true;
265 }
266 return false;
267}
268
5b6dd868
BS
269#ifdef _WIN32
270static inline void map_exec(void *addr, long size)
271{
272 DWORD old_protect;
273 VirtualProtect(addr, size,
274 PAGE_EXECUTE_READWRITE, &old_protect);
275}
276#else
277static inline void map_exec(void *addr, long size)
278{
279 unsigned long start, end, page_size;
280
281 page_size = getpagesize();
282 start = (unsigned long)addr;
283 start &= ~(page_size - 1);
284
285 end = (unsigned long)addr + size;
286 end += page_size - 1;
287 end &= ~(page_size - 1);
288
289 mprotect((void *)start, end - start,
290 PROT_READ | PROT_WRITE | PROT_EXEC);
291}
292#endif
293
47c16ed5 294void page_size_init(void)
5b6dd868
BS
295{
296 /* NOTE: we can always suppose that qemu_host_page_size >=
297 TARGET_PAGE_SIZE */
298#ifdef _WIN32
47c16ed5 299 SYSTEM_INFO system_info;
5b6dd868 300
47c16ed5
AK
301 GetSystemInfo(&system_info);
302 qemu_real_host_page_size = system_info.dwPageSize;
5b6dd868
BS
303#else
304 qemu_real_host_page_size = getpagesize();
305#endif
306 if (qemu_host_page_size == 0) {
307 qemu_host_page_size = qemu_real_host_page_size;
308 }
309 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
310 qemu_host_page_size = TARGET_PAGE_SIZE;
311 }
312 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 313}
5b6dd868 314
47c16ed5
AK
315static void page_init(void)
316{
317 page_size_init();
5b6dd868
BS
318#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
319 {
320#ifdef HAVE_KINFO_GETVMMAP
321 struct kinfo_vmentry *freep;
322 int i, cnt;
323
324 freep = kinfo_getvmmap(getpid(), &cnt);
325 if (freep) {
326 mmap_lock();
327 for (i = 0; i < cnt; i++) {
328 unsigned long startaddr, endaddr;
329
330 startaddr = freep[i].kve_start;
331 endaddr = freep[i].kve_end;
332 if (h2g_valid(startaddr)) {
333 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
334
335 if (h2g_valid(endaddr)) {
336 endaddr = h2g(endaddr);
337 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
338 } else {
339#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
340 endaddr = ~0ul;
341 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
342#endif
343 }
344 }
345 }
346 free(freep);
347 mmap_unlock();
348 }
349#else
350 FILE *f;
351
352 last_brk = (unsigned long)sbrk(0);
353
354 f = fopen("/compat/linux/proc/self/maps", "r");
355 if (f) {
356 mmap_lock();
357
358 do {
359 unsigned long startaddr, endaddr;
360 int n;
361
362 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
363
364 if (n == 2 && h2g_valid(startaddr)) {
365 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
366
367 if (h2g_valid(endaddr)) {
368 endaddr = h2g(endaddr);
369 } else {
370 endaddr = ~0ul;
371 }
372 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
373 }
374 } while (!feof(f));
375
376 fclose(f);
377 mmap_unlock();
378 }
379#endif
380 }
381#endif
382}
383
384static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
385{
386 PageDesc *pd;
387 void **lp;
388 int i;
389
390#if defined(CONFIG_USER_ONLY)
391 /* We can't use g_malloc because it may recurse into a locked mutex. */
392# define ALLOC(P, SIZE) \
393 do { \
394 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
395 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
396 } while (0)
397#else
398# define ALLOC(P, SIZE) \
399 do { P = g_malloc0(SIZE); } while (0)
400#endif
401
402 /* Level 1. Always allocated. */
403 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
404
405 /* Level 2..N-1. */
03f49957 406 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
407 void **p = *lp;
408
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
03f49957 413 ALLOC(p, sizeof(void *) * V_L2_SIZE);
5b6dd868
BS
414 *lp = p;
415 }
416
03f49957 417 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
418 }
419
420 pd = *lp;
421 if (pd == NULL) {
422 if (!alloc) {
423 return NULL;
424 }
03f49957 425 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
5b6dd868
BS
426 *lp = pd;
427 }
428
429#undef ALLOC
430
03f49957 431 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
432}
433
434static inline PageDesc *page_find(tb_page_addr_t index)
435{
436 return page_find_alloc(index, 0);
437}
438
439#if !defined(CONFIG_USER_ONLY)
440#define mmap_lock() do { } while (0)
441#define mmap_unlock() do { } while (0)
442#endif
443
444#if defined(CONFIG_USER_ONLY)
445/* Currently it is not recommended to allocate big chunks of data in
446 user mode. It will change when a dedicated libc will be used. */
447/* ??? 64-bit hosts ought to have no problem mmaping data outside the
448 region in which the guest needs to run. Revisit this. */
449#define USE_STATIC_CODE_GEN_BUFFER
450#endif
451
452/* ??? Should configure for this, not list operating systems here. */
453#if (defined(__linux__) \
454 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
455 || defined(__DragonFly__) || defined(__OpenBSD__) \
456 || defined(__NetBSD__))
457# define USE_MMAP
458#endif
459
460/* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
463
464/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467#if defined(__x86_64__)
468# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469#elif defined(__sparc__)
470# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
471#elif defined(__aarch64__)
472# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
473#elif defined(__arm__)
474# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
475#elif defined(__s390x__)
476 /* We have a +- 4GB range on the branches; leave some slop. */
477# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
478#else
479# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480#endif
481
482#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483
484#define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487
488static inline size_t size_code_gen_buffer(size_t tb_size)
489{
490 /* Size the buffer. */
491 if (tb_size == 0) {
492#ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494#else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500#endif
501 }
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 }
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 }
0b0d3320 508 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
509 return tb_size;
510}
511
512#ifdef USE_STATIC_CODE_GEN_BUFFER
513static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
514 __attribute__((aligned(CODE_GEN_ALIGN)));
515
516static inline void *alloc_code_gen_buffer(void)
517{
0b0d3320 518 map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
519 return static_code_gen_buffer;
520}
521#elif defined(USE_MMAP)
522static inline void *alloc_code_gen_buffer(void)
523{
524 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
525 uintptr_t start = 0;
526 void *buf;
527
528 /* Constrain the position of the buffer based on the host cpu.
529 Note that these addresses are chosen in concert with the
530 addresses assigned in the relevant linker script file. */
531# if defined(__PIE__) || defined(__PIC__)
532 /* Don't bother setting a preferred location if we're building
533 a position-independent executable. We're more likely to get
534 an address near the main executable if we let the kernel
535 choose the address. */
536# elif defined(__x86_64__) && defined(MAP_32BIT)
537 /* Force the memory down into low memory with the executable.
538 Leave the choice of exact location with the kernel. */
539 flags |= MAP_32BIT;
540 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
541 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
542 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
543 }
544# elif defined(__sparc__)
545 start = 0x40000000ul;
546# elif defined(__s390x__)
547 start = 0x90000000ul;
548# endif
549
0b0d3320 550 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868
BS
551 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
552 return buf == MAP_FAILED ? NULL : buf;
553}
554#else
555static inline void *alloc_code_gen_buffer(void)
556{
0b0d3320 557 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
558
559 if (buf) {
0b0d3320 560 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
561 }
562 return buf;
563}
564#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
565
566static inline void code_gen_alloc(size_t tb_size)
567{
0b0d3320
EV
568 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
569 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
570 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
571 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
572 exit(1);
573 }
574
0b0d3320
EV
575 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
576 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
577
578 /* Steal room for the prologue at the end of the buffer. This ensures
579 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
580 from TB's to the prologue are going to be in range. It also means
581 that we don't need to mark (additional) portions of the data segment
582 as executable. */
0b0d3320
EV
583 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
584 tcg_ctx.code_gen_buffer_size - 1024;
585 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 586
0b0d3320 587 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 588 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
589 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
590 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
591 tcg_ctx.tb_ctx.tbs =
592 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
593}
594
595/* Must be called before using the QEMU cpus. 'tb_size' is the size
596 (in bytes) allocated to the translation buffer. Zero means default
597 size. */
598void tcg_exec_init(unsigned long tb_size)
599{
600 cpu_gen_init();
601 code_gen_alloc(tb_size);
0b0d3320
EV
602 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
603 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
604 page_init();
605#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
606 /* There's no guest base to take into account, so go ahead and
607 initialize the prologue now. */
608 tcg_prologue_init(&tcg_ctx);
609#endif
610}
611
612bool tcg_enabled(void)
613{
0b0d3320 614 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
615}
616
617/* Allocate a new translation block. Flush the translation buffer if
618 too many translation blocks or too much generated code. */
619static TranslationBlock *tb_alloc(target_ulong pc)
620{
621 TranslationBlock *tb;
622
5e5f07e0 623 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
624 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
625 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
626 return NULL;
627 }
5e5f07e0 628 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
629 tb->pc = pc;
630 tb->cflags = 0;
631 return tb;
632}
633
634void tb_free(TranslationBlock *tb)
635{
636 /* In practice this is mostly used for single use temporary TB
637 Ignore the hard cases and just back up if this TB happens to
638 be the last one generated. */
5e5f07e0
EV
639 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
640 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 641 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 642 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
643 }
644}
645
646static inline void invalidate_page_bitmap(PageDesc *p)
647{
648 if (p->code_bitmap) {
649 g_free(p->code_bitmap);
650 p->code_bitmap = NULL;
651 }
652 p->code_write_count = 0;
653}
654
655/* Set to NULL all the 'first_tb' fields in all PageDescs. */
656static void page_flush_tb_1(int level, void **lp)
657{
658 int i;
659
660 if (*lp == NULL) {
661 return;
662 }
663 if (level == 0) {
664 PageDesc *pd = *lp;
665
03f49957 666 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
667 pd[i].first_tb = NULL;
668 invalidate_page_bitmap(pd + i);
669 }
670 } else {
671 void **pp = *lp;
672
03f49957 673 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
674 page_flush_tb_1(level - 1, pp + i);
675 }
676 }
677}
678
679static void page_flush_tb(void)
680{
681 int i;
682
683 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 684 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
685 }
686}
687
688/* flush all the translation blocks */
689/* XXX: tb_flush is currently not thread safe */
690void tb_flush(CPUArchState *env1)
691{
a47dddd7 692 CPUState *cpu = ENV_GET_CPU(env1);
5b6dd868
BS
693
694#if defined(DEBUG_FLUSH)
695 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 696 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 697 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 698 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 699 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 700#endif
0b0d3320
EV
701 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
702 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 703 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 704 }
5e5f07e0 705 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 706
bdc44640 707 CPU_FOREACH(cpu) {
8cd70437 708 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
709 }
710
eb2535f4 711 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
712 page_flush_tb();
713
0b0d3320 714 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
715 /* XXX: flush processor icache at this point if cache flush is
716 expensive */
5e5f07e0 717 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
718}
719
720#ifdef DEBUG_TB_CHECK
721
722static void tb_invalidate_check(target_ulong address)
723{
724 TranslationBlock *tb;
725 int i;
726
727 address &= TARGET_PAGE_MASK;
728 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 729 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
730 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
731 address >= tb->pc + tb->size)) {
732 printf("ERROR invalidate: address=" TARGET_FMT_lx
733 " PC=%08lx size=%04x\n",
734 address, (long)tb->pc, tb->size);
735 }
736 }
737 }
738}
739
740/* verify that all the pages have correct rights for code */
741static void tb_page_check(void)
742{
743 TranslationBlock *tb;
744 int i, flags1, flags2;
745
746 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
747 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
748 tb = tb->phys_hash_next) {
5b6dd868
BS
749 flags1 = page_get_flags(tb->pc);
750 flags2 = page_get_flags(tb->pc + tb->size - 1);
751 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
752 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
753 (long)tb->pc, tb->size, flags1, flags2);
754 }
755 }
756 }
757}
758
759#endif
760
0c884d16 761static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
762{
763 TranslationBlock *tb1;
764
765 for (;;) {
766 tb1 = *ptb;
767 if (tb1 == tb) {
0c884d16 768 *ptb = tb1->phys_hash_next;
5b6dd868
BS
769 break;
770 }
0c884d16 771 ptb = &tb1->phys_hash_next;
5b6dd868
BS
772 }
773}
774
775static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
776{
777 TranslationBlock *tb1;
778 unsigned int n1;
779
780 for (;;) {
781 tb1 = *ptb;
782 n1 = (uintptr_t)tb1 & 3;
783 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
784 if (tb1 == tb) {
785 *ptb = tb1->page_next[n1];
786 break;
787 }
788 ptb = &tb1->page_next[n1];
789 }
790}
791
792static inline void tb_jmp_remove(TranslationBlock *tb, int n)
793{
794 TranslationBlock *tb1, **ptb;
795 unsigned int n1;
796
797 ptb = &tb->jmp_next[n];
798 tb1 = *ptb;
799 if (tb1) {
800 /* find tb(n) in circular list */
801 for (;;) {
802 tb1 = *ptb;
803 n1 = (uintptr_t)tb1 & 3;
804 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
805 if (n1 == n && tb1 == tb) {
806 break;
807 }
808 if (n1 == 2) {
809 ptb = &tb1->jmp_first;
810 } else {
811 ptb = &tb1->jmp_next[n1];
812 }
813 }
814 /* now we can suppress tb(n) from the list */
815 *ptb = tb->jmp_next[n];
816
817 tb->jmp_next[n] = NULL;
818 }
819}
820
821/* reset the jump entry 'n' of a TB so that it is not chained to
822 another TB */
823static inline void tb_reset_jump(TranslationBlock *tb, int n)
824{
825 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
826}
827
0c884d16 828/* invalidate one TB */
5b6dd868
BS
829void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
830{
182735ef 831 CPUState *cpu;
5b6dd868
BS
832 PageDesc *p;
833 unsigned int h, n1;
834 tb_page_addr_t phys_pc;
835 TranslationBlock *tb1, *tb2;
836
837 /* remove the TB from the hash list */
838 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
839 h = tb_phys_hash_func(phys_pc);
5e5f07e0 840 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
841
842 /* remove the TB from the page list */
843 if (tb->page_addr[0] != page_addr) {
844 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
845 tb_page_remove(&p->first_tb, tb);
846 invalidate_page_bitmap(p);
847 }
848 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
849 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
850 tb_page_remove(&p->first_tb, tb);
851 invalidate_page_bitmap(p);
852 }
853
5e5f07e0 854 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
855
856 /* remove the TB from the hash list */
857 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 858 CPU_FOREACH(cpu) {
8cd70437
AF
859 if (cpu->tb_jmp_cache[h] == tb) {
860 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
861 }
862 }
863
864 /* suppress this TB from the two jump lists */
865 tb_jmp_remove(tb, 0);
866 tb_jmp_remove(tb, 1);
867
868 /* suppress any remaining jumps to this TB */
869 tb1 = tb->jmp_first;
870 for (;;) {
871 n1 = (uintptr_t)tb1 & 3;
872 if (n1 == 2) {
873 break;
874 }
875 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
876 tb2 = tb1->jmp_next[n1];
877 tb_reset_jump(tb1, n1);
878 tb1->jmp_next[n1] = NULL;
879 tb1 = tb2;
880 }
881 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
882
5e5f07e0 883 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
884}
885
886static inline void set_bits(uint8_t *tab, int start, int len)
887{
888 int end, mask, end1;
889
890 end = start + len;
891 tab += start >> 3;
892 mask = 0xff << (start & 7);
893 if ((start & ~7) == (end & ~7)) {
894 if (start < end) {
895 mask &= ~(0xff << (end & 7));
896 *tab |= mask;
897 }
898 } else {
899 *tab++ |= mask;
900 start = (start + 8) & ~7;
901 end1 = end & ~7;
902 while (start < end1) {
903 *tab++ = 0xff;
904 start += 8;
905 }
906 if (start < end) {
907 mask = ~(0xff << (end & 7));
908 *tab |= mask;
909 }
910 }
911}
912
913static void build_page_bitmap(PageDesc *p)
914{
915 int n, tb_start, tb_end;
916 TranslationBlock *tb;
917
918 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
919
920 tb = p->first_tb;
921 while (tb != NULL) {
922 n = (uintptr_t)tb & 3;
923 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
924 /* NOTE: this is subtle as a TB may span two physical pages */
925 if (n == 0) {
926 /* NOTE: tb_end may be after the end of the page, but
927 it is not a problem */
928 tb_start = tb->pc & ~TARGET_PAGE_MASK;
929 tb_end = tb_start + tb->size;
930 if (tb_end > TARGET_PAGE_SIZE) {
931 tb_end = TARGET_PAGE_SIZE;
932 }
933 } else {
934 tb_start = 0;
935 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
936 }
937 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
938 tb = tb->page_next[n];
939 }
940}
941
648f034c 942TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
943 target_ulong pc, target_ulong cs_base,
944 int flags, int cflags)
945{
648f034c 946 CPUArchState *env = cpu->env_ptr;
5b6dd868 947 TranslationBlock *tb;
5b6dd868
BS
948 tb_page_addr_t phys_pc, phys_page2;
949 target_ulong virt_page2;
950 int code_gen_size;
951
952 phys_pc = get_page_addr_code(env, pc);
953 tb = tb_alloc(pc);
954 if (!tb) {
955 /* flush must be done */
956 tb_flush(env);
957 /* cannot fail at this point */
958 tb = tb_alloc(pc);
959 /* Don't forget to invalidate previous TB info. */
5e5f07e0 960 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 961 }
1813e175 962 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
963 tb->cs_base = cs_base;
964 tb->flags = flags;
965 tb->cflags = cflags;
966 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
967 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
968 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
969
970 /* check next page if needed */
971 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
972 phys_page2 = -1;
973 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
974 phys_page2 = get_page_addr_code(env, virt_page2);
975 }
976 tb_link_page(tb, phys_pc, phys_page2);
977 return tb;
978}
979
980/*
981 * Invalidate all TBs which intersect with the target physical address range
982 * [start;end[. NOTE: start and end may refer to *different* physical pages.
983 * 'is_cpu_write_access' should be true if called from a real cpu write
984 * access: the virtual CPU will exit the current TB if code is modified inside
985 * this TB.
986 */
987void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
988 int is_cpu_write_access)
989{
990 while (start < end) {
991 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
992 start &= TARGET_PAGE_MASK;
993 start += TARGET_PAGE_SIZE;
994 }
995}
996
997/*
998 * Invalidate all TBs which intersect with the target physical address range
999 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1000 * 'is_cpu_write_access' should be true if called from a real cpu write
1001 * access: the virtual CPU will exit the current TB if code is modified inside
1002 * this TB.
1003 */
1004void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1005 int is_cpu_write_access)
1006{
1007 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1008 CPUState *cpu = current_cpu;
baea4fae 1009#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1010 CPUArchState *env = NULL;
1011#endif
5b6dd868
BS
1012 tb_page_addr_t tb_start, tb_end;
1013 PageDesc *p;
1014 int n;
1015#ifdef TARGET_HAS_PRECISE_SMC
1016 int current_tb_not_found = is_cpu_write_access;
1017 TranslationBlock *current_tb = NULL;
1018 int current_tb_modified = 0;
1019 target_ulong current_pc = 0;
1020 target_ulong current_cs_base = 0;
1021 int current_flags = 0;
1022#endif /* TARGET_HAS_PRECISE_SMC */
1023
1024 p = page_find(start >> TARGET_PAGE_BITS);
1025 if (!p) {
1026 return;
1027 }
1028 if (!p->code_bitmap &&
1029 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1030 is_cpu_write_access) {
1031 /* build code bitmap */
1032 build_page_bitmap(p);
1033 }
baea4fae 1034#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1035 if (cpu != NULL) {
1036 env = cpu->env_ptr;
d77953b9 1037 }
4917cf44 1038#endif
5b6dd868
BS
1039
1040 /* we remove all the TBs in the range [start, end[ */
1041 /* XXX: see if in some cases it could be faster to invalidate all
1042 the code */
1043 tb = p->first_tb;
1044 while (tb != NULL) {
1045 n = (uintptr_t)tb & 3;
1046 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1047 tb_next = tb->page_next[n];
1048 /* NOTE: this is subtle as a TB may span two physical pages */
1049 if (n == 0) {
1050 /* NOTE: tb_end may be after the end of the page, but
1051 it is not a problem */
1052 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1053 tb_end = tb_start + tb->size;
1054 } else {
1055 tb_start = tb->page_addr[1];
1056 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1057 }
1058 if (!(tb_end <= start || tb_start >= end)) {
1059#ifdef TARGET_HAS_PRECISE_SMC
1060 if (current_tb_not_found) {
1061 current_tb_not_found = 0;
1062 current_tb = NULL;
93afeade 1063 if (cpu->mem_io_pc) {
5b6dd868 1064 /* now we have a real cpu fault */
93afeade 1065 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1066 }
1067 }
1068 if (current_tb == tb &&
1069 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1070 /* If we are modifying the current TB, we must stop
1071 its execution. We could be more precise by checking
1072 that the modification is after the current PC, but it
1073 would require a specialized function to partially
1074 restore the CPU state */
1075
1076 current_tb_modified = 1;
74f10515 1077 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1078 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1079 &current_flags);
1080 }
1081#endif /* TARGET_HAS_PRECISE_SMC */
1082 /* we need to do that to handle the case where a signal
1083 occurs while doing tb_phys_invalidate() */
1084 saved_tb = NULL;
d77953b9
AF
1085 if (cpu != NULL) {
1086 saved_tb = cpu->current_tb;
1087 cpu->current_tb = NULL;
5b6dd868
BS
1088 }
1089 tb_phys_invalidate(tb, -1);
d77953b9
AF
1090 if (cpu != NULL) {
1091 cpu->current_tb = saved_tb;
c3affe56
AF
1092 if (cpu->interrupt_request && cpu->current_tb) {
1093 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1094 }
1095 }
1096 }
1097 tb = tb_next;
1098 }
1099#if !defined(CONFIG_USER_ONLY)
1100 /* if no code remaining, no need to continue to use slow writes */
1101 if (!p->first_tb) {
1102 invalidate_page_bitmap(p);
1103 if (is_cpu_write_access) {
baea4fae 1104 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
5b6dd868
BS
1105 }
1106 }
1107#endif
1108#ifdef TARGET_HAS_PRECISE_SMC
1109 if (current_tb_modified) {
1110 /* we generate a block containing just the instruction
1111 modifying the memory. It will ensure that it cannot modify
1112 itself */
d77953b9 1113 cpu->current_tb = NULL;
648f034c 1114 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1115 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1116 }
1117#endif
1118}
1119
1120/* len must be <= 8 and start must be a multiple of len */
1121void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1122{
1123 PageDesc *p;
1124 int offset, b;
1125
1126#if 0
1127 if (1) {
1128 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1129 cpu_single_env->mem_io_vaddr, len,
1130 cpu_single_env->eip,
1131 cpu_single_env->eip +
1132 (intptr_t)cpu_single_env->segs[R_CS].base);
1133 }
1134#endif
1135 p = page_find(start >> TARGET_PAGE_BITS);
1136 if (!p) {
1137 return;
1138 }
1139 if (p->code_bitmap) {
1140 offset = start & ~TARGET_PAGE_MASK;
1141 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1142 if (b & ((1 << len) - 1)) {
1143 goto do_invalidate;
1144 }
1145 } else {
1146 do_invalidate:
1147 tb_invalidate_phys_page_range(start, start + len, 1);
1148 }
1149}
1150
1151#if !defined(CONFIG_SOFTMMU)
1152static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1153 uintptr_t pc, void *puc,
1154 bool locked)
5b6dd868
BS
1155{
1156 TranslationBlock *tb;
1157 PageDesc *p;
1158 int n;
1159#ifdef TARGET_HAS_PRECISE_SMC
1160 TranslationBlock *current_tb = NULL;
4917cf44
AF
1161 CPUState *cpu = current_cpu;
1162 CPUArchState *env = NULL;
5b6dd868
BS
1163 int current_tb_modified = 0;
1164 target_ulong current_pc = 0;
1165 target_ulong current_cs_base = 0;
1166 int current_flags = 0;
1167#endif
1168
1169 addr &= TARGET_PAGE_MASK;
1170 p = page_find(addr >> TARGET_PAGE_BITS);
1171 if (!p) {
1172 return;
1173 }
1174 tb = p->first_tb;
1175#ifdef TARGET_HAS_PRECISE_SMC
1176 if (tb && pc != 0) {
1177 current_tb = tb_find_pc(pc);
1178 }
4917cf44
AF
1179 if (cpu != NULL) {
1180 env = cpu->env_ptr;
d77953b9 1181 }
5b6dd868
BS
1182#endif
1183 while (tb != NULL) {
1184 n = (uintptr_t)tb & 3;
1185 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1186#ifdef TARGET_HAS_PRECISE_SMC
1187 if (current_tb == tb &&
1188 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1189 /* If we are modifying the current TB, we must stop
1190 its execution. We could be more precise by checking
1191 that the modification is after the current PC, but it
1192 would require a specialized function to partially
1193 restore the CPU state */
1194
1195 current_tb_modified = 1;
74f10515 1196 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1197 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1198 &current_flags);
1199 }
1200#endif /* TARGET_HAS_PRECISE_SMC */
1201 tb_phys_invalidate(tb, addr);
1202 tb = tb->page_next[n];
1203 }
1204 p->first_tb = NULL;
1205#ifdef TARGET_HAS_PRECISE_SMC
1206 if (current_tb_modified) {
1207 /* we generate a block containing just the instruction
1208 modifying the memory. It will ensure that it cannot modify
1209 itself */
d77953b9 1210 cpu->current_tb = NULL;
648f034c 1211 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1212 if (locked) {
1213 mmap_unlock();
1214 }
0ea8cb88 1215 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1216 }
1217#endif
1218}
1219#endif
1220
1221/* add the tb in the target page and protect it if necessary */
1222static inline void tb_alloc_page(TranslationBlock *tb,
1223 unsigned int n, tb_page_addr_t page_addr)
1224{
1225 PageDesc *p;
1226#ifndef CONFIG_USER_ONLY
1227 bool page_already_protected;
1228#endif
1229
1230 tb->page_addr[n] = page_addr;
1231 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1232 tb->page_next[n] = p->first_tb;
1233#ifndef CONFIG_USER_ONLY
1234 page_already_protected = p->first_tb != NULL;
1235#endif
1236 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1237 invalidate_page_bitmap(p);
1238
1239#if defined(TARGET_HAS_SMC) || 1
1240
1241#if defined(CONFIG_USER_ONLY)
1242 if (p->flags & PAGE_WRITE) {
1243 target_ulong addr;
1244 PageDesc *p2;
1245 int prot;
1246
1247 /* force the host page as non writable (writes will have a
1248 page fault + mprotect overhead) */
1249 page_addr &= qemu_host_page_mask;
1250 prot = 0;
1251 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1252 addr += TARGET_PAGE_SIZE) {
1253
1254 p2 = page_find(addr >> TARGET_PAGE_BITS);
1255 if (!p2) {
1256 continue;
1257 }
1258 prot |= p2->flags;
1259 p2->flags &= ~PAGE_WRITE;
1260 }
1261 mprotect(g2h(page_addr), qemu_host_page_size,
1262 (prot & PAGE_BITS) & ~PAGE_WRITE);
1263#ifdef DEBUG_TB_INVALIDATE
1264 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1265 page_addr);
1266#endif
1267 }
1268#else
1269 /* if some code is already present, then the pages are already
1270 protected. So we handle the case where only the first TB is
1271 allocated in a physical page */
1272 if (!page_already_protected) {
1273 tlb_protect_code(page_addr);
1274 }
1275#endif
1276
1277#endif /* TARGET_HAS_SMC */
1278}
1279
1280/* add a new TB and link it to the physical page tables. phys_page2 is
1281 (-1) to indicate that only one page contains the TB. */
1282static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1283 tb_page_addr_t phys_page2)
1284{
1285 unsigned int h;
1286 TranslationBlock **ptb;
1287
1288 /* Grab the mmap lock to stop another thread invalidating this TB
1289 before we are done. */
1290 mmap_lock();
1291 /* add in the physical hash table */
1292 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1293 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1294 tb->phys_hash_next = *ptb;
1295 *ptb = tb;
1296
1297 /* add in the page list */
1298 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1299 if (phys_page2 != -1) {
1300 tb_alloc_page(tb, 1, phys_page2);
1301 } else {
1302 tb->page_addr[1] = -1;
1303 }
1304
1305 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1306 tb->jmp_next[0] = NULL;
1307 tb->jmp_next[1] = NULL;
1308
1309 /* init original jump addresses */
1310 if (tb->tb_next_offset[0] != 0xffff) {
1311 tb_reset_jump(tb, 0);
1312 }
1313 if (tb->tb_next_offset[1] != 0xffff) {
1314 tb_reset_jump(tb, 1);
1315 }
1316
1317#ifdef DEBUG_TB_CHECK
1318 tb_page_check();
1319#endif
1320 mmap_unlock();
1321}
1322
5b6dd868
BS
1323/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1324 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1325static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1326{
1327 int m_min, m_max, m;
1328 uintptr_t v;
1329 TranslationBlock *tb;
1330
5e5f07e0 1331 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1332 return NULL;
1333 }
0b0d3320
EV
1334 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1335 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1336 return NULL;
1337 }
1338 /* binary search (cf Knuth) */
1339 m_min = 0;
5e5f07e0 1340 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1341 while (m_min <= m_max) {
1342 m = (m_min + m_max) >> 1;
5e5f07e0 1343 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1344 v = (uintptr_t)tb->tc_ptr;
1345 if (v == tc_ptr) {
1346 return tb;
1347 } else if (tc_ptr < v) {
1348 m_max = m - 1;
1349 } else {
1350 m_min = m + 1;
1351 }
1352 }
5e5f07e0 1353 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1354}
1355
5b6dd868 1356#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
29d8ec7b 1357void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1358{
1359 ram_addr_t ram_addr;
5c8a00ce 1360 MemoryRegion *mr;
149f54b5 1361 hwaddr l = 1;
5b6dd868 1362
29d8ec7b 1363 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1364 if (!(memory_region_is_ram(mr)
1365 || memory_region_is_romd(mr))) {
5b6dd868
BS
1366 return;
1367 }
5c8a00ce 1368 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1369 + addr;
5b6dd868
BS
1370 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1371}
1372#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1373
239c51a5 1374void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1375{
1376 TranslationBlock *tb;
1377
93afeade 1378 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868 1379 if (!tb) {
a47dddd7 1380 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
93afeade 1381 (void *)cpu->mem_io_pc);
5b6dd868 1382 }
74f10515 1383 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1384 tb_phys_invalidate(tb, -1);
1385}
1386
1387#ifndef CONFIG_USER_ONLY
1388/* mask must never be zero, except for A20 change call */
c3affe56 1389static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1390{
5b6dd868
BS
1391 int old_mask;
1392
259186a7
AF
1393 old_mask = cpu->interrupt_request;
1394 cpu->interrupt_request |= mask;
5b6dd868
BS
1395
1396 /*
1397 * If called from iothread context, wake the target cpu in
1398 * case its halted.
1399 */
1400 if (!qemu_cpu_is_self(cpu)) {
1401 qemu_cpu_kick(cpu);
1402 return;
1403 }
1404
1405 if (use_icount) {
28ecfd7a 1406 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1407 if (!cpu_can_do_io(cpu)
5b6dd868 1408 && (mask & ~old_mask) != 0) {
a47dddd7 1409 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1410 }
1411 } else {
378df4b2 1412 cpu->tcg_exit_req = 1;
5b6dd868
BS
1413 }
1414}
1415
1416CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1417
1418/* in deterministic execution mode, instructions doing device I/Os
1419 must be at the end of the TB */
90b40a69 1420void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1421{
a47dddd7 1422#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1423 CPUArchState *env = cpu->env_ptr;
a47dddd7 1424#endif
5b6dd868
BS
1425 TranslationBlock *tb;
1426 uint32_t n, cflags;
1427 target_ulong pc, cs_base;
1428 uint64_t flags;
1429
1430 tb = tb_find_pc(retaddr);
1431 if (!tb) {
a47dddd7 1432 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1433 (void *)retaddr);
1434 }
28ecfd7a 1435 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1436 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1437 /* Calculate how many instructions had been executed before the fault
1438 occurred. */
28ecfd7a 1439 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1440 /* Generate a new TB ending on the I/O insn. */
1441 n++;
1442 /* On MIPS and SH, delay slot instructions can only be restarted if
1443 they were already the first instruction in the TB. If this is not
1444 the first instruction in a TB then re-execute the preceding
1445 branch. */
1446#if defined(TARGET_MIPS)
1447 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1448 env->active_tc.PC -= 4;
28ecfd7a 1449 cpu->icount_decr.u16.low++;
5b6dd868
BS
1450 env->hflags &= ~MIPS_HFLAG_BMASK;
1451 }
1452#elif defined(TARGET_SH4)
1453 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1454 && n > 1) {
1455 env->pc -= 2;
28ecfd7a 1456 cpu->icount_decr.u16.low++;
5b6dd868
BS
1457 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1458 }
1459#endif
1460 /* This should never happen. */
1461 if (n > CF_COUNT_MASK) {
a47dddd7 1462 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1463 }
1464
1465 cflags = n | CF_LAST_IO;
1466 pc = tb->pc;
1467 cs_base = tb->cs_base;
1468 flags = tb->flags;
1469 tb_phys_invalidate(tb, -1);
1470 /* FIXME: In theory this could raise an exception. In practice
1471 we have already translated the block once so it's probably ok. */
648f034c 1472 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1473 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1474 the first in the TB) then we end up generating a whole new TB and
1475 repeating the fault, which is horribly inefficient.
1476 Better would be to execute just this insn uncached, or generate a
1477 second new TB. */
0ea8cb88 1478 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1479}
1480
611d4f99 1481void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1482{
1483 unsigned int i;
1484
1485 /* Discard jump cache entries for any tb which might potentially
1486 overlap the flushed page. */
1487 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1488 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1489 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1490
1491 i = tb_jmp_cache_hash_page(addr);
8cd70437 1492 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1493 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1494}
1495
1496void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1497{
1498 int i, target_code_size, max_target_code_size;
1499 int direct_jmp_count, direct_jmp2_count, cross_page;
1500 TranslationBlock *tb;
1501
1502 target_code_size = 0;
1503 max_target_code_size = 0;
1504 cross_page = 0;
1505 direct_jmp_count = 0;
1506 direct_jmp2_count = 0;
5e5f07e0
EV
1507 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1508 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1509 target_code_size += tb->size;
1510 if (tb->size > max_target_code_size) {
1511 max_target_code_size = tb->size;
1512 }
1513 if (tb->page_addr[1] != -1) {
1514 cross_page++;
1515 }
1516 if (tb->tb_next_offset[0] != 0xffff) {
1517 direct_jmp_count++;
1518 if (tb->tb_next_offset[1] != 0xffff) {
1519 direct_jmp2_count++;
1520 }
1521 }
1522 }
1523 /* XXX: avoid using doubles ? */
1524 cpu_fprintf(f, "Translation buffer state:\n");
1525 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1526 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1527 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1528 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1529 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1530 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1531 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1532 tcg_ctx.tb_ctx.nb_tbs : 0,
1533 max_target_code_size);
5b6dd868 1534 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1535 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1536 tcg_ctx.code_gen_buffer) /
1537 tcg_ctx.tb_ctx.nb_tbs : 0,
1538 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1539 tcg_ctx.code_gen_buffer) /
1540 target_code_size : 0);
1541 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1542 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1543 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1544 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1545 direct_jmp_count,
5e5f07e0
EV
1546 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1547 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1548 direct_jmp2_count,
5e5f07e0
EV
1549 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1550 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1551 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1552 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1553 cpu_fprintf(f, "TB invalidate count %d\n",
1554 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1555 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1556 tcg_dump_info(f, cpu_fprintf);
1557}
1558
1559#else /* CONFIG_USER_ONLY */
1560
c3affe56 1561void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1562{
259186a7 1563 cpu->interrupt_request |= mask;
378df4b2 1564 cpu->tcg_exit_req = 1;
5b6dd868
BS
1565}
1566
1567/*
1568 * Walks guest process memory "regions" one by one
1569 * and calls callback function 'fn' for each region.
1570 */
1571struct walk_memory_regions_data {
1572 walk_memory_regions_fn fn;
1573 void *priv;
1574 uintptr_t start;
1575 int prot;
1576};
1577
1578static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1579 abi_ulong end, int new_prot)
1580{
1581 if (data->start != -1ul) {
1582 int rc = data->fn(data->priv, data->start, end, data->prot);
1583 if (rc != 0) {
1584 return rc;
1585 }
1586 }
1587
1588 data->start = (new_prot ? end : -1ul);
1589 data->prot = new_prot;
1590
1591 return 0;
1592}
1593
1594static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1595 abi_ulong base, int level, void **lp)
1596{
1597 abi_ulong pa;
1598 int i, rc;
1599
1600 if (*lp == NULL) {
1601 return walk_memory_regions_end(data, base, 0);
1602 }
1603
1604 if (level == 0) {
1605 PageDesc *pd = *lp;
1606
03f49957 1607 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1608 int prot = pd[i].flags;
1609
1610 pa = base | (i << TARGET_PAGE_BITS);
1611 if (prot != data->prot) {
1612 rc = walk_memory_regions_end(data, pa, prot);
1613 if (rc != 0) {
1614 return rc;
1615 }
1616 }
1617 }
1618 } else {
1619 void **pp = *lp;
1620
03f49957 1621 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868 1622 pa = base | ((abi_ulong)i <<
03f49957 1623 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1624 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1625 if (rc != 0) {
1626 return rc;
1627 }
1628 }
1629 }
1630
1631 return 0;
1632}
1633
1634int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1635{
1636 struct walk_memory_regions_data data;
1637 uintptr_t i;
1638
1639 data.fn = fn;
1640 data.priv = priv;
1641 data.start = -1ul;
1642 data.prot = 0;
1643
1644 for (i = 0; i < V_L1_SIZE; i++) {
1645 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
03f49957 1646 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1647
1648 if (rc != 0) {
1649 return rc;
1650 }
1651 }
1652
1653 return walk_memory_regions_end(&data, 0, 0);
1654}
1655
1656static int dump_region(void *priv, abi_ulong start,
1657 abi_ulong end, unsigned long prot)
1658{
1659 FILE *f = (FILE *)priv;
1660
1661 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
1662 " "TARGET_ABI_FMT_lx" %c%c%c\n",
1663 start, end, end - start,
1664 ((prot & PAGE_READ) ? 'r' : '-'),
1665 ((prot & PAGE_WRITE) ? 'w' : '-'),
1666 ((prot & PAGE_EXEC) ? 'x' : '-'));
1667
1668 return 0;
1669}
1670
1671/* dump memory mappings */
1672void page_dump(FILE *f)
1673{
227b8175
SW
1674 const int length = sizeof(abi_ulong) * 2;
1675 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1676 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1677 walk_memory_regions(f, dump_region);
1678}
1679
1680int page_get_flags(target_ulong address)
1681{
1682 PageDesc *p;
1683
1684 p = page_find(address >> TARGET_PAGE_BITS);
1685 if (!p) {
1686 return 0;
1687 }
1688 return p->flags;
1689}
1690
1691/* Modify the flags of a page and invalidate the code if necessary.
1692 The flag PAGE_WRITE_ORG is positioned automatically depending
1693 on PAGE_WRITE. The mmap_lock should already be held. */
1694void page_set_flags(target_ulong start, target_ulong end, int flags)
1695{
1696 target_ulong addr, len;
1697
1698 /* This function should never be called with addresses outside the
1699 guest address space. If this assert fires, it probably indicates
1700 a missing call to h2g_valid. */
1701#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1702 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1703#endif
1704 assert(start < end);
1705
1706 start = start & TARGET_PAGE_MASK;
1707 end = TARGET_PAGE_ALIGN(end);
1708
1709 if (flags & PAGE_WRITE) {
1710 flags |= PAGE_WRITE_ORG;
1711 }
1712
1713 for (addr = start, len = end - start;
1714 len != 0;
1715 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1716 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1717
1718 /* If the write protection bit is set, then we invalidate
1719 the code inside. */
1720 if (!(p->flags & PAGE_WRITE) &&
1721 (flags & PAGE_WRITE) &&
1722 p->first_tb) {
d02532f0 1723 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1724 }
1725 p->flags = flags;
1726 }
1727}
1728
1729int page_check_range(target_ulong start, target_ulong len, int flags)
1730{
1731 PageDesc *p;
1732 target_ulong end;
1733 target_ulong addr;
1734
1735 /* This function should never be called with addresses outside the
1736 guest address space. If this assert fires, it probably indicates
1737 a missing call to h2g_valid. */
1738#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1739 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1740#endif
1741
1742 if (len == 0) {
1743 return 0;
1744 }
1745 if (start + len - 1 < start) {
1746 /* We've wrapped around. */
1747 return -1;
1748 }
1749
1750 /* must do before we loose bits in the next step */
1751 end = TARGET_PAGE_ALIGN(start + len);
1752 start = start & TARGET_PAGE_MASK;
1753
1754 for (addr = start, len = end - start;
1755 len != 0;
1756 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1757 p = page_find(addr >> TARGET_PAGE_BITS);
1758 if (!p) {
1759 return -1;
1760 }
1761 if (!(p->flags & PAGE_VALID)) {
1762 return -1;
1763 }
1764
1765 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1766 return -1;
1767 }
1768 if (flags & PAGE_WRITE) {
1769 if (!(p->flags & PAGE_WRITE_ORG)) {
1770 return -1;
1771 }
1772 /* unprotect the page if it was put read-only because it
1773 contains translated code */
1774 if (!(p->flags & PAGE_WRITE)) {
1775 if (!page_unprotect(addr, 0, NULL)) {
1776 return -1;
1777 }
1778 }
5b6dd868
BS
1779 }
1780 }
1781 return 0;
1782}
1783
1784/* called from signal handler: invalidate the code and unprotect the
1785 page. Return TRUE if the fault was successfully handled. */
1786int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1787{
1788 unsigned int prot;
1789 PageDesc *p;
1790 target_ulong host_start, host_end, addr;
1791
1792 /* Technically this isn't safe inside a signal handler. However we
1793 know this only ever happens in a synchronous SEGV handler, so in
1794 practice it seems to be ok. */
1795 mmap_lock();
1796
1797 p = page_find(address >> TARGET_PAGE_BITS);
1798 if (!p) {
1799 mmap_unlock();
1800 return 0;
1801 }
1802
1803 /* if the page was really writable, then we change its
1804 protection back to writable */
1805 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1806 host_start = address & qemu_host_page_mask;
1807 host_end = host_start + qemu_host_page_size;
1808
1809 prot = 0;
1810 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1811 p = page_find(addr >> TARGET_PAGE_BITS);
1812 p->flags |= PAGE_WRITE;
1813 prot |= p->flags;
1814
1815 /* and since the content will be modified, we must invalidate
1816 the corresponding translated code. */
d02532f0 1817 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1818#ifdef DEBUG_TB_CHECK
1819 tb_invalidate_check(addr);
1820#endif
1821 }
1822 mprotect((void *)g2h(host_start), qemu_host_page_size,
1823 prot & PAGE_BITS);
1824
1825 mmap_unlock();
1826 return 1;
1827 }
1828 mmap_unlock();
1829 return 0;
1830}
1831#endif /* CONFIG_USER_ONLY */
This page took 1.039261 seconds and 4 git commands to generate.