cli: add --preconfig option
[qemu.git] / qapi / misc.json
CommitLineData
112ed241
MA
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
b47aa7b3
LE
8{ 'include': 'common.json' }
9
112ed241
MA
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
02130314
PX
15# Arguments:
16#
17# @enable: An optional list of QMPCapability values to enable. The
18# client must not enable any capability that is not
19# mentioned in the QMP greeting message. If the field is not
20# provided, it means no QMP capabilities will be enabled.
21# (since 2.12)
112ed241
MA
22#
23# Example:
24#
02130314
PX
25# -> { "execute": "qmp_capabilities",
26# "arguments": { "enable": [ "oob" ] } }
112ed241
MA
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
02130314
PX
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
112ed241
MA
36# Since: 0.13
37#
38##
02130314 39{ 'command': 'qmp_capabilities',
d6fe3d02
IM
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
02130314
PX
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
49# @oob: QMP ability to support Out-Of-Band requests.
50# (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
112ed241
MA
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major: The major version number.
64#
65# @minor: The minor version number.
66#
67# @micro: The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu: The version of QEMU. By current convention, a micro
81# version of 50 signifies a development branch. A micro version
82# greater than or equal to 90 signifies a release candidate for
83# the next minor version. A micro version of less than 50
84# signifies a stable release.
85#
86# @package: QEMU will always set this field to an empty string. Downstream
87# versions of QEMU should set this to a non-empty string. The
88# exact format depends on the downstream however it highly
89# recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns: A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109# "return":{
110# "qemu":{
111# "major":0,
112# "minor":11,
113# "micro":5
114# },
115# "package":""
116# }
117# }
118#
119##
120{ 'command': 'query-version', 'returns': 'VersionInfo' }
121
122##
123# @CommandInfo:
124#
125# Information about a QMP command
126#
127# @name: The command name
128#
129# Since: 0.14.0
130##
131{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
132
133##
134# @query-commands:
135#
136# Return a list of supported QMP commands by this server
137#
138# Returns: A list of @CommandInfo for all supported commands
139#
140# Since: 0.14.0
141#
142# Example:
143#
144# -> { "execute": "query-commands" }
145# <- {
146# "return":[
147# {
148# "name":"query-balloon"
149# },
150# {
151# "name":"system_powerdown"
152# }
153# ]
154# }
155#
156# Note: This example has been shortened as the real response is too long.
157#
158##
d6fe3d02
IM
159{ 'command': 'query-commands', 'returns': ['CommandInfo'],
160 'allow-preconfig': true }
112ed241
MA
161
162##
163# @LostTickPolicy:
164#
165# Policy for handling lost ticks in timer devices.
166#
167# @discard: throw away the missed tick(s) and continue with future injection
168# normally. Guest time may be delayed, unless the OS has explicit
169# handling of lost ticks
170#
171# @delay: continue to deliver ticks at the normal rate. Guest time will be
172# delayed due to the late tick
173#
174# @merge: merge the missed tick(s) into one tick and inject. Guest time
175# may be delayed, depending on how the OS reacts to the merging
176# of ticks
177#
178# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
179# guest time should not be delayed once catchup is complete.
180#
181# Since: 2.0
182##
183{ 'enum': 'LostTickPolicy',
184 'data': ['discard', 'delay', 'merge', 'slew' ] }
185
186##
187# @add_client:
188#
189# Allow client connections for VNC, Spice and socket based
190# character devices to be passed in to QEMU via SCM_RIGHTS.
191#
192# @protocol: protocol name. Valid names are "vnc", "spice" or the
193# name of a character device (eg. from -chardev id=XXXX)
194#
195# @fdname: file descriptor name previously passed via 'getfd' command
196#
197# @skipauth: whether to skip authentication. Only applies
198# to "vnc" and "spice" protocols
199#
200# @tls: whether to perform TLS. Only applies to the "spice"
201# protocol
202#
203# Returns: nothing on success.
204#
205# Since: 0.14.0
206#
207# Example:
208#
209# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
210# "fdname": "myclient" } }
211# <- { "return": {} }
212#
213##
214{ 'command': 'add_client',
215 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
216 '*tls': 'bool' } }
217
218##
219# @NameInfo:
220#
221# Guest name information.
222#
223# @name: The name of the guest
224#
225# Since: 0.14.0
226##
227{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
228
229##
230# @query-name:
231#
232# Return the name information of a guest.
233#
234# Returns: @NameInfo of the guest
235#
236# Since: 0.14.0
237#
238# Example:
239#
240# -> { "execute": "query-name" }
241# <- { "return": { "name": "qemu-name" } }
242#
243##
244{ 'command': 'query-name', 'returns': 'NameInfo' }
245
246##
247# @KvmInfo:
248#
249# Information about support for KVM acceleration
250#
251# @enabled: true if KVM acceleration is active
252#
253# @present: true if KVM acceleration is built into this executable
254#
255# Since: 0.14.0
256##
257{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
258
259##
260# @query-kvm:
261#
262# Returns information about KVM acceleration
263#
264# Returns: @KvmInfo
265#
266# Since: 0.14.0
267#
268# Example:
269#
270# -> { "execute": "query-kvm" }
271# <- { "return": { "enabled": true, "present": true } }
272#
273##
274{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
275
276##
277# @UuidInfo:
278#
279# Guest UUID information (Universally Unique Identifier).
280#
281# @UUID: the UUID of the guest
282#
283# Since: 0.14.0
284#
285# Notes: If no UUID was specified for the guest, a null UUID is returned.
286##
287{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
288
289##
290# @query-uuid:
291#
292# Query the guest UUID information.
293#
294# Returns: The @UuidInfo for the guest
295#
296# Since: 0.14.0
297#
298# Example:
299#
300# -> { "execute": "query-uuid" }
301# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
302#
303##
304{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
305
306##
307# @EventInfo:
308#
309# Information about a QMP event
310#
311# @name: The event name
312#
313# Since: 1.2.0
314##
315{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
316
317##
318# @query-events:
319#
320# Return a list of supported QMP events by this server
321#
322# Returns: A list of @EventInfo for all supported events
323#
324# Since: 1.2.0
325#
326# Example:
327#
328# -> { "execute": "query-events" }
329# <- {
330# "return": [
331# {
332# "name":"SHUTDOWN"
333# },
334# {
335# "name":"RESET"
336# }
337# ]
338# }
339#
340# Note: This example has been shortened as the real response is too long.
341#
342##
343{ 'command': 'query-events', 'returns': ['EventInfo'] }
344
345##
346# @CpuInfoArch:
347#
348# An enumeration of cpu types that enable additional information during
349# @query-cpus and @query-cpus-fast.
350#
351# @s390: since 2.12
352#
25fa194b
MC
353# @riscv: since 2.12
354#
112ed241
MA
355# Since: 2.6
356##
357{ 'enum': 'CpuInfoArch',
25fa194b 358 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
112ed241
MA
359
360##
361# @CpuInfo:
362#
363# Information about a virtual CPU
364#
365# @CPU: the index of the virtual CPU
366#
367# @current: this only exists for backwards compatibility and should be ignored
368#
369# @halted: true if the virtual CPU is in the halt state. Halt usually refers
370# to a processor specific low power mode.
371#
372# @qom_path: path to the CPU object in the QOM tree (since 2.4)
373#
374# @thread_id: ID of the underlying host thread
375#
376# @props: properties describing to which node/socket/core/thread
377# virtual CPU belongs to, provided if supported by board (since 2.10)
378#
379# @arch: architecture of the cpu, which determines which additional fields
380# will be listed (since 2.6)
381#
382# Since: 0.14.0
383#
384# Notes: @halted is a transient state that changes frequently. By the time the
385# data is sent to the client, the guest may no longer be halted.
386##
387{ 'union': 'CpuInfo',
388 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
389 'qom_path': 'str', 'thread_id': 'int',
390 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
391 'discriminator': 'arch',
392 'data': { 'x86': 'CpuInfoX86',
393 'sparc': 'CpuInfoSPARC',
394 'ppc': 'CpuInfoPPC',
395 'mips': 'CpuInfoMIPS',
396 'tricore': 'CpuInfoTricore',
397 's390': 'CpuInfoS390',
25fa194b 398 'riscv': 'CpuInfoRISCV',
112ed241
MA
399 'other': 'CpuInfoOther' } }
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
25fa194b
MC
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
112ed241
MA
469##
470# @CpuInfoOther:
471#
472# No additional information is available about the virtual CPU
473#
474# Since: 2.6
475#
476##
477{ 'struct': 'CpuInfoOther', 'data': { } }
478
479##
480# @CpuS390State:
481#
482# An enumeration of cpu states that can be assumed by a virtual
483# S390 CPU
484#
485# Since: 2.12
486##
487{ 'enum': 'CpuS390State',
488 'prefix': 'S390_CPU_STATE',
489 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
490
491##
492# @CpuInfoS390:
493#
494# Additional information about a virtual S390 CPU
495#
496# @cpu-state: the virtual CPU's state
497#
498# Since: 2.12
499##
500{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
501
502##
503# @query-cpus:
504#
505# Returns a list of information about each virtual CPU.
506#
507# This command causes vCPU threads to exit to userspace, which causes
508# a small interruption to guest CPU execution. This will have a negative
509# impact on realtime guests and other latency sensitive guest workloads.
510# It is recommended to use @query-cpus-fast instead of this command to
511# avoid the vCPU interruption.
512#
513# Returns: a list of @CpuInfo for each virtual CPU
514#
515# Since: 0.14.0
516#
517# Example:
518#
519# -> { "execute": "query-cpus" }
520# <- { "return": [
521# {
522# "CPU":0,
523# "current":true,
524# "halted":false,
525# "qom_path":"/machine/unattached/device[0]",
526# "arch":"x86",
527# "pc":3227107138,
528# "thread_id":3134
529# },
530# {
531# "CPU":1,
532# "current":false,
533# "halted":true,
534# "qom_path":"/machine/unattached/device[2]",
535# "arch":"x86",
536# "pc":7108165,
537# "thread_id":3135
538# }
539# ]
540# }
541#
542# Notes: This interface is deprecated (since 2.12.0), and it is strongly
543# recommended that you avoid using it. Use @query-cpus-fast to
544# obtain information about virtual CPUs.
545#
546##
547{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
548
549##
550# @CpuInfoFast:
551#
552# Information about a virtual CPU
553#
554# @cpu-index: index of the virtual CPU
555#
556# @qom-path: path to the CPU object in the QOM tree
557#
558# @thread-id: ID of the underlying host thread
559#
560# @props: properties describing to which node/socket/core/thread
561# virtual CPU belongs to, provided if supported by board
562#
51f63ec7 563# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
6ffa3ab4 564# of @target
daa9d2bc 565#
6ffa3ab4 566# @target: the QEMU system emulation target, which determines which
51f63ec7 567# additional fields will be listed (since 3.0)
112ed241
MA
568#
569# Since: 2.12
570#
571##
daa9d2bc
LE
572{ 'union' : 'CpuInfoFast',
573 'base' : { 'cpu-index' : 'int',
574 'qom-path' : 'str',
575 'thread-id' : 'int',
576 '*props' : 'CpuInstanceProperties',
577 'arch' : 'CpuInfoArch',
578 'target' : 'SysEmuTarget' },
579 'discriminator' : 'target',
580 'data' : { 'aarch64' : 'CpuInfoOther',
581 'alpha' : 'CpuInfoOther',
582 'arm' : 'CpuInfoOther',
583 'cris' : 'CpuInfoOther',
584 'hppa' : 'CpuInfoOther',
585 'i386' : 'CpuInfoOther',
586 'lm32' : 'CpuInfoOther',
587 'm68k' : 'CpuInfoOther',
588 'microblaze' : 'CpuInfoOther',
589 'microblazeel' : 'CpuInfoOther',
590 'mips' : 'CpuInfoOther',
591 'mips64' : 'CpuInfoOther',
592 'mips64el' : 'CpuInfoOther',
593 'mipsel' : 'CpuInfoOther',
594 'moxie' : 'CpuInfoOther',
595 'nios2' : 'CpuInfoOther',
596 'or1k' : 'CpuInfoOther',
597 'ppc' : 'CpuInfoOther',
598 'ppc64' : 'CpuInfoOther',
599 'ppcemb' : 'CpuInfoOther',
600 'riscv32' : 'CpuInfoOther',
601 'riscv64' : 'CpuInfoOther',
602 's390x' : 'CpuInfoS390',
603 'sh4' : 'CpuInfoOther',
604 'sh4eb' : 'CpuInfoOther',
605 'sparc' : 'CpuInfoOther',
606 'sparc64' : 'CpuInfoOther',
607 'tricore' : 'CpuInfoOther',
608 'unicore32' : 'CpuInfoOther',
609 'x86_64' : 'CpuInfoOther',
610 'xtensa' : 'CpuInfoOther',
611 'xtensaeb' : 'CpuInfoOther' } }
112ed241
MA
612
613##
614# @query-cpus-fast:
615#
616# Returns information about all virtual CPUs. This command does not
617# incur a performance penalty and should be used in production
618# instead of query-cpus.
619#
620# Returns: list of @CpuInfoFast
621#
622# Since: 2.12
623#
624# Example:
625#
626# -> { "execute": "query-cpus-fast" }
627# <- { "return": [
628# {
629# "thread-id": 25627,
630# "props": {
631# "core-id": 0,
632# "thread-id": 0,
633# "socket-id": 0
634# },
635# "qom-path": "/machine/unattached/device[0]",
636# "arch":"x86",
daa9d2bc 637# "target":"x86_64",
112ed241
MA
638# "cpu-index": 0
639# },
640# {
641# "thread-id": 25628,
642# "props": {
643# "core-id": 0,
644# "thread-id": 0,
645# "socket-id": 1
646# },
647# "qom-path": "/machine/unattached/device[2]",
648# "arch":"x86",
daa9d2bc 649# "target":"x86_64",
112ed241
MA
650# "cpu-index": 1
651# }
652# ]
653# }
654##
655{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
656
657##
658# @IOThreadInfo:
659#
660# Information about an iothread
661#
662# @id: the identifier of the iothread
663#
664# @thread-id: ID of the underlying host thread
665#
666# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
667# (since 2.9)
668#
669# @poll-grow: how many ns will be added to polling time, 0 means that it's not
670# configured (since 2.9)
671#
672# @poll-shrink: how many ns will be removed from polling time, 0 means that
673# it's not configured (since 2.9)
674#
675# Since: 2.0
676##
677{ 'struct': 'IOThreadInfo',
678 'data': {'id': 'str',
679 'thread-id': 'int',
680 'poll-max-ns': 'int',
681 'poll-grow': 'int',
682 'poll-shrink': 'int' } }
683
684##
685# @query-iothreads:
686#
687# Returns a list of information about each iothread.
688#
689# Note: this list excludes the QEMU main loop thread, which is not declared
690# using the -object iothread command-line option. It is always the main thread
691# of the process.
692#
693# Returns: a list of @IOThreadInfo for each iothread
694#
695# Since: 2.0
696#
697# Example:
698#
699# -> { "execute": "query-iothreads" }
700# <- { "return": [
701# {
702# "id":"iothread0",
703# "thread-id":3134
704# },
705# {
706# "id":"iothread1",
707# "thread-id":3135
708# }
709# ]
710# }
711#
712##
713{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
714
715##
716# @BalloonInfo:
717#
718# Information about the guest balloon device.
719#
720# @actual: the number of bytes the balloon currently contains
721#
722# Since: 0.14.0
723#
724##
725{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
726
727##
728# @query-balloon:
729#
730# Return information about the balloon device.
731#
732# Returns: @BalloonInfo on success
733#
734# If the balloon driver is enabled but not functional because the KVM
735# kernel module cannot support it, KvmMissingCap
736#
737# If no balloon device is present, DeviceNotActive
738#
739# Since: 0.14.0
740#
741# Example:
742#
743# -> { "execute": "query-balloon" }
744# <- { "return": {
745# "actual": 1073741824,
746# }
747# }
748#
749##
750{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
751
752##
753# @BALLOON_CHANGE:
754#
755# Emitted when the guest changes the actual BALLOON level. This value is
756# equivalent to the @actual field return by the 'query-balloon' command
757#
758# @actual: actual level of the guest memory balloon in bytes
759#
760# Note: this event is rate-limited.
761#
762# Since: 1.2
763#
764# Example:
765#
766# <- { "event": "BALLOON_CHANGE",
767# "data": { "actual": 944766976 },
768# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
769#
770##
771{ 'event': 'BALLOON_CHANGE',
772 'data': { 'actual': 'int' } }
773
774##
775# @PciMemoryRange:
776#
777# A PCI device memory region
778#
779# @base: the starting address (guest physical)
780#
781# @limit: the ending address (guest physical)
782#
783# Since: 0.14.0
784##
785{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
786
787##
788# @PciMemoryRegion:
789#
790# Information about a PCI device I/O region.
791#
792# @bar: the index of the Base Address Register for this region
793#
794# @type: 'io' if the region is a PIO region
795# 'memory' if the region is a MMIO region
796#
797# @size: memory size
798#
799# @prefetch: if @type is 'memory', true if the memory is prefetchable
800#
801# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
802#
803# Since: 0.14.0
804##
805{ 'struct': 'PciMemoryRegion',
806 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
807 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
808
809##
810# @PciBusInfo:
811#
812# Information about a bus of a PCI Bridge device
813#
814# @number: primary bus interface number. This should be the number of the
815# bus the device resides on.
816#
817# @secondary: secondary bus interface number. This is the number of the
818# main bus for the bridge
819#
820# @subordinate: This is the highest number bus that resides below the
821# bridge.
822#
823# @io_range: The PIO range for all devices on this bridge
824#
825# @memory_range: The MMIO range for all devices on this bridge
826#
827# @prefetchable_range: The range of prefetchable MMIO for all devices on
828# this bridge
829#
830# Since: 2.4
831##
832{ 'struct': 'PciBusInfo',
833 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
834 'io_range': 'PciMemoryRange',
835 'memory_range': 'PciMemoryRange',
836 'prefetchable_range': 'PciMemoryRange' } }
837
838##
839# @PciBridgeInfo:
840#
841# Information about a PCI Bridge device
842#
843# @bus: information about the bus the device resides on
844#
845# @devices: a list of @PciDeviceInfo for each device on this bridge
846#
847# Since: 0.14.0
848##
849{ 'struct': 'PciBridgeInfo',
850 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
851
852##
853# @PciDeviceClass:
854#
855# Information about the Class of a PCI device
856#
857# @desc: a string description of the device's class
858#
859# @class: the class code of the device
860#
861# Since: 2.4
862##
863{ 'struct': 'PciDeviceClass',
864 'data': {'*desc': 'str', 'class': 'int'} }
865
866##
867# @PciDeviceId:
868#
869# Information about the Id of a PCI device
870#
871# @device: the PCI device id
872#
873# @vendor: the PCI vendor id
874#
875# Since: 2.4
876##
877{ 'struct': 'PciDeviceId',
878 'data': {'device': 'int', 'vendor': 'int'} }
879
880##
881# @PciDeviceInfo:
882#
883# Information about a PCI device
884#
885# @bus: the bus number of the device
886#
887# @slot: the slot the device is located in
888#
889# @function: the function of the slot used by the device
890#
891# @class_info: the class of the device
892#
893# @id: the PCI device id
894#
895# @irq: if an IRQ is assigned to the device, the IRQ number
896#
897# @qdev_id: the device name of the PCI device
898#
899# @pci_bridge: if the device is a PCI bridge, the bridge information
900#
901# @regions: a list of the PCI I/O regions associated with the device
902#
903# Notes: the contents of @class_info.desc are not stable and should only be
904# treated as informational.
905#
906# Since: 0.14.0
907##
908{ 'struct': 'PciDeviceInfo',
909 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
910 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
911 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
912 'regions': ['PciMemoryRegion']} }
913
914##
915# @PciInfo:
916#
917# Information about a PCI bus
918#
919# @bus: the bus index
920#
921# @devices: a list of devices on this bus
922#
923# Since: 0.14.0
924##
925{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
926
927##
928# @query-pci:
929#
930# Return information about the PCI bus topology of the guest.
931#
932# Returns: a list of @PciInfo for each PCI bus. Each bus is
933# represented by a json-object, which has a key with a json-array of
934# all PCI devices attached to it. Each device is represented by a
935# json-object.
936#
937# Since: 0.14.0
938#
939# Example:
940#
941# -> { "execute": "query-pci" }
942# <- { "return": [
943# {
944# "bus": 0,
945# "devices": [
946# {
947# "bus": 0,
948# "qdev_id": "",
949# "slot": 0,
950# "class_info": {
951# "class": 1536,
952# "desc": "Host bridge"
953# },
954# "id": {
955# "device": 32902,
956# "vendor": 4663
957# },
958# "function": 0,
959# "regions": [
960# ]
961# },
962# {
963# "bus": 0,
964# "qdev_id": "",
965# "slot": 1,
966# "class_info": {
967# "class": 1537,
968# "desc": "ISA bridge"
969# },
970# "id": {
971# "device": 32902,
972# "vendor": 28672
973# },
974# "function": 0,
975# "regions": [
976# ]
977# },
978# {
979# "bus": 0,
980# "qdev_id": "",
981# "slot": 1,
982# "class_info": {
983# "class": 257,
984# "desc": "IDE controller"
985# },
986# "id": {
987# "device": 32902,
988# "vendor": 28688
989# },
990# "function": 1,
991# "regions": [
992# {
993# "bar": 4,
994# "size": 16,
995# "address": 49152,
996# "type": "io"
997# }
998# ]
999# },
1000# {
1001# "bus": 0,
1002# "qdev_id": "",
1003# "slot": 2,
1004# "class_info": {
1005# "class": 768,
1006# "desc": "VGA controller"
1007# },
1008# "id": {
1009# "device": 4115,
1010# "vendor": 184
1011# },
1012# "function": 0,
1013# "regions": [
1014# {
1015# "prefetch": true,
1016# "mem_type_64": false,
1017# "bar": 0,
1018# "size": 33554432,
1019# "address": 4026531840,
1020# "type": "memory"
1021# },
1022# {
1023# "prefetch": false,
1024# "mem_type_64": false,
1025# "bar": 1,
1026# "size": 4096,
1027# "address": 4060086272,
1028# "type": "memory"
1029# },
1030# {
1031# "prefetch": false,
1032# "mem_type_64": false,
1033# "bar": 6,
1034# "size": 65536,
1035# "address": -1,
1036# "type": "memory"
1037# }
1038# ]
1039# },
1040# {
1041# "bus": 0,
1042# "qdev_id": "",
1043# "irq": 11,
1044# "slot": 4,
1045# "class_info": {
1046# "class": 1280,
1047# "desc": "RAM controller"
1048# },
1049# "id": {
1050# "device": 6900,
1051# "vendor": 4098
1052# },
1053# "function": 0,
1054# "regions": [
1055# {
1056# "bar": 0,
1057# "size": 32,
1058# "address": 49280,
1059# "type": "io"
1060# }
1061# ]
1062# }
1063# ]
1064# }
1065# ]
1066# }
1067#
1068# Note: This example has been shortened as the real response is too long.
1069#
1070##
1071{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1072
1073##
1074# @quit:
1075#
1076# This command will cause the QEMU process to exit gracefully. While every
1077# attempt is made to send the QMP response before terminating, this is not
1078# guaranteed. When using this interface, a premature EOF would not be
1079# unexpected.
1080#
1081# Since: 0.14.0
1082#
1083# Example:
1084#
1085# -> { "execute": "quit" }
1086# <- { "return": {} }
1087##
1088{ 'command': 'quit' }
1089
1090##
1091# @stop:
1092#
1093# Stop all guest VCPU execution.
1094#
1095# Since: 0.14.0
1096#
1097# Notes: This function will succeed even if the guest is already in the stopped
1098# state. In "inmigrate" state, it will ensure that the guest
1099# remains paused once migration finishes, as if the -S option was
1100# passed on the command line.
1101#
1102# Example:
1103#
1104# -> { "execute": "stop" }
1105# <- { "return": {} }
1106#
1107##
1108{ 'command': 'stop' }
1109
1110##
1111# @system_reset:
1112#
1113# Performs a hard reset of a guest.
1114#
1115# Since: 0.14.0
1116#
1117# Example:
1118#
1119# -> { "execute": "system_reset" }
1120# <- { "return": {} }
1121#
1122##
1123{ 'command': 'system_reset' }
1124
1125##
1126# @system_powerdown:
1127#
1128# Requests that a guest perform a powerdown operation.
1129#
1130# Since: 0.14.0
1131#
1132# Notes: A guest may or may not respond to this command. This command
1133# returning does not indicate that a guest has accepted the request or
1134# that it has shut down. Many guests will respond to this command by
1135# prompting the user in some way.
1136# Example:
1137#
1138# -> { "execute": "system_powerdown" }
1139# <- { "return": {} }
1140#
1141##
1142{ 'command': 'system_powerdown' }
1143
1144##
1145# @cpu-add:
1146#
1147# Adds CPU with specified ID
1148#
1149# @id: ID of CPU to be created, valid values [0..max_cpus)
1150#
1151# Returns: Nothing on success
1152#
1153# Since: 1.5
1154#
1155# Example:
1156#
1157# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1158# <- { "return": {} }
1159#
1160##
1161{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1162
1163##
1164# @memsave:
1165#
1166# Save a portion of guest memory to a file.
1167#
1168# @val: the virtual address of the guest to start from
1169#
1170# @size: the size of memory region to save
1171#
1172# @filename: the file to save the memory to as binary data
1173#
1174# @cpu-index: the index of the virtual CPU to use for translating the
1175# virtual address (defaults to CPU 0)
1176#
1177# Returns: Nothing on success
1178#
1179# Since: 0.14.0
1180#
1181# Notes: Errors were not reliably returned until 1.1
1182#
1183# Example:
1184#
1185# -> { "execute": "memsave",
1186# "arguments": { "val": 10,
1187# "size": 100,
1188# "filename": "/tmp/virtual-mem-dump" } }
1189# <- { "return": {} }
1190#
1191##
1192{ 'command': 'memsave',
1193 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1194
1195##
1196# @pmemsave:
1197#
1198# Save a portion of guest physical memory to a file.
1199#
1200# @val: the physical address of the guest to start from
1201#
1202# @size: the size of memory region to save
1203#
1204# @filename: the file to save the memory to as binary data
1205#
1206# Returns: Nothing on success
1207#
1208# Since: 0.14.0
1209#
1210# Notes: Errors were not reliably returned until 1.1
1211#
1212# Example:
1213#
1214# -> { "execute": "pmemsave",
1215# "arguments": { "val": 10,
1216# "size": 100,
1217# "filename": "/tmp/physical-mem-dump" } }
1218# <- { "return": {} }
1219#
1220##
1221{ 'command': 'pmemsave',
1222 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1223
1224##
1225# @cont:
1226#
1227# Resume guest VCPU execution.
1228#
1229# Since: 0.14.0
1230#
1231# Returns: If successful, nothing
1232#
1233# Notes: This command will succeed if the guest is currently running. It
1234# will also succeed if the guest is in the "inmigrate" state; in
1235# this case, the effect of the command is to make sure the guest
1236# starts once migration finishes, removing the effect of the -S
1237# command line option if it was passed.
1238#
1239# Example:
1240#
1241# -> { "execute": "cont" }
1242# <- { "return": {} }
1243#
1244##
1245{ 'command': 'cont' }
1246
047f7038
IM
1247##
1248# @exit-preconfig:
1249#
1250# Exit from "preconfig" state
1251#
1252# This command makes QEMU exit the preconfig state and proceed with
1253# VM initialization using configuration data provided on the command line
1254# and via the QMP monitor during the preconfig state. The command is only
1255# available during the preconfig state (i.e. when the --preconfig command
1256# line option was in use).
1257#
1258# Since 3.0
1259#
1260# Returns: nothing
1261#
1262# Example:
1263#
1264# -> { "execute": "exit-preconfig" }
1265# <- { "return": {} }
1266#
1267##
1268{ 'command': 'exit-preconfig', 'allow-preconfig': true }
1269
112ed241
MA
1270##
1271# @system_wakeup:
1272#
1273# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1274#
1275# Since: 1.1
1276#
1277# Returns: nothing.
1278#
1279# Example:
1280#
1281# -> { "execute": "system_wakeup" }
1282# <- { "return": {} }
1283#
1284##
1285{ 'command': 'system_wakeup' }
1286
1287##
1288# @inject-nmi:
1289#
1290# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1291# The command fails when the guest doesn't support injecting.
1292#
1293# Returns: If successful, nothing
1294#
1295# Since: 0.14.0
1296#
1297# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1298#
1299# Example:
1300#
1301# -> { "execute": "inject-nmi" }
1302# <- { "return": {} }
1303#
1304##
1305{ 'command': 'inject-nmi' }
1306
1307##
1308# @balloon:
1309#
1310# Request the balloon driver to change its balloon size.
1311#
1312# @value: the target size of the balloon in bytes
1313#
1314# Returns: Nothing on success
1315# If the balloon driver is enabled but not functional because the KVM
1316# kernel module cannot support it, KvmMissingCap
1317# If no balloon device is present, DeviceNotActive
1318#
1319# Notes: This command just issues a request to the guest. When it returns,
1320# the balloon size may not have changed. A guest can change the balloon
1321# size independent of this command.
1322#
1323# Since: 0.14.0
1324#
1325# Example:
1326#
1327# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1328# <- { "return": {} }
1329#
1330##
1331{ 'command': 'balloon', 'data': {'value': 'int'} }
1332
1333##
1334# @human-monitor-command:
1335#
1336# Execute a command on the human monitor and return the output.
1337#
1338# @command-line: the command to execute in the human monitor
1339#
1340# @cpu-index: The CPU to use for commands that require an implicit CPU
1341#
1342# Returns: the output of the command as a string
1343#
1344# Since: 0.14.0
1345#
1346# Notes: This command only exists as a stop-gap. Its use is highly
1347# discouraged. The semantics of this command are not
1348# guaranteed: this means that command names, arguments and
1349# responses can change or be removed at ANY time. Applications
1350# that rely on long term stability guarantees should NOT
1351# use this command.
1352#
1353# Known limitations:
1354#
1355# * This command is stateless, this means that commands that depend
1356# on state information (such as getfd) might not work
1357#
1358# * Commands that prompt the user for data don't currently work
1359#
1360# Example:
1361#
1362# -> { "execute": "human-monitor-command",
1363# "arguments": { "command-line": "info kvm" } }
1364# <- { "return": "kvm support: enabled\r\n" }
1365#
1366##
1367{ 'command': 'human-monitor-command',
1368 'data': {'command-line': 'str', '*cpu-index': 'int'},
1369 'returns': 'str' }
1370
1371##
1372# @ObjectPropertyInfo:
1373#
1374# @name: the name of the property
1375#
1376# @type: the type of the property. This will typically come in one of four
1377# forms:
1378#
1379# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1380# These types are mapped to the appropriate JSON type.
1381#
1382# 2) A child type in the form 'child<subtype>' where subtype is a qdev
1383# device type name. Child properties create the composition tree.
1384#
1385# 3) A link type in the form 'link<subtype>' where subtype is a qdev
1386# device type name. Link properties form the device model graph.
1387#
35f63767
AK
1388# @description: if specified, the description of the property.
1389#
112ed241
MA
1390# Since: 1.2
1391##
1392{ 'struct': 'ObjectPropertyInfo',
35f63767 1393 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
112ed241
MA
1394
1395##
1396# @qom-list:
1397#
1398# This command will list any properties of a object given a path in the object
1399# model.
1400#
1401# @path: the path within the object model. See @qom-get for a description of
1402# this parameter.
1403#
1404# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1405# object.
1406#
1407# Since: 1.2
1408##
1409{ 'command': 'qom-list',
1410 'data': { 'path': 'str' },
1411 'returns': [ 'ObjectPropertyInfo' ] }
1412
1413##
1414# @qom-get:
1415#
1416# This command will get a property from a object model path and return the
1417# value.
1418#
1419# @path: The path within the object model. There are two forms of supported
1420# paths--absolute and partial paths.
1421#
1422# Absolute paths are derived from the root object and can follow child<>
1423# or link<> properties. Since they can follow link<> properties, they
1424# can be arbitrarily long. Absolute paths look like absolute filenames
1425# and are prefixed with a leading slash.
1426#
1427# Partial paths look like relative filenames. They do not begin
1428# with a prefix. The matching rules for partial paths are subtle but
1429# designed to make specifying objects easy. At each level of the
1430# composition tree, the partial path is matched as an absolute path.
1431# The first match is not returned. At least two matches are searched
1432# for. A successful result is only returned if only one match is
1433# found. If more than one match is found, a flag is return to
1434# indicate that the match was ambiguous.
1435#
1436# @property: The property name to read
1437#
1438# Returns: The property value. The type depends on the property
1439# type. child<> and link<> properties are returned as #str
1440# pathnames. All integer property types (u8, u16, etc) are
1441# returned as #int.
1442#
1443# Since: 1.2
1444##
1445{ 'command': 'qom-get',
1446 'data': { 'path': 'str', 'property': 'str' },
1447 'returns': 'any' }
1448
1449##
1450# @qom-set:
1451#
1452# This command will set a property from a object model path.
1453#
1454# @path: see @qom-get for a description of this parameter
1455#
1456# @property: the property name to set
1457#
1458# @value: a value who's type is appropriate for the property type. See @qom-get
1459# for a description of type mapping.
1460#
1461# Since: 1.2
1462##
1463{ 'command': 'qom-set',
1464 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1465
1466##
1467# @change:
1468#
1469# This command is multiple commands multiplexed together.
1470#
1471# @device: This is normally the name of a block device but it may also be 'vnc'.
1472# when it's 'vnc', then sub command depends on @target
1473#
1474# @target: If @device is a block device, then this is the new filename.
1475# If @device is 'vnc', then if the value 'password' selects the vnc
1476# change password command. Otherwise, this specifies a new server URI
1477# address to listen to for VNC connections.
1478#
1479# @arg: If @device is a block device, then this is an optional format to open
1480# the device with.
1481# If @device is 'vnc' and @target is 'password', this is the new VNC
1482# password to set. See change-vnc-password for additional notes.
1483#
1484# Returns: Nothing on success.
1485# If @device is not a valid block device, DeviceNotFound
1486#
1487# Notes: This interface is deprecated, and it is strongly recommended that you
1488# avoid using it. For changing block devices, use
1489# blockdev-change-medium; for changing VNC parameters, use
1490# change-vnc-password.
1491#
1492# Since: 0.14.0
1493#
1494# Example:
1495#
1496# 1. Change a removable medium
1497#
1498# -> { "execute": "change",
1499# "arguments": { "device": "ide1-cd0",
1500# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1501# <- { "return": {} }
1502#
1503# 2. Change VNC password
1504#
1505# -> { "execute": "change",
1506# "arguments": { "device": "vnc", "target": "password",
1507# "arg": "foobar1" } }
1508# <- { "return": {} }
1509#
1510##
1511{ 'command': 'change',
1512 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1513
1514##
1515# @ObjectTypeInfo:
1516#
1517# This structure describes a search result from @qom-list-types
1518#
1519# @name: the type name found in the search
1520#
1521# @abstract: the type is abstract and can't be directly instantiated.
1522# Omitted if false. (since 2.10)
1523#
1524# @parent: Name of parent type, if any (since 2.10)
1525#
1526# Since: 1.1
1527##
1528{ 'struct': 'ObjectTypeInfo',
1529 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1530
1531##
1532# @qom-list-types:
1533#
1534# This command will return a list of types given search parameters
1535#
1536# @implements: if specified, only return types that implement this type name
1537#
1538# @abstract: if true, include abstract types in the results
1539#
1540# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1541#
1542# Since: 1.1
1543##
1544{ 'command': 'qom-list-types',
1545 'data': { '*implements': 'str', '*abstract': 'bool' },
1546 'returns': [ 'ObjectTypeInfo' ] }
1547
112ed241
MA
1548##
1549# @device-list-properties:
1550#
1551# List properties associated with a device.
1552#
1553# @typename: the type name of a device
1554#
35f63767 1555# Returns: a list of ObjectPropertyInfo describing a devices properties
112ed241
MA
1556#
1557# Since: 1.2
1558##
1559{ 'command': 'device-list-properties',
1560 'data': { 'typename': 'str'},
35f63767 1561 'returns': [ 'ObjectPropertyInfo' ] }
112ed241 1562
961c47bb
AK
1563##
1564# @qom-list-properties:
1565#
1566# List properties associated with a QOM object.
1567#
1568# @typename: the type name of an object
1569#
1570# Returns: a list of ObjectPropertyInfo describing object properties
1571#
1572# Since: 2.12
1573##
1574{ 'command': 'qom-list-properties',
1575 'data': { 'typename': 'str'},
1576 'returns': [ 'ObjectPropertyInfo' ] }
1577
112ed241
MA
1578##
1579# @xen-set-global-dirty-log:
1580#
1581# Enable or disable the global dirty log mode.
1582#
1583# @enable: true to enable, false to disable.
1584#
1585# Returns: nothing
1586#
1587# Since: 1.3
1588#
1589# Example:
1590#
1591# -> { "execute": "xen-set-global-dirty-log",
1592# "arguments": { "enable": true } }
1593# <- { "return": {} }
1594#
1595##
1596{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1597
1598##
1599# @device_add:
1600#
1601# @driver: the name of the new device's driver
1602#
1603# @bus: the device's parent bus (device tree path)
1604#
1605# @id: the device's ID, must be unique
1606#
1607# Additional arguments depend on the type.
1608#
1609# Add a device.
1610#
1611# Notes:
1612# 1. For detailed information about this command, please refer to the
1613# 'docs/qdev-device-use.txt' file.
1614#
1615# 2. It's possible to list device properties by running QEMU with the
1616# "-device DEVICE,help" command-line argument, where DEVICE is the
1617# device's name
1618#
1619# Example:
1620#
1621# -> { "execute": "device_add",
1622# "arguments": { "driver": "e1000", "id": "net1",
1623# "bus": "pci.0",
1624# "mac": "52:54:00:12:34:56" } }
1625# <- { "return": {} }
1626#
1627# TODO: This command effectively bypasses QAPI completely due to its
1628# "additional arguments" business. It shouldn't have been added to
1629# the schema in this form. It should be qapified properly, or
1630# replaced by a properly qapified command.
1631#
1632# Since: 0.13
1633##
1634{ 'command': 'device_add',
1635 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1636 'gen': false } # so we can get the additional arguments
1637
1638##
1639# @device_del:
1640#
1641# Remove a device from a guest
1642#
1643# @id: the device's ID or QOM path
1644#
1645# Returns: Nothing on success
1646# If @id is not a valid device, DeviceNotFound
1647#
1648# Notes: When this command completes, the device may not be removed from the
1649# guest. Hot removal is an operation that requires guest cooperation.
1650# This command merely requests that the guest begin the hot removal
1651# process. Completion of the device removal process is signaled with a
1652# DEVICE_DELETED event. Guest reset will automatically complete removal
1653# for all devices.
1654#
1655# Since: 0.14.0
1656#
1657# Example:
1658#
1659# -> { "execute": "device_del",
1660# "arguments": { "id": "net1" } }
1661# <- { "return": {} }
1662#
1663# -> { "execute": "device_del",
1664# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1665# <- { "return": {} }
1666#
1667##
1668{ 'command': 'device_del', 'data': {'id': 'str'} }
1669
1670##
1671# @DEVICE_DELETED:
1672#
1673# Emitted whenever the device removal completion is acknowledged by the guest.
1674# At this point, it's safe to reuse the specified device ID. Device removal can
1675# be initiated by the guest or by HMP/QMP commands.
1676#
1677# @device: device name
1678#
1679# @path: device path
1680#
1681# Since: 1.5
1682#
1683# Example:
1684#
1685# <- { "event": "DEVICE_DELETED",
1686# "data": { "device": "virtio-net-pci-0",
1687# "path": "/machine/peripheral/virtio-net-pci-0" },
1688# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1689#
1690##
1691{ 'event': 'DEVICE_DELETED',
1692 'data': { '*device': 'str', 'path': 'str' } }
1693
1694##
1695# @DumpGuestMemoryFormat:
1696#
1697# An enumeration of guest-memory-dump's format.
1698#
1699# @elf: elf format
1700#
1701# @kdump-zlib: kdump-compressed format with zlib-compressed
1702#
1703# @kdump-lzo: kdump-compressed format with lzo-compressed
1704#
1705# @kdump-snappy: kdump-compressed format with snappy-compressed
1706#
1707# Since: 2.0
1708##
1709{ 'enum': 'DumpGuestMemoryFormat',
1710 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1711
1712##
1713# @dump-guest-memory:
1714#
1715# Dump guest's memory to vmcore. It is a synchronous operation that can take
1716# very long depending on the amount of guest memory.
1717#
1718# @paging: if true, do paging to get guest's memory mapping. This allows
1719# using gdb to process the core file.
1720#
1721# IMPORTANT: this option can make QEMU allocate several gigabytes
1722# of RAM. This can happen for a large guest, or a
1723# malicious guest pretending to be large.
1724#
1725# Also, paging=true has the following limitations:
1726#
1727# 1. The guest may be in a catastrophic state or can have corrupted
1728# memory, which cannot be trusted
1729# 2. The guest can be in real-mode even if paging is enabled. For
1730# example, the guest uses ACPI to sleep, and ACPI sleep state
1731# goes in real-mode
1732# 3. Currently only supported on i386 and x86_64.
1733#
1734# @protocol: the filename or file descriptor of the vmcore. The supported
1735# protocols are:
1736#
1737# 1. file: the protocol starts with "file:", and the following
1738# string is the file's path.
1739# 2. fd: the protocol starts with "fd:", and the following string
1740# is the fd's name.
1741#
1742# @detach: if true, QMP will return immediately rather than
1743# waiting for the dump to finish. The user can track progress
1744# using "query-dump". (since 2.6).
1745#
1746# @begin: if specified, the starting physical address.
1747#
1748# @length: if specified, the memory size, in bytes. If you don't
1749# want to dump all guest's memory, please specify the start @begin
1750# and @length
1751#
1752# @format: if specified, the format of guest memory dump. But non-elf
1753# format is conflict with paging and filter, ie. @paging, @begin and
1754# @length is not allowed to be specified with non-elf @format at the
1755# same time (since 2.0)
1756#
1757# Note: All boolean arguments default to false
1758#
1759# Returns: nothing on success
1760#
1761# Since: 1.2
1762#
1763# Example:
1764#
1765# -> { "execute": "dump-guest-memory",
1766# "arguments": { "protocol": "fd:dump" } }
1767# <- { "return": {} }
1768#
1769##
1770{ 'command': 'dump-guest-memory',
1771 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1772 '*begin': 'int', '*length': 'int',
1773 '*format': 'DumpGuestMemoryFormat'} }
1774
1775##
1776# @DumpStatus:
1777#
1778# Describe the status of a long-running background guest memory dump.
1779#
1780# @none: no dump-guest-memory has started yet.
1781#
1782# @active: there is one dump running in background.
1783#
1784# @completed: the last dump has finished successfully.
1785#
1786# @failed: the last dump has failed.
1787#
1788# Since: 2.6
1789##
1790{ 'enum': 'DumpStatus',
1791 'data': [ 'none', 'active', 'completed', 'failed' ] }
1792
1793##
1794# @DumpQueryResult:
1795#
1796# The result format for 'query-dump'.
1797#
1798# @status: enum of @DumpStatus, which shows current dump status
1799#
1800# @completed: bytes written in latest dump (uncompressed)
1801#
1802# @total: total bytes to be written in latest dump (uncompressed)
1803#
1804# Since: 2.6
1805##
1806{ 'struct': 'DumpQueryResult',
1807 'data': { 'status': 'DumpStatus',
1808 'completed': 'int',
1809 'total': 'int' } }
1810
1811##
1812# @query-dump:
1813#
1814# Query latest dump status.
1815#
1816# Returns: A @DumpStatus object showing the dump status.
1817#
1818# Since: 2.6
1819#
1820# Example:
1821#
1822# -> { "execute": "query-dump" }
1823# <- { "return": { "status": "active", "completed": 1024000,
1824# "total": 2048000 } }
1825#
1826##
1827{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1828
1829##
1830# @DUMP_COMPLETED:
1831#
1832# Emitted when background dump has completed
1833#
eb815e24 1834# @result: final dump status
112ed241
MA
1835#
1836# @error: human-readable error string that provides
1837# hint on why dump failed. Only presents on failure. The
1838# user should not try to interpret the error string.
1839#
1840# Since: 2.6
1841#
1842# Example:
1843#
1844# { "event": "DUMP_COMPLETED",
1845# "data": {"result": {"total": 1090650112, "status": "completed",
1846# "completed": 1090650112} } }
1847#
1848##
1849{ 'event': 'DUMP_COMPLETED' ,
1850 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1851
1852##
1853# @DumpGuestMemoryCapability:
1854#
1855# A list of the available formats for dump-guest-memory
1856#
1857# Since: 2.0
1858##
1859{ 'struct': 'DumpGuestMemoryCapability',
1860 'data': {
1861 'formats': ['DumpGuestMemoryFormat'] } }
1862
1863##
1864# @query-dump-guest-memory-capability:
1865#
1866# Returns the available formats for dump-guest-memory
1867#
1868# Returns: A @DumpGuestMemoryCapability object listing available formats for
1869# dump-guest-memory
1870#
1871# Since: 2.0
1872#
1873# Example:
1874#
1875# -> { "execute": "query-dump-guest-memory-capability" }
1876# <- { "return": { "formats":
1877# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1878#
1879##
1880{ 'command': 'query-dump-guest-memory-capability',
1881 'returns': 'DumpGuestMemoryCapability' }
1882
1883##
1884# @dump-skeys:
1885#
1886# Dump guest's storage keys
1887#
1888# @filename: the path to the file to dump to
1889#
1890# This command is only supported on s390 architecture.
1891#
1892# Since: 2.5
1893#
1894# Example:
1895#
1896# -> { "execute": "dump-skeys",
1897# "arguments": { "filename": "/tmp/skeys" } }
1898# <- { "return": {} }
1899#
1900##
1901{ 'command': 'dump-skeys',
1902 'data': { 'filename': 'str' } }
1903
1904##
1905# @object-add:
1906#
1907# Create a QOM object.
1908#
1909# @qom-type: the class name for the object to be created
1910#
1911# @id: the name of the new object
1912#
1913# @props: a dictionary of properties to be passed to the backend
1914#
1915# Returns: Nothing on success
1916# Error if @qom-type is not a valid class name
1917#
1918# Since: 2.0
1919#
1920# Example:
1921#
1922# -> { "execute": "object-add",
1923# "arguments": { "qom-type": "rng-random", "id": "rng1",
1924# "props": { "filename": "/dev/hwrng" } } }
1925# <- { "return": {} }
1926#
1927##
1928{ 'command': 'object-add',
1929 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1930
1931##
1932# @object-del:
1933#
1934# Remove a QOM object.
1935#
1936# @id: the name of the QOM object to remove
1937#
1938# Returns: Nothing on success
1939# Error if @id is not a valid id for a QOM object
1940#
1941# Since: 2.0
1942#
1943# Example:
1944#
1945# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1946# <- { "return": {} }
1947#
1948##
1949{ 'command': 'object-del', 'data': {'id': 'str'} }
1950
1951##
1952# @getfd:
1953#
1954# Receive a file descriptor via SCM rights and assign it a name
1955#
1956# @fdname: file descriptor name
1957#
1958# Returns: Nothing on success
1959#
1960# Since: 0.14.0
1961#
1962# Notes: If @fdname already exists, the file descriptor assigned to
1963# it will be closed and replaced by the received file
1964# descriptor.
1965#
1966# The 'closefd' command can be used to explicitly close the
1967# file descriptor when it is no longer needed.
1968#
1969# Example:
1970#
1971# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1972# <- { "return": {} }
1973#
1974##
1975{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1976
1977##
1978# @closefd:
1979#
1980# Close a file descriptor previously passed via SCM rights
1981#
1982# @fdname: file descriptor name
1983#
1984# Returns: Nothing on success
1985#
1986# Since: 0.14.0
1987#
1988# Example:
1989#
1990# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1991# <- { "return": {} }
1992#
1993##
1994{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1995
1996##
1997# @MachineInfo:
1998#
1999# Information describing a machine.
2000#
2001# @name: the name of the machine
2002#
2003# @alias: an alias for the machine name
2004#
2005# @is-default: whether the machine is default
2006#
2007# @cpu-max: maximum number of CPUs supported by the machine type
2008# (since 1.5.0)
2009#
2010# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2011#
2012# Since: 1.2.0
2013##
2014{ 'struct': 'MachineInfo',
2015 'data': { 'name': 'str', '*alias': 'str',
2016 '*is-default': 'bool', 'cpu-max': 'int',
2017 'hotpluggable-cpus': 'bool'} }
2018
2019##
2020# @query-machines:
2021#
2022# Return a list of supported machines
2023#
2024# Returns: a list of MachineInfo
2025#
2026# Since: 1.2.0
2027##
2028{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2029
2030##
2031# @CpuDefinitionInfo:
2032#
2033# Virtual CPU definition.
2034#
2035# @name: the name of the CPU definition
2036#
2037# @migration-safe: whether a CPU definition can be safely used for
2038# migration in combination with a QEMU compatibility machine
2039# when migrating between different QMU versions and between
2040# hosts with different sets of (hardware or software)
2041# capabilities. If not provided, information is not available
2042# and callers should not assume the CPU definition to be
2043# migration-safe. (since 2.8)
2044#
2045# @static: whether a CPU definition is static and will not change depending on
2046# QEMU version, machine type, machine options and accelerator options.
2047# A static model is always migration-safe. (since 2.8)
2048#
2049# @unavailable-features: List of properties that prevent
2050# the CPU model from running in the current
2051# host. (since 2.8)
2052# @typename: Type name that can be used as argument to @device-list-properties,
2053# to introspect properties configurable using -cpu or -global.
2054# (since 2.9)
2055#
2056# @unavailable-features is a list of QOM property names that
2057# represent CPU model attributes that prevent the CPU from running.
2058# If the QOM property is read-only, that means there's no known
2059# way to make the CPU model run in the current host. Implementations
2060# that choose not to provide specific information return the
2061# property name "type".
2062# If the property is read-write, it means that it MAY be possible
2063# to run the CPU model in the current host if that property is
2064# changed. Management software can use it as hints to suggest or
2065# choose an alternative for the user, or just to generate meaningful
2066# error messages explaining why the CPU model can't be used.
2067# If @unavailable-features is an empty list, the CPU model is
2068# runnable using the current host and machine-type.
2069# If @unavailable-features is not present, runnability
2070# information for the CPU is not available.
2071#
2072# Since: 1.2.0
2073##
2074{ 'struct': 'CpuDefinitionInfo',
2075 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2076 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2077
2078##
2079# @MemoryInfo:
2080#
2081# Actual memory information in bytes.
2082#
2083# @base-memory: size of "base" memory specified with command line
2084# option -m.
2085#
2086# @plugged-memory: size of memory that can be hot-unplugged. This field
2087# is omitted if target doesn't support memory hotplug
2088# (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2089#
2090# Since: 2.11.0
2091##
2092{ 'struct': 'MemoryInfo',
2093 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2094
2095##
2096# @query-memory-size-summary:
2097#
2098# Return the amount of initially allocated and present hotpluggable (if
2099# enabled) memory in bytes.
2100#
2101# Example:
2102#
2103# -> { "execute": "query-memory-size-summary" }
2104# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2105#
2106# Since: 2.11.0
2107##
2108{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2109
2110##
2111# @query-cpu-definitions:
2112#
2113# Return a list of supported virtual CPU definitions
2114#
2115# Returns: a list of CpuDefInfo
2116#
2117# Since: 1.2.0
2118##
2119{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2120
2121##
2122# @CpuModelInfo:
2123#
2124# Virtual CPU model.
2125#
2126# A CPU model consists of the name of a CPU definition, to which
2127# delta changes are applied (e.g. features added/removed). Most magic values
2128# that an architecture might require should be hidden behind the name.
2129# However, if required, architectures can expose relevant properties.
2130#
2131# @name: the name of the CPU definition the model is based on
2132# @props: a dictionary of QOM properties to be applied
2133#
2134# Since: 2.8.0
2135##
2136{ 'struct': 'CpuModelInfo',
2137 'data': { 'name': 'str',
2138 '*props': 'any' } }
2139
2140##
2141# @CpuModelExpansionType:
2142#
2143# An enumeration of CPU model expansion types.
2144#
2145# @static: Expand to a static CPU model, a combination of a static base
2146# model name and property delta changes. As the static base model will
2147# never change, the expanded CPU model will be the same, independent of
2148# independent of QEMU version, machine type, machine options, and
2149# accelerator options. Therefore, the resulting model can be used by
2150# tooling without having to specify a compatibility machine - e.g. when
2151# displaying the "host" model. static CPU models are migration-safe.
2152#
2153# @full: Expand all properties. The produced model is not guaranteed to be
2154# migration-safe, but allows tooling to get an insight and work with
2155# model details.
2156#
2157# Note: When a non-migration-safe CPU model is expanded in static mode, some
2158# features enabled by the CPU model may be omitted, because they can't be
2159# implemented by a static CPU model definition (e.g. cache info passthrough and
2160# PMU passthrough in x86). If you need an accurate representation of the
2161# features enabled by a non-migration-safe CPU model, use @full. If you need a
2162# static representation that will keep ABI compatibility even when changing QEMU
2163# version or machine-type, use @static (but keep in mind that some features may
2164# be omitted).
2165#
2166# Since: 2.8.0
2167##
2168{ 'enum': 'CpuModelExpansionType',
2169 'data': [ 'static', 'full' ] }
2170
2171
2172##
2173# @CpuModelExpansionInfo:
2174#
2175# The result of a cpu model expansion.
2176#
2177# @model: the expanded CpuModelInfo.
2178#
2179# Since: 2.8.0
2180##
2181{ 'struct': 'CpuModelExpansionInfo',
2182 'data': { 'model': 'CpuModelInfo' } }
2183
2184
2185##
2186# @query-cpu-model-expansion:
2187#
2188# Expands a given CPU model (or a combination of CPU model + additional options)
2189# to different granularities, allowing tooling to get an understanding what a
2190# specific CPU model looks like in QEMU under a certain configuration.
2191#
2192# This interface can be used to query the "host" CPU model.
2193#
2194# The data returned by this command may be affected by:
2195#
2196# * QEMU version: CPU models may look different depending on the QEMU version.
2197# (Except for CPU models reported as "static" in query-cpu-definitions.)
2198# * machine-type: CPU model may look different depending on the machine-type.
2199# (Except for CPU models reported as "static" in query-cpu-definitions.)
2200# * machine options (including accelerator): in some architectures, CPU models
2201# may look different depending on machine and accelerator options. (Except for
2202# CPU models reported as "static" in query-cpu-definitions.)
2203# * "-cpu" arguments and global properties: arguments to the -cpu option and
2204# global properties may affect expansion of CPU models. Using
2205# query-cpu-model-expansion while using these is not advised.
2206#
2207# Some architectures may not support all expansion types. s390x supports
2208# "full" and "static".
2209#
2210# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2211# not supported, if the model cannot be expanded, if the model contains
2212# an unknown CPU definition name, unknown properties or properties
2213# with a wrong type. Also returns an error if an expansion type is
2214# not supported.
2215#
2216# Since: 2.8.0
2217##
2218{ 'command': 'query-cpu-model-expansion',
2219 'data': { 'type': 'CpuModelExpansionType',
2220 'model': 'CpuModelInfo' },
2221 'returns': 'CpuModelExpansionInfo' }
2222
2223##
2224# @CpuModelCompareResult:
2225#
2226# An enumeration of CPU model comparison results. The result is usually
2227# calculated using e.g. CPU features or CPU generations.
2228#
2229# @incompatible: If model A is incompatible to model B, model A is not
2230# guaranteed to run where model B runs and the other way around.
2231#
2232# @identical: If model A is identical to model B, model A is guaranteed to run
2233# where model B runs and the other way around.
2234#
2235# @superset: If model A is a superset of model B, model B is guaranteed to run
2236# where model A runs. There are no guarantees about the other way.
2237#
2238# @subset: If model A is a subset of model B, model A is guaranteed to run
2239# where model B runs. There are no guarantees about the other way.
2240#
2241# Since: 2.8.0
2242##
2243{ 'enum': 'CpuModelCompareResult',
2244 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2245
2246##
2247# @CpuModelCompareInfo:
2248#
2249# The result of a CPU model comparison.
2250#
2251# @result: The result of the compare operation.
2252# @responsible-properties: List of properties that led to the comparison result
2253# not being identical.
2254#
2255# @responsible-properties is a list of QOM property names that led to
2256# both CPUs not being detected as identical. For identical models, this
2257# list is empty.
2258# If a QOM property is read-only, that means there's no known way to make the
2259# CPU models identical. If the special property name "type" is included, the
2260# models are by definition not identical and cannot be made identical.
2261#
2262# Since: 2.8.0
2263##
2264{ 'struct': 'CpuModelCompareInfo',
2265 'data': {'result': 'CpuModelCompareResult',
2266 'responsible-properties': ['str']
2267 }
2268}
2269
2270##
2271# @query-cpu-model-comparison:
2272#
2273# Compares two CPU models, returning how they compare in a specific
2274# configuration. The results indicates how both models compare regarding
2275# runnability. This result can be used by tooling to make decisions if a
2276# certain CPU model will run in a certain configuration or if a compatible
2277# CPU model has to be created by baselining.
2278#
2279# Usually, a CPU model is compared against the maximum possible CPU model
2280# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2281# model is identical or a subset, it will run in that configuration.
2282#
2283# The result returned by this command may be affected by:
2284#
2285# * QEMU version: CPU models may look different depending on the QEMU version.
2286# (Except for CPU models reported as "static" in query-cpu-definitions.)
2287# * machine-type: CPU model may look different depending on the machine-type.
2288# (Except for CPU models reported as "static" in query-cpu-definitions.)
2289# * machine options (including accelerator): in some architectures, CPU models
2290# may look different depending on machine and accelerator options. (Except for
2291# CPU models reported as "static" in query-cpu-definitions.)
2292# * "-cpu" arguments and global properties: arguments to the -cpu option and
2293# global properties may affect expansion of CPU models. Using
2294# query-cpu-model-expansion while using these is not advised.
2295#
2296# Some architectures may not support comparing CPU models. s390x supports
2297# comparing CPU models.
2298#
2299# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2300# not supported, if a model cannot be used, if a model contains
2301# an unknown cpu definition name, unknown properties or properties
2302# with wrong types.
2303#
2304# Since: 2.8.0
2305##
2306{ 'command': 'query-cpu-model-comparison',
2307 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2308 'returns': 'CpuModelCompareInfo' }
2309
2310##
2311# @CpuModelBaselineInfo:
2312#
2313# The result of a CPU model baseline.
2314#
2315# @model: the baselined CpuModelInfo.
2316#
2317# Since: 2.8.0
2318##
2319{ 'struct': 'CpuModelBaselineInfo',
2320 'data': { 'model': 'CpuModelInfo' } }
2321
2322##
2323# @query-cpu-model-baseline:
2324#
2325# Baseline two CPU models, creating a compatible third model. The created
2326# model will always be a static, migration-safe CPU model (see "static"
2327# CPU model expansion for details).
2328#
2329# This interface can be used by tooling to create a compatible CPU model out
2330# two CPU models. The created CPU model will be identical to or a subset of
2331# both CPU models when comparing them. Therefore, the created CPU model is
2332# guaranteed to run where the given CPU models run.
2333#
2334# The result returned by this command may be affected by:
2335#
2336# * QEMU version: CPU models may look different depending on the QEMU version.
2337# (Except for CPU models reported as "static" in query-cpu-definitions.)
2338# * machine-type: CPU model may look different depending on the machine-type.
2339# (Except for CPU models reported as "static" in query-cpu-definitions.)
2340# * machine options (including accelerator): in some architectures, CPU models
2341# may look different depending on machine and accelerator options. (Except for
2342# CPU models reported as "static" in query-cpu-definitions.)
2343# * "-cpu" arguments and global properties: arguments to the -cpu option and
2344# global properties may affect expansion of CPU models. Using
2345# query-cpu-model-expansion while using these is not advised.
2346#
2347# Some architectures may not support baselining CPU models. s390x supports
2348# baselining CPU models.
2349#
2350# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2351# not supported, if a model cannot be used, if a model contains
2352# an unknown cpu definition name, unknown properties or properties
2353# with wrong types.
2354#
2355# Since: 2.8.0
2356##
2357{ 'command': 'query-cpu-model-baseline',
2358 'data': { 'modela': 'CpuModelInfo',
2359 'modelb': 'CpuModelInfo' },
2360 'returns': 'CpuModelBaselineInfo' }
2361
2362##
2363# @AddfdInfo:
2364#
2365# Information about a file descriptor that was added to an fd set.
2366#
2367# @fdset-id: The ID of the fd set that @fd was added to.
2368#
2369# @fd: The file descriptor that was received via SCM rights and
2370# added to the fd set.
2371#
2372# Since: 1.2.0
2373##
2374{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2375
2376##
2377# @add-fd:
2378#
2379# Add a file descriptor, that was passed via SCM rights, to an fd set.
2380#
2381# @fdset-id: The ID of the fd set to add the file descriptor to.
2382#
2383# @opaque: A free-form string that can be used to describe the fd.
2384#
2385# Returns: @AddfdInfo on success
2386#
2387# If file descriptor was not received, FdNotSupplied
2388#
2389# If @fdset-id is a negative value, InvalidParameterValue
2390#
2391# Notes: The list of fd sets is shared by all monitor connections.
2392#
2393# If @fdset-id is not specified, a new fd set will be created.
2394#
2395# Since: 1.2.0
2396#
2397# Example:
2398#
2399# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2400# <- { "return": { "fdset-id": 1, "fd": 3 } }
2401#
2402##
2403{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2404 'returns': 'AddfdInfo' }
2405
2406##
2407# @remove-fd:
2408#
2409# Remove a file descriptor from an fd set.
2410#
2411# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2412#
2413# @fd: The file descriptor that is to be removed.
2414#
2415# Returns: Nothing on success
2416# If @fdset-id or @fd is not found, FdNotFound
2417#
2418# Since: 1.2.0
2419#
2420# Notes: The list of fd sets is shared by all monitor connections.
2421#
2422# If @fd is not specified, all file descriptors in @fdset-id
2423# will be removed.
2424#
2425# Example:
2426#
2427# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2428# <- { "return": {} }
2429#
2430##
2431{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2432
2433##
2434# @FdsetFdInfo:
2435#
2436# Information about a file descriptor that belongs to an fd set.
2437#
2438# @fd: The file descriptor value.
2439#
2440# @opaque: A free-form string that can be used to describe the fd.
2441#
2442# Since: 1.2.0
2443##
2444{ 'struct': 'FdsetFdInfo',
2445 'data': {'fd': 'int', '*opaque': 'str'} }
2446
2447##
2448# @FdsetInfo:
2449#
2450# Information about an fd set.
2451#
2452# @fdset-id: The ID of the fd set.
2453#
2454# @fds: A list of file descriptors that belong to this fd set.
2455#
2456# Since: 1.2.0
2457##
2458{ 'struct': 'FdsetInfo',
2459 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2460
2461##
2462# @query-fdsets:
2463#
2464# Return information describing all fd sets.
2465#
2466# Returns: A list of @FdsetInfo
2467#
2468# Since: 1.2.0
2469#
2470# Note: The list of fd sets is shared by all monitor connections.
2471#
2472# Example:
2473#
2474# -> { "execute": "query-fdsets" }
2475# <- { "return": [
2476# {
2477# "fds": [
2478# {
2479# "fd": 30,
2480# "opaque": "rdonly:/path/to/file"
2481# },
2482# {
2483# "fd": 24,
2484# "opaque": "rdwr:/path/to/file"
2485# }
2486# ],
2487# "fdset-id": 1
2488# },
2489# {
2490# "fds": [
2491# {
2492# "fd": 28
2493# },
2494# {
2495# "fd": 29
2496# }
2497# ],
2498# "fdset-id": 0
2499# }
2500# ]
2501# }
2502#
2503##
2504{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2505
2506##
2507# @TargetInfo:
2508#
2509# Information describing the QEMU target.
2510#
b47aa7b3 2511# @arch: the target architecture
112ed241
MA
2512#
2513# Since: 1.2.0
2514##
2515{ 'struct': 'TargetInfo',
b47aa7b3 2516 'data': { 'arch': 'SysEmuTarget' } }
112ed241
MA
2517
2518##
2519# @query-target:
2520#
2521# Return information about the target for this QEMU
2522#
2523# Returns: TargetInfo
2524#
2525# Since: 1.2.0
2526##
2527{ 'command': 'query-target', 'returns': 'TargetInfo' }
2528
2529##
2530# @AcpiTableOptions:
2531#
2532# Specify an ACPI table on the command line to load.
2533#
2534# At most one of @file and @data can be specified. The list of files specified
2535# by any one of them is loaded and concatenated in order. If both are omitted,
2536# @data is implied.
2537#
2538# Other fields / optargs can be used to override fields of the generic ACPI
2539# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2540# Description Table Header. If a header field is not overridden, then the
2541# corresponding value from the concatenated blob is used (in case of @file), or
2542# it is filled in with a hard-coded value (in case of @data).
2543#
2544# String fields are copied into the matching ACPI member from lowest address
2545# upwards, and silently truncated / NUL-padded to length.
2546#
2547# @sig: table signature / identifier (4 bytes)
2548#
2549# @rev: table revision number (dependent on signature, 1 byte)
2550#
2551# @oem_id: OEM identifier (6 bytes)
2552#
2553# @oem_table_id: OEM table identifier (8 bytes)
2554#
2555# @oem_rev: OEM-supplied revision number (4 bytes)
2556#
2557# @asl_compiler_id: identifier of the utility that created the table
2558# (4 bytes)
2559#
2560# @asl_compiler_rev: revision number of the utility that created the
2561# table (4 bytes)
2562#
2563# @file: colon (:) separated list of pathnames to load and
2564# concatenate as table data. The resultant binary blob is expected to
2565# have an ACPI table header. At least one file is required. This field
2566# excludes @data.
2567#
2568# @data: colon (:) separated list of pathnames to load and
2569# concatenate as table data. The resultant binary blob must not have an
2570# ACPI table header. At least one file is required. This field excludes
2571# @file.
2572#
2573# Since: 1.5
2574##
2575{ 'struct': 'AcpiTableOptions',
2576 'data': {
2577 '*sig': 'str',
2578 '*rev': 'uint8',
2579 '*oem_id': 'str',
2580 '*oem_table_id': 'str',
2581 '*oem_rev': 'uint32',
2582 '*asl_compiler_id': 'str',
2583 '*asl_compiler_rev': 'uint32',
2584 '*file': 'str',
2585 '*data': 'str' }}
2586
2587##
2588# @CommandLineParameterType:
2589#
2590# Possible types for an option parameter.
2591#
2592# @string: accepts a character string
2593#
2594# @boolean: accepts "on" or "off"
2595#
2596# @number: accepts a number
2597#
2598# @size: accepts a number followed by an optional suffix (K)ilo,
2599# (M)ega, (G)iga, (T)era
2600#
2601# Since: 1.5
2602##
2603{ 'enum': 'CommandLineParameterType',
2604 'data': ['string', 'boolean', 'number', 'size'] }
2605
2606##
2607# @CommandLineParameterInfo:
2608#
2609# Details about a single parameter of a command line option.
2610#
2611# @name: parameter name
2612#
2613# @type: parameter @CommandLineParameterType
2614#
2615# @help: human readable text string, not suitable for parsing.
2616#
2617# @default: default value string (since 2.1)
2618#
2619# Since: 1.5
2620##
2621{ 'struct': 'CommandLineParameterInfo',
2622 'data': { 'name': 'str',
2623 'type': 'CommandLineParameterType',
2624 '*help': 'str',
2625 '*default': 'str' } }
2626
2627##
2628# @CommandLineOptionInfo:
2629#
2630# Details about a command line option, including its list of parameter details
2631#
2632# @option: option name
2633#
2634# @parameters: an array of @CommandLineParameterInfo
2635#
2636# Since: 1.5
2637##
2638{ 'struct': 'CommandLineOptionInfo',
2639 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2640
2641##
2642# @query-command-line-options:
2643#
2644# Query command line option schema.
2645#
2646# @option: option name
2647#
2648# Returns: list of @CommandLineOptionInfo for all options (or for the given
2649# @option). Returns an error if the given @option doesn't exist.
2650#
2651# Since: 1.5
2652#
2653# Example:
2654#
2655# -> { "execute": "query-command-line-options",
2656# "arguments": { "option": "option-rom" } }
2657# <- { "return": [
2658# {
2659# "parameters": [
2660# {
2661# "name": "romfile",
2662# "type": "string"
2663# },
2664# {
2665# "name": "bootindex",
2666# "type": "number"
2667# }
2668# ],
2669# "option": "option-rom"
2670# }
2671# ]
2672# }
2673#
2674##
2675{'command': 'query-command-line-options', 'data': { '*option': 'str' },
d6fe3d02
IM
2676 'returns': ['CommandLineOptionInfo'],
2677 'allow-preconfig': true }
112ed241
MA
2678
2679##
2680# @X86CPURegister32:
2681#
2682# A X86 32-bit register
2683#
2684# Since: 1.5
2685##
2686{ 'enum': 'X86CPURegister32',
2687 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2688
2689##
2690# @X86CPUFeatureWordInfo:
2691#
2692# Information about a X86 CPU feature word
2693#
2694# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2695#
2696# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2697# feature word
2698#
2699# @cpuid-register: Output register containing the feature bits
2700#
2701# @features: value of output register, containing the feature bits
2702#
2703# Since: 1.5
2704##
2705{ 'struct': 'X86CPUFeatureWordInfo',
2706 'data': { 'cpuid-input-eax': 'int',
2707 '*cpuid-input-ecx': 'int',
2708 'cpuid-register': 'X86CPURegister32',
2709 'features': 'int' } }
2710
2711##
2712# @DummyForceArrays:
2713#
2714# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2715#
2716# Since: 2.5
2717##
2718{ 'struct': 'DummyForceArrays',
2719 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2720
2721
2722##
2723# @NumaOptionsType:
2724#
2725# @node: NUMA nodes configuration
2726#
2727# @dist: NUMA distance configuration (since 2.10)
2728#
2729# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2730#
2731# Since: 2.1
2732##
2733{ 'enum': 'NumaOptionsType',
2734 'data': [ 'node', 'dist', 'cpu' ] }
2735
2736##
2737# @NumaOptions:
2738#
2739# A discriminated record of NUMA options. (for OptsVisitor)
2740#
2741# Since: 2.1
2742##
2743{ 'union': 'NumaOptions',
2744 'base': { 'type': 'NumaOptionsType' },
2745 'discriminator': 'type',
2746 'data': {
2747 'node': 'NumaNodeOptions',
2748 'dist': 'NumaDistOptions',
2749 'cpu': 'NumaCpuOptions' }}
2750
2751##
2752# @NumaNodeOptions:
2753#
2754# Create a guest NUMA node. (for OptsVisitor)
2755#
2756# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2757#
2758# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2759# if omitted)
2760#
2761# @mem: memory size of this node; mutually exclusive with @memdev.
2762# Equally divide total memory among nodes if both @mem and @memdev are
2763# omitted.
2764#
2765# @memdev: memory backend object. If specified for one node,
2766# it must be specified for all nodes.
2767#
2768# Since: 2.1
2769##
2770{ 'struct': 'NumaNodeOptions',
2771 'data': {
2772 '*nodeid': 'uint16',
2773 '*cpus': ['uint16'],
2774 '*mem': 'size',
2775 '*memdev': 'str' }}
2776
2777##
2778# @NumaDistOptions:
2779#
2780# Set the distance between 2 NUMA nodes.
2781#
2782# @src: source NUMA node.
2783#
2784# @dst: destination NUMA node.
2785#
2786# @val: NUMA distance from source node to destination node.
2787# When a node is unreachable from another node, set the distance
2788# between them to 255.
2789#
2790# Since: 2.10
2791##
2792{ 'struct': 'NumaDistOptions',
2793 'data': {
2794 'src': 'uint16',
2795 'dst': 'uint16',
2796 'val': 'uint8' }}
2797
2798##
2799# @NumaCpuOptions:
2800#
2801# Option "-numa cpu" overrides default cpu to node mapping.
2802# It accepts the same set of cpu properties as returned by
2803# query-hotpluggable-cpus[].props, where node-id could be used to
2804# override default node mapping.
2805#
2806# Since: 2.10
2807##
2808{ 'struct': 'NumaCpuOptions',
2809 'base': 'CpuInstanceProperties',
2810 'data' : {} }
2811
2812##
2813# @HostMemPolicy:
2814#
2815# Host memory policy types
2816#
2817# @default: restore default policy, remove any nondefault policy
2818#
2819# @preferred: set the preferred host nodes for allocation
2820#
2821# @bind: a strict policy that restricts memory allocation to the
2822# host nodes specified
2823#
2824# @interleave: memory allocations are interleaved across the set
2825# of host nodes specified
2826#
2827# Since: 2.1
2828##
2829{ 'enum': 'HostMemPolicy',
2830 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2831
2832##
2833# @Memdev:
2834#
2835# Information about memory backend
2836#
2837# @id: backend's ID if backend has 'id' property (since 2.9)
2838#
2839# @size: memory backend size
2840#
2841# @merge: enables or disables memory merge support
2842#
2843# @dump: includes memory backend's memory in a core dump or not
2844#
2845# @prealloc: enables or disables memory preallocation
2846#
2847# @host-nodes: host nodes for its memory policy
2848#
2849# @policy: memory policy of memory backend
2850#
2851# Since: 2.1
2852##
2853{ 'struct': 'Memdev',
2854 'data': {
2855 '*id': 'str',
2856 'size': 'size',
2857 'merge': 'bool',
2858 'dump': 'bool',
2859 'prealloc': 'bool',
2860 'host-nodes': ['uint16'],
2861 'policy': 'HostMemPolicy' }}
2862
2863##
2864# @query-memdev:
2865#
2866# Returns information for all memory backends.
2867#
2868# Returns: a list of @Memdev.
2869#
2870# Since: 2.1
2871#
2872# Example:
2873#
2874# -> { "execute": "query-memdev" }
2875# <- { "return": [
2876# {
2877# "id": "mem1",
2878# "size": 536870912,
2879# "merge": false,
2880# "dump": true,
2881# "prealloc": false,
2882# "host-nodes": [0, 1],
2883# "policy": "bind"
2884# },
2885# {
2886# "size": 536870912,
2887# "merge": false,
2888# "dump": true,
2889# "prealloc": true,
2890# "host-nodes": [2, 3],
2891# "policy": "preferred"
2892# }
2893# ]
2894# }
2895#
2896##
2897{ 'command': 'query-memdev', 'returns': ['Memdev'] }
2898
2899##
2900# @PCDIMMDeviceInfo:
2901#
2902# PCDIMMDevice state information
2903#
2904# @id: device's ID
2905#
2906# @addr: physical address, where device is mapped
2907#
2908# @size: size of memory that the device provides
2909#
2910# @slot: slot number at which device is plugged in
2911#
2912# @node: NUMA node number where device is plugged in
2913#
2914# @memdev: memory backend linked with device
2915#
2916# @hotplugged: true if device was hotplugged
2917#
2918# @hotpluggable: true if device if could be added/removed while machine is running
2919#
2920# Since: 2.1
2921##
2922{ 'struct': 'PCDIMMDeviceInfo',
2923 'data': { '*id': 'str',
2924 'addr': 'int',
2925 'size': 'int',
2926 'slot': 'int',
2927 'node': 'int',
2928 'memdev': 'str',
2929 'hotplugged': 'bool',
2930 'hotpluggable': 'bool'
2931 }
2932}
2933
2934##
2935# @MemoryDeviceInfo:
2936#
2937# Union containing information about a memory device
2938#
2939# Since: 2.1
2940##
6388e18d
HZ
2941{ 'union': 'MemoryDeviceInfo',
2942 'data': { 'dimm': 'PCDIMMDeviceInfo',
2943 'nvdimm': 'PCDIMMDeviceInfo'
2944 }
2945}
112ed241
MA
2946
2947##
2948# @query-memory-devices:
2949#
2950# Lists available memory devices and their state
2951#
2952# Since: 2.1
2953#
2954# Example:
2955#
2956# -> { "execute": "query-memory-devices" }
2957# <- { "return": [ { "data":
2958# { "addr": 5368709120,
2959# "hotpluggable": true,
2960# "hotplugged": true,
2961# "id": "d1",
2962# "memdev": "/objects/memX",
2963# "node": 0,
2964# "size": 1073741824,
2965# "slot": 0},
2966# "type": "dimm"
2967# } ] }
2968#
2969##
2970{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2971
2972##
2973# @MEM_UNPLUG_ERROR:
2974#
2975# Emitted when memory hot unplug error occurs.
2976#
2977# @device: device name
2978#
2979# @msg: Informative message
2980#
2981# Since: 2.4
2982#
2983# Example:
2984#
2985# <- { "event": "MEM_UNPLUG_ERROR"
2986# "data": { "device": "dimm1",
2987# "msg": "acpi: device unplug for unsupported device"
2988# },
2989# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2990#
2991##
2992{ 'event': 'MEM_UNPLUG_ERROR',
2993 'data': { 'device': 'str', 'msg': 'str' } }
2994
2995##
2996# @ACPISlotType:
2997#
2998# @DIMM: memory slot
2999# @CPU: logical CPU slot (since 2.7)
3000##
3001{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
3002
3003##
3004# @ACPIOSTInfo:
3005#
3006# OSPM Status Indication for a device
3007# For description of possible values of @source and @status fields
3008# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
3009#
3010# @device: device ID associated with slot
3011#
3012# @slot: slot ID, unique per slot of a given @slot-type
3013#
3014# @slot-type: type of the slot
3015#
3016# @source: an integer containing the source event
3017#
3018# @status: an integer containing the status code
3019#
3020# Since: 2.1
3021##
3022{ 'struct': 'ACPIOSTInfo',
3023 'data' : { '*device': 'str',
3024 'slot': 'str',
3025 'slot-type': 'ACPISlotType',
3026 'source': 'int',
3027 'status': 'int' } }
3028
3029##
3030# @query-acpi-ospm-status:
3031#
3032# Return a list of ACPIOSTInfo for devices that support status
3033# reporting via ACPI _OST method.
3034#
3035# Since: 2.1
3036#
3037# Example:
3038#
3039# -> { "execute": "query-acpi-ospm-status" }
3040# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3041# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3042# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3043# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3044# ]}
3045#
3046##
3047{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3048
3049##
3050# @ACPI_DEVICE_OST:
3051#
3052# Emitted when guest executes ACPI _OST method.
3053#
eb815e24 3054# @info: OSPM Status Indication
112ed241
MA
3055#
3056# Since: 2.1
3057#
3058# Example:
3059#
3060# <- { "event": "ACPI_DEVICE_OST",
3061# "data": { "device": "d1", "slot": "0",
3062# "slot-type": "DIMM", "source": 1, "status": 0 } }
3063#
3064##
3065{ 'event': 'ACPI_DEVICE_OST',
3066 'data': { 'info': 'ACPIOSTInfo' } }
3067
3068##
3069# @rtc-reset-reinjection:
3070#
3071# This command will reset the RTC interrupt reinjection backlog.
3072# Can be used if another mechanism to synchronize guest time
3073# is in effect, for example QEMU guest agent's guest-set-time
3074# command.
3075#
3076# Since: 2.1
3077#
3078# Example:
3079#
3080# -> { "execute": "rtc-reset-reinjection" }
3081# <- { "return": {} }
3082#
3083##
3084{ 'command': 'rtc-reset-reinjection' }
3085
3086##
3087# @RTC_CHANGE:
3088#
3089# Emitted when the guest changes the RTC time.
3090#
3091# @offset: offset between base RTC clock (as specified by -rtc base), and
3092# new RTC clock value
3093#
3094# Note: This event is rate-limited.
3095#
3096# Since: 0.13.0
3097#
3098# Example:
3099#
3100# <- { "event": "RTC_CHANGE",
3101# "data": { "offset": 78 },
3102# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3103#
3104##
3105{ 'event': 'RTC_CHANGE',
3106 'data': { 'offset': 'int' } }
3107
3108##
3109# @ReplayMode:
3110#
3111# Mode of the replay subsystem.
3112#
3113# @none: normal execution mode. Replay or record are not enabled.
3114#
3115# @record: record mode. All non-deterministic data is written into the
3116# replay log.
3117#
3118# @play: replay mode. Non-deterministic data required for system execution
3119# is read from the log.
3120#
3121# Since: 2.5
3122##
3123{ 'enum': 'ReplayMode',
3124 'data': [ 'none', 'record', 'play' ] }
3125
3126##
3127# @xen-load-devices-state:
3128#
3129# Load the state of all devices from file. The RAM and the block devices
3130# of the VM are not loaded by this command.
3131#
3132# @filename: the file to load the state of the devices from as binary
3133# data. See xen-save-devices-state.txt for a description of the binary
3134# format.
3135#
3136# Since: 2.7
3137#
3138# Example:
3139#
3140# -> { "execute": "xen-load-devices-state",
3141# "arguments": { "filename": "/tmp/resume" } }
3142# <- { "return": {} }
3143#
3144##
3145{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3146
3147##
3148# @GICCapability:
3149#
3150# The struct describes capability for a specific GIC (Generic
3151# Interrupt Controller) version. These bits are not only decided by
3152# QEMU/KVM software version, but also decided by the hardware that
3153# the program is running upon.
3154#
3155# @version: version of GIC to be described. Currently, only 2 and 3
3156# are supported.
3157#
3158# @emulated: whether current QEMU/hardware supports emulated GIC
3159# device in user space.
3160#
3161# @kernel: whether current QEMU/hardware supports hardware
3162# accelerated GIC device in kernel.
3163#
3164# Since: 2.6
3165##
3166{ 'struct': 'GICCapability',
3167 'data': { 'version': 'int',
3168 'emulated': 'bool',
3169 'kernel': 'bool' } }
3170
3171##
3172# @query-gic-capabilities:
3173#
3174# This command is ARM-only. It will return a list of GICCapability
3175# objects that describe its capability bits.
3176#
3177# Returns: a list of GICCapability objects.
3178#
3179# Since: 2.6
3180#
3181# Example:
3182#
3183# -> { "execute": "query-gic-capabilities" }
3184# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3185# { "version": 3, "emulated": false, "kernel": true } ] }
3186#
3187##
3188{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3189
3190##
3191# @CpuInstanceProperties:
3192#
3193# List of properties to be used for hotplugging a CPU instance,
3194# it should be passed by management with device_add command when
3195# a CPU is being hotplugged.
3196#
3197# @node-id: NUMA node ID the CPU belongs to
3198# @socket-id: socket number within node/board the CPU belongs to
3199# @core-id: core number within socket the CPU belongs to
3200# @thread-id: thread number within core the CPU belongs to
3201#
3202# Note: currently there are 4 properties that could be present
3203# but management should be prepared to pass through other
3204# properties with device_add command to allow for future
3205# interface extension. This also requires the filed names to be kept in
3206# sync with the properties passed to -device/device_add.
3207#
3208# Since: 2.7
3209##
3210{ 'struct': 'CpuInstanceProperties',
3211 'data': { '*node-id': 'int',
3212 '*socket-id': 'int',
3213 '*core-id': 'int',
3214 '*thread-id': 'int'
3215 }
3216}
3217
3218##
3219# @HotpluggableCPU:
3220#
3221# @type: CPU object type for usage with device_add command
3222# @props: list of properties to be used for hotplugging CPU
3223# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3224# @qom-path: link to existing CPU object if CPU is present or
3225# omitted if CPU is not present.
3226#
3227# Since: 2.7
3228##
3229{ 'struct': 'HotpluggableCPU',
3230 'data': { 'type': 'str',
3231 'vcpus-count': 'int',
3232 'props': 'CpuInstanceProperties',
3233 '*qom-path': 'str'
3234 }
3235}
3236
3237##
3238# @query-hotpluggable-cpus:
3239#
3240# Returns: a list of HotpluggableCPU objects.
3241#
3242# Since: 2.7
3243#
3244# Example:
3245#
3246# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3247#
3248# -> { "execute": "query-hotpluggable-cpus" }
3249# <- {"return": [
3250# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3251# "vcpus-count": 1 },
3252# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3253# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3254# ]}'
3255#
3256# For pc machine type started with -smp 1,maxcpus=2:
3257#
3258# -> { "execute": "query-hotpluggable-cpus" }
3259# <- {"return": [
3260# {
3261# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3262# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3263# },
3264# {
3265# "qom-path": "/machine/unattached/device[0]",
3266# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3267# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3268# }
3269# ]}
3270#
3271# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3272# (Since: 2.11):
3273#
3274# -> { "execute": "query-hotpluggable-cpus" }
3275# <- {"return": [
3276# {
3277# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3278# "props": { "core-id": 1 }
3279# },
3280# {
3281# "qom-path": "/machine/unattached/device[0]",
3282# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3283# "props": { "core-id": 0 }
3284# }
3285# ]}
3286#
3287##
3288{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3289
3290##
3291# @GuidInfo:
3292#
3293# GUID information.
3294#
3295# @guid: the globally unique identifier
3296#
3297# Since: 2.9
3298##
3299{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3300
3301##
3302# @query-vm-generation-id:
3303#
3304# Show Virtual Machine Generation ID
3305#
3306# Since: 2.9
3307##
3308{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
08a161fd
BS
3309
3310
3311##
3312# @SevState:
3313#
3314# An enumeration of SEV state information used during @query-sev.
3315#
3316# @uninit: The guest is uninitialized.
3317#
3318# @launch-update: The guest is currently being launched; plaintext data and
3319# register state is being imported.
3320#
3321# @launch-secret: The guest is currently being launched; ciphertext data
3322# is being imported.
3323#
3324# @running: The guest is fully launched or migrated in.
3325#
3326# @send-update: The guest is currently being migrated out to another machine.
3327#
3328# @receive-update: The guest is currently being migrated from another machine.
3329#
3330# Since: 2.12
3331##
3332{ 'enum': 'SevState',
3333 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3334 'send-update', 'receive-update' ] }
3335
3336##
3337# @SevInfo:
3338#
3339# Information about Secure Encrypted Virtualization (SEV) support
3340#
3341# @enabled: true if SEV is active
3342#
3343# @api-major: SEV API major version
3344#
3345# @api-minor: SEV API minor version
3346#
3347# @build-id: SEV FW build id
3348#
3349# @policy: SEV policy value
3350#
3351# @state: SEV guest state
3352#
3353# @handle: SEV firmware handle
3354#
3355# Since: 2.12
3356##
3357{ 'struct': 'SevInfo',
3358 'data': { 'enabled': 'bool',
3359 'api-major': 'uint8',
3360 'api-minor' : 'uint8',
3361 'build-id' : 'uint8',
3362 'policy' : 'uint32',
3363 'state' : 'SevState',
3364 'handle' : 'uint32'
3365 }
3366}
3367
3368##
3369# @query-sev:
3370#
3371# Returns information about SEV
3372#
3373# Returns: @SevInfo
3374#
3375# Since: 2.12
3376#
3377# Example:
3378#
3379# -> { "execute": "query-sev" }
3380# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3381# "build-id" : 0, "policy" : 0, "state" : "running",
3382# "handle" : 1 } }
3383#
3384##
3385{ 'command': 'query-sev', 'returns': 'SevInfo' }
1b6a034f
BS
3386
3387##
3388# @SevLaunchMeasureInfo:
3389#
3390# SEV Guest Launch measurement information
3391#
3392# @data: the measurement value encoded in base64
3393#
3394# Since: 2.12
3395#
3396##
3397{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3398
3399##
3400# @query-sev-launch-measure:
3401#
3402# Query the SEV guest launch information.
3403#
3404# Returns: The @SevLaunchMeasureInfo for the guest
3405#
3406# Since: 2.12
3407#
3408# Example:
3409#
3410# -> { "execute": "query-sev-launch-measure" }
3411# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3412#
3413##
3414{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
31dd67f6
BS
3415
3416##
3417# @SevCapability:
3418#
3419# The struct describes capability for a Secure Encrypted Virtualization
3420# feature.
3421#
3422# @pdh: Platform Diffie-Hellman key (base64 encoded)
3423#
3424# @cert-chain: PDH certificate chain (base64 encoded)
3425#
3426# @cbitpos: C-bit location in page table entry
3427#
3428# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3429# enabled
3430#
3431# Since: 2.12
3432##
3433{ 'struct': 'SevCapability',
3434 'data': { 'pdh': 'str',
3435 'cert-chain': 'str',
3436 'cbitpos': 'int',
3437 'reduced-phys-bits': 'int'} }
3438
3439##
3440# @query-sev-capabilities:
3441#
3442# This command is used to get the SEV capabilities, and is supported on AMD
3443# X86 platforms only.
3444#
3445# Returns: SevCapability objects.
3446#
3447# Since: 2.12
3448#
3449# Example:
3450#
3451# -> { "execute": "query-sev-capabilities" }
3452# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3453# "cbitpos": 47, "reduced-phys-bits": 5}}
3454#
3455##
3456{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
8167d8bd
EB
3457
3458##
3459# @CommandDropReason:
3460#
3461# Reasons that caused one command to be dropped.
3462#
3463# @queue-full: the command queue is full. This can only occur when
3464# the client sends a new non-oob command before the
3465# response to the previous non-oob command has been
3466# received.
3467#
3468# Since: 2.12
3469##
3470{ 'enum': 'CommandDropReason',
3471 'data': [ 'queue-full' ] }
3472
3473##
3474# @COMMAND_DROPPED:
3475#
3476# Emitted when a command is dropped due to some reason. Commands can
3477# only be dropped when the oob capability is enabled.
3478#
3479# @id: The dropped command's "id" field.
3480#
3481# @reason: The reason why the command is dropped.
3482#
3483# Since: 2.12
3484#
3485# Example:
3486#
3487# { "event": "COMMAND_DROPPED",
3488# "data": {"result": {"id": "libvirt-102",
3489# "reason": "queue-full" } } }
3490#
3491##
3492{ 'event': 'COMMAND_DROPPED' ,
3493 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
469638f9
PX
3494
3495##
3496# @x-oob-test:
3497#
3498# Test OOB functionality. When sending this command with lock=true,
3499# it'll try to hang the dispatcher. When sending it with lock=false,
3500# it'll try to notify the locked thread to continue. Note: it should
3501# only be used by QMP test program rather than anything else.
3502#
3503# Since: 2.12
3504#
3505# Example:
3506#
3507# { "execute": "x-oob-test",
3508# "arguments": { "lock": true } }
3509##
3510{ 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },
3511 'allow-oob': true }
This page took 0.510321 seconds and 4 git commands to generate.