In preparation for cleaning up "cut here", move the "cut here" logic up
out of __warn() and into callers that pass non-NULL args. For anyone
looking closely, there are two callers that pass NULL args: one already
explicitly prints "cut here". The remaining case is covered by how a WARN
is built, which will be cleaned up in the next patch.
Patch series "Clean up WARN() "cut here" handling", v2.
Christophe Leroy noticed that the fix for missing "cut here" in the WARN()
case was adding explicit printk() calls instead of teaching the exception
handler to add it. This refactors the bug/warn infrastructure to pass
this information as a new BUGFLAG.
Longer details repeated from the last patch in the series:
bug: move WARN_ON() "cut here" into exception handler
The original cleanup of "cut here" missed the WARN_ON() case (that does
not have a printk message), which was fixed recently by adding an explicit
printk of "cut here". This had the downside of adding a printk() to every
WARN_ON() caller, which reduces the utility of using an instruction
exception to streamline the resulting code. By making this a new BUGFLAG,
all of these can be removed and "cut here" can be handled by the exception
handler.
This was very pronounced on PowerPC, but the effect can be seen on x86 as
well. The resulting text size of a defconfig build shows some small
savings from this patch:
This change also opens the door for creating something like BUG_MSG(),
where a custom printk() before issuing BUG(), without confusing the "cut
here" line.
This patch (of 7):
There's no reason to have specialized helpers for passing the warn taint
down to __warn(). Consolidate and refactor helper macros, removing
__WARN_printf() and warn_slowpath_fmt_taint().
Douglas Anderson [Wed, 25 Sep 2019 23:47:48 +0000 (16:47 -0700)]
scripts/gdb: handle split debug
Some systems (like Chrome OS) may use "split debug" for kernel modules.
That means that the debug symbols are in a different file than the main
elf file. Let's handle that by also searching for debug symbols that end
in ".ko.debug".
This is a packaging topic. You can take a normal elf file and split the
debug out of it using objcopy. Try "man objcopy" and then take a look at
the "--only-keep-debug" option. It'll give you a whole recipe for doing
splitdebug. The suffix used for the debug symbols is arbitrary. If
people have other another suffix besides ".ko.debug" then we could
presumably support that too...
For portage (which is the packaging system used by Chrome OS) split debug
is supported by default (and the suffix is .ko.debug). ...and so in
Chrome OS we always get the installed elf files stripped and then the
symbols stashed away.
At the moment we don't actually use the normal portage magic to do this
for the kernel though since it affects our ability to get good stack dumps
in the kernel. We instead pass a script as "strip" [1].
Douglas Anderson [Wed, 25 Sep 2019 23:47:45 +0000 (16:47 -0700)]
kgdb: don't use a notifier to enter kgdb at panic; call directly
Right now kgdb/kdb hooks up to debug panics by registering for the panic
notifier. This works OK except that it means that kgdb/kdb gets called
_after_ the CPUs in the system are taken offline. That means that if
anything important was happening on those CPUs (like something that might
have contributed to the panic) you can't debug them.
Specifically I ran into a case where I got a panic because a task was
"blocked for more than 120 seconds" which was detected on CPU 2. I nicely
got shown stack traces in the kernel log for all CPUs including CPU 0,
which was running 'PID: 111 Comm: kworker/0:1H' and was in the middle of
__mmc_switch().
I then ended up at the kdb prompt where switched over to kgdb to try to
look at local variables of the process on CPU 0. I found that I couldn't.
Digging more, I found that I had no info on any tasks running on CPUs
other than CPU 2 and that asking kdb for help showed me "Error: no saved
data for this cpu". This was because all the CPUs were offline.
Let's move the entry of kdb/kgdb to a direct call from panic() and stop
using the generic notifier. Putting a direct call in allows us to order
things more properly and it also doesn't seem like we're breaking any
abstractions by calling into the debugger from the panic function.
Daniel said:
: This patch changes the way kdump and kgdb interact with each other.
: However it would seem rather odd to have both tools simultaneously armed
: and, even if they were, the user still has the option to use panic_timeout
: to force a kdump to happen. Thus I think the change of order is
: acceptable.
Commit 9012d011660e ("compiler: allow all arches to enable
CONFIG_OPTIMIZE_INLINING") allowed all architectures to enable this
option. A couple of build errors were reported by randconfig, but all of
them have been ironed out.
Towards the goal of removing CONFIG_OPTIMIZE_INLINING entirely (and it
will simplify the 'inline' macro in compiler_types.h), this commit changes
it to always-on option. Going forward, the compiler will always be
allowed to not inline functions marked 'inline'.
This is not a problem for x86 since it has been long used by
arch/x86/configs/{x86_64,i386}_defconfig.
I am keeping the config option just in case any problem crops up for other
architectures.
The code clean-up will be done after confirming this is solid.
The usercopy implementation comments describe that callers of the
copy_*_user() family of functions must always have their return values
checked. This can be enforced at compile time with __must_check, so add
it where needed.
arch_kexec_kernel_image_probe function declaration has been removed by
commit 9ec4ecef0af7 ("kexec_file,x86,powerpc: factor out kexec_file_ops
functions"). Still this function is overridden by couple of architectures
and proper prototype declaration is therefore important, so bring it back.
This fixes the following sparse warning on s390:
arch/s390/kernel/machine_kexec_file.c:333:5: warning: symbol
'arch_kexec_kernel_image_probe' was not declared. Should it be static?
kexec: bail out upon SIGKILL when allocating memory.
syzbot found that a thread can stall for minutes inside kexec_load() after
that thread was killed by SIGKILL [1]. It turned out that the reproducer
was trying to allocate 2408MB of memory using kimage_alloc_page() from
kimage_load_normal_segment(). Let's check for SIGKILL before doing memory
allocation.
fork: improve error message for corrupted page tables
When a user process exits, the kernel cleans up the mm_struct of the user
process and during cleanup, check_mm() checks the page tables of the user
process for corruption (E.g: unexpected page flags set/cleared). For
corrupted page tables, the error message printed by check_mm() isn't very
clear as it prints the loop index instead of page table type (E.g:
Resident file mapping pages vs Resident shared memory pages). The loop
index in check_mm() is used to index rss_stat[] which represents
individual memory type stats. Hence, instead of printing index, print
memory type, thereby improving error message.
Without patch:
--------------
[ 204.836425] mm/pgtable-generic.c:29: bad p4d 0000000089eb4e92(800000025f941467)
[ 204.836544] BUG: Bad rss-counter state mm:00000000f75895ea idx:0 val:2
[ 204.836615] BUG: Bad rss-counter state mm:00000000f75895ea idx:1 val:5
[ 204.836685] BUG: non-zero pgtables_bytes on freeing mm: 20480
With patch:
-----------
[ 69.815453] mm/pgtable-generic.c:29: bad p4d 0000000084653642(800000025ca37467)
[ 69.815872] BUG: Bad rss-counter state mm:00000000014a6c03 type:MM_FILEPAGES val:2
[ 69.815962] BUG: Bad rss-counter state mm:00000000014a6c03 type:MM_ANONPAGES val:5
[ 69.816050] BUG: non-zero pgtables_bytes on freeing mm: 20480
Also, change print function (from printk(KERN_ALERT, ..) to pr_alert()) so
that it matches the other print statement.
Jason Yan [Wed, 25 Sep 2019 23:47:22 +0000 (16:47 -0700)]
fs/reiserfs/do_balan.c: remove set but not used variable
Fix the following gcc warning:
fs/reiserfs/do_balan.c: In function balance_leaf_insert_right:
fs/reiserfs/do_balan.c:629:6: warning: variable ret set but not used
[-Wunused-but-set-variable]
Jason Yan [Wed, 25 Sep 2019 23:47:19 +0000 (16:47 -0700)]
fs/reiserfs/journal.c: remove set but not used variable
Fix the following gcc warning:
fs/reiserfs/journal.c: In function flush_used_journal_lists:
fs/reiserfs/journal.c:1791:6: warning: variable ret set but not used
[-Wunused-but-set-variable]
fs/reiserfs/do_balan.c: remove set but not used variables
fs/reiserfs/do_balan.c: In function balance_leaf_when_delete:
fs/reiserfs/do_balan.c:245:20: warning: variable ih set but not used [-Wunused-but-set-variable]
fs/reiserfs/do_balan.c: In function balance_leaf_insert_left:
fs/reiserfs/do_balan.c:301:7: warning: variable version set but not used [-Wunused-but-set-variable]
fs/reiserfs/do_balan.c: In function balance_leaf_insert_right:
fs/reiserfs/do_balan.c:649:7: warning: variable version set but not used [-Wunused-but-set-variable]
fs/reiserfs/do_balan.c: In function balance_leaf_new_nodes_insert:
fs/reiserfs/do_balan.c:953:7: warning: variable version set but not used [-Wunused-but-set-variable]
fs/reiserfs/fix_node.c: remove set but not used variables
fs/reiserfs/fix_node.c: In function get_num_ver:
fs/reiserfs/fix_node.c:379:6: warning: variable cur_free set but not used [-Wunused-but-set-variable]
fs/reiserfs/fix_node.c: In function dc_check_balance_internal:
fs/reiserfs/fix_node.c:1737:6: warning: variable maxsize set but not used [-Wunused-but-set-variable]
fs/reiserfs/prints.c: remove set but not used variables
Fixes gcc '-Wunused-but-set-variable' warning:
fs/reiserfs/prints.c: In function check_internal_block_head:
fs/reiserfs/prints.c:749:21: warning: variable blkh set but not used [-Wunused-but-set-variable]
fs/reiserfs/objectid.c: remove set but not used variables
Fixes gcc '-Wunused-but-set-variable' warning:
fs/reiserfs/objectid.c: In function reiserfs_convert_objectid_map_v1:
fs/reiserfs/objectid.c:186:25: warning: variable new_objectid_map set but not used [-Wunused-but-set-variable]
fs/reiserfs/lbalance.c: remove set but not used variables
Fixes gcc '-Wunused-but-set-variable' warning:
fs/reiserfs/lbalance.c: In function leaf_paste_entries:
fs/reiserfs/lbalance.c:1325:9: warning: variable old_entry_num set but not used [-Wunused-but-set-variable]
fs/reiserfs/stree.c: remove set but not used variables
Fixes gcc '-Wunused-but-set-variable' warning:
fs/reiserfs/stree.c: In function search_by_key:
fs/reiserfs/stree.c:596:6: warning: variable right_neighbor_of_leaf_node set but not used [-Wunused-but-set-variable]
fs/reiserfs/journal.c: remove set but not used variables
Fixes gcc '-Wunused-but-set-variable' warning:
fs/reiserfs/journal.c: In function flush_older_commits:
fs/reiserfs/journal.c:894:15: warning: variable first_trans_id set but not used [-Wunused-but-set-variable]
fs/reiserfs/journal.c: In function flush_journal_list:
fs/reiserfs/journal.c:1354:38: warning: variable last set but not used [-Wunused-but-set-variable]
fs/reiserfs/journal.c: In function do_journal_release:
fs/reiserfs/journal.c:1916:6: warning: variable flushed set but not used [-Wunused-but-set-variable]
fs/reiserfs/journal.c: In function do_journal_end:
fs/reiserfs/journal.c:3993:6: warning: variable old_start set but not used [-Wunused-but-set-variable]
Jia-Ju Bai [Wed, 25 Sep 2019 23:46:55 +0000 (16:46 -0700)]
fs: reiserfs: remove unnecessary check of bh in remove_from_transaction()
On lines 3430-3434, bh has been assured to be non-null:
cn = get_journal_hash_dev(sb, journal->j_hash_table, blocknr);
if (!cn || !cn->bh) {
return ret;
}
bh = cn->bh;
Thus, the check of bh on line 3447 is unnecessary and can be removed.
Thank Andrew Morton for good advice.
Joe Perches [Wed, 25 Sep 2019 23:46:52 +0000 (16:46 -0700)]
checkpatch: make git output use LANGUAGE=en_US.utf8
git output parsing depends on the language being en_US english.
Make the backtick execution of all `git <foo>` commands set the
LANGUAGE of the process to en_US.utf8 before executing the actual
command using `export LANGUAGE=en_US.utf8; git <foo>`.
Because the command is executed in a child process, the parent
LANGUAGE is unchanged.
checkpatch: remove obsolete period from "ambiguous SHA1" query
Git dropped the period from its "ambiguous SHA1" error message in commit 0c99171ad2 ("get_short_sha1: mark ambiguity error for translation"), circa
2016. Drop the period from checkpatch's associated query so as to match
both the old and new error messages.
checkpatch: exclude sizeof sub-expressions from MACRO_ARG_REUSE
The arguments of sizeof are not evaluated so arguments are safe to re-use
in that context. Excluding sizeof subexpressions means macros like
ARRAY_SIZE can pass checkpatch.
It can happen that a commit message refers to an invalid commit id,
because the referenced hash changed following a rebase, or simply by
mistake. Add a check in checkpatch.pl which checks that an hash
referenced by a Fixes tag, or just cited in the commit message, is a valid
commit id.
$ scripts/checkpatch.pl <<'EOF'
Subject: [PATCH] test commit
Sample test commit to test checkpatch.pl
Commit 1da177e4c3f4 ("Linux-2.6.12-rc2") really exists,
commit 0bba044c4ce7 ("tree") is valid but not a commit,
while commit b4cc0b1c0cca ("unknown") is invalid.
Fixes: f0cacc14cade ("unknown") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
EOF
WARNING: Unknown commit id '0bba044c4ce7', maybe rebased or not pulled?
#8:
commit 0bba044c4ce7 ("tree") is valid but not a commit,
WARNING: Unknown commit id 'b4cc0b1c0cca', maybe rebased or not pulled?
#9:
while commit b4cc0b1c0cca ("unknown") is invalid.
WARNING: Unknown commit id 'f0cacc14cade', maybe rebased or not pulled?
#11: Fixes: f0cacc14cade ("unknown")
total: 0 errors, 3 warnings, 4 lines checked
Stephen Boyd [Wed, 25 Sep 2019 23:46:29 +0000 (16:46 -0700)]
lib/hexdump: make print_hex_dump_bytes() a nop on !DEBUG builds
I'm seeing a bunch of debug prints from a user of print_hex_dump_bytes()
in my kernel logs, but I don't have CONFIG_DYNAMIC_DEBUG enabled nor do I
have DEBUG defined in my build. The problem is that
print_hex_dump_bytes() calls a wrapper function in lib/hexdump.c that
calls print_hex_dump() with KERN_DEBUG level. There are three cases to
consider here
1. CONFIG_DYNAMIC_DEBUG=y --> call dynamic_hex_dum()
2. CONFIG_DYNAMIC_DEBUG=n && DEBUG --> call print_hex_dump()
3. CONFIG_DYNAMIC_DEBUG=n && !DEBUG --> stub it out
Right now, that last case isn't detected and we still call
print_hex_dump() from the stub wrapper.
Let's make print_hex_dump_bytes() only call print_hex_dump_debug() so that
it works properly in all cases.
Case #1, print_hex_dump_debug() calls dynamic_hex_dump() and we get same
behavior. Case #2, print_hex_dump_debug() calls print_hex_dump() with
KERN_DEBUG and we get the same behavior. Case #3, print_hex_dump_debug()
is a nop, changing behavior to what we want, i.e. print nothing.
In file included from ./arch/powerpc/include/asm/paca.h:15,
from ./arch/powerpc/include/asm/current.h:13,
from ./include/linux/thread_info.h:21,
from ./include/asm-generic/preempt.h:5,
from ./arch/powerpc/include/generated/asm/preempt.h:1,
from ./include/linux/preempt.h:78,
from ./include/linux/spinlock.h:51,
from fs/fs-writeback.c:19:
In function 'strncpy',
inlined from 'perf_trace_writeback_page_template' at
./include/trace/events/writeback.h:56:1:
./include/linux/string.h:260:9: warning: '__builtin_strncpy' specified
bound 32 equals destination size [-Wstringop-truncation]
return __builtin_strncpy(p, q, size);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fix it by using the new strscpy_pad() which was introduced in "lib/string:
Add strscpy_pad() function" and will always be NUL-terminated instead of
strncpy(). Also, change strlcpy() to use strscpy_pad() in this file for
consistency.
augmented rbtree: rework the RB_DECLARE_CALLBACKS macro definition
Change the definition of the RBCOMPUTE function. The propagate callback
repeatedly calls RBCOMPUTE as it moves from leaf to root. it wants to
stop recomputing once the augmented subtree information doesn't change.
This was previously checked using the == operator, but that only works
when the augmented subtree information is a scalar field. This commit
modifies the RBCOMPUTE function so that it now sets the augmented subtree
information instead of returning it, and returns a boolean value
indicating if the propagate callback should stop.
The motivation for this change is that I want to introduce augmented
rbtree uses where the augmented data for the subtree is a struct instead
of a scalar.
augmented rbtree: add new RB_DECLARE_CALLBACKS_MAX macro
Add RB_DECLARE_CALLBACKS_MAX, which generates augmented rbtree callbacks
for the case where the augmented value is a scalar whose definition
follows a max(f(node)) pattern. This actually covers all present uses of
RB_DECLARE_CALLBACKS, and saves some (source) code duplication in the
various RBCOMPUTE function definitions.
augmented rbtree: add comments for RB_DECLARE_CALLBACKS macro
Patch series "make RB_DECLARE_CALLBACKS more generic", v3.
These changes are intended to make the RB_DECLARE_CALLBACKS macro more
generic (allowing the aubmented subtree information to be a struct instead
of a scalar).
I have verified the compiled lib/interval_tree.o and mm/mmap.o files to
check that they didn't change. This held as expected for interval_tree.o;
mmap.o did have some changes which could be reverted by marking
__vma_link_rb as noinline. I did not add such a change to the patchset; I
felt it was reasonable enough to leave the inlining decision up to the
compiler.
This patch (of 3):
Add a short comment summarizing the arguments to RB_DECLARE_CALLBACKS.
The arguments are also now capitalized. This copies the style of the
INTERVAL_TREE_DEFINE macro.
No functional changes in this commit, only comments and capitalization.
rbtree: avoid generating code twice for the cached versions (tools copy)
As was already noted in rbtree.h, the logic to cache rb_first (or
rb_last) can easily be implemented externally to the core rbtree api.
This commit takes the changes applied to the include/linux/ and lib/
rbtree files in 9f973cb38088 ("lib/rbtree: avoid generating code twice
for the cached versions"), and applies these to the
tools/include/linux/ and tools/lib/ files as well to keep them
synchronized.
Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg
fails __GFP_NOFAIL charge when the kmem limit is reached. This is a wrong
behavior because nofail allocations are not allowed to fail. Normal
charge path simply forces the charge even if that means to cross the
limit. Kmem accounting should be doing the same.
Dave Airlie [Wed, 25 Sep 2019 22:48:16 +0000 (08:48 +1000)]
Merge tag 'drm-misc-next-fixes-2019-09-23' of git://anongit.freedesktop.org/drm/drm-misc into drm-next
- Multiple panfrost fixes for regulator support and page fault handling
- Some cleanups and fixes in the self-refresh helpers
- Some cleanups and fixes in the atomic helpers
selftests/bpf: adjust strobemeta loop to satisfy latest clang
Some recent changes in latest Clang started causing the following
warning when unrolling strobemeta test case main loop:
progs/strobemeta.h:416:2: warning: loop not unrolled: the optimizer was
unable to perform the requested transformation; the transformation might
be disabled or specified as part of an unsupported transformation
ordering [-Wpass-failed=transform-warning]
This patch simplifies loop's exit condition to depend only on constant
max iteration number (STROBE_MAX_MAP_ENTRIES), while moving early
termination logic inside the loop body. The changes are equivalent from
program logic standpoint, but fixes the warning. It also appears to
improve generated BPF code, as it fixes previously failing non-unrolled
strobemeta test cases.
Some compilers emit warning for potential uninitialized next_id usage.
The code is correct, but control flow is too complicated for some
compilers to figure this out. Re-initialize next_id to satisfy
compiler.
Jonathan Lemon [Tue, 24 Sep 2019 16:25:21 +0000 (09:25 -0700)]
bpf/xskmap: Return ERR_PTR for failure case instead of NULL.
When kzalloc() failed, NULL was returned to the caller, which
tested the pointer with IS_ERR(), which didn't match, so the
pointer was used later, resulting in a NULL dereference.
selftests/bpf: test_progs: fix client/server race in tcp_rtt
This is the same problem I found earlier in test_sockopt_inherit:
there is a race between server thread doing accept() and client
thread doing connect(). Let's explicitly synchronize them via
pthread conditional variable.
v2:
* don't exit from server_thread without signaling condvar,
fixes possible issue where main() would wait forever (Andrii Nakryiko)
Fixes: b55873984dab ("selftests/bpf: test BPF_SOCK_OPS_RTT_CB") Signed-off-by: Stanislav Fomichev <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]>
I'm not fully sure if this is the correct fix, but without this I get
crashes on more complex perf stat metric usages. The problem is that
part of the state gets freed when a weak group fails, but then is later
still used. Just don't free the ids, we're going to reuse them anyways
on the weak group retry.
For example:
% perf stat -M IpB,IpCall,IpTB,IPC,Retiring_SMT,Frontend_Bound_SMT,Kernel_Utilization,CPU_Utilization --metric-only -a -I 1000 sleep 2
crashes and gives in valgrind:
=21527== Invalid write of size 8
==21527== at 0x4EE582: hlist_add_head (list.h:644)
==21527== by 0x4EFD3C: perf_evlist__id_hash (evlist.c:477)
==21527== by 0x4EFD99: perf_evlist__id_add (evlist.c:483)
==21527== by 0x4EFF15: perf_evlist__id_add_fd (evlist.c:524)
==21527== by 0x4FC693: store_evsel_ids (evsel.c:2969)
==21527== by 0x4FC76C: perf_evsel__store_ids (evsel.c:2986)
==21527== by 0x450DA7: __run_perf_stat (builtin-stat.c:519)
==21527== by 0x451285: run_perf_stat (builtin-stat.c:636)
==21527== by 0x454619: cmd_stat (builtin-stat.c:1966)
==21527== by 0x4D557D: run_builtin (perf.c:310)
==21527== by 0x4D57EA: handle_internal_command (perf.c:362)
==21527== by 0x4D5931: run_argv (perf.c:406)
==21527== Address 0x12e3f008 is 104 bytes inside a block of size 2,056 free'd
==21527== at 0x4839A0C: free (vg_replace_malloc.c:540)
==21527== by 0x627139: xyarray__delete (xyarray.c:32)
==21527== by 0x4F6BE4: perf_evsel__free_id (evsel.c:1253)
==21527== by 0x4FA11F: evsel__close (evsel.c:1994)
==21527== by 0x4F30A3: perf_evlist__reset_weak_group (evlist.c:1783)
==21527== by 0x450B47: __run_perf_stat (builtin-stat.c:466)
==21527== by 0x451285: run_perf_stat (builtin-stat.c:636)
==21527== by 0x454619: cmd_stat (builtin-stat.c:1966)
==21527== by 0x4D557D: run_builtin (perf.c:310)
==21527== by 0x4D57EA: handle_internal_command (perf.c:362)
==21527== by 0x4D5931: run_argv (perf.c:406)
==21527== by 0x4D5CAE: main (perf.c:531)
==21527== Block was alloc'd at
==21527== at 0x483AB1A: calloc (vg_replace_malloc.c:762)
==21527== by 0x627024: zalloc (zalloc.c:8)
==21527== by 0x627088: xyarray__new (xyarray.c:10)
==21527== by 0x4F6B20: perf_evsel__alloc_id (evsel.c:1237)
==21527== by 0x4FC74E: perf_evsel__store_ids (evsel.c:2983)
==21527== by 0x450DA7: __run_perf_stat (builtin-stat.c:519)
==21527== by 0x451285: run_perf_stat (builtin-stat.c:636)
==21527== by 0x454619: cmd_stat (builtin-stat.c:1966)
==21527== by 0x4D557D: run_builtin (perf.c:310)
==21527== by 0x4D57EA: handle_internal_command (perf.c:362)
==21527== by 0x4D5931: run_argv (perf.c:406)
==21527== by 0x4D5CAE: main (perf.c:531)
Make sure to not free the name passed in by the caller, but free all the
allocated ids when parsing expressions.
The loop at the end knows that the first entry shouldn't be freed, so
make sure the caller name is the first entry.
Fixes
% perf stat -M IpB,IpCall,IpTB,IPC,Retiring_SMT,Frontend_Bound_SMT,Kernel_Utilization,CPU_Utilization --metric-only -a -I 1000 sleep 2
valgrind:
1.009943231 ==21527== Invalid read of size 1
==21527== at 0x483CB74: strcmp (vg_replace_strmem.c:849)
==21527== by 0x582CF8: collect_all_aliases (stat-display.c:554)
==21527== by 0x582EB3: collect_data (stat-display.c:577)
==21527== by 0x583A32: print_counter_aggr (stat-display.c:806)
==21527== by 0x584FAD: perf_evlist__print_counters (stat-display.c:1200)
==21527== by 0x45133A: print_counters (builtin-stat.c:655)
==21527== by 0x450629: process_interval (builtin-stat.c:353)
==21527== by 0x450FBD: __run_perf_stat (builtin-stat.c:564)
==21527== by 0x451285: run_perf_stat (builtin-stat.c:636)
==21527== by 0x454619: cmd_stat (builtin-stat.c:1966)
==21527== by 0x4D557D: run_builtin (perf.c:310)
==21527== by 0x4D57EA: handle_internal_command (perf.c:362)
==21527== Address 0x12826cd0 is 0 bytes inside a block of size 25 free'd
==21527== at 0x4839A0C: free (vg_replace_malloc.c:540)
==21527== by 0x627041: __zfree (zalloc.c:13)
==21527== by 0x57F66A: generic_metric (stat-shadow.c:814)
==21527== by 0x580B21: perf_stat__print_shadow_stats (stat-shadow.c:1057)
==21527== by 0x58418E: print_metric_headers (stat-display.c:943)
==21527== by 0x5844BC: print_interval (stat-display.c:1004)
==21527== by 0x584DEB: perf_evlist__print_counters (stat-display.c:1172)
==21527== by 0x45133A: print_counters (builtin-stat.c:655)
==21527== by 0x450629: process_interval (builtin-stat.c:353)
==21527== by 0x450FBD: __run_perf_stat (builtin-stat.c:564)
==21527== by 0x451285: run_perf_stat (builtin-stat.c:636)
==21527== by 0x454619: cmd_stat (builtin-stat.c:1966)
==21527== Block was alloc'd at
==21527== at 0x483880B: malloc (vg_replace_malloc.c:309)
==21527== by 0x51677DE: strdup (in /usr/lib64/libc-2.29.so)
==21527== by 0x506457: parse_events_name (parse-events.c:1754)
==21527== by 0x5550BB: parse_events_parse (parse-events.y:214)
==21527== by 0x50694D: parse_events__scanner (parse-events.c:1887)
==21527== by 0x506AEF: parse_events (parse-events.c:1927)
==21527== by 0x521D8B: metricgroup__parse_groups (metricgroup.c:527)
==21527== by 0x45156F: parse_metric_groups (builtin-stat.c:721)
==21527== by 0x6228A9: get_value (parse-options.c:243)
==21527== by 0x62363F: parse_short_opt (parse-options.c:348)
==21527== by 0x62363F: parse_options_step (parse-options.c:536)
==21527== by 0x62363F: parse_options_subcommand (parse-options.c:651)
==21527== by 0x453C1D: cmd_stat (builtin-stat.c:1718)
==21527== by 0x4D557D: run_builtin (perf.c:310)
and also a leak report.
Committer testing:
Before:
# perf stat -M IpB,IpCall,IpTB,IPC,Retiring_SMT,Frontend_Bound_SMT,Kernel_Utilization,CPU_Utilization --metric-only -a -I 1000 sleep 2
# time CPU_Utilization
1.000470810 free(): double free detected in tcache 2
Aborted (core dumped)
#
After:
# perf stat -M IpB,IpCall,IpTB,IPC,Retiring_SMT,Frontend_Bound_SMT,Kernel_Utilization,CPU_Utilization --metric-only -a -I 1000 sleep 2
# time CPU_Utilization
1.000494752 0.1
2.001105112 0.1
#
perf tools: Replace needless mmap.h with what is needed, event.h
The perf_sample struct definition and the event_attr_init() are in
util/event.h, but some places were getting it thru an otherwise needless
util/mmap.h header, fix it by including util/event.h directly.
Ditch it, noone is using it, one more stdio.h include in a hot header.
Fix the fallout in parse-events.y, where we end up using a FILE pointer,
I think due to YYDEBUG being set and in some places, like Amazon Linux 1
we don't get stdio.h included by luck, like in most other places, add a
explicit stdio.h include directive.
We already had evsel_fprintf.c, add its counterpart, so that we can
reduce evsel.h a bit more.
We needed a new perf_event_attr_fprintf.c file so as to have a separate
object to link with the python binding in tools/perf/util/python-ext-sources
and not drag symbol_conf, etc into the python binding.
Paolo Bonzini [Wed, 25 Sep 2019 16:33:53 +0000 (18:33 +0200)]
KVM: nVMX: cleanup and fix host 64-bit mode checks
KVM was incorrectly checking vmcs12->host_ia32_efer even if the "load
IA32_EFER" exit control was reset. Also, some checks were not using
the new CC macro for tracing.
Cleanup everything so that the vCPU's 64-bit mode is determined
directly from EFER_LMA and the VMCS checks are based on that, which
matches section 26.2.4 of the SDM.
Merge tag 'ceph-for-5.4-rc1' of git://github.com/ceph/ceph-client
Pull ceph updates from Ilya Dryomov:
"The highlights are:
- automatic recovery of a blacklisted filesystem session (Zheng Yan).
This is disabled by default and can be enabled by mounting with the
new "recover_session=clean" option.
- serialize buffered reads and O_DIRECT writes (Jeff Layton). Care is
taken to avoid serializing O_DIRECT reads and writes with each
other, this is based on the exclusion scheme from NFS.
- handle large osdmaps better in the face of fragmented memory
(myself)
- don't limit what security.* xattrs can be get or set (Jeff Layton).
We were overly restrictive here, unnecessarily preventing things
like file capability sets stored in security.capability from
working.
- allow copy_file_range() within the same inode and across different
filesystems within the same cluster (Luis Henriques)"
* tag 'ceph-for-5.4-rc1' of git://github.com/ceph/ceph-client: (41 commits)
ceph: call ceph_mdsc_destroy from destroy_fs_client
libceph: use ceph_kvmalloc() for osdmap arrays
libceph: avoid a __vmalloc() deadlock in ceph_kvmalloc()
ceph: allow object copies across different filesystems in the same cluster
ceph: include ceph_debug.h in cache.c
ceph: move static keyword to the front of declarations
rbd: pull rbd_img_request_create() dout out into the callers
ceph: reconnect connection if session hang in opening state
libceph: drop unused con parameter of calc_target()
ceph: use release_pages() directly
rbd: fix response length parameter for encoded strings
ceph: allow arbitrary security.* xattrs
ceph: only set CEPH_I_SEC_INITED if we got a MAC label
ceph: turn ceph_security_invalidate_secctx into static inline
ceph: add buffered/direct exclusionary locking for reads and writes
libceph: handle OSD op ceph_pagelist_append() errors
ceph: don't return a value from void function
ceph: don't freeze during write page faults
ceph: update the mtime when truncating up
ceph: fix indentation in __get_snap_name()
...
Merge tag 'fuse-update-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse
Pull fuse updates from Miklos Szeredi:
- Continue separating the transport (user/kernel communication) and the
filesystem layers of fuse. Getting rid of most layering violations
will allow for easier cleanup and optimization later on.
- Prepare for the addition of the virtio-fs filesystem. The actual
filesystem will be introduced by a separate pull request.
- Convert to new mount API.
- Various fixes, optimizations and cleanups.
* tag 'fuse-update-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: (55 commits)
fuse: Make fuse_args_to_req static
fuse: fix memleak in cuse_channel_open
fuse: fix beyond-end-of-page access in fuse_parse_cache()
fuse: unexport fuse_put_request
fuse: kmemcg account fs data
fuse: on 64-bit store time in d_fsdata directly
fuse: fix missing unlock_page in fuse_writepage()
fuse: reserve byteswapped init opcodes
fuse: allow skipping control interface and forced unmount
fuse: dissociate DESTROY from fuseblk
fuse: delete dentry if timeout is zero
fuse: separate fuse device allocation and installation in fuse_conn
fuse: add fuse_iqueue_ops callbacks
fuse: extract fuse_fill_super_common()
fuse: export fuse_dequeue_forget() function
fuse: export fuse_get_unique()
fuse: export fuse_send_init_request()
fuse: export fuse_len_args()
fuse: export fuse_end_request()
fuse: fix request limit
...
Merge tag 'tpmdd-next-20190925' of git://git.infradead.org/users/jjs/linux-tpmdd
Pull tpm fixes from Jarkko Sakkinen.
* tag 'tpmdd-next-20190925' of git://git.infradead.org/users/jjs/linux-tpmdd:
tpm: Wrap the buffer from the caller to tpm_buf in tpm_send()
MAINTAINERS: keys: Update path to trusted.h
KEYS: trusted: correctly initialize digests and fix locking issue
selftests/tpm2: Add log and *.pyc to .gitignore
selftests/tpm2: Add the missing TEST_FILES assignment
Merge tag 'iomap-5.4-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull iomap updates from Darrick Wong:
"After last week's failed pull request attempt, I scuttled everything
in the branch except for the directio endio api changes, which were
trivial. Everything else will simply have to wait for the next cycle.
Summary:
- Report both io errors and short io results to the directio endio
handler.
- Allow directio callers to pass an ops structure to iomap_dio_rw"
* tag 'iomap-5.4-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
iomap: move the iomap_dio_rw ->end_io callback into a structure
iomap: split size and error for iomap_dio_rw ->end_io
The EAS wake-up path computes the system energy for several CPU
candidates: the CPU with maximum spare capacity in each performance
domain, and the prev_cpu. However, if prev_cpu also happens to be the
CPU with maximum spare capacity in its performance domain, the energy
calculation is still done twice, unnecessarily.
Add a condition to filter out this corner case before doing the energy
calculation.
sched/core: Remove double update_max_interval() call on CPU startup
update_max_interval() is called in both CPUHP_AP_SCHED_STARTING's startup
and teardown callbacks, but it turns out it's also called at the end of
the startup callback of CPUHP_AP_ACTIVE (which is further down the
startup sequence).
There's no point in repeating this interval update in the startup sequence
since the CPU will remain online until it goes down the teardown path.
Remove the redundant call in sched_cpu_activate() (CPUHP_AP_ACTIVE).
de53fd7aedb1 ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices")
introduced a few compilation warnings:
kernel/sched/fair.c: In function '__refill_cfs_bandwidth_runtime':
kernel/sched/fair.c:4365:6: warning: variable 'now' set but not used [-Wunused-but-set-variable]
kernel/sched/fair.c: In function 'start_cfs_bandwidth':
kernel/sched/fair.c:4992:6: warning: variable 'overrun' set but not used [-Wunused-but-set-variable]
Also, __refill_cfs_bandwidth_runtime() does no longer update the
expiration time, so fix the comments accordingly.
KeMeng Shi [Mon, 16 Sep 2019 06:53:28 +0000 (06:53 +0000)]
sched/core: Fix migration to invalid CPU in __set_cpus_allowed_ptr()
An oops can be triggered in the scheduler when running qemu on arm64:
Unable to handle kernel paging request at virtual address ffff000008effe40
Internal error: Oops: 96000007 [#1] SMP
Process migration/0 (pid: 12, stack limit = 0x00000000084e3736)
pstate: 20000085 (nzCv daIf -PAN -UAO)
pc : __ll_sc___cmpxchg_case_acq_4+0x4/0x20
lr : move_queued_task.isra.21+0x124/0x298
...
Call trace:
__ll_sc___cmpxchg_case_acq_4+0x4/0x20
__migrate_task+0xc8/0xe0
migration_cpu_stop+0x170/0x180
cpu_stopper_thread+0xec/0x178
smpboot_thread_fn+0x1ac/0x1e8
kthread+0x134/0x138
ret_from_fork+0x10/0x18
__set_cpus_allowed_ptr() will choose an active dest_cpu in affinity mask to
migrage the process if process is not currently running on any one of the
CPUs specified in affinity mask. __set_cpus_allowed_ptr() will choose an
invalid dest_cpu (dest_cpu >= nr_cpu_ids, 1024 in my virtual machine) if
CPUS in an affinity mask are deactived by cpu_down after cpumask_intersects
check. cpumask_test_cpu() of dest_cpu afterwards is overflown and may pass if
corresponding bit is coincidentally set. As a consequence, kernel will
access an invalid rq address associate with the invalid CPU in
migration_cpu_stop->__migrate_task->move_queued_task and the Oops occurs.
The reproduce the crash:
1) A process repeatedly binds itself to cpu0 and cpu1 in turn by calling
sched_setaffinity.
2) A shell script repeatedly does "echo 0 > /sys/devices/system/cpu/cpu1/online"
and "echo 1 > /sys/devices/system/cpu/cpu1/online" in turn.
3) Oops appears if the invalid CPU is set in memory after tested cpumask.
sched/membarrier: Return -ENOMEM to userspace on memory allocation failure
Remove the IPI fallback code from membarrier to deal with very
infrequent cpumask memory allocation failure. Use GFP_KERNEL rather
than GFP_NOWAIT, and relax the blocking guarantees for the expedited
membarrier system call commands, allowing it to block if waiting for
memory to be made available.
In addition, now -ENOMEM can be returned to user-space if the cpumask
memory allocation fails.
sched/membarrier: Skip IPIs when mm->mm_users == 1
If there is only a single mm_user for the mm, the private expedited
membarrier command can skip the IPIs, because only a single thread
is using the mm.
selftests, sched/membarrier: Add multi-threaded test
membarrier commands cover very different code paths if they are in
a single-threaded vs multi-threaded process. Therefore, exercise both
scenarios in the kernel selftests to increase coverage of this selftest.
The membarrier_state field is located within the mm_struct, which
is not guaranteed to exist when used from runqueue-lock-free iteration
on runqueues by the membarrier system call.
Copy the membarrier_state from the mm_struct into the scheduler runqueue
when the scheduler switches between mm.
When registering membarrier for mm, after setting the registration bit
in the mm membarrier state, issue a synchronize_rcu() to ensure the
scheduler observes the change. In order to take care of the case
where a runqueue keeps executing the target mm without swapping to
other mm, iterate over each runqueue and issue an IPI to copy the
membarrier_state from the mm_struct into each runqueue which have the
same mm which state has just been modified.
Move the mm membarrier_state field closer to pgd in mm_struct to use
a cache line already touched by the scheduler switch_mm.
The membarrier_execve() (now membarrier_exec_mmap) hook now needs to
clear the runqueue's membarrier state in addition to clear the mm
membarrier state, so move its implementation into the scheduler
membarrier code so it can access the runqueue structure.
Add memory barrier in membarrier_exec_mmap() prior to clearing
the membarrier state, ensuring memory accesses executed prior to exec
are not reordered with the stores clearing the membarrier state.
As suggested by Linus, move all membarrier.c RCU read-side locks outside
of the for each cpu loops.
sched/membarrier: Call sync_core only before usermode for same mm
When the prev and next task's mm change, switch_mm() provides the core
serializing guarantees before returning to usermode. The only case
where an explicit core serialization is needed is when the scheduler
keeps the same mm for prev and next.
Fix a logic flaw in the way membarrier_register_private_expedited()
handles ready state checks for private expedited sync core and private
expedited registrations.
If a private expedited membarrier registration is first performed, and
then a private expedited sync_core registration is performed, the ready
state check will skip the second registration when it really should not.
tasks, sched/core: RCUify the assignment of rq->curr
The current task on the runqueue is currently read with rcu_dereference().
To obtain ordinary RCU semantics for an rcu_dereference() of rq->curr it needs
to be paired with rcu_assign_pointer() of rq->curr. Which provides the
memory barrier necessary to order assignments to the task_struct
and the assignment to rq->curr.
Unfortunately the assignment of rq->curr in __schedule is a hot path,
and it has already been show that additional barriers in that code
will reduce the performance of the scheduler. So I will attempt to
describe below why you can effectively have ordinary RCU semantics
without any additional barriers.
The assignment of rq->curr in init_idle is a slow path called once
per cpu and that can use rcu_assign_pointer() without any concerns.
As I write this there are effectively two users of rcu_dereference() on
rq->curr. There is the membarrier code in kernel/sched/membarrier.c
that only looks at "->mm" after the rcu_dereference(). Then there is
task_numa_compare() in kernel/sched/fair.c. My best reading of the
code shows that task_numa_compare only access: "->flags",
"->cpus_ptr", "->numa_group", "->numa_faults[]",
"->total_numa_faults", and "->se.cfs_rq".
The code in __schedule() essentially does:
rq_lock(...);
smp_mb__after_spinlock();
next = pick_next_task(...);
rq->curr = next;
context_switch(prev, next);
At the start of the function the rq_lock/smp_mb__after_spinlock
pair provides a full memory barrier. Further there is a full memory barrier
in context_switch().
This means that any task that has already run and modified itself (the
common case) has already seen two memory barriers before __schedule()
runs and begins executing. A task that modifies itself then sees a
third full memory barrier pair with the rq_lock();
For a brand new task that is enqueued with wake_up_new_task() there
are the memory barriers present from the taking and release the
pi_lock and the rq_lock as the processes is enqueued as well as the
full memory barrier at the start of __schedule() assuming __schedule()
happens on the same cpu.
This means that by the time we reach the assignment of rq->curr
except for values on the task struct modified in pick_next_task
the code has the same guarantees as if it used rcu_assign_pointer().
Reading through all of the implementations of pick_next_task it
appears pick_next_task is limited to modifying the task_struct fields
"->se", "->rt", "->dl". These fields are the sched_entity structures
of the varies schedulers.
Further "->se.cfs_rq" is only changed in cgroup attach/move operations
initialized by userspace.
Unless I have missed something this means that in practice that the
users of "rcu_dereference(rq->curr)" get normal RCU semantics of
rcu_dereference() for the fields the care about, despite the
assignment of rq->curr in __schedule() ot using rcu_assign_pointer.
tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code
Remove work arounds that were written before there was a grace period
after tasks left the runqueue in finish_task_switch().
In particular now that there tasks exiting the runqueue exprience
a RCU grace period none of the work performed by task_rcu_dereference()
excpet the rcu_dereference() is necessary so replace task_rcu_dereference()
with rcu_dereference().
Remove the code in rcuwait_wait_event() that checks to ensure the current
task has not exited. It is no longer necessary as it is guaranteed
that any running task will experience a RCU grace period after it
leaves the run queueue.
Remove the comment in rcuwait_wake_up() as it is no longer relevant.
tasks, sched/core: Ensure tasks are available for a grace period after leaving the runqueue
In the ordinary case today the RCU grace period for a task_struct is
triggered when another process wait's for it's zombine and causes the
kernel to call release_task(). As the waiting task has to receive a
signal and then act upon it before this happens, typically this will
occur after the original task as been removed from the runqueue.
Unfortunaty in some cases such as self reaping tasks it can be shown
that release_task() will be called starting the grace period for
task_struct long before the task leaves the runqueue.
Therefore use put_task_struct_rcu_user() in finish_task_switch() to
guarantee that the there is a RCU lifetime after the task
leaves the runqueue.
Besides the change in the start of the RCU grace period for the
task_struct this change may cause perf_event_delayed_put and
trace_sched_process_free. The function perf_event_delayed_put boils
down to just a WARN_ON for cases that I assume never show happen. So
I don't see any problem with delaying it.
The function trace_sched_process_free is a trace point and thus
visible to user space. Occassionally userspace has the strangest
dependencies so this has a miniscule chance of causing a regression.
This change only changes the timing of when the tracepoint is called.
The change in timing arguably gives userspace a more accurate picture
of what is going on. So I don't expect there to be a regression.
In the case where a task self reaps we are pretty much guaranteed that
the RCU grace period is delayed. So we should get quite a bit of
coverage in of this worst case for the change in a normal threaded
workload. So I expect any issues to turn up quickly or not at all.
I have lightly tested this change and everything appears to work
fine.
Add a count of the number of RCU users (currently 1) of the task
struct so that we can later add the scheduler case and get rid of the
very subtle task_rcu_dereference(), and just use rcu_dereference().
As suggested by Oleg have the count overlap rcu_head so that no
additional space in task_struct is required.
btrfs: Fix a regression which we can't convert to SINGLE profile
[BUG]
With v5.3 kernel, we can't convert to SINGLE profile:
# btrfs balance start -f -dconvert=single $mnt
ERROR: error during balancing '/mnt/btrfs': Invalid argument
# dmesg -t | tail
validate_convert_profile: data profile=0x1000000000000 allowed=0x20 is_valid=1 final=0x1000000000000 ret=1
BTRFS error (device dm-3): balance: invalid convert data profile single
[CAUSE]
With the extra debug output added, it shows that the @allowed bit is
lacking the special in-memory only SINGLE profile bit.
Thus we fail at that (profile & ~allowed) check.
This regression is caused by commit 081db89b13cb ("btrfs: use raid_attr
to get allowed profiles for balance conversion") and the fact that we
don't use any bit to indicate SINGLE profile on-disk, but uses special
in-memory only bit to help distinguish different profiles.
[FIX]
Add that BTRFS_AVAIL_ALLOC_BIT_SINGLE to @allowed, so the code should be
the same as it was and fix the regression.
KVM: vmx: fix build warnings in hv_enable_direct_tlbflush() on i386
The following was reported on i386:
arch/x86/kvm/vmx/vmx.c: In function 'hv_enable_direct_tlbflush':
arch/x86/kvm/vmx/vmx.c:503:10: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
pr_debugs() in this function are more or less useless, let's just
remove them. evmcs->hv_vm_id can use 'unsigned long' instead of 'u64'.
KVM: x86: Don't check kvm_rebooting in __kvm_handle_fault_on_reboot()
Remove the kvm_rebooting check from VMX/SVM instruction exception fixup
now that kvm_spurious_fault() conditions its BUG() on !kvm_rebooting.
Because the 'cleanup_insn' functionally is also gone, deferring to
kvm_spurious_fault() means __kvm_handle_fault_on_reboot() can eliminate
its .fixup code entirely and have its exception table entry branch
directly to the call to kvm_spurious_fault().
Remove the variation of __kvm_handle_fault_on_reboot() that accepts a
post-fault cleanup instruction now that its sole user (VMREAD) uses
a different method for handling faults.
KVM: VMX: Optimize VMX instruction error and fault handling
Rework the VMX instruction helpers using asm-goto to branch directly
to error/fault "handlers" in lieu of using __ex(), i.e. the generic
____kvm_handle_fault_on_reboot(). Branching directly to fault handling
code during fixup avoids the extra JMP that is inserted after every VMX
instruction when using the generic "fault on reboot" (see commit 3901336ed9887, "x86/kvm: Don't call kvm_spurious_fault() from .fixup").
Opportunistically clean up the helpers so that they all have consistent
error handling and messages.
Leave the usage of ____kvm_handle_fault_on_reboot() (via __ex()) in
kvm_cpu_vmxoff() and nested_vmx_check_vmentry_hw() as is. The VMXOFF
case is not a fast path, i.e. the cleanliness of __ex() is worth the
JMP, and the extra JMP in nested_vmx_check_vmentry_hw() is unavoidable.
Note, VMREAD cannot get the asm-goto treatment as output operands aren't
compatible with GCC's asm-goto due to internal compiler restrictions.
btrfs: relocation: fix use-after-free on dead relocation roots
[BUG]
One user reported a reproducible KASAN report about use-after-free:
BTRFS info (device sdi1): balance: start -dvrange=1256811659264..1256811659265
BTRFS info (device sdi1): relocating block group 1256811659264 flags data|raid0
==================================================================
BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x2cd/0x340 [btrfs]
Write of size 8 at addr ffff88856f671710 by task kworker/u24:10/261579
[CAUSE]
The problem happens when finish_ordered_io() get called with balance
still running, while the reloc root of that subvolume is already dead.
(Tree is swap already done, but tree not yet deleted for possible qgroup
usage.)
That means root->reloc_root still exists, but that reloc_root can be
under btrfs_drop_snapshot(), thus we shouldn't access it.
The following race could cause the use-after-free problem:
- Test if the root has dead reloc tree before accessing root->reloc_root
If the root has BTRFS_ROOT_DEAD_RELOC_TREE, then we don't need to
create or update root->reloc_tree
- Clear the BTRFS_ROOT_DEAD_RELOC_TREE flag until we have fully dropped
reloc tree
To co-operate with above modification, so as long as
BTRFS_ROOT_DEAD_RELOC_TREE is still set, we won't try to re-create
reloc tree at record_root_in_trans().
KVM: x86: Check kvm_rebooting in kvm_spurious_fault()
Explicitly check kvm_rebooting in kvm_spurious_fault() prior to invoking
BUG(), as opposed to assuming the caller has already done so. Letting
kvm_spurious_fault() be called "directly" will allow VMX to better
optimize its low level assembly flows.
As a happy side effect, kvm_spurious_fault() no longer needs to be
marked as a dead end since it doesn't unconditionally BUG().
After commit e8bb4755eea2("KVM: selftests: Split ucall.c into architecture
specific files") selftests which use ucall on x86 started segfaulting and
apparently it's gcc to blame: it "optimizes" ucall() function throwing away
va_start/va_end part because it thinks the structure is not being used.
Previously, it couldn't do that because the there was also MMIO version and
the decision which particular implementation to use was done at runtime.
With older gccs it's possible to solve the problem by adding 'volatile'
to 'struct ucall' but at least with gcc-8.3 this trick doesn't work.