We have some cases left whereby we operate on small folios and still refer
to page->_mapcount. Let's just use folio->_mapcount instead, which
currently still overlays page->_mapcount, so no change.
This change will make it easier to later spot any remaining users of
page->_mapcount that target tail pages.
Yu Zhao [Wed, 14 Aug 2024 03:54:51 +0000 (21:54 -0600)]
mm/hugetlb: use __GFP_COMP for gigantic folios
Use __GFP_COMP for gigantic folios to greatly reduce not only the amount
of code but also the allocation and free time.
LOC (approximately): +60, -240
Allocate and free 500 1GB hugeTLB memory without HVO by:
time echo 500 >/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
time echo 0 >/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
Before After
Alloc ~13s ~10s
Free ~15s <1s
The above magnitude generally holds for multiple x86 and arm64 CPU models.
Yu Zhao [Wed, 14 Aug 2024 03:54:50 +0000 (21:54 -0600)]
mm/cma: add cma_{alloc,free}_folio()
With alloc_contig_range() and free_contig_range() supporting large folios,
CMA can allocate and free large folios too, by cma_alloc_folio() and
cma_free_folio().
Yu Zhao [Wed, 14 Aug 2024 03:54:49 +0000 (21:54 -0600)]
mm/contig_alloc: support __GFP_COMP
Patch series "mm/hugetlb: alloc/free gigantic folios", v2.
Use __GFP_COMP for gigantic folios can greatly reduce not only the amount
of code but also the allocation and free time.
Approximate LOC to mm/hugetlb.c: +60, -240
Allocate and free 500 1GB hugeTLB memory without HVO by:
time echo 500 >/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
time echo 0 >/sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
Before After
Alloc ~13s ~10s
Free ~15s <1s
The above magnitude generally holds for multiple x86 and arm64 CPU
models.
Support __GFP_COMP in alloc_contig_range(). When the flag is set, upon
success the function returns a large folio prepared by prep_new_page(),
rather than a range of order-0 pages prepared by split_free_pages() (which
is renamed from split_map_pages()).
alloc_contig_range() can be used to allocate folios larger than
MAX_PAGE_ORDER, e.g., gigantic hugeTLB folios. So on the free path,
free_one_page() needs to handle that by split_large_buddy().
Kaiyang Zhao [Wed, 14 Aug 2024 17:42:27 +0000 (17:42 +0000)]
mm,memcg: provide per-cgroup counters for NUMA balancing operations
The ability to observe the demotion and promotion decisions made by the
kernel on a per-cgroup basis is important for monitoring and tuning
containerized workloads on machines equipped with tiered memory.
Different containers in the system may experience drastically different
memory tiering actions that cannot be distinguished from the global
counters alone.
For example, a container running a workload that has a much hotter memory
accesses will likely see more promotions and fewer demotions, potentially
depriving a colocated container of top tier memory to such an extent that
its performance degrades unacceptably.
For another example, some containers may exhibit longer periods between
data reuse, causing much more numa_hint_faults than numa_pages_migrated.
In this case, tuning hot_threshold_ms may be appropriate, but the signal
can easily be lost if only global counters are available.
In the long term, we hope to introduce per-cgroup control of promotion and
demotion actions to implement memory placement policies in tiering.
This patch set adds seven counters to memory.stat in a cgroup:
numa_pages_migrated, numa_pte_updates, numa_hint_faults, pgdemote_kswapd,
pgdemote_khugepaged, pgdemote_direct and pgpromote_success. pgdemote_*
and pgpromote_success are also available in memory.numa_stat.
count_memcg_events_mm() is added to count multiple event occurrences at
once, and get_mem_cgroup_from_folio() is added because we need to get a
reference to the memcg of a folio before it's migrated to track
numa_pages_migrated. The accounting of PGDEMOTE_* is moved to
shrink_inactive_list() before being changed to per-cgroup.
Andrey Konovalov [Tue, 13 Aug 2024 22:40:27 +0000 (00:40 +0200)]
kasan: simplify and clarify Makefile
When KASAN support was being added to the Linux kernel, GCC did not yet
support all of the KASAN-related compiler options. Thus, the KASAN
Makefile had to probe the compiler for supported options.
Nowadays, the Linux kernel GCC version requirement is 5.1+, and thus we
don't need the probing of the -fasan-shadow-offset parameter: it exists in
all 5.1+ GCCs.
Simplify the KASAN Makefile to drop CFLAGS_KASAN_MINIMAL.
Also add a few more comments and unify the indentation.
Baolin Wang [Mon, 12 Aug 2024 07:42:10 +0000 (15:42 +0800)]
mm: shmem: support large folio swap out
Shmem will support large folio allocation [1] [2] to get a better
performance, however, the memory reclaim still splits the precious large
folios when trying to swap out shmem, which may lead to the memory
fragmentation issue and can not take advantage of the large folio for
shmeme.
Moreover, the swap code already supports for swapping out large folio
without split, hence this patch set supports the large folio swap out for
shmem.
Note the i915_gem_shmem driver still need to be split when swapping, thus
add a new flag 'split_large_folio' for writeback_control to indicate
spliting the large folio.
Baolin Wang [Mon, 12 Aug 2024 07:42:09 +0000 (15:42 +0800)]
mm: shmem: split large entry if the swapin folio is not large
Now the swap device can only swap-in order 0 folio, even though a large
folio is swapped out. This requires us to split the large entry
previously saved in the shmem pagecache to support the swap in of small
folios.
Baolin Wang [Mon, 12 Aug 2024 07:42:08 +0000 (15:42 +0800)]
mm: shmem: drop folio reference count using 'nr_pages' in shmem_delete_from_page_cache()
To support large folio swapin/swapout for shmem in the following patches,
drop the folio's reference count by the number of pages contained in the
folio when a shmem folio is deleted from shmem pagecache after adding into
swap cache.
Baolin Wang [Mon, 12 Aug 2024 07:42:07 +0000 (15:42 +0800)]
mm: shmem: support large folio allocation for shmem_replace_folio()
To support large folio swapin for shmem in the following patches, add
large folio allocation for the new replacement folio in
shmem_replace_folio(). Moreover large folios occupy N consecutive entries
in the swap cache instead of using multi-index entries like the page
cache, therefore we should replace each consecutive entries in the swap
cache instead of using the shmem_replace_entry().
As well as updating statistics and folio reference count using the number
of pages in the folio.
Baolin Wang [Mon, 12 Aug 2024 07:42:06 +0000 (15:42 +0800)]
mm: shmem: use swap_free_nr() to free shmem swap entries
As a preparation for supporting shmem large folio swapout, use
swap_free_nr() to free some continuous swap entries of the shmem large
folio when the large folio was swapped in from the swap cache. In
addition, the index should also be round down to the number of pages when
adding the swapin folio into the pagecache.
Baolin Wang [Mon, 12 Aug 2024 07:42:05 +0000 (15:42 +0800)]
mm: filemap: use xa_get_order() to get the swap entry order
In the following patches, shmem will support the swap out of large folios,
which means the shmem mappings may contain large order swap entries, so
using xa_get_order() to get the folio order of the shmem swap entry to
update the '*start' correctly.
Daniel Gomez [Mon, 12 Aug 2024 07:42:04 +0000 (15:42 +0800)]
mm: shmem: return number of pages beeing freed in shmem_free_swap
Both shmem_free_swap callers expect the number of pages being freed. In
the large folios context, this needs to support larger values other than 0
(used as 1 page being freed) and -ENOENT (used as 0 pages being freed).
In preparation for large folios adoption, make shmem_free_swap routine
return the number of pages being freed. So, returning 0 in this context,
means 0 pages being freed.
While we are at it, changing to use free_swap_and_cache_nr() to free large
order swap entry by Baolin Wang.
Baolin Wang [Mon, 12 Aug 2024 07:42:03 +0000 (15:42 +0800)]
mm: shmem: extend shmem_partial_swap_usage() to support large folio swap
To support shmem large folio swapout in the following patches, using
xa_get_order() to get the order of the swap entry to calculate the swap
usage of shmem.
Baolin Wang [Mon, 12 Aug 2024 07:42:02 +0000 (15:42 +0800)]
mm: swap: extend swap_shmem_alloc() to support batch SWAP_MAP_SHMEM flag setting
Patch series "support large folio swap-out and swap-in for shmem", v5.
Shmem will support large folio allocation [1] [2] to get a better
performance, however, the memory reclaim still splits the precious large
folios when trying to swap-out shmem, which may lead to the memory
fragmentation issue and can not take advantage of the large folio for
shmeme.
Moreover, the swap code already supports for swapping out large folio
without split, and large folio swap-in[3] series is queued into
mm-unstable branch. Hence this patch set also supports the large folio
swap-out and swap-in for shmem.
This patch (of 9):
To support shmem large folio swap operations, add a new parameter to
swap_shmem_alloc() that allows batch SWAP_MAP_SHMEM flag setting for shmem
swap entries.
While we are at it, using folio_nr_pages() to get the number of pages of
the folio as a preparation.
Barry Song [Wed, 7 Aug 2024 21:58:58 +0000 (09:58 +1200)]
mm: rename instances of swap_info_struct to meaningful 'si'
Patch series "mm: batch free swaps for zap_pte_range()", v3.
Batch free swap slots for zap_pte_range(), making munmap three times
faster when the page table entries are filled with swap entries to
be freed. This is likely another advantage of using mTHP.
This patch (of 3):
"p" means "pointer to something", rename it to a more meaningful
identifier - "si". We also have a case with the name "sis", rename it to
"si" as well.
mm: make range-to-target_node lookup facility a part of numa_memblks
The x86 implementation of range-to-target_node lookup (i.e.
phys_to_target_node() and memory_add_physaddr_to_nid()) relies on
numa_memblks.
Since numa_memblks are now part of the generic code, move these functions
from x86 to mm/numa_memblks.c and select CONFIG_NUMA_KEEP_MEMINFO when
CONFIG_NUMA_MEMBLKS=y for dax and cxl.
Until now arch_numa was directly translating firmware NUMA information
to memblock.
Using numa_memblks as an intermediate step has a few advantages:
* alignment with more battle tested x86 implementation
* availability of NUMA emulation
* maintaining node information for not yet populated memory
Adjust a few places in numa_memblks to compile with 32-bit phys_addr_t and
replace current functionality related to numa_add_memblk() and
__node_distance() in arch_numa with the implementation based on
numa_memblks and add functions required by numa_emulation.
of, numa: return -EINVAL when no numa-node-id is found
Currently of_numa_parse_memory_nodes() returns 0 if no "memory" node in
device tree contains "numa-node-id" property. This makes of_numa_init()
to return "success" despite no NUMA nodes were actually parsed and set up.
arch_numa workarounds this by returning an error if numa_nodes_parsed is
empty.
numa_memblks however would WARN() in such case and since it will be used
by arch_numa shortly, such warning is not desirable.
Make sure of_numa_init() returns -EINVAL when no NUMA node information was
found in the device tree.
mm: numa_memblks: use memblock_{start,end}_of_DRAM() when sanitizing meminfo
numa_cleanup_meminfo() moves blocks outside system RAM to
numa_reserved_meminfo and it uses 0 and PFN_PHYS(max_pfn) to determine the
memory boundaries.
Replace the memory range boundaries with more portable
memblock_start_of_DRAM() and memblock_end_of_DRAM().
x86/numa: numa_{add,remove}_cpu: make cpu parameter unsigned
CPU id cannot be negative.
Making it unsigned also aligns with declarations in
include/asm-generic/numa.h used by arm64 and riscv and allows sharing numa
emulation code with these architectures.
By the time numa_emulation() is called, all physical memory is already
mapped in the direct map and there is no need to define limits for
memblock allocation.
Replace memblock_phys_alloc_range() with memblock_alloc().
The definitions of FAKE_NODE_MIN_SIZE and FAKE_NODE_MIN_HASH_MASK are only
used by numa emulation code, make them local to
arch/x86/mm/numa_emulation.c
Allocation of numa_distance uses memblock_phys_alloc_range() to limit
allocation to be below the last mapped page.
But NUMA initializaition runs after the direct map is populated and there
is also code in setup_arch() that adjusts memblock limit to reflect how
much memory is already mapped in the direct map.
Simplify the allocation of numa_distance and use plain memblock_alloc().
arch, mm: pull out allocation of NODE_DATA to generic code
Architectures that support NUMA duplicate the code that allocates
NODE_DATA on the node-local memory with slight variations in reporting of
the addresses where the memory was allocated.
Use x86 version as the basis for the generic alloc_node_data() function
and call this function in architecture specific numa initialization.
Round up node data size to SMP_CACHE_BYTES rather than to PAGE_SIZE like
x86 used to do since the bootmem era when allocation granularity was
PAGE_SIZE anyway.
There are no users of HAVE_ARCH_NODEDATA_EXTENSION left, so
arch_alloc_nodedata() and arch_refresh_nodedata() are not needed anymore.
Replace the call to arch_alloc_nodedata() in free_area_init() with a new
helper alloc_offline_node_data(), remove arch_refresh_nodedata() and
cleanup include/linux/memory_hotplug.h from the associated ifdefery.
arch, mm: move definition of node_data to generic code
Every architecture that supports NUMA defines node_data in the same way:
struct pglist_data *node_data[MAX_NUMNODES];
No reason to keep multiple copies of this definition and its forward
declarations, especially when such forward declaration is the only thing
in include/asm/mmzone.h for many architectures.
Add definition and declaration of node_data to generic code and drop
architecture-specific versions.
MIPS: loongson64: drop HAVE_ARCH_NODEDATA_EXTENSION
Commit f8f9f21c7848 ("MIPS: Fix build error for loongson64 and sgi-ip27")
added HAVE_ARCH_NODEDATA_EXTENSION to loongson64 to silence a compilation
error that happened because loongson64 didn't define array of pg_data_t as
node_data like most other architectures did.
After rename of __node_data to node_data arch_alloc_nodedata() and
HAVE_ARCH_NODEDATA_EXTENSION can be dropped from loongson64.
Since it was the only user of HAVE_ARCH_NODEDATA_EXTENSION config option
also remove this option from arch/mips/Kconfig.
Make definition of node_data match other architectures. This will allow
pulling declaration of node_data to the generic mm code in the following
commit.
Commit f8f9f21c7848 ("MIPS: Fix build error for loongson64 and sgi-ip27")
added HAVE_ARCH_NODEDATA_EXTENSION to sgi-ip27 to silence a compilation
error that happened because sgi-ip27 didn't define array of pg_data_t as
node_data like most other architectures did.
After addition of node_data array that matches other architectures and
after ensuring that offline nodes do not appear on node_possible_map, it
is safe to drop arch_alloc_nodedata() and HAVE_ARCH_NODEDATA_EXTENSION
from sgi-ip27.
Following the discussion about handling of CXL fixed memory windows on
arm64 [1] I decided to bite the bullet and move numa_memblks from x86 to
the generic code so they will be available on arm64/riscv and maybe on
loongarch sometime later.
While it could be possible to use memblock to describe CXL memory windows,
it currently lacks notion of unpopulated memory ranges and numa_memblks
does implement this.
Another reason to make numa_memblks generic is that both arch_numa (arm64
and riscv) and loongarch use trimmed copy of x86 code although there is no
fundamental reason why the same code cannot be used on all these
platforms. Having numa_memblks in mm/ will make it's interaction with
ACPI and FDT more consistent and I believe will reduce maintenance burden.
And with generic numa_memblks it is (almost) straightforward to enable
NUMA emulation on arm64 and riscv.
The first 9 commits in this series are cleanups that are not strictly
related to numa_memblks.
Commits 10-16 slightly reorder code in x86 to allow extracting numa_memblks
and NUMA emulation to the generic code.
Commits 17-19 actually move the code from arch/x86/ to mm/ and commits 20-22
does some aftermath cleanups.
Commit 23 updates of_numa_init() to return error of no NUMA nodes were
found in the device tree.
Commit 24 switches arch_numa to numa_memblks.
Commit 25 enables usage of phys_to_target_node() and
memory_add_physaddr_to_nid() with numa_memblks.
Commit 26 moves the description for numa=fake from x86 to admin-guide.
Kairui Song [Wed, 31 Jul 2024 06:49:21 +0000 (23:49 -0700)]
mm: swap: add a adaptive full cluster cache reclaim
Link all full cluster with one full list, and reclaim from it when the
allocation have ran out of all usable clusters.
There are many reason a folio can end up being in the swap cache while
having no swap count reference. So the best way to search for such slots
is still by iterating the swap clusters.
With the list as an LRU, iterating from the oldest cluster and keep them
rotating is a very doable and clean way to free up potentially not inuse
clusters.
When any allocation failure, try reclaim and rotate only one cluster.
This is adaptive for high order allocations they can tolerate fallback.
So this avoids latency, and give the full cluster list an fair chance to
get reclaimed. It release the usage stress for the fallback order 0
allocation or following up high order allocation.
If the swap device is getting very full, reclaim more aggresively to
ensure no OOM will happen. This ensures order 0 heavy workload won't go
OOM as order 0 won't fail if any cluster still have any space.
Kairui Song [Wed, 31 Jul 2024 06:49:20 +0000 (23:49 -0700)]
mm: swap: relaim the cached parts that got scanned
This commit implements reclaim during scan for cluster allocator.
Cluster scanning were unable to reuse SWAP_HAS_CACHE slots, which could
result in low allocation success rate or early OOM.
So to ensure maximum allocation success rate, integrate reclaiming with
scanning. If found a range of suitable swap slots but fragmented due to
HAS_CACHE, just try to reclaim the slots.
Kairui Song [Wed, 31 Jul 2024 06:49:19 +0000 (23:49 -0700)]
mm: swap: add a fragment cluster list
Now swap cluster allocator arranges the clusters in LRU style, so the
"cold" cluster stay at the head of nonfull lists are the ones that were
used for allocation long time ago and still partially occupied. So if
allocator can't find enough contiguous slots to satisfy an high order
allocation, it's unlikely there will be slot being free on them to satisfy
the allocation, at least in a short period.
As a result, nonfull cluster scanning will waste time repeatly scanning
the unusable head of the list.
Also, multiple CPUs could content on the same head cluster of nonfull
list. Unlike free clusters which are removed from the list when any CPU
starts using it, nonfull cluster stays on the head.
So introduce a new list frag list, all scanned nonfull clusters will be
moved to this list. Both for avoiding repeated scanning and contention.
Frag list is still used as fallback for allocations, so if one CPU failed
to allocate one order of slots, it can still steal other CPU's clusters.
And order 0 will favor the fragmented clusters to better protect nonfull
clusters
If any slots on a fragment list are being freed, move the fragment list
back to nonfull list indicating it worth another scan on the cluster.
Compared to scan upon freeing a slot, this keep the scanning lazy and save
some CPU if there are still other clusters to use.
It may seems unneccessay to keep the fragmented cluster on list at all if
they can't be used for specific order allocation. But this will start to
make sense once reclaim dring scanning is ready.
Kairui Song [Wed, 31 Jul 2024 06:49:18 +0000 (23:49 -0700)]
mm: swap: allow cache reclaim to skip slot cache
Currently we free the reclaimed slots through slot cache even if the slot
is required to be empty immediately. As a result the reclaim caller will
see the slot still occupied even after a successful reclaim, and need to
keep reclaiming until slot cache get flushed. This caused ineffective or
over reclaim when SWAP is under stress.
So introduce a new flag allowing the slot to be emptied bypassing the slot
cache.
Kairui Song [Wed, 31 Jul 2024 06:49:17 +0000 (23:49 -0700)]
mm: swap: skip slot cache on freeing for mTHP
Currently when we are freeing mTHP folios from swap cache, we free then
one by one and put each entry into swap slot cache. Slot cache is
designed to reduce the overhead by batching the freeing, but mTHP swap
entries are already continuous so they can be batch freed without it
already, it saves litle overhead, or even increase overhead for larger
mTHP.
What's more, mTHP entries could stay in swap cache for a while.
Contiguous swap entry is an rather rare resource so releasing them
directly can help improve mTHP allocation success rate when under
pressure.
Chris Li [Wed, 31 Jul 2024 06:49:15 +0000 (23:49 -0700)]
mm: swap: separate SSD allocation from scan_swap_map_slots()
Previously the SSD and HDD share the same swap_map scan loop in
scan_swap_map_slots(). This function is complex and hard to flow the
execution flow.
scan_swap_map_try_ssd_cluster() can already do most of the heavy lifting
to locate the candidate swap range in the cluster. However it needs to go
back to scan_swap_map_slots() to check conflict and then perform the
allocation.
When scan_swap_map_try_ssd_cluster() failed, it still depended on the
scan_swap_map_slots() to do brute force scanning of the swap_map. When
the swapfile is large and almost full, it will take some CPU time to go
through the swap_map array.
Get rid of the cluster allocation dependency on the swap_map scan loop in
scan_swap_map_slots(). Streamline the cluster allocation code path. No
more conflict checks.
For order 0 swap entry, when run out of free and nonfull list. It will
allocate from the higher order nonfull cluster list.
Users should see less CPU time spent on searching the free swap slot when
swapfile is almost full.
Chris Li [Wed, 31 Jul 2024 06:49:14 +0000 (23:49 -0700)]
mm: swap: mTHP allocate swap entries from nonfull list
Track the nonfull cluster as well as the empty cluster on lists. Each
order has one nonfull cluster list.
The cluster will remember which order it was used during new cluster
allocation.
When the cluster has free entry, add to the nonfull[order] list. Â When
the free cluster list is empty, also allocate from the nonempty list of
that order.
This improves the mTHP swap allocation success rate.
There are limitations if the distribution of numbers of different orders
of mTHP changes a lot. e.g. there are a lot of nonfull cluster assign to
order A while later time there are a lot of order B allocation while very
little allocation in order A. Currently the cluster used by order A will
not reused by order B unless the cluster is 100% empty.
Chris Li [Wed, 31 Jul 2024 06:49:13 +0000 (23:49 -0700)]
mm: swap: swap cluster switch to double link list
Patch series "mm: swap: mTHP swap allocator base on swap cluster order",
v5.
This is the short term solutions "swap cluster order" listed in my "Swap
Abstraction" discussion slice 8 in the recent LSF/MM conference.
When commit 845982eb264bc "mm: swap: allow storage of all mTHP orders" is
introduced, it only allocates the mTHP swap entries from the new empty
cluster list. Â It has a fragmentation issue reported by Barry.
The reason is that all the empty clusters have been exhausted while there
are plenty of free swap entries in the cluster that are not 100% free.
Remember the swap allocation order in the cluster. Keep track of the per
order non full cluster list for later allocation.
This series gives the swap SSD allocation a new separate code path from
the HDD allocation. The new allocator use cluster list only and do not
global scan swap_map[] without lock any more.
This streamline the swap allocation for SSD. The code matches the
execution flow much better.
User impact: For users that allocate and free mix order mTHP swapping, It
greatly improves the success rate of the mTHP swap allocation after the
initial phase.
It also performs faster when the swapfile is close to full, because the
allocator can get the non full cluster from a list rather than scanning a
lot of swap_map entries.Â
Previously, the swap cluster used a cluster index as a pointer to
construct a custom single link list type "swap_cluster_list". The next
cluster pointer is shared with the cluster->count. It prevents puting the
non free cluster into a list.
Change the cluster to use the standard double link list instead. This
allows tracing the nonfull cluster in the follow up patch. That way, it
is faster to get to the nonfull cluster of that order.
Remove the cluster getter/setter for accessing the cluster struct member.
The list operation is protected by the swap_info_struct->lock.
Change cluster code to use "struct swap_cluster_info *" to reference the
cluster rather than by using index. That is more consistent with the list
manipulation. It avoids the repeat adding index to the cluser_info. The
code is easier to understand.
Remove the cluster next pointer is NULL flag, the double link list can
handle the empty list pretty well.
The "swap_cluster_info" struct is two pointer bigger, because 512 swap
entries share one swap_cluster_info struct, it has very little impact on
the average memory usage per swap entry. For 1TB swapfile, the swap
cluster data structure increases from 8MB to 24MB.
Other than the list conversion, there is no real function change in this
patch.
Shakeel Butt [Wed, 14 Aug 2024 22:00:21 +0000 (15:00 -0700)]
memcg: initiate deprecation of pressure_level
The pressure_level in memcg v1 provides memory pressure notifications to
the user space. At the moment it provides notifications for three levels
of memory pressure i.e. low, medium and critical, which are defined based
on internal memory reclaim implementation details. More specifically the
ratio of scanned and reclaimed pages during a memory reclaim. However
this is not robust as there are workloads with mostly unreclaimable user
memory or kernel memory.
For v2, the users can use PSI for memory pressure status of the system or
the cgroup. Let's start the deprecation process for pressure_level and
add warnings to gather the info on how the current users are using this
interface and how they can be used to PSI.
Shakeel Butt [Wed, 14 Aug 2024 22:00:20 +0000 (15:00 -0700)]
memcg: initiate deprecation of oom_control
The oom_control provides functionality to disable memcg oom-killer,
notifications on oom-kill and reading the stats regarding oom-kills. This
interface was mainly introduced to provide functionality for userspace
oom-killers. However it is not robust enough and only supports OOM
handling in the page fault path.
For v2, the users can use the combination of memory.events notifications,
memory.high and PSI to provide userspace OOM-killing functionality.
Actually LMKD in Android and OOMd in systemd and Meta infrastructure
already use PSI in combination with other stats to implement userspace
OOM-killing.
Let's start the deprecation process for v1 and gather the info on how the
current users are using this interface and work on providing a more robust
functionality in v2.
Shakeel Butt [Wed, 14 Aug 2024 22:00:19 +0000 (15:00 -0700)]
memcg: initiate deprecation of v1 soft limit
Memcg v1 provides soft limit functionality for the best effort memory
sharing between multiple workloads on a system. It is usually triggered
through kswapd and at the moment does not reclaim kernel memory.
Memcg v2 provides more straightforward best effort (memory.low) and hard
protection (memory.min) functionalities. Let's initiate the deprecation
of soft limit from v1 and gather if v2 needs something more to move the
existing v1 users to v2 regarding soft limit.
Shakeel Butt [Wed, 14 Aug 2024 22:00:18 +0000 (15:00 -0700)]
memcg: initiate deprecation of v1 tcp accounting
Patch series "memcg: initiate deprecation of v1 features", v2.
Start the deprecation process of the memcg v1 features which we discussed
during LSFMMBPF 2024 [1]. For now add the warnings to collect the
information on how the current users are using these features. Next we
will work on providing better alternatives in v2 (if needed) and fully
deprecate these features.
Memcg v1 provides opt-in TCP memory accounting feature. However it is
mostly unused due to its performance impact on the network traffic. In
v2, the TCP memory is accounted in the regular memory usage and is
transparent to the users but they can observe the TCP memory usage through
memcg stats.
Let's initiate the deprecation process of memcg v1's tcp accounting
functionality and add warnings to gather if there are any users and if
there are, collect how they are using it and plan to provide them better
alternative in v2.
Shakeel Butt [Thu, 15 Aug 2024 05:04:50 +0000 (22:04 -0700)]
memcg: move v1 events and statistics code to v1 file
Currently the common code path for charge commit, swapout and batched
uncharge are executing v1 only code which is completely useless for the v2
deployments where CONFIG_MEMCG_V1 is disabled. In addition, it is mucking
with IRQs which might be slow on some architectures. Let's move all of
this code to v1 only code and remove them from v2 only deployments.
Shakeel Butt [Thu, 15 Aug 2024 05:04:49 +0000 (22:04 -0700)]
memcg: move mem_cgroup_charge_statistics to v1 code
There are no callers of mem_cgroup_charge_statistics() in the v2 code
base, so move it to the v1 only code and rename it to
memcg1_charge_statistics().
Shakeel Butt [Thu, 15 Aug 2024 05:04:47 +0000 (22:04 -0700)]
memcg: move v1 only percpu stats in separate struct
Patch series "memcg: further decouple v1 code from v2".
Some of the v1 code is still in v2 code base due to v1 fields in the
struct memcg_vmstats_percpu. This field decouples those fileds from v2
struct and move all the related code into v1 only code base.
This patch (of 7):
At the moment struct memcg_vmstats_percpu contains two v1 only fields
which consumes memory even when CONFIG_MEMCG_V1 is not enabled. In
addition there are v1 only functions accessing them and are in the main
memcontrol source file and can not be moved to v1 only source file due to
these fields. Let's move these fields into their own struct. Later
patches will move the functions accessing them to v1 source file and only
allocate these fields when CONFIG_MEMCG_V1 is enabled.
Ryan Roberts [Wed, 14 Aug 2024 02:02:47 +0000 (14:02 +1200)]
mm: override mTHP "enabled" defaults at kernel cmdline
Add thp_anon= cmdline parameter to allow specifying the default enablement
of each supported anon THP size. The parameter accepts the following
format and can be provided multiple times to configure each size:
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:43 +0000 (12:19 -0400)]
maple_tree: remove unneeded mas_wr_walk() in mas_store_prealloc()
Users of mas_store_prealloc() enter this function with nodes already
preallocated. This means the store type must be already set. We can then
remove the call to mas_wr_store_type() and initialize the write state to
continue the partial walk that was done when determining the store type.
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:42 +0000 (12:19 -0400)]
maple_tree: remove repeated sanity checks from write helper functions
These sanity checks are now redundant as they are already checked in
mas_wr_store_type(). We can remove them from mas_wr_append() and
mas_wr_node_store().
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:41 +0000 (12:19 -0400)]
maple_tree: remove node allocations from various write helper functions
These write helper functions are all called from store paths which
preallocate enough nodes that will be needed for the write. There is no
more need to allocate within the functions themselves.
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:40 +0000 (12:19 -0400)]
maple_tree: have mas_store() allocate nodes if needed
Not all users of mas_store() enter with nodes already preallocated.
Check for the MA_STATE_PREALLOC flag to decide whether to preallocate nodes
within mas_store() rather than relying on future write helper functions
to perform the allocations. This allows the write helper functions to be
simplified as they do not have to do checks to make sure there are
enough allocated nodes to perform the write.
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:38 +0000 (12:19 -0400)]
maple_tree: simplify mas_commit_b_node()
The only callers of mas_commit_b_node() are those with store type of
wr_rebalance and wr_split_store. Use mas->store_type to dispatch to the
correct helper function. This allows the removal of mas_reuse_node() as
it is no longer used.
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:37 +0000 (12:19 -0400)]
maple_tree: convert mas_insert() to preallocate nodes
By setting the store type in mas_insert(), we no longer need to use
mas_wr_modify() to determine the correct store function to use. Instead,
set the store type and call mas_wr_store_entry(). Also, pass in the
requested gfp flags to mas_insert() so they can be passed to the call to
mas_wr_preallocate().
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:36 +0000 (12:19 -0400)]
maple_tree: use store type in mas_wr_store_entry()
When storing an entry, we can read the store type that was set from a
previous partial walk of the tree. Now that the type of store is known,
select the correct write helper function to use to complete the store.
Also noinline mas_wr_spanning_store() to limit stack frame usage in
mas_wr_store_entry() as it allocates a maple_big_node on the stack.
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:33 +0000 (12:19 -0400)]
maple_tree: preallocate nodes in mas_erase()
Use mas_wr_preallocate() in mas_erase() to preallocate enough nodes to
complete the erase. Add error handling by skipping the store if the
preallocation lead to some error besides no memory.
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:32 +0000 (12:19 -0400)]
maple_tree: remove mas_destroy() from mas_nomem()
Separate call to mas_destroy() from mas_nomem() so we can check for no
memory errors without destroying the current maple state in
mas_store_gfp(). We then add calls to mas_destroy() to callers of
mas_nomem().
Sidhartha Kumar [Wed, 14 Aug 2024 16:19:31 +0000 (12:19 -0400)]
maple_tree: introduce mas_wr_store_type()
Introduce mas_wr_store_type() which will set the correct store type based
on a walk of the tree. In mas_wr_node_store() the <= min_slots condition
is changed to < as if new_end is = to mt_min_slots then there is not
enough room.
mas_prealloc_calc() is also introduced to abstract the calculation used to
determine the number of nodes needed for a store operation.
In this change a call to mas_reset() is removed in the error case of
mas_prealloc(). This is only needed in the MA_STATE_REBALANCE case of
mas_destroy(). We can move the call to mas_reset() directly to
mas_destroy().
Also, add a test case to validate the order that we check the store type
in is correct. This test models a vma expanding and then shrinking which
is part of the boot process.
This series implements two work items[3]: "aligning mas_store_gfp() with
mas_preallocate()" and "enum for store type".
mas_store_gfp() is modified to preallocate nodes. This simplies many of
the write helper functions by allowing them to use mas_store_gfp() rather
than open coding node allocation and error handling.
In the current maple tree code, a walk down the tree is done in
mas_preallocate() to determine the number of nodes needed for this write.
After node allocation, mas_wr_store_entry() will perform another walk to
determine which write helper function to use to complete the write.
Rather than performing the second walk, we can store the type of write in
the maple write state during node allocation and read this field to
complete the write.
Patches 1-16 implement this store type feature.
Patch 17 is a cleanup patch to change functions that have unused return
types to be void.
Add a store_type enum that is stored in ma_state. This will be used to
keep track of partial walks of the tree so that subsequent walks can pick
up where a previous walk left off.
Muchun Song [Wed, 14 Aug 2024 09:34:15 +0000 (17:34 +0800)]
mm: kmem: add lockdep assertion to obj_cgroup_memcg
obj_cgroup_memcg() is supposed to safe to prevent the returned memory
cgroup from being freed only when the caller is holding the rcu read lock
or objcg_lock or cgroup_mutex. It is very easy to ignore thoes conditions
when users call some upper APIs which call obj_cgroup_memcg() internally
like mem_cgroup_from_slab_obj() (See the link below). So it is better to
add lockdep assertion to obj_cgroup_memcg() to find those issues ASAP.
Because there is no user of obj_cgroup_memcg() holding objcg_lock to make
the returned memory cgroup safe, do not add objcg_lock assertion (We
should export objcg_lock if we really want to do). Additionally, this is
some internal implementation detail of memcg and should not be accessible
outside memcg code.
Some users like __mem_cgroup_uncharge() do not care the lifetime of the
returned memory cgroup, which just want to know if the folio is charged to
a memory cgroup, therefore, they do not need to hold the needed locks. In
which case, introduce a new helper folio_memcg_charged() to do this.
Compare it to folio_memcg(), it could eliminate a memory access of
objcg->memcg for kmem, actually, a really small gain.
Shakeel Butt [Tue, 13 Aug 2024 21:53:58 +0000 (14:53 -0700)]
memcg: use ratelimited stats flush in the reclaim
The Meta prod is seeing large amount of stalls in memcg stats flush from
the memcg reclaim code path. At the moment, this specific callsite is
doing a synchronous memcg stats flush. The rstat flush is an expensive
and time consuming operation, so concurrent relaimers will busywait on the
lock potentially for a long time. Actually this issue is not unique to
Meta and has been observed by Cloudflare [1] as well. For the Cloudflare
case, the stalls were due to contention between kswapd threads running on
their 8 numa node machines which does not make sense as rstat flush is
global and flush from one kswapd thread should be sufficient for all.
Simply replace the synchronous flush with the ratelimited one.
One may raise a concern on potentially using 2 sec stale (at worst) stats
for heuristics like desirable inactive:active ratio and preferring
inactive file pages over anon pages but these specific heuristics do not
require very precise stats and also are ignored under severe memory
pressure.
More specifically for this code path, the stats are needed for two
specific heuristics:
1. Deactivate LRUs
2. Cache trim mode
The deactivate LRUs heuristic is to maintain a desirable inactive:active
ratio of the LRUs. The specific stats needed are WORKINGSET_ACTIVATE* and
the hierarchical LRU size. The WORKINGSET_ACTIVATE* is needed to check if
there is a refault since last snapshot and the LRU size are needed for the
desirable ratio between inactive and active LRUs. See the table below on
how the desirable ratio is calculated.
The desirable ratio only changes at the boundary of 1 GiB, 10 GiB, 100
GiB, 1 TiB and 10 TiB. There is no need for the precise and accurate LRU
size information to calculate this ratio. In addition, if deactivation is
skipped for some LRU, the kernel will force deactive on the severe memory
pressure situation.
For the cache trim mode, inactive file LRU size is read and the kernel
scales it down based on the reclaim iteration (file >> sc->priority) and
only checks if it is zero or not. Again precise information is not
needed.
This patch has been running on Meta fleet for several months and we have
not observed any issues. Please note that MGLRU is not impacted by this
issue at all as it avoids rstat flushing completely.
Linus Torvalds [Tue, 20 Aug 2024 22:14:47 +0000 (15:14 -0700)]
mm: remove legacy install_special_mapping() code
All relevant architectures had already been converted to the new interface
(which just has an underscore in front of the name - not very imaginative
naming), this just force-converts the stragglers.
The modern interface is almost identical to the old one, except instead of
the page pointer it takes a "struct vm_special_mapping" that describes the
mapping (and contains the page pointer as one member), and it returns the
resulting 'vma' instead of just the error code.
Getting rid of the old interface also gets rid of some special casing,
which had caused problems with the mremap extensions to "struct
vm_special_mapping".
Michael Ellerman [Mon, 12 Aug 2024 08:26:05 +0000 (18:26 +1000)]
powerpc/vdso: refactor error handling
Linus noticed that the error handling in __arch_setup_additional_pages()
fails to clear the mm VDSO pointer if _install_special_mapping() fails.
In practice there should be no actual bug, because if there's an error the
VDSO pointer is cleared later in arch_setup_additional_pages().
However it's no longer necessary to set the pointer before installing the
mapping. Commit c1bab64360e6 ("powerpc/vdso: Move to
_install_special_mapping() and remove arch_vma_name()") reworked the code
so that the VMA name comes from the vm_special_mapping.name, rather than
relying on arch_vma_name().
So rework the code to only set the VDSO pointer once the mappings have
been installed correctly, and remove the stale comment.
Michael Ellerman [Mon, 12 Aug 2024 08:26:04 +0000 (18:26 +1000)]
mm: remove arch_unmap()
Now that powerpc no longer uses arch_unmap() to handle VDSO unmapping,
there are no meaningful implementions left. Drop support for it entirely,
and update comments which refer to it.
Michael Ellerman [Mon, 12 Aug 2024 08:26:03 +0000 (18:26 +1000)]
powerpc/mm: handle VDSO unmapping via close() rather than arch_unmap()
Add a close() callback to the VDSO special mapping to handle unmapping of
the VDSO. That will make it possible to remove the arch_unmap() hook
entirely in a subsequent patch.
Michael Ellerman [Mon, 12 Aug 2024 08:26:02 +0000 (18:26 +1000)]
mm: add optional close() to struct vm_special_mapping
Add an optional close() callback to struct vm_special_mapping. It will be
used, by powerpc at least, to handle unmapping of the VDSO.
Although support for unmapping the VDSO was initially added for CRIU[1],
it is not desirable to guard that support behind
CONFIG_CHECKPOINT_RESTORE.
There are other known users of unmapping the VDSO which are not related to
CRIU, eg. Valgrind [2] and void-ship [3].
The powerpc arch_unmap() hook has been in place for ~9 years, with no
ifdef, so there may be other unknown users that have come to rely on
unmapping the VDSO. Even if the code was behind an ifdef, major distros
enable CHECKPOINT_RESTORE so users may not realise unmapping the VDSO
depends on that configuration option.
It's also undesirable to have such core mm behaviour behind a relatively
obscure CONFIG option.
Longer term the unmap behaviour should be standardised across
architectures, however that is complicated by the fact the VDSO pointer is
stored differently across architectures. There was a previous attempt to
unify that handling [4], which could be revived.
Tianchen Ding [Mon, 12 Aug 2024 09:55:17 +0000 (17:55 +0800)]
kfence: save freeing stack trace at calling time instead of freeing time
For kmem_cache with SLAB_TYPESAFE_BY_RCU, the freeing trace stack at
calling kmem_cache_free() is more useful. While the following stack is
meaningless and provides no help:
freed by task 46 on cpu 0 at 656.840729s:
rcu_do_batch+0x1ab/0x540
nocb_cb_wait+0x8f/0x260
rcu_nocb_cb_kthread+0x25/0x80
kthread+0xd2/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
Wei Yang [Mon, 12 Aug 2024 15:09:25 +0000 (15:09 +0000)]
maple_tree: fix comment typo with corresponding maple_status
In comment of function mas_start(), we list the return value of different
cases. According to the comment context, tell the maple_status here is
more consistent with others.
Let's correct it with ma_active in the case it's a tree.
Wei Yang [Mon, 12 Aug 2024 15:09:24 +0000 (15:09 +0000)]
maple_tree: fix comment typo of ma_root
In comment of mas_start(), we lists the return value for different cases.
In case of a single entry, we set mas->status to ma_root, while the
comment uses mas_root, which is not a maple_status.
Sidhartha Kumar [Mon, 12 Aug 2024 19:05:43 +0000 (15:05 -0400)]
maple_tree: add test to replicate low memory race conditions
Add new callback fields to the userspace implementation of struct
kmem_cache. This allows for executing callback functions in order to
further test low memory scenarios where node allocation is retried.
This callback can help test race conditions by calling a function when a
low memory event is tested.
CPU 1 CPU 2
--------- ---------
mas_set_range(a,b)
mas_erase()
-> range is expanded (a,c) because of null expansion
mas_nomem()
mas_unlock()
mas_store_range(b,c,0xC)
The node now looks like:
a<------->b<----------->c<--------->d
0xA 0xC 0xB
mas_lock()
mas_erase() <------ range of erase is still (a,c)
The node is now NULL from (a,c) but the write from CPU 2 should have been
retained and range (b,c) should still have 0xC as its value. We can fix
this by re-intializing to the original index and last. This does not need
a cc: Stable as there are no users of the maple tree which use internal
locking and this condition is only possible with internal locking.
Yu Zhao [Mon, 12 Aug 2024 22:48:23 +0000 (16:48 -0600)]
mm/hugetlb_vmemmap: batch HVO work when demoting
Batch the HVO work, including de-HVO of the source and HVO of the
destination hugeTLB folios, to speed up demotion.
After commit bd225530a4c7 ("mm/hugetlb_vmemmap: fix race with speculative
PFN walkers"), each request of HVO or de-HVO, batched or not, invokes
synchronize_rcu() once. For example, when not batched, demoting one 1GB
hugeTLB folio to 512 2MB hugeTLB folios invokes synchronize_rcu() 513
times (1 de-HVO plus 512 HVO requests), whereas when batched, only twice
(1 de-HVO plus 1 HVO request). And the performance difference between the
two cases is significant, e.g.,
echo 2048kB >/sys/kernel/mm/hugepages/hugepages-1048576kB/demote_size
time echo 100 >/sys/kernel/mm/hugepages/hugepages-1048576kB/demote
Before this patch:
real 8m58.158s
user 0m0.009s
sys 0m5.900s
After this patch:
real 0m0.900s
user 0m0.000s
sys 0m0.851s
Note that this patch changes the behavior of the `demote` interface when
de-HVO fails. Before, the interface aborts immediately upon failure; now,
it tries to finish an entire batch, meaning it can make extra progress if
the rest of the batch contains folios that do not need to de-HVO.
yangge [Tue, 13 Aug 2024 09:52:23 +0000 (17:52 +0800)]
mm/swap: take folio refcount after testing the LRU flag
Whoever passes a folio to __folio_batch_add_and_move() must hold a
reference, otherwise something else would already be messed up. If the
folio is referenced, it will not be freed elsewhere, so we can safely
clear the folio's lru flag. As discussed with David in [1], we should
take the reference after testing the LRU flag, not before.
Takaya Saeki [Tue, 13 Aug 2024 10:03:12 +0000 (10:03 +0000)]
filemap: add trace events for get_pages, map_pages, and fault
To allow precise tracking of page caches accessed, add new tracepoints
that trigger when a process actually accesses them.
The ureadahead program used by ChromeOS traces the disk access of programs
as they start up at boot up. It uses mincore(2) or the
'mm_filemap_add_to_page_cache' trace event to accomplish this. It stores
this information in a "pack" file and on subsequent boots, it will read
the pack file and call readahead(2) on the information so that disk
storage can be loaded into RAM before the applications actually need it.
A problem we see is that due to the kernel's readahead algorithm that can
aggressively pull in more data than needed (to try and accomplish the same
goal) and this data is also recorded. The end result is that the pack
file contains a lot of pages on disk that are never actually used.
Calling readahead(2) on these unused pages can slow down the system boot
up times.
To solve this, add 3 new trace events, get_pages, map_pages, and fault.
These will be used to trace the pages are not only pulled in from disk,
but are actually used by the application. Only those pages will be stored
in the pack file, and this helps out the performance of boot up.
With the combination of these 3 new trace events and
mm_filemap_add_to_page_cache, we observed a reduction in the pack file by
7.3% - 20% on ChromeOS varying by device.
Peter Xu [Mon, 12 Aug 2024 18:12:25 +0000 (14:12 -0400)]
mm/mprotect: fix dax pud handlings
This is only relevant to the two archs that support PUD dax, aka, x86_64
and ppc64. PUD THPs do not yet exist elsewhere, and hugetlb PUDs do not
count in this case.
DAX have had PUD mappings for years, but change protection path never
worked. When the path is triggered in any form (a simple test program
would be: call mprotect() on a 1G dev_dax mapping), the kernel will report
"bad pud". This patch should fix that.
The new change_huge_pud() tries to keep everything simple. For example,
it doesn't optimize write bit as that will need even more PUD helpers.
It's not too bad anyway to have one more write fault in the worst case
once for 1G range; may be a bigger thing for each PAGE_SIZE, though.
Neither does it support userfault-wp bits, as there isn't such PUD
mappings that is supported; file mappings always need a split there.
The same to TLB shootdown: the pmd path (which was for x86 only) has the
trick of using _ad() version of pmdp_invalidate*() which can avoid one
redundant TLB, but let's also leave that for later. Again, the larger the
mapping, the smaller of such effect.
There's some difference on handling "retry" for change_huge_pud() (where
it can return 0): it isn't like change_huge_pmd(), as the pmd version is
safe with all conditions handled in change_pte_range() later, thanks to
Hugh's new pte_offset_map_lock(). In short, change_pte_range() is simply
smarter. For that, change_pud_range() will need proper retry if it races
with something else when a huge PUD changed from under us.
The last thing to mention is currently the PUD path ignores the huge pte
numa counter (NUMA_HUGE_PTE_UPDATES), not only because DAX is not
applicable to NUMA, but also that it's ambiguous on its own to decide how
to account pud in this case. In one earlier version of this patchset I
proposed to remove the counter as it doesn't even look right to do the
accounting as of now [1], but then a further discussion suggests we can
leave that for later, as that doesn't block this series if we choose to
ignore that counter. That's what this patch does, by ignoring it.
When at it, touch up the comment in pgtable_split_needed() to make it
generic to either pmd or pud file THPs.
Peter Xu [Mon, 12 Aug 2024 18:12:24 +0000 (14:12 -0400)]
mm/x86: add missing pud helpers
Some new helpers will be needed for pud entry updates soon. Introduce
these helpers by referencing the pmd ones. Namely:
- pudp_invalidate(): this helper invalidates a huge pud before a
split happens, so that the invalidated pud entry will make sure no
race will happen (either with software, like a concurrent zap, or
hardware, like a/d bit lost).
- pud_modify(): this helper applies a new pgprot to an existing huge
pud mapping.
For more information on why we need these two helpers, please refer to the
corresponding pmd helpers in the mprotect() code path.
When at it, simplify the pud_modify()/pmd_modify() comments on shadow
stack pgtable entries to reference pte_modify() to avoid duplicating the
whole paragraph three times.
Peter Xu [Mon, 12 Aug 2024 18:12:23 +0000 (14:12 -0400)]
mm/x86: implement arch_check_zapped_pud()
Introduce arch_check_zapped_pud() to sanity check shadow stack on PUD
zaps. It has the same logic as the PMD helper.
One thing to mention is, it might be a good idea to use page_table_check
in the future for trapping wrong setups of shadow stack pgtable entries
[1]. That is left for the future as a separate effort.
Peter Xu [Mon, 12 Aug 2024 18:12:22 +0000 (14:12 -0400)]
mm/x86: make pud_leaf() only care about PSE bit
When working on mprotect() on 1G dax entries, I hit an zap bad pud error
when zapping a huge pud that is with PROT_NONE permission.
Here the problem is x86's pud_leaf() requires both PRESENT and PSE bits
set to report a pud entry as a leaf, but that doesn't look right, as it's
not following the pXd_leaf() definition that we stick with so far, where
PROT_NONE entries should be reported as leaves.
To fix it, change x86's pud_leaf() implementation to only check against
PSE bit to report a leaf, irrelevant of whether PRESENT bit is set.