x86/hyperv: use vmalloc_exec for the hypercall page
Patch series "decruft the vmalloc API", v2.
Peter noticed that with some dumb luck you can toast the kernel address
space with exported vmalloc symbols.
I used this as an opportunity to decruft the vmalloc.c API and make it
much more systematic. This also removes any chance to create vmalloc
mappings outside the designated areas or using executable permissions
from modules. Besides that it removes more than 300 lines of code.
This patch (of 29):
Use the designated helper for allocating executable kernel memory, and
remove the now unused PAGE_KERNEL_RX define.
Wetp Zhang [Tue, 2 Jun 2020 04:50:11 +0000 (21:50 -0700)]
mm, memory_failure: don't send BUS_MCEERR_AO for action required error
Some processes dont't want to be killed early, but in "Action Required"
case, those also may be killed by BUS_MCEERR_AO when sharing memory with
other which is accessing the fail memory. And sending SIGBUS with
BUS_MCEERR_AO for action required error is strange, so ignore the
non-current processes here.
chenqiwu [Tue, 2 Jun 2020 04:50:08 +0000 (21:50 -0700)]
mm/memory: remove unnecessary pte_devmap case in copy_one_pte()
Since commit 25b2995a35b6 ("mm: remove MEMORY_DEVICE_PUBLIC support"),
the assignment to 'page' for pte_devmap case has been unnecessary.
Let's remove it.
Huang Ying [Tue, 2 Jun 2020 04:50:05 +0000 (21:50 -0700)]
/proc/PID/smaps: Add PMD migration entry parsing
Now, when reading /proc/PID/smaps, the PMD migration entry in page table
is simply ignored. To improve the accuracy of /proc/PID/smaps, its
parsing and processing is added.
To test the patch, we run pmbench to eat 400 MB memory in background,
then run /usr/bin/migratepages and `cat /proc/PID/smaps` every second.
The issue as follows can be reproduced within 60 seconds.
Before the patch, for the fully populated 400 MB anonymous VMA, some THP
pages under migration may be lost as below.
Steven Price [Tue, 2 Jun 2020 04:50:01 +0000 (21:50 -0700)]
mm: ptdump: expand type of 'val' in note_page()
The page table entry is passed in the 'val' argument to note_page(),
however this was previously an "unsigned long" which is fine on 64-bit
platforms. But for 32 bit x86 it is not always big enough to contain a
page table entry which may be 64 bits.
Change the type to u64 to ensure that it is always big enough.
Jan alerted me[1] that the W+X detection debug feature was broken in x86
by my change[2] to switch x86 to use the generic ptdump infrastructure.
Fundamentally the approach of trying to move the calculation of
effective permissions into note_page() was broken because note_page() is
only called for 'leaf' entries and the effective permissions are passed
down via the internal nodes of the page tree. The solution I've taken
here is to create a new (optional) callback which is called for all
nodes of the page tree and therefore can calculate the effective
permissions.
Secondly on some configurations (32 bit with PAE) "unsigned long" is not
large enough to store the table entries. The fix here is simple - let's
just use a u64.
[1] https://lore.kernel.org/lkml/d573dc7e-e742-84de-473d-f971142fa319@suse.com/
[2] 2ae27137b2db ("x86: mm: convert dump_pagetables to use walk_page_range")
This patch (of 2):
By switching the x86 page table dump code to use the generic code the
effective permissions are no longer calculated correctly because the
note_page() function is only called for *leaf* entries. To calculate
the actual effective permissions it is necessary to observe the full
hierarchy of the page tree.
Introduce a new callback for ptdump which is called for every entry and
can therefore update the prot_levels array correctly. note_page() can
then simply access the appropriate element in the array.
Zefan Li [Tue, 2 Jun 2020 04:49:55 +0000 (21:49 -0700)]
memcg: fix memcg_kmem_bypass() for remote memcg charging
While trying to use remote memcg charging in an out-of-tree kernel
module I found it's not working, because the current thread is a
workqueue thread.
As we will probably encounter this issue in the future as the users of
memalloc_use_memcg() grow, and it's nothing wrong for this usage, it's
better we fix it now.
Jakub Kicinski [Tue, 2 Jun 2020 04:49:52 +0000 (21:49 -0700)]
mm/memcg: automatically penalize tasks with high swap use
Add a memory.swap.high knob, which can be used to protect the system
from SWAP exhaustion. The mechanism used for penalizing is similar to
memory.high penalty (sleep on return to user space).
That is not to say that the knob itself is equivalent to memory.high.
The objective is more to protect the system from potentially buggy tasks
consuming a lot of swap and impacting other tasks, or even bringing the
whole system to stand still with complete SWAP exhaustion. Hopefully
without the need to find per-task hard limits.
Slowing misbehaving tasks down gradually allows user space oom killers
or other protection mechanisms to react. oomd and earlyoom already do
killing based on swap exhaustion, and memory.swap.high protection will
help implement such userspace oom policies more reliably.
We can use one counter for number of pages allocated under pressure to
save struct task space and avoid two separate hierarchy walks on the hot
path. The exact overage is calculated on return to user space, anyway.
Take the new high limit into account when determining if swap is "full".
Borrowing the explanation from Johannes:
The idea behind "swap full" is that as long as the workload has plenty
of swap space available and it's not changing its memory contents, it
makes sense to generously hold on to copies of data in the swap device,
even after the swapin. A later reclaim cycle can drop the page without
any IO. Trading disk space for IO.
But the only two ways to reclaim a swap slot is when they're faulted
in and the references go away, or by scanning the virtual address space
like swapoff does - which is very expensive (one could argue it's too
expensive even for swapoff, it's often more practical to just reboot).
So at some point in the fill level, we have to start freeing up swap
slots on fault/swapin. Otherwise we could eventually run out of swap
slots while they're filled with copies of data that is also in RAM.
We don't want to OOM a workload because its available swap space is
filled with redundant cache.
Jakub Kicinski [Tue, 2 Jun 2020 04:49:49 +0000 (21:49 -0700)]
mm/memcg: move cgroup high memory limit setting into struct page_counter
High memory limit is currently recorded directly in struct mem_cgroup.
We are about to add a high limit for swap, move the field to struct
page_counter and add some helpers.
Jakub Kicinski [Tue, 2 Jun 2020 04:49:45 +0000 (21:49 -0700)]
mm/memcg: move penalty delay clamping out of calculate_high_delay()
We will want to call calculate_high_delay() twice - once for memory and
once for swap, and we should apply the clamp value to sum of the
penalties. Clamping has to be applied outside of calculate_high_delay().
Jakub Kicinski [Tue, 2 Jun 2020 04:49:42 +0000 (21:49 -0700)]
mm/memcg: prepare for swap over-high accounting and penalty calculation
Patch series "memcg: Slow down swap allocation as the available space
gets depleted", v6.
Tejun describes the problem as follows:
When swap runs out, there's an abrupt change in system behavior - the
anonymous memory suddenly becomes unmanageable which readily breaks any
sort of memory isolation and can bring down the whole system. To avoid
that, oomd [1] monitors free swap space and triggers kills when it drops
below the specific threshold (e.g. 15%).
While this works, it's far from ideal:
- Depending on IO performance and total swap size, a given
headroom might not be enough or too much.
- oomd has to monitor swap depletion in addition to the usual
pressure metrics and it currently doesn't consider memory.swap.max.
Solve this by adapting parts of the approach that memory.high uses -
slow down allocation as the resource gets depleted turning the depletion
behavior from abrupt cliff one to gradual degradation observable through
memory pressure metric.
[1] https://github.com/facebookincubator/oomd
This patch (of 4):
Slice the memory overage calculation logic a little bit so we can reuse
it to apply a similar penalty to the swap. The logic which accesses the
memory-specific fields (use and high values) has to be taken out of
calculate_high_delay().
Shakeel Butt [Tue, 2 Jun 2020 04:49:39 +0000 (21:49 -0700)]
memcg: expose root cgroup's memory.stat
One way to measure the efficiency of memory reclaim is to look at the
ratio (pgscan+pfrefill)/pgsteal. However at the moment these stats are
not updated consistently at the system level and the ratio of these are
not very meaningful. The pgsteal and pgscan are updated for only global
reclaim while pgrefill gets updated for global as well as cgroup
reclaim.
Please note that this difference is only for system level vmstats. The
cgroup stats returned by memory.stat are actually consistent. The
cgroup's pgsteal contains number of reclaimed pages for global as well
as cgroup reclaim. So, one way to get the system level stats is to get
these stats from root's memory.stat, so, expose memory.stat for the root
cgroup.
From Johannes Weiner:
There are subtle differences between /proc/vmstat and
memory.stat, and cgroup-aware code that wants to watch the full
hierarchy currently has to know about these intricacies and
translate semantics back and forth.
Generally having the fully recursive memory.stat at the root
level could help a broader range of usecases.
Why not fix the stats by including both the global and cgroup reclaim
activity instead of exposing root cgroup's memory.stat? The reason is
the benefit of having metrics exposing the activity that happens purely
due to machine capacity rather than localized activity that happens due
to the limits throughout the cgroup tree. Additionally there are
userspace tools like sysstat(sar) which reads these stats to inform
about the system level reclaim activity. So, we should not break such
use-cases.
Kaixu Xia [Tue, 2 Jun 2020 04:49:36 +0000 (21:49 -0700)]
mm: memcontrol: simplify value comparison between count and limit
When the variables count and limit have the same value(count == limit),
the result of min(margin, limit - count) statement should be 0 and the
variable margin is set to 0. So in this case, the min() statement is
not necessary and we can directly set the variable margin to 0.
Yafang Shao [Tue, 2 Jun 2020 04:49:32 +0000 (21:49 -0700)]
mm, memcg: add workingset_restore in memory.stat
There's a new workingset counter introduced in commit 1899ad18c607 ("mm:
workingset: tell cache transitions from workingset thrashing"). With
the help of this counter we can know the workingset is transitioning or
thrashing. To leverage the benifit of this counter to memcg, we should
introduce it into memory.stat. Then we could know the workingset of the
workload inside a memcg better.
Bellow is the verification of this new counter in memory.stat. Read a
file into the memory and then read it again to make these pages be
active. The size of this file is 1G. (memory.max is greater than file
size) The counters in memory.stat will be
Trigger the memcg reclaim by setting a lower value to memory.high, and
then some pages will be demoted into inactive list, and then some pages
in the inactive list will be evicted into the storage.
Then recover the memory.high and read the file into memory again. As a
result of it, the transitioning will occur. Bellow is the result of
this transitioning,
Since commit 8d93b41c09d1 ("mm: Convert add_to_swap_cache to XArray"),
__add_to_swap_cache and add_to_swap_cache are combined into one
function. There is no __add_to_swap_cache() anymore.
Randy Dunlap [Tue, 2 Jun 2020 04:49:26 +0000 (21:49 -0700)]
mm: swapfile: fix /proc/swaps heading and Size/Used/Priority alignment
Fix the heading and Size/Used/Priority field alignments in /proc/swaps.
If the Size and/or Used value is >= 10000000 (8 bytes), then the
alignment by using tab characters is broken.
This patch maintains the use of tabs for alignment. If spaces are
preferred, we can just use a Field Width specifier for the bytes and
inuse fields. That way those fields don't have to be a multiple of 8
bytes in width. E.g., with a field width of 12, both Size and Used
would always fit on the first line of an 80-column wide terminal (only
Priority would be on the second line).
There are actually 2 problems: heading alignment and field width. On an
xterm, if Used is 7 bytes in length, the tab does nothing, and the
display is like this, with no space/tab between the Used and Priority
fields. (ugh)
Filename Type Size Used Priority
/dev/sda8 partition 167792602023012-1
To be clear, if one does 'cat /proc/swaps >/tmp/proc.swaps', it does look
different, like so:
Filename Type Size Used Priority
/dev/sda8 partition 167792602086988 -1
Huang Ying [Tue, 2 Jun 2020 04:49:22 +0000 (21:49 -0700)]
swap: reduce lock contention on swap cache from swap slots allocation
In some swap scalability test, it is found that there are heavy lock
contention on swap cache even if we have split one swap cache radix tree
per swap device to one swap cache radix tree every 64 MB trunk in commit 4b3ef9daa4fc ("mm/swap: split swap cache into 64MB trunks").
The reason is as follow. After the swap device becomes fragmented so
that there's no free swap cluster, the swap device will be scanned
linearly to find the free swap slots. swap_info_struct->cluster_next is
the next scanning base that is shared by all CPUs. So nearby free swap
slots will be allocated for different CPUs. The probability for
multiple CPUs to operate on the same 64 MB trunk is high. This causes
the lock contention on the swap cache.
To solve the issue, in this patch, for SSD swap device, a percpu version
next scanning base (cluster_next_cpu) is added. Every CPU will use its
own per-cpu next scanning base. And after finishing scanning a 64MB
trunk, the per-cpu scanning base will be changed to the beginning of
another randomly selected 64MB trunk. In this way, the probability for
multiple CPUs to operate on the same 64 MB trunk is reduced greatly.
Thus the lock contention is reduced too. For HDD, because sequential
access is more important for IO performance, the original shared next
scanning base is used.
To test the patch, we have run 16-process pmbench memory benchmark on a
2-socket server machine with 48 cores. One ram disk is configured as the
swap device per socket. The pmbench working-set size is much larger than
the available memory so that swapping is triggered. The memory read/write
ratio is 80/20 and the accessing pattern is random. In the original
implementation, the lock contention on the swap cache is heavy. The perf
profiling data of the lock contention code path is as following,
The lock contention on the swap cache is almost eliminated.
And the pmbench score increases 18.5%. The swapin throughput increases
18.7% from 2.96 GB/s to 3.51 GB/s. While the swapout throughput increases
18.5% from 2.99 GB/s to 3.54 GB/s.
We need really fast disk to show the benefit. I have tried this on 2
Intel P3600 NVMe disks. The performance improvement is only about 1%.
The improvement should be better on the faster disks, such as Intel Optane
disk.
Huang Ying [Tue, 2 Jun 2020 04:49:10 +0000 (21:49 -0700)]
swap: try to scan more free slots even when fragmented
Now, the scalability of swap code will drop much when the swap device
becomes fragmented, because the swap slots allocation batching stops
working. To solve the problem, in this patch, we will try to scan a
little more swap slots with restricted effort to batch the swap slots
allocation even if the swap device is fragmented. Test shows that the
benchmark score can increase up to 37.1% with the patch. Details are as
follows.
The swap code has a per-cpu cache of swap slots. These batch swap space
allocations to improve swap subsystem scaling. In the following code
path,
scan_swap_map_slots() and get_swap_pages() can return multiple swap
slots for each call. These slots will be cached in the per-CPU swap
slots cache, so that several following swap slot requests will be
fulfilled there to avoid the lock contention in the lower level swap
space allocation/freeing code path.
But this only works when there are free swap clusters. If a swap device
becomes so fragmented that there's no free swap clusters,
scan_swap_map_slots() and get_swap_pages() will return only one swap
slot for each call in the above code path. Effectively, this falls back
to the situation before the swap slots cache was introduced, the heavy
lock contention on the swap related locks kills the scalability.
Why does it work in this way? Because the swap device could be large,
and the free swap slot scanning could be quite time consuming, to avoid
taking too much time to scanning free swap slots, the conservative
method was used.
In fact, this can be improved via scanning a little more free slots with
strictly restricted effort. Which is implemented in this patch. In
scan_swap_map_slots(), after the first free swap slot is gotten, we will
try to scan a little more, but only if we haven't scanned too many slots
(< LATENCY_LIMIT). That is, the added scanning latency is strictly
restricted.
To test the patch, we have run 16-process pmbench memory benchmark on a
2-socket server machine with 48 cores. Multiple ram disks are
configured as the swap devices. The pmbench working-set size is much
larger than the available memory so that swapping is triggered. The
memory read/write ratio is 80/20 and the accessing pattern is random, so
the swap space becomes highly fragmented during the test. In the
original implementation, the lock contention on swap related locks is
very heavy. The perf profiling data of the lock contention code path is
as following,
That is, the lock contention on the swap locks is eliminated.
And the pmbench score increases 37.1%. The swapin throughput increases
45.7% from 2.02 GB/s to 2.94 GB/s. While the swapout throughput increases
45.3% from 2.04 GB/s to 2.97 GB/s.
Wei Yang [Tue, 2 Jun 2020 04:49:07 +0000 (21:49 -0700)]
mm/swapfile.c: omit a duplicate code by compare tmp and max first
There are two duplicate code to handle the case when there is no available
swap entry. To avoid this, we can compare tmp and max first and let the
second guard do its job.
Wei Yang [Tue, 2 Jun 2020 04:48:52 +0000 (21:48 -0700)]
mm/swapfile.c: remove the unnecessary goto for SSD case
Now we can see there is redundant goto for SSD case. In these two places,
we can just let the code walk through to the correct tag instead of
explicitly jump to it.
Wei Yang [Tue, 2 Jun 2020 04:48:46 +0000 (21:48 -0700)]
mm/swapfile.c: offset is only used when there is more slots
scan_swap_map_slots() is used to iterate swap_map[] array for an
available swap entry. While after several optimizations, e.g. for ssd
case, the logic of this function is a little not easy to catch.
This patchset tries to clean up the logic a little:
* shows the ssd/non-ssd case is handled mutually exclusively
* remove some unnecessary goto for ssd case
This patch (of 3):
When si->cluster_nr is zero, function would reach done and return. The
increased offset would not be used any more. This means we can move the
offset increment into the if clause.
Andrea Righi [Tue, 2 Jun 2020 04:48:43 +0000 (21:48 -0700)]
mm: swap: properly update readahead statistics in unuse_pte_range()
In unuse_pte_range() we blindly swap-in pages without checking if the
swap entry is already present in the swap cache.
By doing this, the hit/miss ratio used by the swap readahead heuristic
is not properly updated and this leads to non-optimal performance during
swapoff.
Tracing the distribution of the readahead size returned by the swap
readahead heuristic during swapoff shows that a small readahead size is
used most of the time as if we had only misses (this happens both with
cluster and vma readahead), for example:
Checking if the swap entry is present in the swap cache, instead, allows
to properly update the readahead statistics and the heuristic behaves in a
better way during swapoff, selecting a bigger readahead size:
- Guest (kvm):
8GB of RAM
virtio block driver
16GB swap file on ext4 (/swapfile)
Test case
=========
- allocate 85% of memory
- `systemctl hibernate` to force all the pages to be swapped-out to the
swap file
- resume the system
- measure the time that swapoff takes to complete:
# /usr/bin/time swapoff /swapfile
Result (swapoff time)
======
5.6 vanilla 5.6 w/ this patch
----------- -----------------
cluster-readahead 22.09s 12.19s
vma-readahead 18.20s 15.33s
Conclusion
==========
The specific use case this patch is addressing is to improve swapoff
performance in cloud environments when a VM has been hibernated, resumed
and all the memory needs to be forced back to RAM by disabling swap.
This change allows to better exploits the advantages of the readahead
heuristic during swapoff and this improvement allows to to speed up the
resume process of such VMs.
Qian Cai [Tue, 2 Jun 2020 04:48:40 +0000 (21:48 -0700)]
mm/swap_state: fix a data race in swapin_nr_pages
"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,
BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead
write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
swap_cluster_readahead+0x2a6/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by (dnf)/14795:
#0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1535
irq event stamp: 83493
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
swap_cluster_readahead+0xfd/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by systemd/1:
#0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
irq event stamp: 43530289
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
This code was using get_user_pages*(), in a "Case 2" scenario
(DMA/RDMA), using the categorization from [1]. That means that it's
time to convert the get_user_pages*() + put_page() calls to
pin_user_pages*() + unpin_user_pages() calls.
There is some helpful background in [2]: basically, this is a small part
of fixing a long-standing disconnect between pinning pages, and file
systems' use of those pages.
[1] Documentation/core-api/pin_user_pages.rst
[2] "Explicit pinning of user-space pages":
https://lwn.net/Articles/807108/
John Hubbard [Tue, 2 Jun 2020 04:48:27 +0000 (21:48 -0700)]
mm/gup: introduce pin_user_pages_unlocked
Introduce pin_user_pages_unlocked(), which is nearly identical to the
get_user_pages_unlocked() that it wraps, except that it sets FOLL_PIN
and rejects FOLL_GET.
NeilBrown [Tue, 2 Jun 2020 04:48:21 +0000 (21:48 -0700)]
mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds. If the COMMIT fails, the page will be
re-written.
These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count. This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g. releasepage() used to
send a COMMIT). However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit 919e3bd9a875
("NFS: Ensure we commit after writeback is complete")) it makes more
sense to treat them as writeback pages.
So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in
NR_WRITEBACK and WB_WRITEBACK.
A particular effect of this change is that when
wb_check_background_flush() calls wb_over_bg_threshold(), the latter
will report 'true' a lot less often as the 'unstable' pages are no
longer considered 'dirty' (as there is nothing that writeback can do
about them anyway).
Currently wb_check_background_flush() will trigger writeback to NFS even
when there are relatively few dirty pages (if there are lots of unstable
pages), this can result in small writes going to the server (10s of
Kilobytes rather than a Megabyte) which hurts throughput. With this
patch, there are fewer writes which are each larger on average.
Where the NR_UNSTABLE_NFS count was included in statistics
virtual-files, the entry is retained, but the value is hard-coded as
zero. static trace points and warning printks which mentioned this
counter no longer report it.
NeilBrown [Tue, 2 Jun 2020 04:48:18 +0000 (21:48 -0700)]
mm/writeback: replace PF_LESS_THROTTLE with PF_LOCAL_THROTTLE
PF_LESS_THROTTLE exists for loop-back nfsd (and a similar need in the
loop block driver and callers of prctl(PR_SET_IO_FLUSHER)), where a
daemon needs to write to one bdi (the final bdi) in order to free up
writes queued to another bdi (the client bdi).
The daemon sets PF_LESS_THROTTLE and gets a larger allowance of dirty
pages, so that it can still dirty pages after other processses have been
throttled. The purpose of this is to avoid deadlock that happen when
the PF_LESS_THROTTLE process must write for any dirty pages to be freed,
but it is being thottled and cannot write.
This approach was designed when all threads were blocked equally,
independently on which device they were writing to, or how fast it was.
Since that time the writeback algorithm has changed substantially with
different threads getting different allowances based on non-trivial
heuristics. This means the simple "add 25%" heuristic is no longer
reliable.
The important issue is not that the daemon needs a *larger* dirty page
allowance, but that it needs a *private* dirty page allowance, so that
dirty pages for the "client" bdi that it is helping to clear (the bdi
for an NFS filesystem or loop block device etc) do not affect the
throttling of the daemon writing to the "final" bdi.
This patch changes the heuristic so that the task is not throttled when
the bdi it is writing to has a dirty page count below below (or equal
to) the free-run threshold for that bdi. This ensures it will always be
able to have some pages in flight, and so will not deadlock.
In a steady-state, it is expected that PF_LOCAL_THROTTLE tasks might
still be throttled by global threshold, but that is acceptable as it is
only the deadlock state that is interesting for this flag.
This approach of "only throttle when target bdi is busy" is consistent
with the other use of PF_LESS_THROTTLE in current_may_throttle(), were
it causes attention to be focussed only on the target bdi.
So this patch
- renames PF_LESS_THROTTLE to PF_LOCAL_THROTTLE,
- removes the 25% bonus that that flag gives, and
- If PF_LOCAL_THROTTLE is set, don't delay at all unless the
global and the local free-run thresholds are exceeded.
Note that previously realtime threads were treated the same as
PF_LESS_THROTTLE threads. This patch does *not* change the behvaiour
for real-time threads, so it is now different from the behaviour of nfsd
and loop tasks. I don't know what is wanted for realtime.
We no longer return 0 here and the comment doesn't tell us anything that
we don't already know (SIGBUS is a pretty good indicator that things
didn't work out).
Patch series "Introduce attach/detach_page_private to cleanup code".
This patch (of 10):
The logic in attach_page_buffers and __clear_page_buffers are quite
paired, but
1. they are located in different files.
2. attach_page_buffers is implemented in buffer_head.h, so it could be
used by other files. But __clear_page_buffers is static function in
buffer.c and other potential users can't call the function, md-bitmap
even copied the function.
So, introduce the new attach/detach_page_private to replace them. With
the new pair of function, we will remove the usage of attach_page_buffers
and __clear_page_buffers in next patches. Thanks for suggestions about
the function name from Alexander Viro, Andreas Grünbacher, Christoph
Hellwig and Matthew Wilcox.
Implement the new readahead operation in fuse by using __readahead_batch()
to fill the array of pages in fuse_args_pages directly. This lets us
inline fuse_readpages_fill() into fuse_readahead().
This function now only uses the mapping argument to look up the inode, and
both callers already have the inode, so just pass the inode instead of the
mapping.
This function now only uses the mapping argument to look up the inode, and
both callers already have the inode, so just pass the inode instead of the
mapping.
Ensure that memory allocations in the readahead path do not attempt to
reclaim file-backed pages, which could lead to a deadlock. It is
possible, though unlikely this is the root cause of a problem observed
by Cong Wang.
ext4 and f2fs have duplicated the guts of the readahead code so they can
read past i_size. Instead, separate out the guts of the readahead code
so they can call it directly.
This replaces ->readpages with a saner interface:
- Return void instead of an ignored error code.
- Page cache is already populated with locked pages when ->readahead
is called.
- New arguments can be passed to the implementation without changing
all the filesystems that use a common helper function like
mpage_readahead().
When populating the page cache for readahead, mappings that use
->readpages must populate the page cache themselves as the pages are
passed on a linked list which would normally be used for the page
cache's LRU. For mappings that use ->readpage or the upcoming
->readahead method, we can put the pages into the page cache as soon as
they're allocated, which solves a race between readahead and direct IO.
It also lets us remove the gfp argument from read_pages().
Use the new readahead_page() API to implement the repeated calls to
->readpage(), just like most filesystems will.
The word 'offset' is used ambiguously to mean 'byte offset within a
page', 'byte offset from the start of the file' and 'page offset from
the start of the file'.
Use 'index' to mean 'page offset from the start of the file' throughout
the readahead code.
[ We should probably rename the 'pgoff_t' type to 'pgidx_t' too - Linus ]
In this patch, only between __do_page_cache_readahead() and
read_pages(), but it will be extended in upcoming patches. The
read_pages() function becomes aops centric, as this makes the most sense
by the end of the patchset.
Filesystems which implement the upcoming ->readahead method will get
their pages by calling readahead_page() or readahead_page_batch().
These functions support large pages, even though none of the filesystems
to be converted do yet.
ondemand_readahead has two callers, neither of which use the return
value. That means that both ra_submit and __do_page_cache_readahead()
can return void, and we don't need to worry that a present page in the
readahead window causes us to return a smaller nr_pages than we ought to
have.
Similarly, no caller uses the return value from
force_page_cache_readahead().
This series adds a readahead address_space operation to replace the
readpages operation. The key difference is that pages are added to the
page cache as they are allocated (and then looked up by the filesystem)
instead of passing them on a list to the readpages operation and having
the filesystem add them to the page cache. It's a net reduction in code
for each implementation, more efficient than walking a list, and solves
the direct-write vs buffered-read problem reported by yu kuai at
http://lkml.kernel.org/r/20200116063601[email protected]
The only unconverted filesystems are those which use fscache. Their
conversion is pending Dave Howells' rewrite which will make the
conversion substantially easier. This should be completed by the end of
the year.
I want to thank the reviewers/testers; Dave Chinner, John Hubbard, Eric
Biggers, Johannes Thumshirn, Dave Sterba, Zi Yan, Christoph Hellwig and
Miklos Szeredi have done a marvellous job of providing constructive
criticism.
These patches pass an xfstests run on ext4, xfs & btrfs with no
regressions that I can tell (some of the tests seem a little flaky
before and remain flaky afterwards).
This patch (of 25):
The readahead code is part of the page cache so should be found in the
pagemap.h file. force_page_cache_readahead is only used within mm, so
move it to mm/internal.h instead. Remove the parameter names where they
add no value, and rename the ones which were actively misleading.
Besides the underlying issue with page->mapping containing a bogus value
for some reason, we can see that __dump_page() crashed by trying to read
the pointer at mapping->host, turning a recoverable warning into full
Oops.
It can be expected that when page is reported as bad state for some
reason, the pointers there should not be trusted blindly.
So this patch treats all data in __dump_page() that depends on
page->mapping as lava, using probe_kernel_read_strict(). Ideally this
would include the dentry->d_parent recursively, but that would mean
changing printk handler for %pd. Chances of reaching the dentry
printing part with an initially bogus mapping pointer should be rather
low, though.
Also prefix printing mapping->a_ops with a description of what is being
printed. In case the value is bogus, %ps will print raw value instead
of the symbol name and then it's not obvious at all that it's printing
a_ops.
Qian Cai [Tue, 2 Jun 2020 04:45:57 +0000 (21:45 -0700)]
mm/slub: fix stack overruns with SLUB_STATS
There is no need to copy SLUB_STATS items from root memcg cache to new
memcg cache copies. Doing so could result in stack overruns because the
store function only accepts 0 to clear the stat and returns an error for
everything else while the show method would print out the whole stat.
Then, the mismatch of the lengths returns from show and store methods
happens in memcg_propagate_slab_attrs():
else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
buf = mbuf;
max_attr_size is only 2 from slab_attr_store(), then, it uses mbuf[64]
in show_stat() later where a bounch of sprintf() would overrun the stack
variable. Fix it by always allocating a page of buffer to be used in
show_stat() if SLUB_STATS=y which should only be used for debug purpose.
# echo 1 > /sys/kernel/slab/fs_cache/shrink
BUG: KASAN: stack-out-of-bounds in number+0x421/0x6e0
Write of size 1 at addr ffffc900256cfde0 by task kworker/76:0/53251
slub: remove kmalloc under list_lock from list_slab_objects() V2
list_slab_objects() is called when a slab is destroyed and there are
objects still left to list the objects in the syslog. This is a pretty
rare event.
And there it seems we take the list_lock and call kmalloc while holding
that lock.
Perform the allocation in free_partial() before the list_lock is taken.
slub: Remove userspace notifier for cache add/remove
I came across some unnecessary uevents once again which reminded me
this. The patch seems to be lost in the leaves of the original
discussion [1], so resending.
Kmem caches are internal kernel structures so it is strange that
userspace notifiers would be needed. And I am not aware of any use of
these notifiers. These notifiers may just exist because in the initial
slub release the sysfs code was copied from another subsystem.
Dongli Zhang [Tue, 2 Jun 2020 04:45:47 +0000 (21:45 -0700)]
mm/slub.c: fix corrupted freechain in deactivate_slab()
The slub_debug is able to fix the corrupted slab freelist/page.
However, alloc_debug_processing() only checks the validity of current
and next freepointer during allocation path. As a result, once some
objects have their freepointers corrupted, deactivate_slab() may lead to
page fault.
Below is from a test kernel module when 'slub_debug=PUF,kmalloc-128
slub_nomerge'. The test kernel corrupts the freepointer of one free
object on purpose. Unfortunately, deactivate_slab() does not detect it
when iterating the freechain.
Therefore, this patch adds extra consistency check in deactivate_slab().
Once an object's freepointer is corrupted, all following objects
starting at this object are isolated.
Vlastimil Babka [Tue, 2 Jun 2020 04:45:43 +0000 (21:45 -0700)]
usercopy: mark dma-kmalloc caches as usercopy caches
We have seen a "usercopy: Kernel memory overwrite attempt detected to
SLUB object 'dma-kmalloc-1 k' (offset 0, size 11)!" error on s390x, as
IUCV uses kmalloc() with __GFP_DMA because of memory address
restrictions. The issue has been discussed [2] and it has been noted
that if all the kmalloc caches are marked as usercopy, there's little
reason not to mark dma-kmalloc caches too. The 'dma' part merely means
that __GFP_DMA is used to restrict memory address range.
As Jann Horn put it [3]:
"I think dma-kmalloc slabs should be handled the same way as normal
kmalloc slabs. When a dma-kmalloc allocation is freshly created, it is
just normal kernel memory - even if it might later be used for DMA -,
and it should be perfectly fine to copy_from_user() into such
allocations at that point, and to copy_to_user() out of them at the
end. If you look at the places where such allocations are created, you
can see things like kmemdup(), memcpy() and so on - all normal
operations that shouldn't conceptually be different from usercopy in
any relevant way."
Thus this patch marks the dma-kmalloc-* caches as usercopy.
Jeff Layton [Tue, 2 Jun 2020 04:45:40 +0000 (21:45 -0700)]
fs/buffer.c: record blockdev write errors in super_block that it backs
When syncing out a block device (a'la __sync_blockdev), any error
encountered will only be recorded in the bd_inode's mapping. When the
blockdev contains a filesystem however, we'd like to also record the
error in the super_block that's stored there.
Make mark_buffer_write_io_error also record the error in the
corresponding super_block when a writeback error occurs and the block
device contains a mounted superblock.
Since superblocks are RCU freed, hold the rcu_read_lock to ensure that
the superblock doesn't go away while we're marking it.
Jeff Layton [Tue, 2 Jun 2020 04:45:36 +0000 (21:45 -0700)]
vfs: track per-sb writeback errors and report them to syncfs
Patch series "vfs: have syncfs() return error when there are writeback
errors", v6.
Currently, syncfs does not return errors when one of the inodes fails to
be written back. It will return errors based on the legacy AS_EIO and
AS_ENOSPC flags when syncing out the block device fails, but that's not
particularly helpful for filesystems that aren't backed by a blockdev.
It's also possible for a stray sync to lose those errors.
The basic idea in this set is to track writeback errors at the
superblock level, so that we can quickly and easily check whether
something bad happened without having to fsync each file individually.
syncfs is then changed to reliably report writeback errors after they
occur, much in the same fashion as fsync does now.
This patch (of 2):
Usually we suggest that applications call fsync when they want to ensure
that all data written to the file has made it to the backing store, but
that can be inefficient when there are a lot of open files.
Calling syncfs on the filesystem can be more efficient in some
situations, but the error reporting doesn't currently work the way most
people expect. If a single inode on a filesystem reports a writeback
error, syncfs won't necessarily return an error. syncfs only returns an
error if __sync_blockdev fails, and on some filesystems that's a no-op.
It would be better if syncfs reported an error if there were any
writeback failures. Then applications could call syncfs to see if there
are any errors on any open files, and could then call fsync on all of
the other descriptors to figure out which one failed.
This patch adds a new errseq_t to struct super_block, and has
mapping_set_error also record writeback errors there.
To report those errors, we also need to keep an errseq_t in struct file
to act as a cursor. This patch adds a dedicated field for that purpose,
which slots nicely into 4 bytes of padding at the end of struct file on
x86_64.
An earlier version of this patch used an O_PATH file descriptor to cue
the kernel that the open file should track the superblock error and not
the inode's writeback error.
I think that API is just too weird though. This is simpler and should
make syncfs error reporting "just work" even if someone is multiplexing
fsync and syncfs on the same fds.
parisc's set_pte_at() macro has set-but-not-used variable:
include/linux/pgtable.h: In function 'pte_clear_not_present_full':
arch/parisc/include/asm/pgtable.h:96:9: warning: variable 'old_pte' set but not used [-Wunused-but-set-variable]
Gang He [Tue, 2 Jun 2020 04:45:29 +0000 (21:45 -0700)]
ocfs2: mount shared volume without ha stack
Usually we create and use a ocfs2 shared volume on the top of ha stack.
For pcmk based ha stack, which includes DLM, corosync and pacemaker
services.
The customers complained they could not mount existent ocfs2 volume in
the single node without ha stack, e.g. single node backup/restore
scenario.
Like this case, the customers just want to access the data from the
existent ocfs2 volume quickly, but do not want to restart or setup ha
stack.
Then, I'd like to add a mount option "nocluster", if the users use this
option to mount a ocfs2 shared volume, the whole mount will not depend
on the ha related services. the command will mount the existent ocfs2
volume directly (like local mount), for avoiding setup the ha stack.
Philippe Liard [Tue, 2 Jun 2020 04:45:23 +0000 (21:45 -0700)]
squashfs: migrate from ll_rw_block usage to BIO
ll_rw_block() function has been deprecated in favor of BIO which appears
to come with large performance improvements.
This patch decreases boot time by close to 40% when using squashfs for
the root file-system. This is observed at least in the context of
starting an Android VM on Chrome OS using crosvm. The patch was tested
on 4.19 as well as master.
This patch is largely based on Adrien Schildknecht's patch that was
originally sent as https://lkml.org/lkml/2017/9/22/814 though with some
significant changes and simplifications while also taking Phillip
Lougher's feedback into account, around preserving support for
FILE_CACHE in particular.
Linus Torvalds [Thu, 28 May 2020 01:29:34 +0000 (18:29 -0700)]
gup: document and work around "COW can break either way" issue
Doing a "get_user_pages()" on a copy-on-write page for reading can be
ambiguous: the page can be COW'ed at any time afterwards, and the
direction of a COW event isn't defined.
Yes, whoever writes to it will generally do the COW, but if the thread
that did the get_user_pages() unmapped the page before the write (and
that could happen due to memory pressure in addition to any outright
action), the writer could also just take over the old page instead.
End result: the get_user_pages() call might result in a page pointer
that is no longer associated with the original VM, and is associated
with - and controlled by - another VM having taken it over instead.
So when doing a get_user_pages() on a COW mapping, the only really safe
thing to do would be to break the COW when getting the page, even when
only getting it for reading.
At the same time, some users simply don't even care.
For example, the perf code wants to look up the page not because it
cares about the page, but because the code simply wants to look up the
physical address of the access for informational purposes, and doesn't
really care about races when a page might be unmapped and remapped
elsewhere.
This adds logic to force a COW event by setting FOLL_WRITE on any
copy-on-write mapping when FOLL_GET (or FOLL_PIN) is used to get a page
pointer as a result.
The current semantics end up being:
- __get_user_pages_fast(): no change. If you don't ask for a write,
you won't break COW. You'd better know what you're doing.
- get_user_pages_fast(): the fast-case "look it up in the page tables
without anything getting mmap_sem" now refuses to follow a read-only
page, since it might need COW breaking. Which happens in the slow
path - the fast path doesn't know if the memory might be COW or not.
- get_user_pages() (including the slow-path fallback for gup_fast()):
for a COW mapping, turn on FOLL_WRITE for FOLL_GET/FOLL_PIN, with
very similar semantics to FOLL_FORCE.
If it turns out that we want finer granularity (ie "only break COW when
it might actually matter" - things like the zero page are special and
don't need to be broken) we might need to push these semantics deeper
into the lookup fault path. So if people care enough, it's possible
that we might end up adding a new internal FOLL_BREAK_COW flag to go
with the internal FOLL_COW flag we already have for tracking "I had a
COW".
Alternatively, if it turns out that different callers might want to
explicitly control the forced COW break behavior, we might even want to
make such a flag visible to the users of get_user_pages() instead of
using the above default semantics.
But for now, this is mostly commentary on the issue (this commit message
being a lot bigger than the patch, and that patch in turn is almost all
comments), with that minimal "enable COW breaking early" logic using the
existing FOLL_WRITE behavior.
[ It might be worth noting that we've always had this ambiguity, and it
could arguably be seen as a user-space issue.
You only get private COW mappings that could break either way in
situations where user space is doing cooperative things (ie fork()
before an execve() etc), but it _is_ surprising and very subtle, and
fork() is supposed to give you independent address spaces.
So let's treat this as a kernel issue and make the semantics of
get_user_pages() easier to understand. Note that obviously a true
shared mapping will still get a page that can change under us, so this
does _not_ mean that get_user_pages() somehow returns any "stable"
page ]
Wei Li [Thu, 21 May 2020 07:21:25 +0000 (15:21 +0800)]
kdb: Remove the misfeature 'KDBFLAGS'
Currently, 'KDBFLAGS' is an internal variable of kdb, it is combined
by 'KDBDEBUG' and state flags. It will be shown only when 'KDBDEBUG'
is set, and the user can define an environment variable named 'KDBFLAGS'
too. These are puzzling indeed.
After communication with Daniel, it seems that 'KDBFLAGS' is a misfeature.
So let's replace 'KDBFLAGS' with 'KDBDEBUG' to just show the value we
wrote into. After this modification, we can use `md4c1 kdb_flags` instead,
to observe the state flags.
From code inspection the math in handle_ctrl_cmd() looks super sketchy
because it subjects -1 from cmdptr and then does a "%
KDB_CMD_HISTORY_COUNT". It turns out that this code works because
"cmdptr" is unsigned and KDB_CMD_HISTORY_COUNT is a nice power of 2.
Let's make this a little less sketchy.
Sumit Garg [Thu, 7 May 2020 20:08:50 +0000 (13:08 -0700)]
serial: amba-pl011: Support kgdboc_earlycon
Implement the read() function in the early console driver. With
recently added kgdboc_earlycon feature, this allows you to use kgdb
to debug fairly early into the system boot.
We only bother implementing this if polling is enabled since kgdb can't
be enabled without that.
Implement the read() function in the early console driver. With
recent kgdb patches this allows you to use kgdb to debug fairly early
into the system boot.
We only bother implementing this if polling is enabled since kgdb
can't be enabled without that.
Implement the read() function in the early console driver. With
recent kgdb patches this allows you to use kgdb to debug fairly early
into the system boot.
We only bother implementing this if polling is enabled since kgdb
can't be enabled without that.
Daniel Thompson [Thu, 30 Apr 2020 16:17:41 +0000 (17:17 +0100)]
serial: kgdboc: Allow earlycon initialization to be deferred
Currently there is no guarantee that an earlycon will be initialized
before kgdboc tries to adopt it. Almost the opposite: on systems
with ACPI then if earlycon has no arguments then it is guaranteed that
earlycon will not be initialized.
This patch mitigates the problem by giving kgdboc_earlycon a second
chance during console_init(). This isn't quite as good as stopping during
early parameter parsing but it is still early in the kernel boot.
Documentation: kgdboc: Document new kgdboc_earlycon parameter
The recent patch ("kgdboc: Add kgdboc_earlycon to support early kgdb
using boot consoles") adds a new kernel command line parameter.
Document it.
Note that the patch adding the feature does some comparing/contrasting
of "kgdboc_earlycon" vs. the existing "ekgdboc". See that patch for
more details, but briefly "ekgdboc" can be used _instead_ of "kgdboc"
and just makes "kgdboc" do its normal initialization early (only works
if your tty driver is already ready). The new "kgdboc_earlycon" works
in combination with "kgdboc" and is backed by boot consoles.
Douglas Anderson [Tue, 26 May 2020 21:20:06 +0000 (14:20 -0700)]
kgdb: Don't call the deinit under spinlock
When I combined kgdboc_earlycon with an inflight patch titled ("soc:
qcom-geni-se: Add interconnect support to fix earlycon crash") [1]
things went boom. Specifically I got a crash during the transition
between kgdboc_earlycon and the main kgdboc that looked like this: