KVM: x86: Prevent KVM SVM from loading on kernels with 5-level paging
Disallow loading KVM SVM if 5-level paging is supported. In theory, NPT
for L1 should simply work, but there unknowns with respect to how the
guest's MAXPHYADDR will be handled by hardware.
Nested NPT is more problematic, as running an L1 VMM that is using
2-level page tables requires stacking single-entry PDP and PML4 tables in
KVM's NPT for L2, as there are no equivalent entries in L1's NPT to
shadow. Barring hardware magic, for 5-level paging, KVM would need stack
another layer to handle PML5.
Opportunistically rename the lm_root pointer, which is used for the
aforementioned stacking when shadowing 2-level L1 NPT, to pml4_root to
call out that it's specifically for PML4.
Paolo Bonzini [Thu, 6 May 2021 10:30:04 +0000 (06:30 -0400)]
KVM: X86: Expose bus lock debug exception to guest
Bus lock debug exception is an ability to notify the kernel by an #DB
trap after the instruction acquires a bus lock and is executed when
CPL>0. This allows the kernel to enforce user application throttling or
mitigations.
Existence of bus lock debug exception is enumerated via
CPUID.(EAX=7,ECX=0).ECX[24]. Software can enable these exceptions by
setting bit 2 of the MSR_IA32_DEBUGCTL. Expose the CPUID to guest and
emulate the MSR handling when guest enables it.
Support for this feature was originally developed by Xiaoyao Li and
Chenyi Qiang, but code has since changed enough that this patch has
nothing in common with theirs, except for this commit message.
Chenyi Qiang [Tue, 2 Feb 2021 09:04:32 +0000 (17:04 +0800)]
KVM: X86: Add support for the emulation of DR6_BUS_LOCK bit
Bus lock debug exception introduces a new bit DR6_BUS_LOCK (bit 11 of
DR6) to indicate that bus lock #DB exception is generated. The set/clear
of DR6_BUS_LOCK is similar to the DR6_RTM. The processor clears
DR6_BUS_LOCK when the exception is generated. For all other #DB, the
processor sets this bit to 1. Software #DB handler should set this bit
before returning to the interrupted task.
In VMM, to avoid breaking the CPUs without bus lock #DB exception
support, activate the DR6_BUS_LOCK conditionally in DR6_FIXED_1 bits.
When intercepting the #DB exception caused by bus locks, bit 11 of the
exit qualification is set to identify it. The VMM should emulate the
exception by clearing the bit 11 of the guest DR6.
Commit b1c5356e873c ("KVM: PPC: Convert to the gfn-based MMU notifier
callbacks") causes unmap_gfn_range and age_gfn callbacks to only work
on the first gfn in the range. It also makes the aging callbacks call
into both radix and hash aging functions for radix guests. Fix this.
Add warnings for the single-gfn calls that have been converted to range
callbacks, in case they ever receieve ranges greater than 1.
KVM: x86: Hide RDTSCP and RDPID if MSR_TSC_AUX probing failed
If probing MSR_TSC_AUX failed, hide RDTSCP and RDPID, and WARN if either
feature was reported as supported. In theory, such a scenario should
never happen as both Intel and AMD state that MSR_TSC_AUX is available if
RDTSCP or RDPID is supported. But, KVM injects #GP on MSR_TSC_AUX
accesses if probing failed, faults on WRMSR(MSR_TSC_AUX) may be fatal to
the guest (because they happen during early CPU bringup), and KVM itself
has effectively misreported RDPID support in the past.
Note, this also has the happy side effect of omitting MSR_TSC_AUX from
the list of MSRs that are exposed to userspace if probing the MSR fails.
KVM: x86: Tie Intel and AMD behavior for MSR_TSC_AUX to guest CPU model
Squish the Intel and AMD emulation of MSR_TSC_AUX together and tie it to
the guest CPU model instead of the host CPU behavior. While not strictly
necessary to avoid guest breakage, emulating cross-vendor "architecture"
will provide consistent behavior for the guest, e.g. WRMSR fault behavior
won't change if the vCPU is migrated to a host with divergent behavior.
Note, the "new" kvm_is_supported_user_return_msr() checks do not add new
functionality on either SVM or VMX. On SVM, the equivalent was
"tsc_aux_uret_slot < 0", and on VMX the check was buried in the
vmx_find_uret_msr() call at the find_uret_msr label.
KVM: x86: Move uret MSR slot management to common x86
Now that SVM and VMX both probe MSRs before "defining" user return slots
for them, consolidate the code for probe+define into common x86 and
eliminate the odd behavior of having the vendor code define the slot for
a given MSR.
KVM: x86: Export the number of uret MSRs to vendor modules
Split out and export the number of configured user return MSRs so that
VMX can iterate over the set of MSRs without having to do its own tracking.
Keep the list itself internal to x86 so that vendor code still has to go
through the "official" APIs to add/modify entries.
KVM: VMX: Disable loading of TSX_CTRL MSR the more conventional way
Tag TSX_CTRL as not needing to be loaded when RTM isn't supported in the
host. Crushing the write mask to '0' has the same effect, but requires
more mental gymnastics to understand.
KVM: VMX: Use common x86's uret MSR list as the one true list
Drop VMX's global list of user return MSRs now that VMX doesn't resort said
list to isolate "active" MSRs, i.e. now that VMX's list and x86's list have
the same MSRs in the same order.
In addition to eliminating the redundant list, this will also allow moving
more of the list management into common x86.
KVM: VMX: Use flag to indicate "active" uret MSRs instead of sorting list
Explicitly flag a uret MSR as needing to be loaded into hardware instead of
resorting the list of "active" MSRs and tracking how many MSRs in total
need to be loaded. The only benefit to sorting the list is that the loop
to load MSRs during vmx_prepare_switch_to_guest() doesn't need to iterate
over all supported uret MRS, only those that are active. But that is a
pointless optimization, as the most common case, running a 64-bit guest,
will load the vast majority of MSRs. Not to mention that a single WRMSR is
far more expensive than iterating over the list.
Providing a stable list order obviates the need to track a given MSR's
"slot" in the per-CPU list of user return MSRs; all lists simply use the
same ordering. Future patches will take advantage of the stable order to
further simplify the related code.
KVM: VMX: Configure list of user return MSRs at module init
Configure the list of user return MSRs that are actually supported at
module init instead of reprobing the list of possible MSRs every time a
vCPU is created. Curating the list on a per-vCPU basis is pointless; KVM
is completely hosed if the set of supported MSRs changes after module init,
or if the set of MSRs differs per physical PCU.
The per-vCPU lists also increase complexity (see __vmx_find_uret_msr()) and
creates corner cases that _should_ be impossible, but theoretically exist
in KVM, e.g. advertising RDTSCP to userspace without actually being able to
virtualize RDTSCP if probing MSR_TSC_AUX fails.
Allow userspace to enable RDPID for a guest without also enabling RDTSCP.
Aside from checking for RDPID support in the obvious flows, VMX also needs
to set ENABLE_RDTSCP=1 when RDPID is exposed.
For the record, there is no known scenario where enabling RDPID without
RDTSCP is desirable. But, both AMD and Intel architectures allow for the
condition, i.e. this is purely to make KVM more architecturally accurate.
KVM: SVM: Probe and load MSR_TSC_AUX regardless of RDTSCP support in host
Probe MSR_TSC_AUX whether or not RDTSCP is supported in the host, and
if probing succeeds, load the guest's MSR_TSC_AUX into hardware prior to
VMRUN. Because SVM doesn't support interception of RDPID, RDPID cannot
be disallowed in the guest (without resorting to binary translation).
Leaving the host's MSR_TSC_AUX in hardware would leak the host's value to
the guest if RDTSCP is not supported.
Note, there is also a kernel bug that prevents leaking the host's value.
The host kernel initializes MSR_TSC_AUX if and only if RDTSCP is
supported, even though the vDSO usage consumes MSR_TSC_AUX via RDPID.
I.e. if RDTSCP is not supported, there is no host value to leak. But,
if/when the host kernel bug is fixed, KVM would start leaking MSR_TSC_AUX
in the case where hardware supports RDPID but RDTSCP is unavailable for
whatever reason.
Probing MSR_TSC_AUX will also allow consolidating the probe and define
logic in common x86, and will make it simpler to condition the existence
of MSR_TSX_AUX (from the guest's perspective) on RDTSCP *or* RDPID.
KVM: VMX: Disable preemption when probing user return MSRs
Disable preemption when probing a user return MSR via RDSMR/WRMSR. If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.
Opportunistically land the helper in common x86, SVM will use the helper
in a future commit.
KVM: SVM: Inject #UD on RDTSCP when it should be disabled in the guest
Intercept RDTSCP to inject #UD if RDTSC is disabled in the guest.
Note, SVM does not support intercepting RDPID. Unlike VMX's
ENABLE_RDTSCP control, RDTSCP interception does not apply to RDPID. This
is a benign virtualization hole as the host kernel (incorrectly) sets
MSR_TSC_AUX if RDTSCP is supported, and KVM loads the guest's MSR_TSC_AUX
into hardware if RDTSCP is supported in the host, i.e. KVM will not leak
the host's MSR_TSC_AUX to the guest.
But, when the kernel bug is fixed, KVM will start leaking the host's
MSR_TSC_AUX if RDPID is supported in hardware, but RDTSCP isn't available
for whatever reason. This leak will be remedied in a future commit.
KVM: x86: Emulate RDPID only if RDTSCP is supported
Do not advertise emulation support for RDPID if RDTSCP is unsupported.
RDPID emulation subtly relies on MSR_TSC_AUX to exist in hardware, as
both vmx_get_msr() and svm_get_msr() will return an error if the MSR is
unsupported, i.e. ctxt->ops->get_msr() will fail and the emulator will
inject a #UD.
Note, RDPID emulation also relies on RDTSCP being enabled in the guest,
but this is a KVM bug and will eventually be fixed.
KVM: VMX: Do not advertise RDPID if ENABLE_RDTSCP control is unsupported
Clear KVM's RDPID capability if the ENABLE_RDTSCP secondary exec control is
unsupported. Despite being enumerated in a separate CPUID flag, RDPID is
bundled under the same VMCS control as RDTSCP and will #UD in VMX non-root
if ENABLE_RDTSCP is not enabled.
Maxim Levitsky [Tue, 4 May 2021 14:39:36 +0000 (17:39 +0300)]
KVM: nSVM: remove a warning about vmcb01 VM exit reason
While in most cases, when returning to use the VMCB01,
the exit reason stored in it will be SVM_EXIT_VMRUN,
on first VM exit after a nested migration this field
can contain anything since the VM entry did happen
before the migration.
Maxim Levitsky [Tue, 4 May 2021 14:39:35 +0000 (17:39 +0300)]
KVM: nSVM: always restore the L1's GIF on migration
While usually the L1's GIF is set while L2 runs, and usually
migration nested state is loaded after a vCPU reset which
also sets L1's GIF to true, this is not guaranteed.
KVM: x86: Hoist input checks in kvm_add_msr_filter()
In ioctl KVM_X86_SET_MSR_FILTER, input from user space is validated
after a memdup_user(). For invalid inputs we'd memdup and then call
kfree unnecessarily. Hoist input validation to avoid kfree altogether.
Bill Wendling [Fri, 11 Dec 2020 01:23:17 +0000 (17:23 -0800)]
selftests: kvm: remove reassignment of non-absolute variables
Clang's integrated assembler does not allow symbols with non-absolute
values to be reassigned. Modify the interrupt entry loop macro to be
compatible with IAS by using a label and an offset.
KVM: selftests: evmcs_test: Check that VMCS12 is alway properly synced to eVMCS after restore
Add a test for the regression, introduced by commit f2c7ef3ba955
("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES on nested vmexit"). When
L2->L1 exit is forced immediately after restoring nested state,
KVM_REQ_GET_NESTED_STATE_PAGES request is cleared and VMCS12 changes
(e.g. fresh RIP) are not reflected to eVMCS. The consequent nested
vCPU run gets broken.
KVM: nVMX: Always make an attempt to map eVMCS after migration
When enlightened VMCS is in use and nested state is migrated with
vmx_get_nested_state()/vmx_set_nested_state() KVM can't map evmcs
page right away: evmcs gpa is not 'struct kvm_vmx_nested_state_hdr'
and we can't read it from VP assist page because userspace may decide
to restore HV_X64_MSR_VP_ASSIST_PAGE after restoring nested state
(and QEMU, for example, does exactly that). To make sure eVMCS is
mapped /vmx_set_nested_state() raises KVM_REQ_GET_NESTED_STATE_PAGES
request.
Commit f2c7ef3ba955 ("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
on nested vmexit") added KVM_REQ_GET_NESTED_STATE_PAGES clearing to
nested_vmx_vmexit() to make sure MSR permission bitmap is not switched
when an immediate exit from L2 to L1 happens right after migration (caused
by a pending event, for example). Unfortunately, in the exact same
situation we still need to have eVMCS mapped so
nested_sync_vmcs12_to_shadow() reflects changes in VMCS12 to eVMCS.
As a band-aid, restore nested_get_evmcs_page() when clearing
KVM_REQ_GET_NESTED_STATE_PAGES in nested_vmx_vmexit(). The 'fix' is far
from being ideal as we can't easily propagate possible failures and even if
we could, this is most likely already too late to do so. The whole
'KVM_REQ_GET_NESTED_STATE_PAGES' idea for mapping eVMCS after migration
seems to be fragile as we diverge too much from the 'native' path when
vmptr loading happens on vmx_set_nested_state().
doc/kvm: Fix wrong entry for KVM_CAP_X86_MSR_FILTER
The capability that exposes new ioctl KVM_X86_SET_MSR_FILTER to
userspace is specified incorrectly as the ioctl itself (instead of
KVM_CAP_X86_MSR_FILTER). This patch fixes it.
Crash shutdown handler only disables kvmclock and steal time, other PV
features remain active so we risk corrupting memory or getting some
side-effects in kdump kernel. Move crash handler to kvm.c and unify
with CPU offline.
Currenly, we disable kvmclock from machine_shutdown() hook and this
only happens for boot CPU. We need to disable it for all CPUs to
guard against memory corruption e.g. on restore from hibernate.
Note, writing '0' to kvmclock MSR doesn't clear memory location, it
just prevents hypervisor from updating the location so for the short
while after write and while CPU is still alive, the clock remains usable
and correct so we don't need to switch to some other clocksource.
Various PV features (Async PF, PV EOI, steal time) work through memory
shared with hypervisor and when we restore from hibernation we must
properly teardown all these features to make sure hypervisor doesn't
write to stale locations after we jump to the previously hibernated kernel
(which can try to place anything there). For secondary CPUs the job is
already done by kvm_cpu_down_prepare(), register syscore ops to do
the same for boot CPU.
Lu Jialin [Fri, 7 May 2021 01:06:50 +0000 (18:06 -0700)]
mm: fix typos in comments
succed -> succeed in mm/hugetlb.c
wil -> will in mm/mempolicy.c
wit -> with in mm/page_alloc.c
Retruns -> Returns in mm/page_vma_mapped.c
confict -> conflict in mm/secretmem.c
No functionality changed.
Masahiro Yamada [Fri, 7 May 2021 01:06:44 +0000 (18:06 -0700)]
treewide: remove editor modelines and cruft
The section "19) Editor modelines and other cruft" in
Documentation/process/coding-style.rst clearly says, "Do not include any
of these in source files."
I recently receive a patch to explicitly add a new one.
Let's do treewide cleanups, otherwise some people follow the existing code
and attempt to upstream their favoriate editor setups.
It is even nicer if scripts/checkpatch.pl can check it.
If we like to impose coding style in an editor-independent manner, I think
editorconfig (patch [1]) is a saner solution.
Xiaofeng Cao [Fri, 7 May 2021 01:06:36 +0000 (18:06 -0700)]
kernel/sys.c: fix typo
change 'infite' to 'infinite'
change 'concurent' to 'concurrent'
change 'memvers' to 'members'
change 'decendants' to 'descendants'
change 'argumets' to 'arguments'
Maninder Singh [Fri, 7 May 2021 01:06:09 +0000 (18:06 -0700)]
arm: print alloc free paths for address in registers
In case of a use after free kernel oops, the freeing path of the object
is required to debug futher. In most of cases the object address is
present in one of the registers.
Thus check the register's address and if it belongs to slab, print its
alloc and free path.
e.g. in the below issue register r6 belongs to slab, and a use after
free issue occurred on one of its dereferenced values:
Patch series "drivers/char: remove /dev/kmem for good".
Exploring /dev/kmem and /dev/mem in the context of memory hot(un)plug and
memory ballooning, I started questioning the existence of /dev/kmem.
Comparing it with the /proc/kcore implementation, it does not seem to be
able to deal with things like
a) Pages unmapped from the direct mapping (e.g., to be used by secretmem)
-> kern_addr_valid(). virt_addr_valid() is not sufficient.
b) Special cases like gart aperture memory that is not to be touched
-> mem_pfn_is_ram()
Unless I am missing something, it's at least broken in some cases and might
fault/crash the machine.
Looks like its existence has been questioned before in 2005 and 2010 [1],
after ~11 additional years, it might make sense to revive the discussion.
CONFIG_DEVKMEM is only enabled in a single defconfig (on purpose or by
mistake?). All distributions disable it: in Ubuntu it has been disabled
for more than 10 years, in Debian since 2.6.31, in Fedora at least
starting with FC3, in RHEL starting with RHEL4, in SUSE starting from
15sp2, and OpenSUSE has it disabled as well.
1) /dev/kmem was popular for rootkits [2] before it got disabled
basically everywhere. Ubuntu documents [3] "There is no modern user of
/dev/kmem any more beyond attackers using it to load kernel rootkits.".
RHEL documents in a BZ [5] "it served no practical purpose other than to
serve as a potential security problem or to enable binary module drivers
to access structures/functions they shouldn't be touching"
2) /proc/kcore is a decent interface to have a controlled way to read
kernel memory for debugging puposes. (will need some extensions to
deal with memory offlining/unplug, memory ballooning, and poisoned
pages, though)
3) It might be useful for corner case debugging [1]. KDB/KGDB might be a
better fit, especially, to write random memory; harder to shoot
yourself into the foot.
4) "Kernel Memory Editor" [4] hasn't seen any updates since 2000 and seems
to be incompatible with 64bit [1]. For educational purposes,
/proc/kcore might be used to monitor value updates -- or older
kernels can be used.
5) It's broken on arm64, and therefore, completely disabled there.
Looks like it's essentially unused and has been replaced by better
suited interfaces for individual tasks (/proc/kcore, KDB/KGDB). Let's
just remove it.
Allow the developer to specifiy the initial value of the modprobe_path[]
string. This can be used to set it to the empty string initially, thus
effectively disabling request_module() during early boot until userspace
writes a new value via the /proc/sys/kernel/modprobe interface. [1]
When building a custom kernel (often for an embedded target), it's normal
to build everything into the kernel that is needed for booting, and indeed
the initramfs often contains no modules at all, so every such
request_module() done before userspace init has mounted the real rootfs is
a waste of time.
This is particularly useful when combined with the previous patch, which
made the initramfs unpacking asynchronous - for that to work, it had to
make any usermodehelper call wait for the unpacking to finish before
attempting to invoke the userspace helper. By eliminating all such
(known-to-be-futile) calls of usermodehelper, the initramfs unpacking and
the {device,late}_initcalls can proceed in parallel for much longer.
For a relatively slow ppc board I'm working on, the two patches combined
lead to 0.2s faster boot - but more importantly, the fact that the
initramfs unpacking proceeds completely in the background while devices
get probed means I get to handle the gpio watchdog in time without getting
reset.
[1] __request_module() already has an early -ENOENT return when
modprobe_path is the empty string.
Patch series "background initramfs unpacking, and CONFIG_MODPROBE_PATH", v3.
These two patches are independent, but better-together.
The second is a rather trivial patch that simply allows the developer to
change "/sbin/modprobe" to something else - e.g. the empty string, so
that all request_module() during early boot return -ENOENT early, without
even spawning a usermode helper, needlessly synchronizing with the
initramfs unpacking.
The first patch delegates decompressing the initramfs to a worker thread,
allowing do_initcalls() in main.c to proceed to the device_ and late_
initcalls without waiting for that decompression (and populating of
rootfs) to finish. Obviously, some of those later calls may rely on the
initramfs being available, so I've added synchronization points in the
firmware loader and usermodehelper paths - there might be other places
that would need this, but so far no one has been able to think of any
places I have missed.
There's not much to win if most of the functionality needed during boot is
only available as modules. But systems with a custom-made .config and
initramfs can boot faster, partly due to utilizing more than one cpu
earlier, partly by avoiding known-futile modprobe calls (which would still
trigger synchronization with the initramfs unpacking, thus eliminating
most of the first benefit).
This patch (of 2):
Most of the boot process doesn't actually need anything from the
initramfs, until of course PID1 is to be executed. So instead of doing
the decompressing and populating of the initramfs synchronously in
populate_rootfs() itself, push that off to a worker thread.
This is primarily motivated by an embedded ppc target, where unpacking
even the rather modest sized initramfs takes 0.6 seconds, which is long
enough that the external watchdog becomes unhappy that it doesn't get
attention soon enough. By doing the initramfs decompression in a worker
thread, we get to do the device_initcalls and hence start petting the
watchdog much sooner.
Normal desktops might benefit as well. On my mostly stock Ubuntu kernel,
my initramfs is a 26M xz-compressed blob, decompressing to around 126M.
That takes almost two seconds:
[ 0.201454] Trying to unpack rootfs image as initramfs...
[ 1.976633] Freeing initrd memory: 29416K
Before this patch, these lines occur consecutively in dmesg. With this
patch, the timestamps on these two lines is roughly the same as above, but
with 172 lines inbetween - so more than one cpu has been kept busy doing
work that would otherwise only happen after the populate_rootfs()
finished.
Should one of the initcalls done after rootfs_initcall time (i.e., device_
and late_ initcalls) need something from the initramfs (say, a kernel
module or a firmware blob), it will simply wait for the initramfs
unpacking to be done before proceeding, which should in theory make this
completely safe.
But if some driver pokes around in the filesystem directly and not via one
of the official kernel interfaces (i.e. request_firmware*(),
call_usermodehelper*) that theory may not hold - also, I certainly might
have missed a spot when sprinkling wait_for_initramfs(). So there is an
escape hatch in the form of an initramfs_async= command line parameter.
It's currently nigh impossible to get these pr_debug()s to print
something. Being guarded by initcall_debug means one has to enable tons
of other debug output during boot, and the system_state condition further
means it's impossible to get them when loading modules later.
Also, the compiler can't know that these global conditions do not change,
so there are W=2 warnings
kernel/async.c:125:9: warning: `calltime' may be used uninitialized in this function [-Wmaybe-uninitialized]
kernel/async.c:300:9: warning: `starttime' may be used uninitialized in this function [-Wmaybe-uninitialized]
Make it possible, for a DYNAMIC_DEBUG kernel, to get these to print their
messages by booting with appropriate 'dyndbg="file async.c +p"' command
line argument. For a non-DYNAMIC_DEBUG kernel, pr_debug() compiles to
nothing.
This does cost doing an unconditional ktime_get() for the starttime value,
but the corresponding ktime_get for the end time can be elided by
factoring it into a function which only gets called if the printk()
arguments end up being evaluated.
Zhang Yunkai [Fri, 7 May 2021 01:05:33 +0000 (18:05 -0700)]
selftests: remove duplicate include
'assert.h' included in 'sparsebit.c' is duplicated.
It is also included in the 161th line.
'string.h' included in 'mincore_selftest.c' is duplicated.
It is also included in the 15th line.
'sched.h' included in 'tlbie_test.c' is duplicated.
It is also included in the 33th line.
Alistair Popple [Fri, 7 May 2021 01:05:30 +0000 (18:05 -0700)]
kernel/resource: fix locking in request_free_mem_region
request_free_mem_region() is used to find an empty range of physical
addresses for hotplugging ZONE_DEVICE memory. It does this by iterating
over the range of possible addresses using region_intersects() to see if
the range is free before calling request_mem_region() to allocate the
region.
However the resource_lock is dropped between these two calls meaning by
the time request_mem_region() is called in request_free_mem_region()
another thread may have already reserved the requested region. This
results in unexpected failures and a message in the kernel log from
hitting this condition:
/*
* mm/hmm.c reserves physical addresses which then
* become unavailable to other users. Conflicts are
* not expected. Warn to aid debugging if encountered.
*/
if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
pr_warn("Unaddressable device %s %pR conflicts with %pR",
conflict->name, conflict, res);
These unexpected failures can be corrected by holding resource_lock across
the two calls. This also requires memory allocation to be performed prior
to taking the lock.
All functions that search for IORESOURCE_SYSTEM_RAM or IORESOURCE_MEM
resources now properly consider the whole resource tree, not just the
first level. Let's drop the unused first_lvl / siblings_only logic.
Remove documentation that indicates that some functions behave differently,
all consider the full resource tree now.
kernel/resource: make walk_mem_res() find all busy IORESOURCE_MEM resources
It used to be true that we can have system RAM (IORESOURCE_SYSTEM_RAM |
IORESOURCE_BUSY) only on the first level in the resource tree. However,
this is no longer holds for driver-managed system RAM (i.e., added via
dax/kmem and virtio-mem), which gets added on lower levels, for example,
inside device containers.
IORESOURCE_SYSTEM_RAM is defined as IORESOURCE_MEM | IORESOURCE_SYSRAM and
just a special type of IORESOURCE_MEM.
The function walk_mem_res() only considers the first level and is used in
arch/x86/mm/ioremap.c:__ioremap_check_mem() only. We currently fail to
identify System RAM added by dax/kmem and virtio-mem as
"IORES_MAP_SYSTEM_RAM", for example, allowing for remapping of such
"normal RAM" in __ioremap_caller().
Let's find all IORESOURCE_MEM | IORESOURCE_BUSY resources, making the
function behave similar to walk_system_ram_res().
kernel/resource: make walk_system_ram_res() find all busy IORESOURCE_SYSTEM_RAM resources
Patch series "kernel/resource: make walk_system_ram_res() and walk_mem_res() search the whole tree", v2.
Playing with kdump+virtio-mem I noticed that kexec_file_load() does not
consider System RAM added via dax/kmem and virtio-mem when preparing the
elf header for kdump. Looking into the details, the logic used in
walk_system_ram_res() and walk_mem_res() seems to be outdated.
walk_system_ram_range() already does the right thing, let's change
walk_system_ram_res() and walk_mem_res(), and clean up.
Loading a kdump kernel via "kexec -p -s" ... will result in the kdump
kernel to also dump dax/kmem and virtio-mem added System RAM now.
Note: kexec-tools on x86-64 also have to be updated to consider this
memory in the kexec_load() case when processing /proc/iomem.
This patch (of 3):
It used to be true that we can have system RAM (IORESOURCE_SYSTEM_RAM |
IORESOURCE_BUSY) only on the first level in the resource tree. However,
this is no longer holds for driver-managed system RAM (i.e., added via
dax/kmem and virtio-mem), which gets added on lower levels, for example,
inside device containers.
We have two users of walk_system_ram_res(), which currently only
consideres the first level:
a) kernel/kexec_file.c:kexec_walk_resources() -- We properly skip
IORESOURCE_SYSRAM_DRIVER_MANAGED resources via
locate_mem_hole_callback(), so even after this change, we won't be
placing kexec images onto dax/kmem and virtio-mem added memory. No
change.
b) arch/x86/kernel/crash.c:fill_up_crash_elf_data() -- we're currently
not adding relevant ranges to the crash elf header, resulting in them
not getting dumped via kdump.
This change fixes loading a crashkernel via kexec_file_load() and
including dax/kmem and virtio-mem added System RAM in the crashdump on
x86-64. Note that e.g,, arm64 relies on memblock data and, therefore,
always considers all added System RAM already.
Let's find all IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY resources, making
the function behave like walk_system_ram_range().
Barry Song [Fri, 7 May 2021 01:05:09 +0000 (18:05 -0700)]
scripts/gdb: add lx_current support for arm64
arm64 uses SP_EL0 to save the current task_struct address. While running
in EL0, SP_EL0 is clobbered by userspace. So if the upper bit is not 1
(not TTBR1), the current address is invalid. This patch checks the upper
bit of SP_EL0, if the upper bit is 1, lx_current() of arm64 will return
the derefrence of current task. Otherwise, lx_current() will tell users
they are running in userspace(EL0).
While arm64 is running in EL0, it is actually pointless to print current
task as the memory of kernel space is not accessible in EL0.
Barry Song [Fri, 7 May 2021 01:05:06 +0000 (18:05 -0700)]
scripts/gdb: document lx_current is only supported by x86
Patch series "scripts/gdb: clarify the platforms supporting lx_current and add arm64 support", v2.
lx_current depends on per_cpu current_task variable which exists on x86
only. so it actually works on x86 only. the 1st patch documents this
clearly; the 2nd patch adds support for arm64.
This patch (of 2):
x86 is the only architecture which has per_cpu current_task:
On other architectures, lx_current() will lead to a python exception:
(gdb) p $lx_current().pid
Python Exception <class 'gdb.error'> No symbol "current_task" in current context.:
Error occurred in Python: No symbol "current_task" in current context.
To avoid more people struggling and wasting time in other architectures,
document it.
Johannes Berg [Fri, 7 May 2021 01:05:03 +0000 (18:05 -0700)]
gdb: lx-symbols: store the abspath()
If we store the relative path, the user might later cd to a different
directory, and that would break the automatic symbol resolving that
happens when a module is loaded into the target kernel. Fix this by
storing the abspath() of each path given, just like we already do for the
cwd (os.getcwd() is absolute.)
Yafang Shao [Fri, 7 May 2021 01:05:00 +0000 (18:05 -0700)]
delayacct: clear right task's flag after blkio completes
When I was implementing a latency analyzer tool by using task->delays
and other things, I found an issue in delayacct. The issue is it should
clear the target's flag instead of current's in delayacct_blkio_end().
When I git blame delayacct, I found there're some similar issues we have
fixed in delayacct_blkio_end().
- Commit c96f5471ce7d ("delayacct: Account blkio completion on the
correct task") fixed the issue that it should account blkio
completion on the target task instead of current.
- Commit b512719f771a ("delayacct: fix crash in delayacct_blkio_end()
after delayacct init failure") fixed the issue that it should check
target task's delays instead of current task'.
It seems that delayacct_blkio_{begin, end} are error prone.
So I introduce a new paratmeter - the target task 'p' - to these
helpers. After that change, the callsite will specifilly set the right
task, which should make it less error prone.
He Ying [Fri, 7 May 2021 01:04:57 +0000 (18:04 -0700)]
smp: kernel/panic.c - silence warnings
We found these warnings in kernel/panic.c by using sparse tool:
warning: symbol 'panic_smp_self_stop' was not declared.
warning: symbol 'nmi_panic_self_stop' was not declared.
warning: symbol 'crash_smp_send_stop' was not declared.
To avoid them, add declarations for these three functions in
include/linux/smp.h.
LLVM changed the expected function signatures for llvm_gcda_start_file()
and llvm_gcda_emit_function() in the clang-11 release. Drop the older
implementations and require folks to upgrade their compiler if they're
interested in GCOV support.
Johannes Berg [Fri, 7 May 2021 01:04:51 +0000 (18:04 -0700)]
gcov: use kvmalloc()
Using vmalloc() in gcov is really quite wasteful, many of the objects
allocated are really small (e.g. I've seen 24 bytes.) Use kvmalloc() to
automatically pick the better of kmalloc() or vmalloc() depending on the
size.
Johannes Berg [Fri, 7 May 2021 01:04:45 +0000 (18:04 -0700)]
gcov: combine common code
There's a lot of duplicated code between gcc and clang implementations,
move it over to fs.c to simplify the code, there's no reason to believe
that for small data like this one would not just implement the simple
convert_to_gcda() function.
Pavel Tatashin [Fri, 7 May 2021 01:04:41 +0000 (18:04 -0700)]
kexec: dump kmessage before machine_kexec
kmsg_dump(KMSG_DUMP_SHUTDOWN) is called before machine_restart(),
machine_halt(), and machine_power_off(). The only one that is missing
is machine_kexec().
The dmesg output that it contains can be used to study the shutdown
performance of both kernel and systemd during kexec reboot.
Here is example of dmesg data collected after kexec:
Jia-Ju Bai [Fri, 7 May 2021 01:04:38 +0000 (18:04 -0700)]
kernel: kexec_file: fix error return code of kexec_calculate_store_digests()
When vzalloc() returns NULL to sha_regions, no error return code of
kexec_calculate_store_digests() is assigned. To fix this bug, ret is
assigned with -ENOMEM in this case.
Linus Torvalds [Fri, 7 May 2021 06:54:12 +0000 (23:54 -0700)]
Merge tag 'iomap-5.13-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more iomap updates from Darrick Wong:
"Remove the now unused 'io_private' field from struct iomap_ioend, for
a modest savings in memory allocation"
* tag 'iomap-5.13-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
iomap: remove unused private field from ioend
Linus Torvalds [Fri, 7 May 2021 06:46:46 +0000 (23:46 -0700)]
Merge tag 'xfs-5.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull more xfs updates from Darrick Wong:
"Except for the timestamp struct renaming patches, everything else in
here are bug fixes:
- Rename the log timestamp struct.
- Remove broken transaction counter debugging that wasn't working
correctly on very old filesystems.
- Various fixes to make pre-lazysbcount filesystems work properly
again.
- Fix a free space accounting problem where we neglected to consider
free space btree blocks that track metadata reservation space when
deciding whether or not to allow caller to reserve space for a
metadata update.
- Fix incorrect pagecache clearing behavior during FUNSHARE ops.
- Don't allow log writes if the data device is readonly"
* tag 'xfs-5.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: don't allow log writes if the data device is readonly
xfs: fix xfs_reflink_unshare usage of filemap_write_and_wait_range
xfs: set aside allocation btree blocks from block reservation
xfs: introduce in-core global counter of allocbt blocks
xfs: unconditionally read all AGFs on mounts with perag reservation
xfs: count free space btree blocks when scrubbing pre-lazysbcount fses
xfs: update superblock counters correctly for !lazysbcount
xfs: don't check agf_btreeblks on pre-lazysbcount filesystems
xfs: remove obsolete AGF counter debugging
xfs: rename struct xfs_legacy_ictimestamp
xfs: rename xfs_ictimestamp_t
Linus Torvalds [Fri, 7 May 2021 06:37:55 +0000 (23:37 -0700)]
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
Pull input updates from Dmitry Torokhov:
- three new touchscreen drivers: Hycon HY46XX, ILITEK Lego Series,
and MStar MSG2638
- a new driver for Azoteq IQS626A proximity and touch controller
- addition of Amazon Game Controller to the list of devices handled
by the xpad driver
- Elan touchscreen driver will avoid binding to devices described as
I2CHID compatible in ACPI tables
- various driver fixes
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input: (56 commits)
Input: xpad - add support for Amazon Game Controller
Input: ili210x - add missing negation for touch indication on ili210x
MAINTAINERS: repair reference in HYCON HY46XX TOUCHSCREEN SUPPORT
Input: add driver for the Hycon HY46XX touchpanel series
dt-bindings: touchscreen: Add HY46XX bindings
dt-bindings: Add Hycon Technology vendor prefix
Input: cyttsp - flag the device properly
Input: cyttsp - set abs params for ABS_MT_TOUCH_MAJOR
Input: cyttsp - drop the phys path
Input: cyttsp - reduce reset pulse timings
Input: cyttsp - error message on boot mode exit error
Input: apbps2 - remove useless variable
Input: mms114 - support MMS136
Input: mms114 - convert bindings to YAML and extend
Input: Add support for ILITEK Lego Series
dt-bindings: input: touchscreen: ilitek_ts_i2c: Add bindings
Input: add MStar MSG2638 touchscreen driver
dt-bindings: input/touchscreen: add bindings for msg2638
Input: silead - add workaround for x86 BIOS-es which bring the chip up in a stuck state
Input: elants_i2c - do not bind to i2c-hid compatible ACPI instantiated devices
...
Dave Airlie [Fri, 7 May 2021 02:44:50 +0000 (12:44 +1000)]
Merge tag 'amd-drm-fixes-5.13-2021-05-05' of https://gitlab.freedesktop.org/agd5f/linux into drm-next
amd-drm-fixes-5.13-2021-05-05:
amdgpu:
- MPO hang workaround
- Fix for concurrent VM flushes on vega/navi
- dcefclk is not adjustable on navi1x and newer
- MST HPD debugfs fix
- Suspend/resumes fixes
- Register VGA clients late in case driver fails to load
- Fix GEM leak in user framebuffer create
- Add support for polaris12 with 32 bit memory interface
- Fix duplicate cursor issue when using overlay
- Fix corruption with tiled surfaces on VCN3
- Add BO size and stride check to fix BO size verification
radeon:
- Fix off-by-one in power state parsing
- Fix possible memory leak in power state parsing
Jim Newsome [Fri, 7 May 2021 01:04:22 +0000 (18:04 -0700)]
do_wait: make PIDTYPE_PID case O(1) instead of O(n)
Add a special-case when waiting on a pid (via waitpid, waitid, wait4, etc)
to avoid doing an O(n) scan of children and tracees, and instead do an
O(1) lookup. This improves performance when waiting on a pid from a
thread group with many children and/or tracees.
Time to fork and then call waitpid on the child, from a task that already
has N children [1]:
N | Before | After
-----|---------|------
1 | 74 us | 74 us
20 | 72 us | 75 us
100 | 83 us | 77 us
500 | 99 us | 74 us
1000 | 179 us | 75 us
5000 | 804 us | 79 us
8000 | 1268 us | 78 us
[1]: https://lkml.org/lkml/2021/3/12/1567
This can make a substantial performance improvement for applications with
a thread that has many children or tracees and frequently needs to wait on
them. Tools that use ptrace to intercept syscalls for a large number of
processes are likely to fall into this category. In particular this patch
was developed while building a ptrace-based second generation of the
Shadow emulator [2], for which it allows us to avoid quadratic scaling
(without having to use a workaround that introduces a ~40% performance
penalty) [3]. Other examples of tools that fall into this category which
this patch may help include User Mode Linux [4] and DetTrace [5].
hpfs: replace one-element array with flexible-array member
There is a regular need in the kernel to provide a way to declare having
a dynamically sized set of trailing elements in a structure. Kernel code
should always use “flexible array members”[1] for these cases. The older
style of one-element or zero-length arrays should no longer be used[2].
Also, this helps with the ongoing efforts to enable -Warray-bounds by
fixing the following warning:
CC [M] fs/hpfs/dir.o
fs/hpfs/dir.c: In function `hpfs_readdir':
fs/hpfs/dir.c:163:41: warning: array subscript 1 is above array bounds of `u8[1]' {aka `unsigned char[1]'} [-Warray-bounds]
163 | || de ->name[0] != 1 || de->name[1] != 1))
| ~~~~~~~~^~~
In preparation to enable -Wimplicit-fallthrough for Clang, fix a warning
by explicitly adding a break statement instead of just letting the code
fall through to the next case.
Davidlohr Bueso [Fri, 7 May 2021 01:04:07 +0000 (18:04 -0700)]
fs/epoll: restore waking from ep_done_scan()
Commit 339ddb53d373 ("fs/epoll: remove unnecessary wakeups of nested
epoll") changed the userspace visible behavior of exclusive waiters
blocked on a common epoll descriptor upon a single event becoming ready.
Previously, all tasks doing epoll_wait would awake, and now only one is
awoken, potentially causing missed wakeups on applications that rely on
this behavior, such as Apache Qpid.
While the aforementioned commit aims at having only a wakeup single path
in ep_poll_callback (with the exceptions of epoll_ctl cases), we need to
restore the wakeup in what was the old ep_scan_ready_list() such that
the next thread can be awoken, in a cascading style, after the waker's
corresponding ep_send_events().
Davidlohr Bueso [Fri, 7 May 2021 01:04:04 +0000 (18:04 -0700)]
kselftest: introduce new epoll test case
Patch series "fs/epoll: restore user-visible behavior upon event ready".
This series tries to address a change in user visible behavior, reported
in https://bugzilla.kernel.org/show_bug.cgi?id=208943.
Epoll does not report an event to all the threads running epoll_wait()
on the same epoll descriptor. Unsurprisingly, this was bisected back to 339ddb53d373 (fs/epoll: remove unnecessary wakeups of nested epoll), which
has had various problems in the past, beyond only nested epoll usage.
This patch (of 2):
This incorporates the testcase originally reported in:
Which ensures an event is reported to all threads blocked on the same
epoll descriptor, otherwise only a single thread will receive the wakeup
once the event become ready.
Vincent Mailhol [Fri, 7 May 2021 01:03:58 +0000 (18:03 -0700)]
checkpatch: exclude four preprocessor sub-expressions from MACRO_ARG_REUSE
__must_be_array, offsetof, sizeof_field and __stringify are all
preprocessor macros and do not evaluate their arguments. As such, it is
safe not to warn when arguments are being reused in those four
sub-expressions.
Randy Dunlap [Fri, 7 May 2021 01:03:49 +0000 (18:03 -0700)]
lib: parser: clean up kernel-doc
Mark match_uint() as kernel-doc notation since it is already fully
annotated as such. Use % prefix on constants in kernel-doc comments.
Convert function return descriptions to use the "Return:" kernel-doc
notation.
Alex Shi [Fri, 7 May 2021 01:03:46 +0000 (18:03 -0700)]
lib/genalloc: add parameter description to fix doc compile warning
Commit 52fbf1134d47 ("lib/genalloc.c: fix allocation of aligned buffer
from non-aligned chunk") added a new parameter 'start_addr' w/o
description for it. That causes some doc compile warning:
lib/genalloc.c:649: warning: Function parameter or member 'start_addr' not described in 'gen_pool_first_fit'
lib/genalloc.c:667: warning: Function parameter or member 'start_addr' not described in 'gen_pool_first_fit_align'
lib/genalloc.c:694: warning: Function parameter or member 'start_addr' not described in 'gen_pool_fixed_alloc'
lib/genalloc.c:729: warning: Function parameter or member 'start_addr' not described in 'gen_pool_first_fit_order_align'
lib/genalloc.c:752: warning: Function parameter or member 'start_addr' not described in 'gen_pool_best_fit'