* Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
* a single port at the same time.
+ * James Chapman : Add L2TP encapsulation type.
*
*
* This program is free software; you can redistribute it and/or
static int udp_port_rover;
-/*
- * Note about this hash function :
- * Typical use is probably daddr = 0, only dport is going to vary hash
- */
-static inline unsigned int hash_port_and_addr(__u16 port, __be32 addr)
-{
- addr ^= addr >> 16;
- addr ^= addr >> 8;
- return port ^ addr;
-}
-
-static inline int __udp_lib_port_inuse(unsigned int hash, int port,
- __be32 daddr, struct hlist_head udptable[])
+static inline int __udp_lib_lport_inuse(__u16 num, struct hlist_head udptable[])
{
struct sock *sk;
struct hlist_node *node;
- struct inet_sock *inet;
- sk_for_each(sk, node, &udptable[hash & (UDP_HTABLE_SIZE - 1)]) {
- if (sk->sk_hash != hash)
- continue;
- inet = inet_sk(sk);
- if (inet->num != port)
- continue;
- if (inet->rcv_saddr == daddr)
+ sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
+ if (sk->sk_hash == num)
return 1;
- }
return 0;
}
struct hlist_node *node;
struct hlist_head *head;
struct sock *sk2;
- unsigned int hash;
int error = 1;
write_lock_bh(&udp_hash_lock);
for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
int size;
- hash = hash_port_and_addr(result,
- inet_sk(sk)->rcv_saddr);
- head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
+ head = &udptable[result & (UDP_HTABLE_SIZE - 1)];
if (hlist_empty(head)) {
if (result > sysctl_local_port_range[1])
result = sysctl_local_port_range[0] +
result = sysctl_local_port_range[0]
+ ((result - sysctl_local_port_range[0]) &
(UDP_HTABLE_SIZE - 1));
- hash = hash_port_and_addr(result, 0);
- if (__udp_lib_port_inuse(hash, result,
- 0, udptable))
- continue;
- if (!inet_sk(sk)->rcv_saddr)
- break;
-
- hash = hash_port_and_addr(result,
- inet_sk(sk)->rcv_saddr);
- if (! __udp_lib_port_inuse(hash, result,
- inet_sk(sk)->rcv_saddr, udptable))
+ if (! __udp_lib_lport_inuse(result, udptable))
break;
}
if (i >= (1 << 16) / UDP_HTABLE_SIZE)
gotit:
*port_rover = snum = result;
} else {
- hash = hash_port_and_addr(snum, 0);
- head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
+ head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
sk_for_each(sk2, node, head)
- if (sk2->sk_hash == hash &&
- sk2 != sk &&
- inet_sk(sk2)->num == snum &&
- (!sk2->sk_reuse || !sk->sk_reuse) &&
- (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
- sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
- (*saddr_comp)(sk, sk2))
+ if (sk2->sk_hash == snum &&
+ sk2 != sk &&
+ (!sk2->sk_reuse || !sk->sk_reuse) &&
+ (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
+ || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
+ (*saddr_comp)(sk, sk2) )
goto fail;
-
- if (inet_sk(sk)->rcv_saddr) {
- hash = hash_port_and_addr(snum,
- inet_sk(sk)->rcv_saddr);
- head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
-
- sk_for_each(sk2, node, head)
- if (sk2->sk_hash == hash &&
- sk2 != sk &&
- inet_sk(sk2)->num == snum &&
- (!sk2->sk_reuse || !sk->sk_reuse) &&
- (!sk2->sk_bound_dev_if ||
- !sk->sk_bound_dev_if ||
- sk2->sk_bound_dev_if ==
- sk->sk_bound_dev_if) &&
- (*saddr_comp)(sk, sk2))
- goto fail;
- }
}
inet_sk(sk)->num = snum;
- sk->sk_hash = hash;
+ sk->sk_hash = snum;
if (sk_unhashed(sk)) {
- head = &udptable[hash & (UDP_HTABLE_SIZE - 1)];
+ head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
sk_add_node(sk, head);
sock_prot_inc_use(sk->sk_prot);
}
{
struct sock *sk, *result = NULL;
struct hlist_node *node;
- unsigned int hash, hashwild;
- int score, best = -1, hport = ntohs(dport);
-
- hash = hash_port_and_addr(hport, daddr);
- hashwild = hash_port_and_addr(hport, 0);
+ unsigned short hnum = ntohs(dport);
+ int badness = -1;
read_lock(&udp_hash_lock);
-
-lookup:
-
- sk_for_each(sk, node, &udptable[hash & (UDP_HTABLE_SIZE - 1)]) {
+ sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
struct inet_sock *inet = inet_sk(sk);
- if (sk->sk_hash != hash || ipv6_only_sock(sk) ||
- inet->num != hport)
- continue;
-
- score = (sk->sk_family == PF_INET ? 1 : 0);
- if (inet->rcv_saddr) {
- if (inet->rcv_saddr != daddr)
- continue;
- score+=2;
- }
- if (inet->daddr) {
- if (inet->daddr != saddr)
- continue;
- score+=2;
- }
- if (inet->dport) {
- if (inet->dport != sport)
- continue;
- score+=2;
- }
- if (sk->sk_bound_dev_if) {
- if (sk->sk_bound_dev_if != dif)
- continue;
- score+=2;
- }
- if (score == 9) {
- result = sk;
- goto found;
- } else if (score > best) {
- result = sk;
- best = score;
+ if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) {
+ int score = (sk->sk_family == PF_INET ? 1 : 0);
+ if (inet->rcv_saddr) {
+ if (inet->rcv_saddr != daddr)
+ continue;
+ score+=2;
+ }
+ if (inet->daddr) {
+ if (inet->daddr != saddr)
+ continue;
+ score+=2;
+ }
+ if (inet->dport) {
+ if (inet->dport != sport)
+ continue;
+ score+=2;
+ }
+ if (sk->sk_bound_dev_if) {
+ if (sk->sk_bound_dev_if != dif)
+ continue;
+ score+=2;
+ }
+ if (score == 9) {
+ result = sk;
+ break;
+ } else if (score > badness) {
+ result = sk;
+ badness = score;
+ }
}
}
-
- if (hash != hashwild) {
- hash = hashwild;
- goto lookup;
- }
-found:
if (result)
sock_hold(result);
read_unlock(&udp_hash_lock);
return result;
}
-static inline struct sock *udp_v4_mcast_next(struct sock *sk, unsigned int hnum,
- int hport, __be32 loc_addr,
+static inline struct sock *udp_v4_mcast_next(struct sock *sk,
+ __be16 loc_port, __be32 loc_addr,
__be16 rmt_port, __be32 rmt_addr,
int dif)
{
struct hlist_node *node;
struct sock *s = sk;
+ unsigned short hnum = ntohs(loc_port);
sk_for_each_from(s, node) {
struct inet_sock *inet = inet_sk(s);
if (s->sk_hash != hnum ||
- inet->num != hport ||
(inet->daddr && inet->daddr != rmt_addr) ||
(inet->dport != rmt_port && inet->dport) ||
(inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
.dport = dport } } };
security_sk_classify_flow(sk, &fl);
err = ip_route_output_flow(&rt, &fl, sk, 1);
- if (err)
+ if (err) {
+ if (err == -ENETUNREACH)
+ IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
goto out;
+ }
err = -EACCES;
if ((rt->rt_flags & RTCF_BROADCAST) &&
return 0;
}
-/* return:
- * 1 if the UDP system should process it
- * 0 if we should drop this packet
- * -1 if it should get processed by xfrm4_rcv_encap
- */
-static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
-{
-#ifndef CONFIG_XFRM
- return 1;
-#else
- struct udp_sock *up = udp_sk(sk);
- struct udphdr *uh;
- struct iphdr *iph;
- int iphlen, len;
-
- __u8 *udpdata;
- __be32 *udpdata32;
- __u16 encap_type = up->encap_type;
-
- /* if we're overly short, let UDP handle it */
- len = skb->len - sizeof(struct udphdr);
- if (len <= 0)
- return 1;
-
- /* if this is not encapsulated socket, then just return now */
- if (!encap_type)
- return 1;
-
- /* If this is a paged skb, make sure we pull up
- * whatever data we need to look at. */
- if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
- return 1;
-
- /* Now we can get the pointers */
- uh = udp_hdr(skb);
- udpdata = (__u8 *)uh + sizeof(struct udphdr);
- udpdata32 = (__be32 *)udpdata;
-
- switch (encap_type) {
- default:
- case UDP_ENCAP_ESPINUDP:
- /* Check if this is a keepalive packet. If so, eat it. */
- if (len == 1 && udpdata[0] == 0xff) {
- return 0;
- } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
- /* ESP Packet without Non-ESP header */
- len = sizeof(struct udphdr);
- } else
- /* Must be an IKE packet.. pass it through */
- return 1;
- break;
- case UDP_ENCAP_ESPINUDP_NON_IKE:
- /* Check if this is a keepalive packet. If so, eat it. */
- if (len == 1 && udpdata[0] == 0xff) {
- return 0;
- } else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
- udpdata32[0] == 0 && udpdata32[1] == 0) {
-
- /* ESP Packet with Non-IKE marker */
- len = sizeof(struct udphdr) + 2 * sizeof(u32);
- } else
- /* Must be an IKE packet.. pass it through */
- return 1;
- break;
- }
-
- /* At this point we are sure that this is an ESPinUDP packet,
- * so we need to remove 'len' bytes from the packet (the UDP
- * header and optional ESP marker bytes) and then modify the
- * protocol to ESP, and then call into the transform receiver.
- */
- if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
- return 0;
-
- /* Now we can update and verify the packet length... */
- iph = ip_hdr(skb);
- iphlen = iph->ihl << 2;
- iph->tot_len = htons(ntohs(iph->tot_len) - len);
- if (skb->len < iphlen + len) {
- /* packet is too small!?! */
- return 0;
- }
-
- /* pull the data buffer up to the ESP header and set the
- * transport header to point to ESP. Keep UDP on the stack
- * for later.
- */
- __skb_pull(skb, len);
- skb_reset_transport_header(skb);
-
- /* modify the protocol (it's ESP!) */
- iph->protocol = IPPROTO_ESP;
-
- /* and let the caller know to send this into the ESP processor... */
- return -1;
-#endif
-}
-
/* returns:
* -1: error
* 0: success
if (up->encap_type) {
/*
- * This is an encapsulation socket, so let's see if this is
- * an encapsulated packet.
- * If it's a keepalive packet, then just eat it.
- * If it's an encapsulateed packet, then pass it to the
- * IPsec xfrm input and return the response
- * appropriately. Otherwise, just fall through and
- * pass this up the UDP socket.
+ * This is an encapsulation socket so pass the skb to
+ * the socket's udp_encap_rcv() hook. Otherwise, just
+ * fall through and pass this up the UDP socket.
+ * up->encap_rcv() returns the following value:
+ * =0 if skb was successfully passed to the encap
+ * handler or was discarded by it.
+ * >0 if skb should be passed on to UDP.
+ * <0 if skb should be resubmitted as proto -N
*/
- int ret;
+ unsigned int len;
- ret = udp_encap_rcv(sk, skb);
- if (ret == 0) {
- /* Eat the packet .. */
- kfree_skb(skb);
- return 0;
- }
- if (ret < 0) {
- /* process the ESP packet */
- ret = xfrm4_rcv_encap(skb, up->encap_type);
- UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
- return -ret;
+ /* if we're overly short, let UDP handle it */
+ len = skb->len - sizeof(struct udphdr);
+ if (len <= 0)
+ goto udp;
+
+ if (up->encap_rcv != NULL) {
+ int ret;
+
+ ret = (*up->encap_rcv)(sk, skb);
+ if (ret <= 0) {
+ UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
+ return -ret;
+ }
}
+
/* FALLTHROUGH -- it's a UDP Packet */
}
+udp:
/*
* UDP-Lite specific tests, ignored on UDP sockets
*/
__be32 saddr, __be32 daddr,
struct hlist_head udptable[])
{
- struct sock *sk, *skw, *sknext;
+ struct sock *sk;
int dif;
- int hport = ntohs(uh->dest);
- unsigned int hash = hash_port_and_addr(hport, daddr);
- unsigned int hashwild = hash_port_and_addr(hport, 0);
-
- dif = skb->dev->ifindex;
read_lock(&udp_hash_lock);
-
- sk = sk_head(&udptable[hash & (UDP_HTABLE_SIZE - 1)]);
- skw = sk_head(&udptable[hashwild & (UDP_HTABLE_SIZE - 1)]);
-
- sk = udp_v4_mcast_next(sk, hash, hport, daddr, uh->source, saddr, dif);
- if (!sk) {
- hash = hashwild;
- sk = udp_v4_mcast_next(skw, hash, hport, daddr, uh->source,
- saddr, dif);
- }
+ sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
+ dif = skb->dev->ifindex;
+ sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
if (sk) {
+ struct sock *sknext = NULL;
+
do {
struct sk_buff *skb1 = skb;
- sknext = udp_v4_mcast_next(sk_next(sk), hash, hport,
- daddr, uh->source, saddr, dif);
- if (!sknext && hash != hashwild) {
- hash = hashwild;
- sknext = udp_v4_mcast_next(skw, hash, hport,
- daddr, uh->source, saddr, dif);
- }
+
+ sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
+ uh->source, saddr, dif);
if (sknext)
skb1 = skb_clone(skb, GFP_ATOMIC);
if (skb1) {
int ret = udp_queue_rcv_skb(sk, skb1);
if (ret > 0)
- /*
- * we should probably re-process
- * instead of dropping packets here.
- */
+ /* we should probably re-process instead
+ * of dropping packets here. */
kfree_skb(skb1);
}
sk = sknext;
return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
- skb->dev->ifindex, udptable);
+ skb->dev->ifindex, udptable );
if (sk != NULL) {
int ret = udp_queue_rcv_skb(sk, skb);
case 0:
case UDP_ENCAP_ESPINUDP:
case UDP_ENCAP_ESPINUDP_NON_IKE:
+ up->encap_rcv = xfrm4_udp_encap_rcv;
+ /* FALLTHROUGH */
+ case UDP_ENCAP_L2TPINUDP:
up->encap_type = val;
break;
default: