]> Git Repo - linux.git/blob - drivers/md/dm-thin.c
05cf4e3f2bbea2b2bf85abf60b55ac044306dbd4
[linux.git] / drivers / md / dm-thin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX   "thin"
27
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39                 "A percentage of time allocated for copy on write");
40
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Key building.
115  */
116 enum lock_space {
117         VIRTUAL,
118         PHYSICAL
119 };
120
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124         key->virtual = (ls == VIRTUAL);
125         key->dev = dm_thin_dev_id(td);
126         key->block_begin = b;
127         key->block_end = e;
128
129         return dm_cell_key_has_valid_range(key);
130 }
131
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133                            struct dm_cell_key *key)
134 {
135         (void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139                               struct dm_cell_key *key)
140 {
141         (void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143
144 /*----------------------------------------------------------------*/
145
146 #define THROTTLE_THRESHOLD (1 * HZ)
147
148 struct throttle {
149         struct rw_semaphore lock;
150         unsigned long threshold;
151         bool throttle_applied;
152 };
153
154 static void throttle_init(struct throttle *t)
155 {
156         init_rwsem(&t->lock);
157         t->throttle_applied = false;
158 }
159
160 static void throttle_work_start(struct throttle *t)
161 {
162         t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164
165 static void throttle_work_update(struct throttle *t)
166 {
167         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168                 down_write(&t->lock);
169                 t->throttle_applied = true;
170         }
171 }
172
173 static void throttle_work_complete(struct throttle *t)
174 {
175         if (t->throttle_applied) {
176                 t->throttle_applied = false;
177                 up_write(&t->lock);
178         }
179 }
180
181 static void throttle_lock(struct throttle *t)
182 {
183         down_read(&t->lock);
184 }
185
186 static void throttle_unlock(struct throttle *t)
187 {
188         up_read(&t->lock);
189 }
190
191 /*----------------------------------------------------------------*/
192
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204         PM_WRITE,               /* metadata may be changed */
205         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
206
207         /*
208          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209          */
210         PM_OUT_OF_METADATA_SPACE,
211         PM_READ_ONLY,           /* metadata may not be changed */
212
213         PM_FAIL,                /* all I/O fails */
214 };
215
216 struct pool_features {
217         enum pool_mode mode;
218
219         bool zero_new_blocks:1;
220         bool discard_enabled:1;
221         bool discard_passdown:1;
222         bool error_if_no_space:1;
223 };
224
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229
230 #define CELL_SORT_ARRAY_SIZE 8192
231
232 struct pool {
233         struct list_head list;
234         struct dm_target *ti;   /* Only set if a pool target is bound */
235
236         struct mapped_device *pool_md;
237         struct block_device *data_dev;
238         struct block_device *md_dev;
239         struct dm_pool_metadata *pmd;
240
241         dm_block_t low_water_blocks;
242         uint32_t sectors_per_block;
243         int sectors_per_block_shift;
244
245         struct pool_features pf;
246         bool low_water_triggered:1;     /* A dm event has been sent */
247         bool suspended:1;
248         bool out_of_data_space:1;
249
250         struct dm_bio_prison *prison;
251         struct dm_kcopyd_client *copier;
252
253         struct work_struct worker;
254         struct workqueue_struct *wq;
255         struct throttle throttle;
256         struct delayed_work waker;
257         struct delayed_work no_space_timeout;
258
259         unsigned long last_commit_jiffies;
260         unsigned int ref_count;
261
262         spinlock_t lock;
263         struct bio_list deferred_flush_bios;
264         struct bio_list deferred_flush_completions;
265         struct list_head prepared_mappings;
266         struct list_head prepared_discards;
267         struct list_head prepared_discards_pt2;
268         struct list_head active_thins;
269
270         struct dm_deferred_set *shared_read_ds;
271         struct dm_deferred_set *all_io_ds;
272
273         struct dm_thin_new_mapping *next_mapping;
274
275         process_bio_fn process_bio;
276         process_bio_fn process_discard;
277
278         process_cell_fn process_cell;
279         process_cell_fn process_discard_cell;
280
281         process_mapping_fn process_prepared_mapping;
282         process_mapping_fn process_prepared_discard;
283         process_mapping_fn process_prepared_discard_pt2;
284
285         struct dm_bio_prison_cell **cell_sort_array;
286
287         mempool_t mapping_pool;
288 };
289
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294         return pool->pf.mode;
295 }
296
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299         static const char *descs[] = {
300                 "write",
301                 "out-of-data-space",
302                 "read-only",
303                 "read-only",
304                 "fail"
305         };
306         const char *extra_desc = NULL;
307         enum pool_mode mode = get_pool_mode(pool);
308
309         if (mode == PM_OUT_OF_DATA_SPACE) {
310                 if (!pool->pf.error_if_no_space)
311                         extra_desc = " (queue IO)";
312                 else
313                         extra_desc = " (error IO)";
314         }
315
316         dm_table_event(pool->ti->table);
317         DMINFO("%s: switching pool to %s%s mode",
318                dm_device_name(pool->pool_md),
319                descs[(int)mode], extra_desc ? : "");
320 }
321
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326         struct dm_target *ti;
327         struct pool *pool;
328         struct dm_dev *data_dev;
329         struct dm_dev *metadata_dev;
330
331         dm_block_t low_water_blocks;
332         struct pool_features requested_pf; /* Features requested during table load */
333         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340         struct list_head list;
341         struct dm_dev *pool_dev;
342         struct dm_dev *origin_dev;
343         sector_t origin_size;
344         dm_thin_id dev_id;
345
346         struct pool *pool;
347         struct dm_thin_device *td;
348         struct mapped_device *thin_md;
349
350         bool requeue_mode:1;
351         spinlock_t lock;
352         struct list_head deferred_cells;
353         struct bio_list deferred_bio_list;
354         struct bio_list retry_on_resume_list;
355         struct rb_root sort_bio_list; /* sorted list of deferred bios */
356
357         /*
358          * Ensures the thin is not destroyed until the worker has finished
359          * iterating the active_thins list.
360          */
361         refcount_t refcount;
362         struct completion can_destroy;
363 };
364
365 /*----------------------------------------------------------------*/
366
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369         return pool->sectors_per_block_shift >= 0;
370 }
371
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374         return block_size_is_power_of_two(pool) ?
375                 (b << pool->sectors_per_block_shift) :
376                 (b * pool->sectors_per_block);
377 }
378
379 /*----------------------------------------------------------------*/
380
381 struct discard_op {
382         struct thin_c *tc;
383         struct blk_plug plug;
384         struct bio *parent_bio;
385         struct bio *bio;
386 };
387
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390         BUG_ON(!parent);
391
392         op->tc = tc;
393         blk_start_plug(&op->plug);
394         op->parent_bio = parent;
395         op->bio = NULL;
396 }
397
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400         struct thin_c *tc = op->tc;
401         sector_t s = block_to_sectors(tc->pool, data_b);
402         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403
404         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406
407 static void end_discard(struct discard_op *op, int r)
408 {
409         if (op->bio) {
410                 /*
411                  * Even if one of the calls to issue_discard failed, we
412                  * need to wait for the chain to complete.
413                  */
414                 bio_chain(op->bio, op->parent_bio);
415                 op->bio->bi_opf = REQ_OP_DISCARD;
416                 submit_bio(op->bio);
417         }
418
419         blk_finish_plug(&op->plug);
420
421         /*
422          * Even if r is set, there could be sub discards in flight that we
423          * need to wait for.
424          */
425         if (r && !op->parent_bio->bi_status)
426                 op->parent_bio->bi_status = errno_to_blk_status(r);
427         bio_endio(op->parent_bio);
428 }
429
430 /*----------------------------------------------------------------*/
431
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438         queue_work(pool->wq, &pool->worker);
439 }
440
441 /*----------------------------------------------------------------*/
442
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444                       struct dm_bio_prison_cell **cell_result)
445 {
446         int r;
447         struct dm_bio_prison_cell *cell_prealloc;
448
449         /*
450          * Allocate a cell from the prison's mempool.
451          * This might block but it can't fail.
452          */
453         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456         if (r) {
457                 /*
458                  * We reused an old cell; we can get rid of
459                  * the new one.
460                  */
461                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462         }
463
464         return r;
465 }
466
467 static void cell_release(struct pool *pool,
468                          struct dm_bio_prison_cell *cell,
469                          struct bio_list *bios)
470 {
471         dm_cell_release(pool->prison, cell, bios);
472         dm_bio_prison_free_cell(pool->prison, cell);
473 }
474
475 static void cell_visit_release(struct pool *pool,
476                                void (*fn)(void *, struct dm_bio_prison_cell *),
477                                void *context,
478                                struct dm_bio_prison_cell *cell)
479 {
480         dm_cell_visit_release(pool->prison, fn, context, cell);
481         dm_bio_prison_free_cell(pool->prison, cell);
482 }
483
484 static void cell_release_no_holder(struct pool *pool,
485                                    struct dm_bio_prison_cell *cell,
486                                    struct bio_list *bios)
487 {
488         dm_cell_release_no_holder(pool->prison, cell, bios);
489         dm_bio_prison_free_cell(pool->prison, cell);
490 }
491
492 static void cell_error_with_code(struct pool *pool,
493                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495         dm_cell_error(pool->prison, cell, error_code);
496         dm_bio_prison_free_cell(pool->prison, cell);
497 }
498
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511         cell_error_with_code(pool, cell, 0);
512 }
513
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518
519 /*----------------------------------------------------------------*/
520
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525         struct mutex mutex;
526         struct list_head pools;
527 } dm_thin_pool_table;
528
529 static void pool_table_init(void)
530 {
531         mutex_init(&dm_thin_pool_table.mutex);
532         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534
535 static void pool_table_exit(void)
536 {
537         mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539
540 static void __pool_table_insert(struct pool *pool)
541 {
542         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543         list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545
546 static void __pool_table_remove(struct pool *pool)
547 {
548         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549         list_del(&pool->list);
550 }
551
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554         struct pool *pool = NULL, *tmp;
555
556         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557
558         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559                 if (tmp->pool_md == md) {
560                         pool = tmp;
561                         break;
562                 }
563         }
564
565         return pool;
566 }
567
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570         struct pool *pool = NULL, *tmp;
571
572         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573
574         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575                 if (tmp->md_dev == md_dev) {
576                         pool = tmp;
577                         break;
578                 }
579         }
580
581         return pool;
582 }
583
584 /*----------------------------------------------------------------*/
585
586 struct dm_thin_endio_hook {
587         struct thin_c *tc;
588         struct dm_deferred_entry *shared_read_entry;
589         struct dm_deferred_entry *all_io_entry;
590         struct dm_thin_new_mapping *overwrite_mapping;
591         struct rb_node rb_node;
592         struct dm_bio_prison_cell *cell;
593 };
594
595 static void error_bio_list(struct bio_list *bios, blk_status_t error)
596 {
597         struct bio *bio;
598
599         while ((bio = bio_list_pop(bios))) {
600                 bio->bi_status = error;
601                 bio_endio(bio);
602         }
603 }
604
605 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
606                 blk_status_t error)
607 {
608         struct bio_list bios;
609
610         bio_list_init(&bios);
611
612         spin_lock_irq(&tc->lock);
613         bio_list_merge_init(&bios, master);
614         spin_unlock_irq(&tc->lock);
615
616         error_bio_list(&bios, error);
617 }
618
619 static void requeue_deferred_cells(struct thin_c *tc)
620 {
621         struct pool *pool = tc->pool;
622         struct list_head cells;
623         struct dm_bio_prison_cell *cell, *tmp;
624
625         INIT_LIST_HEAD(&cells);
626
627         spin_lock_irq(&tc->lock);
628         list_splice_init(&tc->deferred_cells, &cells);
629         spin_unlock_irq(&tc->lock);
630
631         list_for_each_entry_safe(cell, tmp, &cells, user_list)
632                 cell_requeue(pool, cell);
633 }
634
635 static void requeue_io(struct thin_c *tc)
636 {
637         struct bio_list bios;
638
639         bio_list_init(&bios);
640
641         spin_lock_irq(&tc->lock);
642         bio_list_merge_init(&bios, &tc->deferred_bio_list);
643         bio_list_merge_init(&bios, &tc->retry_on_resume_list);
644         spin_unlock_irq(&tc->lock);
645
646         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
647         requeue_deferred_cells(tc);
648 }
649
650 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
651 {
652         struct thin_c *tc;
653
654         rcu_read_lock();
655         list_for_each_entry_rcu(tc, &pool->active_thins, list)
656                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
657         rcu_read_unlock();
658 }
659
660 static void error_retry_list(struct pool *pool)
661 {
662         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
663 }
664
665 /*
666  * This section of code contains the logic for processing a thin device's IO.
667  * Much of the code depends on pool object resources (lists, workqueues, etc)
668  * but most is exclusively called from the thin target rather than the thin-pool
669  * target.
670  */
671
672 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
673 {
674         struct pool *pool = tc->pool;
675         sector_t block_nr = bio->bi_iter.bi_sector;
676
677         if (block_size_is_power_of_two(pool))
678                 block_nr >>= pool->sectors_per_block_shift;
679         else
680                 (void) sector_div(block_nr, pool->sectors_per_block);
681
682         return block_nr;
683 }
684
685 /*
686  * Returns the _complete_ blocks that this bio covers.
687  */
688 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
689                                 dm_block_t *begin, dm_block_t *end)
690 {
691         struct pool *pool = tc->pool;
692         sector_t b = bio->bi_iter.bi_sector;
693         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
694
695         b += pool->sectors_per_block - 1ull; /* so we round up */
696
697         if (block_size_is_power_of_two(pool)) {
698                 b >>= pool->sectors_per_block_shift;
699                 e >>= pool->sectors_per_block_shift;
700         } else {
701                 (void) sector_div(b, pool->sectors_per_block);
702                 (void) sector_div(e, pool->sectors_per_block);
703         }
704
705         if (e < b) {
706                 /* Can happen if the bio is within a single block. */
707                 e = b;
708         }
709
710         *begin = b;
711         *end = e;
712 }
713
714 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
715 {
716         struct pool *pool = tc->pool;
717         sector_t bi_sector = bio->bi_iter.bi_sector;
718
719         bio_set_dev(bio, tc->pool_dev->bdev);
720         if (block_size_is_power_of_two(pool)) {
721                 bio->bi_iter.bi_sector =
722                         (block << pool->sectors_per_block_shift) |
723                         (bi_sector & (pool->sectors_per_block - 1));
724         } else {
725                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
726                                  sector_div(bi_sector, pool->sectors_per_block);
727         }
728 }
729
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732         bio_set_dev(bio, tc->origin_dev->bdev);
733 }
734
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737         return op_is_flush(bio->bi_opf) &&
738                 dm_thin_changed_this_transaction(tc->td);
739 }
740
741 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
742 {
743         struct dm_thin_endio_hook *h;
744
745         if (bio_op(bio) == REQ_OP_DISCARD)
746                 return;
747
748         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
749         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
750 }
751
752 static void issue(struct thin_c *tc, struct bio *bio)
753 {
754         struct pool *pool = tc->pool;
755
756         if (!bio_triggers_commit(tc, bio)) {
757                 dm_submit_bio_remap(bio, NULL);
758                 return;
759         }
760
761         /*
762          * Complete bio with an error if earlier I/O caused changes to
763          * the metadata that can't be committed e.g, due to I/O errors
764          * on the metadata device.
765          */
766         if (dm_thin_aborted_changes(tc->td)) {
767                 bio_io_error(bio);
768                 return;
769         }
770
771         /*
772          * Batch together any bios that trigger commits and then issue a
773          * single commit for them in process_deferred_bios().
774          */
775         spin_lock_irq(&pool->lock);
776         bio_list_add(&pool->deferred_flush_bios, bio);
777         spin_unlock_irq(&pool->lock);
778 }
779
780 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
781 {
782         remap_to_origin(tc, bio);
783         issue(tc, bio);
784 }
785
786 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
787                             dm_block_t block)
788 {
789         remap(tc, bio, block);
790         issue(tc, bio);
791 }
792
793 /*----------------------------------------------------------------*/
794
795 /*
796  * Bio endio functions.
797  */
798 struct dm_thin_new_mapping {
799         struct list_head list;
800
801         bool pass_discard:1;
802         bool maybe_shared:1;
803
804         /*
805          * Track quiescing, copying and zeroing preparation actions.  When this
806          * counter hits zero the block is prepared and can be inserted into the
807          * btree.
808          */
809         atomic_t prepare_actions;
810
811         blk_status_t status;
812         struct thin_c *tc;
813         dm_block_t virt_begin, virt_end;
814         dm_block_t data_block;
815         struct dm_bio_prison_cell *cell;
816
817         /*
818          * If the bio covers the whole area of a block then we can avoid
819          * zeroing or copying.  Instead this bio is hooked.  The bio will
820          * still be in the cell, so care has to be taken to avoid issuing
821          * the bio twice.
822          */
823         struct bio *bio;
824         bio_end_io_t *saved_bi_end_io;
825 };
826
827 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
828 {
829         struct pool *pool = m->tc->pool;
830
831         if (atomic_dec_and_test(&m->prepare_actions)) {
832                 list_add_tail(&m->list, &pool->prepared_mappings);
833                 wake_worker(pool);
834         }
835 }
836
837 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
838 {
839         unsigned long flags;
840         struct pool *pool = m->tc->pool;
841
842         spin_lock_irqsave(&pool->lock, flags);
843         __complete_mapping_preparation(m);
844         spin_unlock_irqrestore(&pool->lock, flags);
845 }
846
847 static void copy_complete(int read_err, unsigned long write_err, void *context)
848 {
849         struct dm_thin_new_mapping *m = context;
850
851         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
852         complete_mapping_preparation(m);
853 }
854
855 static void overwrite_endio(struct bio *bio)
856 {
857         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
858         struct dm_thin_new_mapping *m = h->overwrite_mapping;
859
860         bio->bi_end_io = m->saved_bi_end_io;
861
862         m->status = bio->bi_status;
863         complete_mapping_preparation(m);
864 }
865
866 /*----------------------------------------------------------------*/
867
868 /*
869  * Workqueue.
870  */
871
872 /*
873  * Prepared mapping jobs.
874  */
875
876 /*
877  * This sends the bios in the cell, except the original holder, back
878  * to the deferred_bios list.
879  */
880 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
881 {
882         struct pool *pool = tc->pool;
883         unsigned long flags;
884         struct bio_list bios;
885
886         bio_list_init(&bios);
887         cell_release_no_holder(pool, cell, &bios);
888
889         if (!bio_list_empty(&bios)) {
890                 spin_lock_irqsave(&tc->lock, flags);
891                 bio_list_merge(&tc->deferred_bio_list, &bios);
892                 spin_unlock_irqrestore(&tc->lock, flags);
893                 wake_worker(pool);
894         }
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963
964         /*
965          * If the bio has the REQ_FUA flag set we must commit the metadata
966          * before signaling its completion.
967          */
968         if (!bio_triggers_commit(tc, bio)) {
969                 bio_endio(bio);
970                 return;
971         }
972
973         /*
974          * Complete bio with an error if earlier I/O caused changes to the
975          * metadata that can't be committed, e.g, due to I/O errors on the
976          * metadata device.
977          */
978         if (dm_thin_aborted_changes(tc->td)) {
979                 bio_io_error(bio);
980                 return;
981         }
982
983         /*
984          * Batch together any bios that trigger commits and then issue a
985          * single commit for them in process_deferred_bios().
986          */
987         spin_lock_irq(&pool->lock);
988         bio_list_add(&pool->deferred_flush_completions, bio);
989         spin_unlock_irq(&pool->lock);
990 }
991
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994         struct thin_c *tc = m->tc;
995         struct pool *pool = tc->pool;
996         struct bio *bio = m->bio;
997         int r;
998
999         if (m->status) {
1000                 cell_error(pool, m->cell);
1001                 goto out;
1002         }
1003
1004         /*
1005          * Commit the prepared block into the mapping btree.
1006          * Any I/O for this block arriving after this point will get
1007          * remapped to it directly.
1008          */
1009         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010         if (r) {
1011                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012                 cell_error(pool, m->cell);
1013                 goto out;
1014         }
1015
1016         /*
1017          * Release any bios held while the block was being provisioned.
1018          * If we are processing a write bio that completely covers the block,
1019          * we already processed it so can ignore it now when processing
1020          * the bios in the cell.
1021          */
1022         if (bio) {
1023                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024                 complete_overwrite_bio(tc, bio);
1025         } else {
1026                 inc_all_io_entry(tc->pool, m->cell->holder);
1027                 remap_and_issue(tc, m->cell->holder, m->data_block);
1028                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029         }
1030
1031 out:
1032         list_del(&m->list);
1033         mempool_free(m, &pool->mapping_pool);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040         struct thin_c *tc = m->tc;
1041
1042         if (m->cell)
1043                 cell_defer_no_holder(tc, m->cell);
1044         mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049         bio_io_error(m->bio);
1050         free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055         bio_endio(m->bio);
1056         free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061         int r;
1062         struct thin_c *tc = m->tc;
1063
1064         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065         if (r) {
1066                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067                 bio_io_error(m->bio);
1068         } else
1069                 bio_endio(m->bio);
1070
1071         cell_defer_no_holder(tc, m->cell);
1072         mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078                                                    struct bio *discard_parent)
1079 {
1080         /*
1081          * We've already unmapped this range of blocks, but before we
1082          * passdown we have to check that these blocks are now unused.
1083          */
1084         int r = 0;
1085         bool shared = true;
1086         struct thin_c *tc = m->tc;
1087         struct pool *pool = tc->pool;
1088         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089         struct discard_op op;
1090
1091         begin_discard(&op, tc, discard_parent);
1092         while (b != end) {
1093                 /* find start of unmapped run */
1094                 for (; b < end; b++) {
1095                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096                         if (r)
1097                                 goto out;
1098
1099                         if (!shared)
1100                                 break;
1101                 }
1102
1103                 if (b == end)
1104                         break;
1105
1106                 /* find end of run */
1107                 for (e = b + 1; e != end; e++) {
1108                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109                         if (r)
1110                                 goto out;
1111
1112                         if (shared)
1113                                 break;
1114                 }
1115
1116                 r = issue_discard(&op, b, e);
1117                 if (r)
1118                         goto out;
1119
1120                 b = e;
1121         }
1122 out:
1123         end_discard(&op, r);
1124 }
1125
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128         unsigned long flags;
1129         struct pool *pool = m->tc->pool;
1130
1131         spin_lock_irqsave(&pool->lock, flags);
1132         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133         spin_unlock_irqrestore(&pool->lock, flags);
1134         wake_worker(pool);
1135 }
1136
1137 static void passdown_endio(struct bio *bio)
1138 {
1139         /*
1140          * It doesn't matter if the passdown discard failed, we still want
1141          * to unmap (we ignore err).
1142          */
1143         queue_passdown_pt2(bio->bi_private);
1144         bio_put(bio);
1145 }
1146
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149         int r;
1150         struct thin_c *tc = m->tc;
1151         struct pool *pool = tc->pool;
1152         struct bio *discard_parent;
1153         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155         /*
1156          * Only this thread allocates blocks, so we can be sure that the
1157          * newly unmapped blocks will not be allocated before the end of
1158          * the function.
1159          */
1160         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163                 bio_io_error(m->bio);
1164                 cell_defer_no_holder(tc, m->cell);
1165                 mempool_free(m, &pool->mapping_pool);
1166                 return;
1167         }
1168
1169         /*
1170          * Increment the unmapped blocks.  This prevents a race between the
1171          * passdown io and reallocation of freed blocks.
1172          */
1173         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174         if (r) {
1175                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176                 bio_io_error(m->bio);
1177                 cell_defer_no_holder(tc, m->cell);
1178                 mempool_free(m, &pool->mapping_pool);
1179                 return;
1180         }
1181
1182         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183         discard_parent->bi_end_io = passdown_endio;
1184         discard_parent->bi_private = m;
1185         if (m->maybe_shared)
1186                 passdown_double_checking_shared_status(m, discard_parent);
1187         else {
1188                 struct discard_op op;
1189
1190                 begin_discard(&op, tc, discard_parent);
1191                 r = issue_discard(&op, m->data_block, data_end);
1192                 end_discard(&op, r);
1193         }
1194 }
1195
1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197 {
1198         int r;
1199         struct thin_c *tc = m->tc;
1200         struct pool *pool = tc->pool;
1201
1202         /*
1203          * The passdown has completed, so now we can decrement all those
1204          * unmapped blocks.
1205          */
1206         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207                                    m->data_block + (m->virt_end - m->virt_begin));
1208         if (r) {
1209                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210                 bio_io_error(m->bio);
1211         } else
1212                 bio_endio(m->bio);
1213
1214         cell_defer_no_holder(tc, m->cell);
1215         mempool_free(m, &pool->mapping_pool);
1216 }
1217
1218 static void process_prepared(struct pool *pool, struct list_head *head,
1219                              process_mapping_fn *fn)
1220 {
1221         struct list_head maps;
1222         struct dm_thin_new_mapping *m, *tmp;
1223
1224         INIT_LIST_HEAD(&maps);
1225         spin_lock_irq(&pool->lock);
1226         list_splice_init(head, &maps);
1227         spin_unlock_irq(&pool->lock);
1228
1229         list_for_each_entry_safe(m, tmp, &maps, list)
1230                 (*fn)(m);
1231 }
1232
1233 /*
1234  * Deferred bio jobs.
1235  */
1236 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237 {
1238         return bio->bi_iter.bi_size ==
1239                 (pool->sectors_per_block << SECTOR_SHIFT);
1240 }
1241
1242 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243 {
1244         return (bio_data_dir(bio) == WRITE) &&
1245                 io_overlaps_block(pool, bio);
1246 }
1247
1248 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249                                bio_end_io_t *fn)
1250 {
1251         *save = bio->bi_end_io;
1252         bio->bi_end_io = fn;
1253 }
1254
1255 static int ensure_next_mapping(struct pool *pool)
1256 {
1257         if (pool->next_mapping)
1258                 return 0;
1259
1260         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261
1262         return pool->next_mapping ? 0 : -ENOMEM;
1263 }
1264
1265 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266 {
1267         struct dm_thin_new_mapping *m = pool->next_mapping;
1268
1269         BUG_ON(!pool->next_mapping);
1270
1271         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272         INIT_LIST_HEAD(&m->list);
1273         m->bio = NULL;
1274
1275         pool->next_mapping = NULL;
1276
1277         return m;
1278 }
1279
1280 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281                     sector_t begin, sector_t end)
1282 {
1283         struct dm_io_region to;
1284
1285         to.bdev = tc->pool_dev->bdev;
1286         to.sector = begin;
1287         to.count = end - begin;
1288
1289         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1290 }
1291
1292 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293                                       dm_block_t data_begin,
1294                                       struct dm_thin_new_mapping *m)
1295 {
1296         struct pool *pool = tc->pool;
1297         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298
1299         h->overwrite_mapping = m;
1300         m->bio = bio;
1301         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302         inc_all_io_entry(pool, bio);
1303         remap_and_issue(tc, bio, data_begin);
1304 }
1305
1306 /*
1307  * A partial copy also needs to zero the uncopied region.
1308  */
1309 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310                           struct dm_dev *origin, dm_block_t data_origin,
1311                           dm_block_t data_dest,
1312                           struct dm_bio_prison_cell *cell, struct bio *bio,
1313                           sector_t len)
1314 {
1315         struct pool *pool = tc->pool;
1316         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317
1318         m->tc = tc;
1319         m->virt_begin = virt_block;
1320         m->virt_end = virt_block + 1u;
1321         m->data_block = data_dest;
1322         m->cell = cell;
1323
1324         /*
1325          * quiesce action + copy action + an extra reference held for the
1326          * duration of this function (we may need to inc later for a
1327          * partial zero).
1328          */
1329         atomic_set(&m->prepare_actions, 3);
1330
1331         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332                 complete_mapping_preparation(m); /* already quiesced */
1333
1334         /*
1335          * IO to pool_dev remaps to the pool target's data_dev.
1336          *
1337          * If the whole block of data is being overwritten, we can issue the
1338          * bio immediately. Otherwise we use kcopyd to clone the data first.
1339          */
1340         if (io_overwrites_block(pool, bio))
1341                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1342         else {
1343                 struct dm_io_region from, to;
1344
1345                 from.bdev = origin->bdev;
1346                 from.sector = data_origin * pool->sectors_per_block;
1347                 from.count = len;
1348
1349                 to.bdev = tc->pool_dev->bdev;
1350                 to.sector = data_dest * pool->sectors_per_block;
1351                 to.count = len;
1352
1353                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354                                0, copy_complete, m);
1355
1356                 /*
1357                  * Do we need to zero a tail region?
1358                  */
1359                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360                         atomic_inc(&m->prepare_actions);
1361                         ll_zero(tc, m,
1362                                 data_dest * pool->sectors_per_block + len,
1363                                 (data_dest + 1) * pool->sectors_per_block);
1364                 }
1365         }
1366
1367         complete_mapping_preparation(m); /* drop our ref */
1368 }
1369
1370 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371                                    dm_block_t data_origin, dm_block_t data_dest,
1372                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1373 {
1374         schedule_copy(tc, virt_block, tc->pool_dev,
1375                       data_origin, data_dest, cell, bio,
1376                       tc->pool->sectors_per_block);
1377 }
1378
1379 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381                           struct bio *bio)
1382 {
1383         struct pool *pool = tc->pool;
1384         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385
1386         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387         m->tc = tc;
1388         m->virt_begin = virt_block;
1389         m->virt_end = virt_block + 1u;
1390         m->data_block = data_block;
1391         m->cell = cell;
1392
1393         /*
1394          * If the whole block of data is being overwritten or we are not
1395          * zeroing pre-existing data, we can issue the bio immediately.
1396          * Otherwise we use kcopyd to zero the data first.
1397          */
1398         if (pool->pf.zero_new_blocks) {
1399                 if (io_overwrites_block(pool, bio))
1400                         remap_and_issue_overwrite(tc, bio, data_block, m);
1401                 else {
1402                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1403                                 (data_block + 1) * pool->sectors_per_block);
1404                 }
1405         } else
1406                 process_prepared_mapping(m);
1407 }
1408
1409 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1410                                    dm_block_t data_dest,
1411                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1412 {
1413         struct pool *pool = tc->pool;
1414         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1415         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1416
1417         if (virt_block_end <= tc->origin_size) {
1418                 schedule_copy(tc, virt_block, tc->origin_dev,
1419                               virt_block, data_dest, cell, bio,
1420                               pool->sectors_per_block);
1421
1422         } else if (virt_block_begin < tc->origin_size) {
1423                 schedule_copy(tc, virt_block, tc->origin_dev,
1424                               virt_block, data_dest, cell, bio,
1425                               tc->origin_size - virt_block_begin);
1426
1427         } else
1428                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1429 }
1430
1431 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1432
1433 static void requeue_bios(struct pool *pool);
1434
1435 static bool is_read_only_pool_mode(enum pool_mode mode)
1436 {
1437         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1438 }
1439
1440 static bool is_read_only(struct pool *pool)
1441 {
1442         return is_read_only_pool_mode(get_pool_mode(pool));
1443 }
1444
1445 static void check_for_metadata_space(struct pool *pool)
1446 {
1447         int r;
1448         const char *ooms_reason = NULL;
1449         dm_block_t nr_free;
1450
1451         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1452         if (r)
1453                 ooms_reason = "Could not get free metadata blocks";
1454         else if (!nr_free)
1455                 ooms_reason = "No free metadata blocks";
1456
1457         if (ooms_reason && !is_read_only(pool)) {
1458                 DMERR("%s", ooms_reason);
1459                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1460         }
1461 }
1462
1463 static void check_for_data_space(struct pool *pool)
1464 {
1465         int r;
1466         dm_block_t nr_free;
1467
1468         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1469                 return;
1470
1471         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1472         if (r)
1473                 return;
1474
1475         if (nr_free) {
1476                 set_pool_mode(pool, PM_WRITE);
1477                 requeue_bios(pool);
1478         }
1479 }
1480
1481 /*
1482  * A non-zero return indicates read_only or fail_io mode.
1483  * Many callers don't care about the return value.
1484  */
1485 static int commit(struct pool *pool)
1486 {
1487         int r;
1488
1489         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1490                 return -EINVAL;
1491
1492         r = dm_pool_commit_metadata(pool->pmd);
1493         if (r)
1494                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1495         else {
1496                 check_for_metadata_space(pool);
1497                 check_for_data_space(pool);
1498         }
1499
1500         return r;
1501 }
1502
1503 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1504 {
1505         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1506                 DMWARN("%s: reached low water mark for data device: sending event.",
1507                        dm_device_name(pool->pool_md));
1508                 spin_lock_irq(&pool->lock);
1509                 pool->low_water_triggered = true;
1510                 spin_unlock_irq(&pool->lock);
1511                 dm_table_event(pool->ti->table);
1512         }
1513 }
1514
1515 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1516 {
1517         int r;
1518         dm_block_t free_blocks;
1519         struct pool *pool = tc->pool;
1520
1521         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1522                 return -EINVAL;
1523
1524         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1525         if (r) {
1526                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1527                 return r;
1528         }
1529
1530         check_low_water_mark(pool, free_blocks);
1531
1532         if (!free_blocks) {
1533                 /*
1534                  * Try to commit to see if that will free up some
1535                  * more space.
1536                  */
1537                 r = commit(pool);
1538                 if (r)
1539                         return r;
1540
1541                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1542                 if (r) {
1543                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1544                         return r;
1545                 }
1546
1547                 if (!free_blocks) {
1548                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1549                         return -ENOSPC;
1550                 }
1551         }
1552
1553         r = dm_pool_alloc_data_block(pool->pmd, result);
1554         if (r) {
1555                 if (r == -ENOSPC)
1556                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557                 else
1558                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1559                 return r;
1560         }
1561
1562         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1563         if (r) {
1564                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1565                 return r;
1566         }
1567
1568         if (!free_blocks) {
1569                 /* Let's commit before we use up the metadata reserve. */
1570                 r = commit(pool);
1571                 if (r)
1572                         return r;
1573         }
1574
1575         return 0;
1576 }
1577
1578 /*
1579  * If we have run out of space, queue bios until the device is
1580  * resumed, presumably after having been reloaded with more space.
1581  */
1582 static void retry_on_resume(struct bio *bio)
1583 {
1584         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1585         struct thin_c *tc = h->tc;
1586
1587         spin_lock_irq(&tc->lock);
1588         bio_list_add(&tc->retry_on_resume_list, bio);
1589         spin_unlock_irq(&tc->lock);
1590 }
1591
1592 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1593 {
1594         enum pool_mode m = get_pool_mode(pool);
1595
1596         switch (m) {
1597         case PM_WRITE:
1598                 /* Shouldn't get here */
1599                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600                 return BLK_STS_IOERR;
1601
1602         case PM_OUT_OF_DATA_SPACE:
1603                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1604
1605         case PM_OUT_OF_METADATA_SPACE:
1606         case PM_READ_ONLY:
1607         case PM_FAIL:
1608                 return BLK_STS_IOERR;
1609         default:
1610                 /* Shouldn't get here */
1611                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612                 return BLK_STS_IOERR;
1613         }
1614 }
1615
1616 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1617 {
1618         blk_status_t error = should_error_unserviceable_bio(pool);
1619
1620         if (error) {
1621                 bio->bi_status = error;
1622                 bio_endio(bio);
1623         } else
1624                 retry_on_resume(bio);
1625 }
1626
1627 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1628 {
1629         struct bio *bio;
1630         struct bio_list bios;
1631         blk_status_t error;
1632
1633         error = should_error_unserviceable_bio(pool);
1634         if (error) {
1635                 cell_error_with_code(pool, cell, error);
1636                 return;
1637         }
1638
1639         bio_list_init(&bios);
1640         cell_release(pool, cell, &bios);
1641
1642         while ((bio = bio_list_pop(&bios)))
1643                 retry_on_resume(bio);
1644 }
1645
1646 static void process_discard_cell_no_passdown(struct thin_c *tc,
1647                                              struct dm_bio_prison_cell *virt_cell)
1648 {
1649         struct pool *pool = tc->pool;
1650         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1651
1652         /*
1653          * We don't need to lock the data blocks, since there's no
1654          * passdown.  We only lock data blocks for allocation and breaking sharing.
1655          */
1656         m->tc = tc;
1657         m->virt_begin = virt_cell->key.block_begin;
1658         m->virt_end = virt_cell->key.block_end;
1659         m->cell = virt_cell;
1660         m->bio = virt_cell->holder;
1661
1662         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1663                 pool->process_prepared_discard(m);
1664 }
1665
1666 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1667                                  struct bio *bio)
1668 {
1669         struct pool *pool = tc->pool;
1670
1671         int r;
1672         bool maybe_shared;
1673         struct dm_cell_key data_key;
1674         struct dm_bio_prison_cell *data_cell;
1675         struct dm_thin_new_mapping *m;
1676         dm_block_t virt_begin, virt_end, data_begin, data_end;
1677         dm_block_t len, next_boundary;
1678
1679         while (begin != end) {
1680                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681                                               &data_begin, &maybe_shared);
1682                 if (r) {
1683                         /*
1684                          * Silently fail, letting any mappings we've
1685                          * created complete.
1686                          */
1687                         break;
1688                 }
1689
1690                 data_end = data_begin + (virt_end - virt_begin);
1691
1692                 /*
1693                  * Make sure the data region obeys the bio prison restrictions.
1694                  */
1695                 while (data_begin < data_end) {
1696                         r = ensure_next_mapping(pool);
1697                         if (r)
1698                                 return; /* we did our best */
1699
1700                         next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1701                                 << BIO_PRISON_MAX_RANGE_SHIFT;
1702                         len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1703
1704                         /* This key is certainly within range given the above splitting */
1705                         (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1706                         if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1707                                 /* contention, we'll give up with this range */
1708                                 data_begin += len;
1709                                 continue;
1710                         }
1711
1712                         /*
1713                          * IO may still be going to the destination block.  We must
1714                          * quiesce before we can do the removal.
1715                          */
1716                         m = get_next_mapping(pool);
1717                         m->tc = tc;
1718                         m->maybe_shared = maybe_shared;
1719                         m->virt_begin = virt_begin;
1720                         m->virt_end = virt_begin + len;
1721                         m->data_block = data_begin;
1722                         m->cell = data_cell;
1723                         m->bio = bio;
1724
1725                         /*
1726                          * The parent bio must not complete before sub discard bios are
1727                          * chained to it (see end_discard's bio_chain)!
1728                          *
1729                          * This per-mapping bi_remaining increment is paired with
1730                          * the implicit decrement that occurs via bio_endio() in
1731                          * end_discard().
1732                          */
1733                         bio_inc_remaining(bio);
1734                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1735                                 pool->process_prepared_discard(m);
1736
1737                         virt_begin += len;
1738                         data_begin += len;
1739                 }
1740
1741                 begin = virt_end;
1742         }
1743 }
1744
1745 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1746 {
1747         struct bio *bio = virt_cell->holder;
1748         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1749
1750         /*
1751          * The virt_cell will only get freed once the origin bio completes.
1752          * This means it will remain locked while all the individual
1753          * passdown bios are in flight.
1754          */
1755         h->cell = virt_cell;
1756         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1757
1758         /*
1759          * We complete the bio now, knowing that the bi_remaining field
1760          * will prevent completion until the sub range discards have
1761          * completed.
1762          */
1763         bio_endio(bio);
1764 }
1765
1766 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1767 {
1768         dm_block_t begin, end;
1769         struct dm_cell_key virt_key;
1770         struct dm_bio_prison_cell *virt_cell;
1771
1772         get_bio_block_range(tc, bio, &begin, &end);
1773         if (begin == end) {
1774                 /*
1775                  * The discard covers less than a block.
1776                  */
1777                 bio_endio(bio);
1778                 return;
1779         }
1780
1781         if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1782                 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1783                 bio_endio(bio);
1784                 return;
1785         }
1786
1787         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1788                 /*
1789                  * Potential starvation issue: We're relying on the
1790                  * fs/application being well behaved, and not trying to
1791                  * send IO to a region at the same time as discarding it.
1792                  * If they do this persistently then it's possible this
1793                  * cell will never be granted.
1794                  */
1795                 return;
1796         }
1797
1798         tc->pool->process_discard_cell(tc, virt_cell);
1799 }
1800
1801 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802                           struct dm_cell_key *key,
1803                           struct dm_thin_lookup_result *lookup_result,
1804                           struct dm_bio_prison_cell *cell)
1805 {
1806         int r;
1807         dm_block_t data_block;
1808         struct pool *pool = tc->pool;
1809
1810         r = alloc_data_block(tc, &data_block);
1811         switch (r) {
1812         case 0:
1813                 schedule_internal_copy(tc, block, lookup_result->block,
1814                                        data_block, cell, bio);
1815                 break;
1816
1817         case -ENOSPC:
1818                 retry_bios_on_resume(pool, cell);
1819                 break;
1820
1821         default:
1822                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823                             __func__, r);
1824                 cell_error(pool, cell);
1825                 break;
1826         }
1827 }
1828
1829 static void __remap_and_issue_shared_cell(void *context,
1830                                           struct dm_bio_prison_cell *cell)
1831 {
1832         struct remap_info *info = context;
1833         struct bio *bio;
1834
1835         while ((bio = bio_list_pop(&cell->bios))) {
1836                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837                     bio_op(bio) == REQ_OP_DISCARD)
1838                         bio_list_add(&info->defer_bios, bio);
1839                 else {
1840                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1841
1842                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843                         inc_all_io_entry(info->tc->pool, bio);
1844                         bio_list_add(&info->issue_bios, bio);
1845                 }
1846         }
1847 }
1848
1849 static void remap_and_issue_shared_cell(struct thin_c *tc,
1850                                         struct dm_bio_prison_cell *cell,
1851                                         dm_block_t block)
1852 {
1853         struct bio *bio;
1854         struct remap_info info;
1855
1856         info.tc = tc;
1857         bio_list_init(&info.defer_bios);
1858         bio_list_init(&info.issue_bios);
1859
1860         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861                            &info, cell);
1862
1863         while ((bio = bio_list_pop(&info.defer_bios)))
1864                 thin_defer_bio(tc, bio);
1865
1866         while ((bio = bio_list_pop(&info.issue_bios)))
1867                 remap_and_issue(tc, bio, block);
1868 }
1869
1870 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871                                dm_block_t block,
1872                                struct dm_thin_lookup_result *lookup_result,
1873                                struct dm_bio_prison_cell *virt_cell)
1874 {
1875         struct dm_bio_prison_cell *data_cell;
1876         struct pool *pool = tc->pool;
1877         struct dm_cell_key key;
1878
1879         /*
1880          * If cell is already occupied, then sharing is already in the process
1881          * of being broken so we have nothing further to do here.
1882          */
1883         build_data_key(tc->td, lookup_result->block, &key);
1884         if (bio_detain(pool, &key, bio, &data_cell)) {
1885                 cell_defer_no_holder(tc, virt_cell);
1886                 return;
1887         }
1888
1889         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891                 cell_defer_no_holder(tc, virt_cell);
1892         } else {
1893                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1894
1895                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896                 inc_all_io_entry(pool, bio);
1897                 remap_and_issue(tc, bio, lookup_result->block);
1898
1899                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1901         }
1902 }
1903
1904 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905                             struct dm_bio_prison_cell *cell)
1906 {
1907         int r;
1908         dm_block_t data_block;
1909         struct pool *pool = tc->pool;
1910
1911         /*
1912          * Remap empty bios (flushes) immediately, without provisioning.
1913          */
1914         if (!bio->bi_iter.bi_size) {
1915                 inc_all_io_entry(pool, bio);
1916                 cell_defer_no_holder(tc, cell);
1917
1918                 remap_and_issue(tc, bio, 0);
1919                 return;
1920         }
1921
1922         /*
1923          * Fill read bios with zeroes and complete them immediately.
1924          */
1925         if (bio_data_dir(bio) == READ) {
1926                 zero_fill_bio(bio);
1927                 cell_defer_no_holder(tc, cell);
1928                 bio_endio(bio);
1929                 return;
1930         }
1931
1932         r = alloc_data_block(tc, &data_block);
1933         switch (r) {
1934         case 0:
1935                 if (tc->origin_dev)
1936                         schedule_external_copy(tc, block, data_block, cell, bio);
1937                 else
1938                         schedule_zero(tc, block, data_block, cell, bio);
1939                 break;
1940
1941         case -ENOSPC:
1942                 retry_bios_on_resume(pool, cell);
1943                 break;
1944
1945         default:
1946                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947                             __func__, r);
1948                 cell_error(pool, cell);
1949                 break;
1950         }
1951 }
1952
1953 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1954 {
1955         int r;
1956         struct pool *pool = tc->pool;
1957         struct bio *bio = cell->holder;
1958         dm_block_t block = get_bio_block(tc, bio);
1959         struct dm_thin_lookup_result lookup_result;
1960
1961         if (tc->requeue_mode) {
1962                 cell_requeue(pool, cell);
1963                 return;
1964         }
1965
1966         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967         switch (r) {
1968         case 0:
1969                 if (lookup_result.shared)
1970                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1971                 else {
1972                         inc_all_io_entry(pool, bio);
1973                         remap_and_issue(tc, bio, lookup_result.block);
1974                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1975                 }
1976                 break;
1977
1978         case -ENODATA:
1979                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980                         inc_all_io_entry(pool, bio);
1981                         cell_defer_no_holder(tc, cell);
1982
1983                         if (bio_end_sector(bio) <= tc->origin_size)
1984                                 remap_to_origin_and_issue(tc, bio);
1985
1986                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987                                 zero_fill_bio(bio);
1988                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989                                 remap_to_origin_and_issue(tc, bio);
1990
1991                         } else {
1992                                 zero_fill_bio(bio);
1993                                 bio_endio(bio);
1994                         }
1995                 } else
1996                         provision_block(tc, bio, block, cell);
1997                 break;
1998
1999         default:
2000                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001                             __func__, r);
2002                 cell_defer_no_holder(tc, cell);
2003                 bio_io_error(bio);
2004                 break;
2005         }
2006 }
2007
2008 static void process_bio(struct thin_c *tc, struct bio *bio)
2009 {
2010         struct pool *pool = tc->pool;
2011         dm_block_t block = get_bio_block(tc, bio);
2012         struct dm_bio_prison_cell *cell;
2013         struct dm_cell_key key;
2014
2015         /*
2016          * If cell is already occupied, then the block is already
2017          * being provisioned so we have nothing further to do here.
2018          */
2019         build_virtual_key(tc->td, block, &key);
2020         if (bio_detain(pool, &key, bio, &cell))
2021                 return;
2022
2023         process_cell(tc, cell);
2024 }
2025
2026 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027                                     struct dm_bio_prison_cell *cell)
2028 {
2029         int r;
2030         int rw = bio_data_dir(bio);
2031         dm_block_t block = get_bio_block(tc, bio);
2032         struct dm_thin_lookup_result lookup_result;
2033
2034         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035         switch (r) {
2036         case 0:
2037                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038                         handle_unserviceable_bio(tc->pool, bio);
2039                         if (cell)
2040                                 cell_defer_no_holder(tc, cell);
2041                 } else {
2042                         inc_all_io_entry(tc->pool, bio);
2043                         remap_and_issue(tc, bio, lookup_result.block);
2044                         if (cell)
2045                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2046                 }
2047                 break;
2048
2049         case -ENODATA:
2050                 if (cell)
2051                         cell_defer_no_holder(tc, cell);
2052                 if (rw != READ) {
2053                         handle_unserviceable_bio(tc->pool, bio);
2054                         break;
2055                 }
2056
2057                 if (tc->origin_dev) {
2058                         inc_all_io_entry(tc->pool, bio);
2059                         remap_to_origin_and_issue(tc, bio);
2060                         break;
2061                 }
2062
2063                 zero_fill_bio(bio);
2064                 bio_endio(bio);
2065                 break;
2066
2067         default:
2068                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069                             __func__, r);
2070                 if (cell)
2071                         cell_defer_no_holder(tc, cell);
2072                 bio_io_error(bio);
2073                 break;
2074         }
2075 }
2076
2077 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2078 {
2079         __process_bio_read_only(tc, bio, NULL);
2080 }
2081
2082 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 {
2084         __process_bio_read_only(tc, cell->holder, cell);
2085 }
2086
2087 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2088 {
2089         bio_endio(bio);
2090 }
2091
2092 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2093 {
2094         bio_io_error(bio);
2095 }
2096
2097 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2098 {
2099         cell_success(tc->pool, cell);
2100 }
2101
2102 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2103 {
2104         cell_error(tc->pool, cell);
2105 }
2106
2107 /*
2108  * FIXME: should we also commit due to size of transaction, measured in
2109  * metadata blocks?
2110  */
2111 static int need_commit_due_to_time(struct pool *pool)
2112 {
2113         return !time_in_range(jiffies, pool->last_commit_jiffies,
2114                               pool->last_commit_jiffies + COMMIT_PERIOD);
2115 }
2116
2117 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2119
2120 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2121 {
2122         struct rb_node **rbp, *parent;
2123         struct dm_thin_endio_hook *pbd;
2124         sector_t bi_sector = bio->bi_iter.bi_sector;
2125
2126         rbp = &tc->sort_bio_list.rb_node;
2127         parent = NULL;
2128         while (*rbp) {
2129                 parent = *rbp;
2130                 pbd = thin_pbd(parent);
2131
2132                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133                         rbp = &(*rbp)->rb_left;
2134                 else
2135                         rbp = &(*rbp)->rb_right;
2136         }
2137
2138         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139         rb_link_node(&pbd->rb_node, parent, rbp);
2140         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2141 }
2142
2143 static void __extract_sorted_bios(struct thin_c *tc)
2144 {
2145         struct rb_node *node;
2146         struct dm_thin_endio_hook *pbd;
2147         struct bio *bio;
2148
2149         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150                 pbd = thin_pbd(node);
2151                 bio = thin_bio(pbd);
2152
2153                 bio_list_add(&tc->deferred_bio_list, bio);
2154                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2155         }
2156
2157         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2158 }
2159
2160 static void __sort_thin_deferred_bios(struct thin_c *tc)
2161 {
2162         struct bio *bio;
2163         struct bio_list bios;
2164
2165         bio_list_init(&bios);
2166         bio_list_merge(&bios, &tc->deferred_bio_list);
2167         bio_list_init(&tc->deferred_bio_list);
2168
2169         /* Sort deferred_bio_list using rb-tree */
2170         while ((bio = bio_list_pop(&bios)))
2171                 __thin_bio_rb_add(tc, bio);
2172
2173         /*
2174          * Transfer the sorted bios in sort_bio_list back to
2175          * deferred_bio_list to allow lockless submission of
2176          * all bios.
2177          */
2178         __extract_sorted_bios(tc);
2179 }
2180
2181 static void process_thin_deferred_bios(struct thin_c *tc)
2182 {
2183         struct pool *pool = tc->pool;
2184         struct bio *bio;
2185         struct bio_list bios;
2186         struct blk_plug plug;
2187         unsigned int count = 0;
2188
2189         if (tc->requeue_mode) {
2190                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2191                                 BLK_STS_DM_REQUEUE);
2192                 return;
2193         }
2194
2195         bio_list_init(&bios);
2196
2197         spin_lock_irq(&tc->lock);
2198
2199         if (bio_list_empty(&tc->deferred_bio_list)) {
2200                 spin_unlock_irq(&tc->lock);
2201                 return;
2202         }
2203
2204         __sort_thin_deferred_bios(tc);
2205
2206         bio_list_merge(&bios, &tc->deferred_bio_list);
2207         bio_list_init(&tc->deferred_bio_list);
2208
2209         spin_unlock_irq(&tc->lock);
2210
2211         blk_start_plug(&plug);
2212         while ((bio = bio_list_pop(&bios))) {
2213                 /*
2214                  * If we've got no free new_mapping structs, and processing
2215                  * this bio might require one, we pause until there are some
2216                  * prepared mappings to process.
2217                  */
2218                 if (ensure_next_mapping(pool)) {
2219                         spin_lock_irq(&tc->lock);
2220                         bio_list_add(&tc->deferred_bio_list, bio);
2221                         bio_list_merge(&tc->deferred_bio_list, &bios);
2222                         spin_unlock_irq(&tc->lock);
2223                         break;
2224                 }
2225
2226                 if (bio_op(bio) == REQ_OP_DISCARD)
2227                         pool->process_discard(tc, bio);
2228                 else
2229                         pool->process_bio(tc, bio);
2230
2231                 if ((count++ & 127) == 0) {
2232                         throttle_work_update(&pool->throttle);
2233                         dm_pool_issue_prefetches(pool->pmd);
2234                 }
2235                 cond_resched();
2236         }
2237         blk_finish_plug(&plug);
2238 }
2239
2240 static int cmp_cells(const void *lhs, const void *rhs)
2241 {
2242         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2243         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2244
2245         BUG_ON(!lhs_cell->holder);
2246         BUG_ON(!rhs_cell->holder);
2247
2248         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2249                 return -1;
2250
2251         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2252                 return 1;
2253
2254         return 0;
2255 }
2256
2257 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2258 {
2259         unsigned int count = 0;
2260         struct dm_bio_prison_cell *cell, *tmp;
2261
2262         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2263                 if (count >= CELL_SORT_ARRAY_SIZE)
2264                         break;
2265
2266                 pool->cell_sort_array[count++] = cell;
2267                 list_del(&cell->user_list);
2268         }
2269
2270         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2271
2272         return count;
2273 }
2274
2275 static void process_thin_deferred_cells(struct thin_c *tc)
2276 {
2277         struct pool *pool = tc->pool;
2278         struct list_head cells;
2279         struct dm_bio_prison_cell *cell;
2280         unsigned int i, j, count;
2281
2282         INIT_LIST_HEAD(&cells);
2283
2284         spin_lock_irq(&tc->lock);
2285         list_splice_init(&tc->deferred_cells, &cells);
2286         spin_unlock_irq(&tc->lock);
2287
2288         if (list_empty(&cells))
2289                 return;
2290
2291         do {
2292                 count = sort_cells(tc->pool, &cells);
2293
2294                 for (i = 0; i < count; i++) {
2295                         cell = pool->cell_sort_array[i];
2296                         BUG_ON(!cell->holder);
2297
2298                         /*
2299                          * If we've got no free new_mapping structs, and processing
2300                          * this bio might require one, we pause until there are some
2301                          * prepared mappings to process.
2302                          */
2303                         if (ensure_next_mapping(pool)) {
2304                                 for (j = i; j < count; j++)
2305                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2306
2307                                 spin_lock_irq(&tc->lock);
2308                                 list_splice(&cells, &tc->deferred_cells);
2309                                 spin_unlock_irq(&tc->lock);
2310                                 return;
2311                         }
2312
2313                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2314                                 pool->process_discard_cell(tc, cell);
2315                         else
2316                                 pool->process_cell(tc, cell);
2317                 }
2318                 cond_resched();
2319         } while (!list_empty(&cells));
2320 }
2321
2322 static void thin_get(struct thin_c *tc);
2323 static void thin_put(struct thin_c *tc);
2324
2325 /*
2326  * We can't hold rcu_read_lock() around code that can block.  So we
2327  * find a thin with the rcu lock held; bump a refcount; then drop
2328  * the lock.
2329  */
2330 static struct thin_c *get_first_thin(struct pool *pool)
2331 {
2332         struct thin_c *tc = NULL;
2333
2334         rcu_read_lock();
2335         tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2336         if (tc)
2337                 thin_get(tc);
2338         rcu_read_unlock();
2339
2340         return tc;
2341 }
2342
2343 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2344 {
2345         struct thin_c *old_tc = tc;
2346
2347         rcu_read_lock();
2348         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2349                 thin_get(tc);
2350                 thin_put(old_tc);
2351                 rcu_read_unlock();
2352                 return tc;
2353         }
2354         thin_put(old_tc);
2355         rcu_read_unlock();
2356
2357         return NULL;
2358 }
2359
2360 static void process_deferred_bios(struct pool *pool)
2361 {
2362         struct bio *bio;
2363         struct bio_list bios, bio_completions;
2364         struct thin_c *tc;
2365
2366         tc = get_first_thin(pool);
2367         while (tc) {
2368                 process_thin_deferred_cells(tc);
2369                 process_thin_deferred_bios(tc);
2370                 tc = get_next_thin(pool, tc);
2371         }
2372
2373         /*
2374          * If there are any deferred flush bios, we must commit the metadata
2375          * before issuing them or signaling their completion.
2376          */
2377         bio_list_init(&bios);
2378         bio_list_init(&bio_completions);
2379
2380         spin_lock_irq(&pool->lock);
2381         bio_list_merge(&bios, &pool->deferred_flush_bios);
2382         bio_list_init(&pool->deferred_flush_bios);
2383
2384         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2385         bio_list_init(&pool->deferred_flush_completions);
2386         spin_unlock_irq(&pool->lock);
2387
2388         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2389             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2390                 return;
2391
2392         if (commit(pool)) {
2393                 bio_list_merge(&bios, &bio_completions);
2394
2395                 while ((bio = bio_list_pop(&bios)))
2396                         bio_io_error(bio);
2397                 return;
2398         }
2399         pool->last_commit_jiffies = jiffies;
2400
2401         while ((bio = bio_list_pop(&bio_completions)))
2402                 bio_endio(bio);
2403
2404         while ((bio = bio_list_pop(&bios))) {
2405                 /*
2406                  * The data device was flushed as part of metadata commit,
2407                  * so complete redundant flushes immediately.
2408                  */
2409                 if (bio->bi_opf & REQ_PREFLUSH)
2410                         bio_endio(bio);
2411                 else
2412                         dm_submit_bio_remap(bio, NULL);
2413         }
2414 }
2415
2416 static void do_worker(struct work_struct *ws)
2417 {
2418         struct pool *pool = container_of(ws, struct pool, worker);
2419
2420         throttle_work_start(&pool->throttle);
2421         dm_pool_issue_prefetches(pool->pmd);
2422         throttle_work_update(&pool->throttle);
2423         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2424         throttle_work_update(&pool->throttle);
2425         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2426         throttle_work_update(&pool->throttle);
2427         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2428         throttle_work_update(&pool->throttle);
2429         process_deferred_bios(pool);
2430         throttle_work_complete(&pool->throttle);
2431 }
2432
2433 /*
2434  * We want to commit periodically so that not too much
2435  * unwritten data builds up.
2436  */
2437 static void do_waker(struct work_struct *ws)
2438 {
2439         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2440
2441         wake_worker(pool);
2442         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2443 }
2444
2445 /*
2446  * We're holding onto IO to allow userland time to react.  After the
2447  * timeout either the pool will have been resized (and thus back in
2448  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2449  */
2450 static void do_no_space_timeout(struct work_struct *ws)
2451 {
2452         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2453                                          no_space_timeout);
2454
2455         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2456                 pool->pf.error_if_no_space = true;
2457                 notify_of_pool_mode_change(pool);
2458                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2459         }
2460 }
2461
2462 /*----------------------------------------------------------------*/
2463
2464 struct pool_work {
2465         struct work_struct worker;
2466         struct completion complete;
2467 };
2468
2469 static struct pool_work *to_pool_work(struct work_struct *ws)
2470 {
2471         return container_of(ws, struct pool_work, worker);
2472 }
2473
2474 static void pool_work_complete(struct pool_work *pw)
2475 {
2476         complete(&pw->complete);
2477 }
2478
2479 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2480                            void (*fn)(struct work_struct *))
2481 {
2482         INIT_WORK_ONSTACK(&pw->worker, fn);
2483         init_completion(&pw->complete);
2484         queue_work(pool->wq, &pw->worker);
2485         wait_for_completion(&pw->complete);
2486         destroy_work_on_stack(&pw->worker);
2487 }
2488
2489 /*----------------------------------------------------------------*/
2490
2491 struct noflush_work {
2492         struct pool_work pw;
2493         struct thin_c *tc;
2494 };
2495
2496 static struct noflush_work *to_noflush(struct work_struct *ws)
2497 {
2498         return container_of(to_pool_work(ws), struct noflush_work, pw);
2499 }
2500
2501 static void do_noflush_start(struct work_struct *ws)
2502 {
2503         struct noflush_work *w = to_noflush(ws);
2504
2505         w->tc->requeue_mode = true;
2506         requeue_io(w->tc);
2507         pool_work_complete(&w->pw);
2508 }
2509
2510 static void do_noflush_stop(struct work_struct *ws)
2511 {
2512         struct noflush_work *w = to_noflush(ws);
2513
2514         w->tc->requeue_mode = false;
2515         pool_work_complete(&w->pw);
2516 }
2517
2518 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2519 {
2520         struct noflush_work w;
2521
2522         w.tc = tc;
2523         pool_work_wait(&w.pw, tc->pool, fn);
2524 }
2525
2526 /*----------------------------------------------------------------*/
2527
2528 static void set_discard_callbacks(struct pool *pool)
2529 {
2530         struct pool_c *pt = pool->ti->private;
2531
2532         if (pt->adjusted_pf.discard_passdown) {
2533                 pool->process_discard_cell = process_discard_cell_passdown;
2534                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2535                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2536         } else {
2537                 pool->process_discard_cell = process_discard_cell_no_passdown;
2538                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2539         }
2540 }
2541
2542 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2543 {
2544         struct pool_c *pt = pool->ti->private;
2545         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2546         enum pool_mode old_mode = get_pool_mode(pool);
2547         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2548
2549         /*
2550          * Never allow the pool to transition to PM_WRITE mode if user
2551          * intervention is required to verify metadata and data consistency.
2552          */
2553         if (new_mode == PM_WRITE && needs_check) {
2554                 DMERR("%s: unable to switch pool to write mode until repaired.",
2555                       dm_device_name(pool->pool_md));
2556                 if (old_mode != new_mode)
2557                         new_mode = old_mode;
2558                 else
2559                         new_mode = PM_READ_ONLY;
2560         }
2561         /*
2562          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2563          * not going to recover without a thin_repair.  So we never let the
2564          * pool move out of the old mode.
2565          */
2566         if (old_mode == PM_FAIL)
2567                 new_mode = old_mode;
2568
2569         switch (new_mode) {
2570         case PM_FAIL:
2571                 dm_pool_metadata_read_only(pool->pmd);
2572                 pool->process_bio = process_bio_fail;
2573                 pool->process_discard = process_bio_fail;
2574                 pool->process_cell = process_cell_fail;
2575                 pool->process_discard_cell = process_cell_fail;
2576                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2577                 pool->process_prepared_discard = process_prepared_discard_fail;
2578
2579                 error_retry_list(pool);
2580                 break;
2581
2582         case PM_OUT_OF_METADATA_SPACE:
2583         case PM_READ_ONLY:
2584                 dm_pool_metadata_read_only(pool->pmd);
2585                 pool->process_bio = process_bio_read_only;
2586                 pool->process_discard = process_bio_success;
2587                 pool->process_cell = process_cell_read_only;
2588                 pool->process_discard_cell = process_cell_success;
2589                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2590                 pool->process_prepared_discard = process_prepared_discard_success;
2591
2592                 error_retry_list(pool);
2593                 break;
2594
2595         case PM_OUT_OF_DATA_SPACE:
2596                 /*
2597                  * Ideally we'd never hit this state; the low water mark
2598                  * would trigger userland to extend the pool before we
2599                  * completely run out of data space.  However, many small
2600                  * IOs to unprovisioned space can consume data space at an
2601                  * alarming rate.  Adjust your low water mark if you're
2602                  * frequently seeing this mode.
2603                  */
2604                 pool->out_of_data_space = true;
2605                 pool->process_bio = process_bio_read_only;
2606                 pool->process_discard = process_discard_bio;
2607                 pool->process_cell = process_cell_read_only;
2608                 pool->process_prepared_mapping = process_prepared_mapping;
2609                 set_discard_callbacks(pool);
2610
2611                 if (!pool->pf.error_if_no_space && no_space_timeout)
2612                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2613                 break;
2614
2615         case PM_WRITE:
2616                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2617                         cancel_delayed_work_sync(&pool->no_space_timeout);
2618                 pool->out_of_data_space = false;
2619                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2620                 dm_pool_metadata_read_write(pool->pmd);
2621                 pool->process_bio = process_bio;
2622                 pool->process_discard = process_discard_bio;
2623                 pool->process_cell = process_cell;
2624                 pool->process_prepared_mapping = process_prepared_mapping;
2625                 set_discard_callbacks(pool);
2626                 break;
2627         }
2628
2629         pool->pf.mode = new_mode;
2630         /*
2631          * The pool mode may have changed, sync it so bind_control_target()
2632          * doesn't cause an unexpected mode transition on resume.
2633          */
2634         pt->adjusted_pf.mode = new_mode;
2635
2636         if (old_mode != new_mode)
2637                 notify_of_pool_mode_change(pool);
2638 }
2639
2640 static void abort_transaction(struct pool *pool)
2641 {
2642         const char *dev_name = dm_device_name(pool->pool_md);
2643
2644         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2645         if (dm_pool_abort_metadata(pool->pmd)) {
2646                 DMERR("%s: failed to abort metadata transaction", dev_name);
2647                 set_pool_mode(pool, PM_FAIL);
2648         }
2649
2650         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2651                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2652                 set_pool_mode(pool, PM_FAIL);
2653         }
2654 }
2655
2656 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2657 {
2658         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2659                     dm_device_name(pool->pool_md), op, r);
2660
2661         abort_transaction(pool);
2662         set_pool_mode(pool, PM_READ_ONLY);
2663 }
2664
2665 /*----------------------------------------------------------------*/
2666
2667 /*
2668  * Mapping functions.
2669  */
2670
2671 /*
2672  * Called only while mapping a thin bio to hand it over to the workqueue.
2673  */
2674 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2675 {
2676         struct pool *pool = tc->pool;
2677
2678         spin_lock_irq(&tc->lock);
2679         bio_list_add(&tc->deferred_bio_list, bio);
2680         spin_unlock_irq(&tc->lock);
2681
2682         wake_worker(pool);
2683 }
2684
2685 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2686 {
2687         struct pool *pool = tc->pool;
2688
2689         throttle_lock(&pool->throttle);
2690         thin_defer_bio(tc, bio);
2691         throttle_unlock(&pool->throttle);
2692 }
2693
2694 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2695 {
2696         struct pool *pool = tc->pool;
2697
2698         throttle_lock(&pool->throttle);
2699         spin_lock_irq(&tc->lock);
2700         list_add_tail(&cell->user_list, &tc->deferred_cells);
2701         spin_unlock_irq(&tc->lock);
2702         throttle_unlock(&pool->throttle);
2703
2704         wake_worker(pool);
2705 }
2706
2707 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2708 {
2709         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2710
2711         h->tc = tc;
2712         h->shared_read_entry = NULL;
2713         h->all_io_entry = NULL;
2714         h->overwrite_mapping = NULL;
2715         h->cell = NULL;
2716 }
2717
2718 /*
2719  * Non-blocking function called from the thin target's map function.
2720  */
2721 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2722 {
2723         int r;
2724         struct thin_c *tc = ti->private;
2725         dm_block_t block = get_bio_block(tc, bio);
2726         struct dm_thin_device *td = tc->td;
2727         struct dm_thin_lookup_result result;
2728         struct dm_bio_prison_cell *virt_cell, *data_cell;
2729         struct dm_cell_key key;
2730
2731         thin_hook_bio(tc, bio);
2732
2733         if (tc->requeue_mode) {
2734                 bio->bi_status = BLK_STS_DM_REQUEUE;
2735                 bio_endio(bio);
2736                 return DM_MAPIO_SUBMITTED;
2737         }
2738
2739         if (get_pool_mode(tc->pool) == PM_FAIL) {
2740                 bio_io_error(bio);
2741                 return DM_MAPIO_SUBMITTED;
2742         }
2743
2744         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2745                 thin_defer_bio_with_throttle(tc, bio);
2746                 return DM_MAPIO_SUBMITTED;
2747         }
2748
2749         /*
2750          * We must hold the virtual cell before doing the lookup, otherwise
2751          * there's a race with discard.
2752          */
2753         build_virtual_key(tc->td, block, &key);
2754         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2755                 return DM_MAPIO_SUBMITTED;
2756
2757         r = dm_thin_find_block(td, block, 0, &result);
2758
2759         /*
2760          * Note that we defer readahead too.
2761          */
2762         switch (r) {
2763         case 0:
2764                 if (unlikely(result.shared)) {
2765                         /*
2766                          * We have a race condition here between the
2767                          * result.shared value returned by the lookup and
2768                          * snapshot creation, which may cause new
2769                          * sharing.
2770                          *
2771                          * To avoid this always quiesce the origin before
2772                          * taking the snap.  You want to do this anyway to
2773                          * ensure a consistent application view
2774                          * (i.e. lockfs).
2775                          *
2776                          * More distant ancestors are irrelevant. The
2777                          * shared flag will be set in their case.
2778                          */
2779                         thin_defer_cell(tc, virt_cell);
2780                         return DM_MAPIO_SUBMITTED;
2781                 }
2782
2783                 build_data_key(tc->td, result.block, &key);
2784                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2785                         cell_defer_no_holder(tc, virt_cell);
2786                         return DM_MAPIO_SUBMITTED;
2787                 }
2788
2789                 inc_all_io_entry(tc->pool, bio);
2790                 cell_defer_no_holder(tc, data_cell);
2791                 cell_defer_no_holder(tc, virt_cell);
2792
2793                 remap(tc, bio, result.block);
2794                 return DM_MAPIO_REMAPPED;
2795
2796         case -ENODATA:
2797         case -EWOULDBLOCK:
2798                 thin_defer_cell(tc, virt_cell);
2799                 return DM_MAPIO_SUBMITTED;
2800
2801         default:
2802                 /*
2803                  * Must always call bio_io_error on failure.
2804                  * dm_thin_find_block can fail with -EINVAL if the
2805                  * pool is switched to fail-io mode.
2806                  */
2807                 bio_io_error(bio);
2808                 cell_defer_no_holder(tc, virt_cell);
2809                 return DM_MAPIO_SUBMITTED;
2810         }
2811 }
2812
2813 static void requeue_bios(struct pool *pool)
2814 {
2815         struct thin_c *tc;
2816
2817         rcu_read_lock();
2818         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2819                 spin_lock_irq(&tc->lock);
2820                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2821                 bio_list_init(&tc->retry_on_resume_list);
2822                 spin_unlock_irq(&tc->lock);
2823         }
2824         rcu_read_unlock();
2825 }
2826
2827 /*
2828  *--------------------------------------------------------------
2829  * Binding of control targets to a pool object
2830  *--------------------------------------------------------------
2831  */
2832 static bool is_factor(sector_t block_size, uint32_t n)
2833 {
2834         return !sector_div(block_size, n);
2835 }
2836
2837 /*
2838  * If discard_passdown was enabled verify that the data device
2839  * supports discards.  Disable discard_passdown if not.
2840  */
2841 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2842 {
2843         struct pool *pool = pt->pool;
2844         struct block_device *data_bdev = pt->data_dev->bdev;
2845         struct queue_limits *data_limits = bdev_limits(data_bdev);
2846         const char *reason = NULL;
2847
2848         if (!pt->adjusted_pf.discard_passdown)
2849                 return;
2850
2851         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2852                 reason = "discard unsupported";
2853
2854         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2855                 reason = "max discard sectors smaller than a block";
2856
2857         if (reason) {
2858                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2859                 pt->adjusted_pf.discard_passdown = false;
2860         }
2861 }
2862
2863 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2864 {
2865         struct pool_c *pt = ti->private;
2866
2867         /*
2868          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2869          */
2870         enum pool_mode old_mode = get_pool_mode(pool);
2871         enum pool_mode new_mode = pt->adjusted_pf.mode;
2872
2873         /*
2874          * Don't change the pool's mode until set_pool_mode() below.
2875          * Otherwise the pool's process_* function pointers may
2876          * not match the desired pool mode.
2877          */
2878         pt->adjusted_pf.mode = old_mode;
2879
2880         pool->ti = ti;
2881         pool->pf = pt->adjusted_pf;
2882         pool->low_water_blocks = pt->low_water_blocks;
2883
2884         set_pool_mode(pool, new_mode);
2885
2886         return 0;
2887 }
2888
2889 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2890 {
2891         if (pool->ti == ti)
2892                 pool->ti = NULL;
2893 }
2894
2895 /*
2896  *--------------------------------------------------------------
2897  * Pool creation
2898  *--------------------------------------------------------------
2899  */
2900 /* Initialize pool features. */
2901 static void pool_features_init(struct pool_features *pf)
2902 {
2903         pf->mode = PM_WRITE;
2904         pf->zero_new_blocks = true;
2905         pf->discard_enabled = true;
2906         pf->discard_passdown = true;
2907         pf->error_if_no_space = false;
2908 }
2909
2910 static void __pool_destroy(struct pool *pool)
2911 {
2912         __pool_table_remove(pool);
2913
2914         vfree(pool->cell_sort_array);
2915         if (dm_pool_metadata_close(pool->pmd) < 0)
2916                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2917
2918         dm_bio_prison_destroy(pool->prison);
2919         dm_kcopyd_client_destroy(pool->copier);
2920
2921         cancel_delayed_work_sync(&pool->waker);
2922         cancel_delayed_work_sync(&pool->no_space_timeout);
2923         if (pool->wq)
2924                 destroy_workqueue(pool->wq);
2925
2926         if (pool->next_mapping)
2927                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2928         mempool_exit(&pool->mapping_pool);
2929         dm_deferred_set_destroy(pool->shared_read_ds);
2930         dm_deferred_set_destroy(pool->all_io_ds);
2931         kfree(pool);
2932 }
2933
2934 static struct kmem_cache *_new_mapping_cache;
2935
2936 static struct pool *pool_create(struct mapped_device *pool_md,
2937                                 struct block_device *metadata_dev,
2938                                 struct block_device *data_dev,
2939                                 unsigned long block_size,
2940                                 int read_only, char **error)
2941 {
2942         int r;
2943         void *err_p;
2944         struct pool *pool;
2945         struct dm_pool_metadata *pmd;
2946         bool format_device = read_only ? false : true;
2947
2948         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949         if (IS_ERR(pmd)) {
2950                 *error = "Error creating metadata object";
2951                 return ERR_CAST(pmd);
2952         }
2953
2954         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955         if (!pool) {
2956                 *error = "Error allocating memory for pool";
2957                 err_p = ERR_PTR(-ENOMEM);
2958                 goto bad_pool;
2959         }
2960
2961         pool->pmd = pmd;
2962         pool->sectors_per_block = block_size;
2963         if (block_size & (block_size - 1))
2964                 pool->sectors_per_block_shift = -1;
2965         else
2966                 pool->sectors_per_block_shift = __ffs(block_size);
2967         pool->low_water_blocks = 0;
2968         pool_features_init(&pool->pf);
2969         pool->prison = dm_bio_prison_create();
2970         if (!pool->prison) {
2971                 *error = "Error creating pool's bio prison";
2972                 err_p = ERR_PTR(-ENOMEM);
2973                 goto bad_prison;
2974         }
2975
2976         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977         if (IS_ERR(pool->copier)) {
2978                 r = PTR_ERR(pool->copier);
2979                 *error = "Error creating pool's kcopyd client";
2980                 err_p = ERR_PTR(r);
2981                 goto bad_kcopyd_client;
2982         }
2983
2984         /*
2985          * Create singlethreaded workqueue that will service all devices
2986          * that use this metadata.
2987          */
2988         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989         if (!pool->wq) {
2990                 *error = "Error creating pool's workqueue";
2991                 err_p = ERR_PTR(-ENOMEM);
2992                 goto bad_wq;
2993         }
2994
2995         throttle_init(&pool->throttle);
2996         INIT_WORK(&pool->worker, do_worker);
2997         INIT_DELAYED_WORK(&pool->waker, do_waker);
2998         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999         spin_lock_init(&pool->lock);
3000         bio_list_init(&pool->deferred_flush_bios);
3001         bio_list_init(&pool->deferred_flush_completions);
3002         INIT_LIST_HEAD(&pool->prepared_mappings);
3003         INIT_LIST_HEAD(&pool->prepared_discards);
3004         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005         INIT_LIST_HEAD(&pool->active_thins);
3006         pool->low_water_triggered = false;
3007         pool->suspended = true;
3008         pool->out_of_data_space = false;
3009
3010         pool->shared_read_ds = dm_deferred_set_create();
3011         if (!pool->shared_read_ds) {
3012                 *error = "Error creating pool's shared read deferred set";
3013                 err_p = ERR_PTR(-ENOMEM);
3014                 goto bad_shared_read_ds;
3015         }
3016
3017         pool->all_io_ds = dm_deferred_set_create();
3018         if (!pool->all_io_ds) {
3019                 *error = "Error creating pool's all io deferred set";
3020                 err_p = ERR_PTR(-ENOMEM);
3021                 goto bad_all_io_ds;
3022         }
3023
3024         pool->next_mapping = NULL;
3025         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026                                    _new_mapping_cache);
3027         if (r) {
3028                 *error = "Error creating pool's mapping mempool";
3029                 err_p = ERR_PTR(r);
3030                 goto bad_mapping_pool;
3031         }
3032
3033         pool->cell_sort_array =
3034                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035                                    sizeof(*pool->cell_sort_array)));
3036         if (!pool->cell_sort_array) {
3037                 *error = "Error allocating cell sort array";
3038                 err_p = ERR_PTR(-ENOMEM);
3039                 goto bad_sort_array;
3040         }
3041
3042         pool->ref_count = 1;
3043         pool->last_commit_jiffies = jiffies;
3044         pool->pool_md = pool_md;
3045         pool->md_dev = metadata_dev;
3046         pool->data_dev = data_dev;
3047         __pool_table_insert(pool);
3048
3049         return pool;
3050
3051 bad_sort_array:
3052         mempool_exit(&pool->mapping_pool);
3053 bad_mapping_pool:
3054         dm_deferred_set_destroy(pool->all_io_ds);
3055 bad_all_io_ds:
3056         dm_deferred_set_destroy(pool->shared_read_ds);
3057 bad_shared_read_ds:
3058         destroy_workqueue(pool->wq);
3059 bad_wq:
3060         dm_kcopyd_client_destroy(pool->copier);
3061 bad_kcopyd_client:
3062         dm_bio_prison_destroy(pool->prison);
3063 bad_prison:
3064         kfree(pool);
3065 bad_pool:
3066         if (dm_pool_metadata_close(pmd))
3067                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3068
3069         return err_p;
3070 }
3071
3072 static void __pool_inc(struct pool *pool)
3073 {
3074         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3075         pool->ref_count++;
3076 }
3077
3078 static void __pool_dec(struct pool *pool)
3079 {
3080         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081         BUG_ON(!pool->ref_count);
3082         if (!--pool->ref_count)
3083                 __pool_destroy(pool);
3084 }
3085
3086 static struct pool *__pool_find(struct mapped_device *pool_md,
3087                                 struct block_device *metadata_dev,
3088                                 struct block_device *data_dev,
3089                                 unsigned long block_size, int read_only,
3090                                 char **error, int *created)
3091 {
3092         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3093
3094         if (pool) {
3095                 if (pool->pool_md != pool_md) {
3096                         *error = "metadata device already in use by a pool";
3097                         return ERR_PTR(-EBUSY);
3098                 }
3099                 if (pool->data_dev != data_dev) {
3100                         *error = "data device already in use by a pool";
3101                         return ERR_PTR(-EBUSY);
3102                 }
3103                 __pool_inc(pool);
3104
3105         } else {
3106                 pool = __pool_table_lookup(pool_md);
3107                 if (pool) {
3108                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3109                                 *error = "different pool cannot replace a pool";
3110                                 return ERR_PTR(-EINVAL);
3111                         }
3112                         __pool_inc(pool);
3113
3114                 } else {
3115                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3116                         *created = 1;
3117                 }
3118         }
3119
3120         return pool;
3121 }
3122
3123 /*
3124  *--------------------------------------------------------------
3125  * Pool target methods
3126  *--------------------------------------------------------------
3127  */
3128 static void pool_dtr(struct dm_target *ti)
3129 {
3130         struct pool_c *pt = ti->private;
3131
3132         mutex_lock(&dm_thin_pool_table.mutex);
3133
3134         unbind_control_target(pt->pool, ti);
3135         __pool_dec(pt->pool);
3136         dm_put_device(ti, pt->metadata_dev);
3137         dm_put_device(ti, pt->data_dev);
3138         kfree(pt);
3139
3140         mutex_unlock(&dm_thin_pool_table.mutex);
3141 }
3142
3143 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144                                struct dm_target *ti)
3145 {
3146         int r;
3147         unsigned int argc;
3148         const char *arg_name;
3149
3150         static const struct dm_arg _args[] = {
3151                 {0, 4, "Invalid number of pool feature arguments"},
3152         };
3153
3154         /*
3155          * No feature arguments supplied.
3156          */
3157         if (!as->argc)
3158                 return 0;
3159
3160         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161         if (r)
3162                 return -EINVAL;
3163
3164         while (argc && !r) {
3165                 arg_name = dm_shift_arg(as);
3166                 argc--;
3167
3168                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169                         pf->zero_new_blocks = false;
3170
3171                 else if (!strcasecmp(arg_name, "ignore_discard"))
3172                         pf->discard_enabled = false;
3173
3174                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175                         pf->discard_passdown = false;
3176
3177                 else if (!strcasecmp(arg_name, "read_only"))
3178                         pf->mode = PM_READ_ONLY;
3179
3180                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3181                         pf->error_if_no_space = true;
3182
3183                 else {
3184                         ti->error = "Unrecognised pool feature requested";
3185                         r = -EINVAL;
3186                         break;
3187                 }
3188         }
3189
3190         return r;
3191 }
3192
3193 static void metadata_low_callback(void *context)
3194 {
3195         struct pool *pool = context;
3196
3197         DMWARN("%s: reached low water mark for metadata device: sending event.",
3198                dm_device_name(pool->pool_md));
3199
3200         dm_table_event(pool->ti->table);
3201 }
3202
3203 /*
3204  * We need to flush the data device **before** committing the metadata.
3205  *
3206  * This ensures that the data blocks of any newly inserted mappings are
3207  * properly written to non-volatile storage and won't be lost in case of a
3208  * crash.
3209  *
3210  * Failure to do so can result in data corruption in the case of internal or
3211  * external snapshots and in the case of newly provisioned blocks, when block
3212  * zeroing is enabled.
3213  */
3214 static int metadata_pre_commit_callback(void *context)
3215 {
3216         struct pool *pool = context;
3217
3218         return blkdev_issue_flush(pool->data_dev);
3219 }
3220
3221 static sector_t get_dev_size(struct block_device *bdev)
3222 {
3223         return bdev_nr_sectors(bdev);
3224 }
3225
3226 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3227 {
3228         sector_t metadata_dev_size = get_dev_size(bdev);
3229
3230         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3231                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3232                        bdev, THIN_METADATA_MAX_SECTORS);
3233 }
3234
3235 static sector_t get_metadata_dev_size(struct block_device *bdev)
3236 {
3237         sector_t metadata_dev_size = get_dev_size(bdev);
3238
3239         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3240                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3241
3242         return metadata_dev_size;
3243 }
3244
3245 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3246 {
3247         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3248
3249         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3250
3251         return metadata_dev_size;
3252 }
3253
3254 /*
3255  * When a metadata threshold is crossed a dm event is triggered, and
3256  * userland should respond by growing the metadata device.  We could let
3257  * userland set the threshold, like we do with the data threshold, but I'm
3258  * not sure they know enough to do this well.
3259  */
3260 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3261 {
3262         /*
3263          * 4M is ample for all ops with the possible exception of thin
3264          * device deletion which is harmless if it fails (just retry the
3265          * delete after you've grown the device).
3266          */
3267         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3268
3269         return min((dm_block_t)1024ULL /* 4M */, quarter);
3270 }
3271
3272 /*
3273  * thin-pool <metadata dev> <data dev>
3274  *           <data block size (sectors)>
3275  *           <low water mark (blocks)>
3276  *           [<#feature args> [<arg>]*]
3277  *
3278  * Optional feature arguments are:
3279  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3280  *           ignore_discard: disable discard
3281  *           no_discard_passdown: don't pass discards down to the data device
3282  *           read_only: Don't allow any changes to be made to the pool metadata.
3283  *           error_if_no_space: error IOs, instead of queueing, if no space.
3284  */
3285 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3286 {
3287         int r, pool_created = 0;
3288         struct pool_c *pt;
3289         struct pool *pool;
3290         struct pool_features pf;
3291         struct dm_arg_set as;
3292         struct dm_dev *data_dev;
3293         unsigned long block_size;
3294         dm_block_t low_water_blocks;
3295         struct dm_dev *metadata_dev;
3296         blk_mode_t metadata_mode;
3297
3298         /*
3299          * FIXME Remove validation from scope of lock.
3300          */
3301         mutex_lock(&dm_thin_pool_table.mutex);
3302
3303         if (argc < 4) {
3304                 ti->error = "Invalid argument count";
3305                 r = -EINVAL;
3306                 goto out_unlock;
3307         }
3308
3309         as.argc = argc;
3310         as.argv = argv;
3311
3312         /* make sure metadata and data are different devices */
3313         if (!strcmp(argv[0], argv[1])) {
3314                 ti->error = "Error setting metadata or data device";
3315                 r = -EINVAL;
3316                 goto out_unlock;
3317         }
3318
3319         /*
3320          * Set default pool features.
3321          */
3322         pool_features_init(&pf);
3323
3324         dm_consume_args(&as, 4);
3325         r = parse_pool_features(&as, &pf, ti);
3326         if (r)
3327                 goto out_unlock;
3328
3329         metadata_mode = BLK_OPEN_READ |
3330                 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3331         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3332         if (r) {
3333                 ti->error = "Error opening metadata block device";
3334                 goto out_unlock;
3335         }
3336         warn_if_metadata_device_too_big(metadata_dev->bdev);
3337
3338         r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3339         if (r) {
3340                 ti->error = "Error getting data device";
3341                 goto out_metadata;
3342         }
3343
3344         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3345             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3346             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3347             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3348                 ti->error = "Invalid block size";
3349                 r = -EINVAL;
3350                 goto out;
3351         }
3352
3353         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3354                 ti->error = "Invalid low water mark";
3355                 r = -EINVAL;
3356                 goto out;
3357         }
3358
3359         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3360         if (!pt) {
3361                 r = -ENOMEM;
3362                 goto out;
3363         }
3364
3365         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3366                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3367         if (IS_ERR(pool)) {
3368                 r = PTR_ERR(pool);
3369                 goto out_free_pt;
3370         }
3371
3372         /*
3373          * 'pool_created' reflects whether this is the first table load.
3374          * Top level discard support is not allowed to be changed after
3375          * initial load.  This would require a pool reload to trigger thin
3376          * device changes.
3377          */
3378         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3379                 ti->error = "Discard support cannot be disabled once enabled";
3380                 r = -EINVAL;
3381                 goto out_flags_changed;
3382         }
3383
3384         pt->pool = pool;
3385         pt->ti = ti;
3386         pt->metadata_dev = metadata_dev;
3387         pt->data_dev = data_dev;
3388         pt->low_water_blocks = low_water_blocks;
3389         pt->adjusted_pf = pt->requested_pf = pf;
3390         ti->num_flush_bios = 1;
3391         ti->limit_swap_bios = true;
3392
3393         /*
3394          * Only need to enable discards if the pool should pass
3395          * them down to the data device.  The thin device's discard
3396          * processing will cause mappings to be removed from the btree.
3397          */
3398         if (pf.discard_enabled && pf.discard_passdown) {
3399                 ti->num_discard_bios = 1;
3400                 /*
3401                  * Setting 'discards_supported' circumvents the normal
3402                  * stacking of discard limits (this keeps the pool and
3403                  * thin devices' discard limits consistent).
3404                  */
3405                 ti->discards_supported = true;
3406                 ti->max_discard_granularity = true;
3407         }
3408         ti->private = pt;
3409
3410         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3411                                                 calc_metadata_threshold(pt),
3412                                                 metadata_low_callback,
3413                                                 pool);
3414         if (r) {
3415                 ti->error = "Error registering metadata threshold";
3416                 goto out_flags_changed;
3417         }
3418
3419         dm_pool_register_pre_commit_callback(pool->pmd,
3420                                              metadata_pre_commit_callback, pool);
3421
3422         mutex_unlock(&dm_thin_pool_table.mutex);
3423
3424         return 0;
3425
3426 out_flags_changed:
3427         __pool_dec(pool);
3428 out_free_pt:
3429         kfree(pt);
3430 out:
3431         dm_put_device(ti, data_dev);
3432 out_metadata:
3433         dm_put_device(ti, metadata_dev);
3434 out_unlock:
3435         mutex_unlock(&dm_thin_pool_table.mutex);
3436
3437         return r;
3438 }
3439
3440 static int pool_map(struct dm_target *ti, struct bio *bio)
3441 {
3442         struct pool_c *pt = ti->private;
3443         struct pool *pool = pt->pool;
3444
3445         /*
3446          * As this is a singleton target, ti->begin is always zero.
3447          */
3448         spin_lock_irq(&pool->lock);
3449         bio_set_dev(bio, pt->data_dev->bdev);
3450         spin_unlock_irq(&pool->lock);
3451
3452         return DM_MAPIO_REMAPPED;
3453 }
3454
3455 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3456 {
3457         int r;
3458         struct pool_c *pt = ti->private;
3459         struct pool *pool = pt->pool;
3460         sector_t data_size = ti->len;
3461         dm_block_t sb_data_size;
3462
3463         *need_commit = false;
3464
3465         (void) sector_div(data_size, pool->sectors_per_block);
3466
3467         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3468         if (r) {
3469                 DMERR("%s: failed to retrieve data device size",
3470                       dm_device_name(pool->pool_md));
3471                 return r;
3472         }
3473
3474         if (data_size < sb_data_size) {
3475                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3476                       dm_device_name(pool->pool_md),
3477                       (unsigned long long)data_size, sb_data_size);
3478                 return -EINVAL;
3479
3480         } else if (data_size > sb_data_size) {
3481                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3482                         DMERR("%s: unable to grow the data device until repaired.",
3483                               dm_device_name(pool->pool_md));
3484                         return 0;
3485                 }
3486
3487                 if (sb_data_size)
3488                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3489                                dm_device_name(pool->pool_md),
3490                                sb_data_size, (unsigned long long)data_size);
3491                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3492                 if (r) {
3493                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3494                         return r;
3495                 }
3496
3497                 *need_commit = true;
3498         }
3499
3500         return 0;
3501 }
3502
3503 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3504 {
3505         int r;
3506         struct pool_c *pt = ti->private;
3507         struct pool *pool = pt->pool;
3508         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3509
3510         *need_commit = false;
3511
3512         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3513
3514         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3515         if (r) {
3516                 DMERR("%s: failed to retrieve metadata device size",
3517                       dm_device_name(pool->pool_md));
3518                 return r;
3519         }
3520
3521         if (metadata_dev_size < sb_metadata_dev_size) {
3522                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3523                       dm_device_name(pool->pool_md),
3524                       metadata_dev_size, sb_metadata_dev_size);
3525                 return -EINVAL;
3526
3527         } else if (metadata_dev_size > sb_metadata_dev_size) {
3528                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3529                         DMERR("%s: unable to grow the metadata device until repaired.",
3530                               dm_device_name(pool->pool_md));
3531                         return 0;
3532                 }
3533
3534                 warn_if_metadata_device_too_big(pool->md_dev);
3535                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3536                        dm_device_name(pool->pool_md),
3537                        sb_metadata_dev_size, metadata_dev_size);
3538
3539                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3540                         set_pool_mode(pool, PM_WRITE);
3541
3542                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3543                 if (r) {
3544                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3545                         return r;
3546                 }
3547
3548                 *need_commit = true;
3549         }
3550
3551         return 0;
3552 }
3553
3554 /*
3555  * Retrieves the number of blocks of the data device from
3556  * the superblock and compares it to the actual device size,
3557  * thus resizing the data device in case it has grown.
3558  *
3559  * This both copes with opening preallocated data devices in the ctr
3560  * being followed by a resume
3561  * -and-
3562  * calling the resume method individually after userspace has
3563  * grown the data device in reaction to a table event.
3564  */
3565 static int pool_preresume(struct dm_target *ti)
3566 {
3567         int r;
3568         bool need_commit1, need_commit2;
3569         struct pool_c *pt = ti->private;
3570         struct pool *pool = pt->pool;
3571
3572         /*
3573          * Take control of the pool object.
3574          */
3575         r = bind_control_target(pool, ti);
3576         if (r)
3577                 goto out;
3578
3579         r = maybe_resize_data_dev(ti, &need_commit1);
3580         if (r)
3581                 goto out;
3582
3583         r = maybe_resize_metadata_dev(ti, &need_commit2);
3584         if (r)
3585                 goto out;
3586
3587         if (need_commit1 || need_commit2)
3588                 (void) commit(pool);
3589 out:
3590         /*
3591          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3592          * bio is in deferred list. Therefore need to return 0
3593          * to allow pool_resume() to flush IO.
3594          */
3595         if (r && get_pool_mode(pool) == PM_FAIL)
3596                 r = 0;
3597
3598         return r;
3599 }
3600
3601 static void pool_suspend_active_thins(struct pool *pool)
3602 {
3603         struct thin_c *tc;
3604
3605         /* Suspend all active thin devices */
3606         tc = get_first_thin(pool);
3607         while (tc) {
3608                 dm_internal_suspend_noflush(tc->thin_md);
3609                 tc = get_next_thin(pool, tc);
3610         }
3611 }
3612
3613 static void pool_resume_active_thins(struct pool *pool)
3614 {
3615         struct thin_c *tc;
3616
3617         /* Resume all active thin devices */
3618         tc = get_first_thin(pool);
3619         while (tc) {
3620                 dm_internal_resume(tc->thin_md);
3621                 tc = get_next_thin(pool, tc);
3622         }
3623 }
3624
3625 static void pool_resume(struct dm_target *ti)
3626 {
3627         struct pool_c *pt = ti->private;
3628         struct pool *pool = pt->pool;
3629
3630         /*
3631          * Must requeue active_thins' bios and then resume
3632          * active_thins _before_ clearing 'suspend' flag.
3633          */
3634         requeue_bios(pool);
3635         pool_resume_active_thins(pool);
3636
3637         spin_lock_irq(&pool->lock);
3638         pool->low_water_triggered = false;
3639         pool->suspended = false;
3640         spin_unlock_irq(&pool->lock);
3641
3642         do_waker(&pool->waker.work);
3643 }
3644
3645 static void pool_presuspend(struct dm_target *ti)
3646 {
3647         struct pool_c *pt = ti->private;
3648         struct pool *pool = pt->pool;
3649
3650         spin_lock_irq(&pool->lock);
3651         pool->suspended = true;
3652         spin_unlock_irq(&pool->lock);
3653
3654         pool_suspend_active_thins(pool);
3655 }
3656
3657 static void pool_presuspend_undo(struct dm_target *ti)
3658 {
3659         struct pool_c *pt = ti->private;
3660         struct pool *pool = pt->pool;
3661
3662         pool_resume_active_thins(pool);
3663
3664         spin_lock_irq(&pool->lock);
3665         pool->suspended = false;
3666         spin_unlock_irq(&pool->lock);
3667 }
3668
3669 static void pool_postsuspend(struct dm_target *ti)
3670 {
3671         struct pool_c *pt = ti->private;
3672         struct pool *pool = pt->pool;
3673
3674         cancel_delayed_work_sync(&pool->waker);
3675         cancel_delayed_work_sync(&pool->no_space_timeout);
3676         flush_workqueue(pool->wq);
3677         (void) commit(pool);
3678 }
3679
3680 static int check_arg_count(unsigned int argc, unsigned int args_required)
3681 {
3682         if (argc != args_required) {
3683                 DMWARN("Message received with %u arguments instead of %u.",
3684                        argc, args_required);
3685                 return -EINVAL;
3686         }
3687
3688         return 0;
3689 }
3690
3691 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3692 {
3693         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3694             *dev_id <= MAX_DEV_ID)
3695                 return 0;
3696
3697         if (warning)
3698                 DMWARN("Message received with invalid device id: %s", arg);
3699
3700         return -EINVAL;
3701 }
3702
3703 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3704 {
3705         dm_thin_id dev_id;
3706         int r;
3707
3708         r = check_arg_count(argc, 2);
3709         if (r)
3710                 return r;
3711
3712         r = read_dev_id(argv[1], &dev_id, 1);
3713         if (r)
3714                 return r;
3715
3716         r = dm_pool_create_thin(pool->pmd, dev_id);
3717         if (r) {
3718                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3719                        argv[1]);
3720                 return r;
3721         }
3722
3723         return 0;
3724 }
3725
3726 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3727 {
3728         dm_thin_id dev_id;
3729         dm_thin_id origin_dev_id;
3730         int r;
3731
3732         r = check_arg_count(argc, 3);
3733         if (r)
3734                 return r;
3735
3736         r = read_dev_id(argv[1], &dev_id, 1);
3737         if (r)
3738                 return r;
3739
3740         r = read_dev_id(argv[2], &origin_dev_id, 1);
3741         if (r)
3742                 return r;
3743
3744         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3745         if (r) {
3746                 DMWARN("Creation of new snapshot %s of device %s failed.",
3747                        argv[1], argv[2]);
3748                 return r;
3749         }
3750
3751         return 0;
3752 }
3753
3754 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3755 {
3756         dm_thin_id dev_id;
3757         int r;
3758
3759         r = check_arg_count(argc, 2);
3760         if (r)
3761                 return r;
3762
3763         r = read_dev_id(argv[1], &dev_id, 1);
3764         if (r)
3765                 return r;
3766
3767         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3768         if (r)
3769                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3770
3771         return r;
3772 }
3773
3774 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3775 {
3776         dm_thin_id old_id, new_id;
3777         int r;
3778
3779         r = check_arg_count(argc, 3);
3780         if (r)
3781                 return r;
3782
3783         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3784                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3785                 return -EINVAL;
3786         }
3787
3788         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3789                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3790                 return -EINVAL;
3791         }
3792
3793         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3794         if (r) {
3795                 DMWARN("Failed to change transaction id from %s to %s.",
3796                        argv[1], argv[2]);
3797                 return r;
3798         }
3799
3800         return 0;
3801 }
3802
3803 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3804 {
3805         int r;
3806
3807         r = check_arg_count(argc, 1);
3808         if (r)
3809                 return r;
3810
3811         (void) commit(pool);
3812
3813         r = dm_pool_reserve_metadata_snap(pool->pmd);
3814         if (r)
3815                 DMWARN("reserve_metadata_snap message failed.");
3816
3817         return r;
3818 }
3819
3820 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3821 {
3822         int r;
3823
3824         r = check_arg_count(argc, 1);
3825         if (r)
3826                 return r;
3827
3828         r = dm_pool_release_metadata_snap(pool->pmd);
3829         if (r)
3830                 DMWARN("release_metadata_snap message failed.");
3831
3832         return r;
3833 }
3834
3835 /*
3836  * Messages supported:
3837  *   create_thin        <dev_id>
3838  *   create_snap        <dev_id> <origin_id>
3839  *   delete             <dev_id>
3840  *   set_transaction_id <current_trans_id> <new_trans_id>
3841  *   reserve_metadata_snap
3842  *   release_metadata_snap
3843  */
3844 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3845                         char *result, unsigned int maxlen)
3846 {
3847         int r = -EINVAL;
3848         struct pool_c *pt = ti->private;
3849         struct pool *pool = pt->pool;
3850
3851         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3852                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3853                       dm_device_name(pool->pool_md));
3854                 return -EOPNOTSUPP;
3855         }
3856
3857         if (!strcasecmp(argv[0], "create_thin"))
3858                 r = process_create_thin_mesg(argc, argv, pool);
3859
3860         else if (!strcasecmp(argv[0], "create_snap"))
3861                 r = process_create_snap_mesg(argc, argv, pool);
3862
3863         else if (!strcasecmp(argv[0], "delete"))
3864                 r = process_delete_mesg(argc, argv, pool);
3865
3866         else if (!strcasecmp(argv[0], "set_transaction_id"))
3867                 r = process_set_transaction_id_mesg(argc, argv, pool);
3868
3869         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3870                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3871
3872         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3873                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3874
3875         else
3876                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3877
3878         if (!r)
3879                 (void) commit(pool);
3880
3881         return r;
3882 }
3883
3884 static void emit_flags(struct pool_features *pf, char *result,
3885                        unsigned int sz, unsigned int maxlen)
3886 {
3887         unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3888                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3889                 pf->error_if_no_space;
3890         DMEMIT("%u ", count);
3891
3892         if (!pf->zero_new_blocks)
3893                 DMEMIT("skip_block_zeroing ");
3894
3895         if (!pf->discard_enabled)
3896                 DMEMIT("ignore_discard ");
3897
3898         if (!pf->discard_passdown)
3899                 DMEMIT("no_discard_passdown ");
3900
3901         if (pf->mode == PM_READ_ONLY)
3902                 DMEMIT("read_only ");
3903
3904         if (pf->error_if_no_space)
3905                 DMEMIT("error_if_no_space ");
3906 }
3907
3908 /*
3909  * Status line is:
3910  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3911  *    <used data sectors>/<total data sectors> <held metadata root>
3912  *    <pool mode> <discard config> <no space config> <needs_check>
3913  */
3914 static void pool_status(struct dm_target *ti, status_type_t type,
3915                         unsigned int status_flags, char *result, unsigned int maxlen)
3916 {
3917         int r;
3918         unsigned int sz = 0;
3919         uint64_t transaction_id;
3920         dm_block_t nr_free_blocks_data;
3921         dm_block_t nr_free_blocks_metadata;
3922         dm_block_t nr_blocks_data;
3923         dm_block_t nr_blocks_metadata;
3924         dm_block_t held_root;
3925         enum pool_mode mode;
3926         char buf[BDEVNAME_SIZE];
3927         char buf2[BDEVNAME_SIZE];
3928         struct pool_c *pt = ti->private;
3929         struct pool *pool = pt->pool;
3930
3931         switch (type) {
3932         case STATUSTYPE_INFO:
3933                 if (get_pool_mode(pool) == PM_FAIL) {
3934                         DMEMIT("Fail");
3935                         break;
3936                 }
3937
3938                 /* Commit to ensure statistics aren't out-of-date */
3939                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3940                         (void) commit(pool);
3941
3942                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3943                 if (r) {
3944                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3945                               dm_device_name(pool->pool_md), r);
3946                         goto err;
3947                 }
3948
3949                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3950                 if (r) {
3951                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3952                               dm_device_name(pool->pool_md), r);
3953                         goto err;
3954                 }
3955
3956                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3957                 if (r) {
3958                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3959                               dm_device_name(pool->pool_md), r);
3960                         goto err;
3961                 }
3962
3963                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3964                 if (r) {
3965                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3966                               dm_device_name(pool->pool_md), r);
3967                         goto err;
3968                 }
3969
3970                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3971                 if (r) {
3972                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3973                               dm_device_name(pool->pool_md), r);
3974                         goto err;
3975                 }
3976
3977                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3978                 if (r) {
3979                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3980                               dm_device_name(pool->pool_md), r);
3981                         goto err;
3982                 }
3983
3984                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3985                        (unsigned long long)transaction_id,
3986                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3987                        (unsigned long long)nr_blocks_metadata,
3988                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3989                        (unsigned long long)nr_blocks_data);
3990
3991                 if (held_root)
3992                         DMEMIT("%llu ", held_root);
3993                 else
3994                         DMEMIT("- ");
3995
3996                 mode = get_pool_mode(pool);
3997                 if (mode == PM_OUT_OF_DATA_SPACE)
3998                         DMEMIT("out_of_data_space ");
3999                 else if (is_read_only_pool_mode(mode))
4000                         DMEMIT("ro ");
4001                 else
4002                         DMEMIT("rw ");
4003
4004                 if (!pool->pf.discard_enabled)
4005                         DMEMIT("ignore_discard ");
4006                 else if (pool->pf.discard_passdown)
4007                         DMEMIT("discard_passdown ");
4008                 else
4009                         DMEMIT("no_discard_passdown ");
4010
4011                 if (pool->pf.error_if_no_space)
4012                         DMEMIT("error_if_no_space ");
4013                 else
4014                         DMEMIT("queue_if_no_space ");
4015
4016                 if (dm_pool_metadata_needs_check(pool->pmd))
4017                         DMEMIT("needs_check ");
4018                 else
4019                         DMEMIT("- ");
4020
4021                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4022
4023                 break;
4024
4025         case STATUSTYPE_TABLE:
4026                 DMEMIT("%s %s %lu %llu ",
4027                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4028                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4029                        (unsigned long)pool->sectors_per_block,
4030                        (unsigned long long)pt->low_water_blocks);
4031                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4032                 break;
4033
4034         case STATUSTYPE_IMA:
4035                 *result = '\0';
4036                 break;
4037         }
4038         return;
4039
4040 err:
4041         DMEMIT("Error");
4042 }
4043
4044 static int pool_iterate_devices(struct dm_target *ti,
4045                                 iterate_devices_callout_fn fn, void *data)
4046 {
4047         struct pool_c *pt = ti->private;
4048
4049         return fn(ti, pt->data_dev, 0, ti->len, data);
4050 }
4051
4052 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4053 {
4054         struct pool_c *pt = ti->private;
4055         struct pool *pool = pt->pool;
4056         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4057
4058         /*
4059          * If max_sectors is smaller than pool->sectors_per_block adjust it
4060          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4061          * This is especially beneficial when the pool's data device is a RAID
4062          * device that has a full stripe width that matches pool->sectors_per_block
4063          * -- because even though partial RAID stripe-sized IOs will be issued to a
4064          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4065          *    boundary.. which avoids additional partial RAID stripe writes cascading
4066          */
4067         if (limits->max_sectors < pool->sectors_per_block) {
4068                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4069                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4070                                 limits->max_sectors--;
4071                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4072                 }
4073         }
4074
4075         /*
4076          * If the system-determined stacked limits are compatible with the
4077          * pool's blocksize (io_opt is a factor) do not override them.
4078          */
4079         if (io_opt_sectors < pool->sectors_per_block ||
4080             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4081                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4082                         limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4083                 else
4084                         limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4085                 limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4086         }
4087
4088         /*
4089          * pt->adjusted_pf is a staging area for the actual features to use.
4090          * They get transferred to the live pool in bind_control_target()
4091          * called from pool_preresume().
4092          */
4093
4094         if (pt->adjusted_pf.discard_enabled) {
4095                 disable_discard_passdown_if_not_supported(pt);
4096                 if (!pt->adjusted_pf.discard_passdown)
4097                         limits->max_hw_discard_sectors = 0;
4098                 /*
4099                  * The pool uses the same discard limits as the underlying data
4100                  * device.  DM core has already set this up.
4101                  */
4102         } else {
4103                 /*
4104                  * Must explicitly disallow stacking discard limits otherwise the
4105                  * block layer will stack them if pool's data device has support.
4106                  */
4107                 limits->discard_granularity = 0;
4108         }
4109 }
4110
4111 static struct target_type pool_target = {
4112         .name = "thin-pool",
4113         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4114                     DM_TARGET_IMMUTABLE,
4115         .version = {1, 23, 0},
4116         .module = THIS_MODULE,
4117         .ctr = pool_ctr,
4118         .dtr = pool_dtr,
4119         .map = pool_map,
4120         .presuspend = pool_presuspend,
4121         .presuspend_undo = pool_presuspend_undo,
4122         .postsuspend = pool_postsuspend,
4123         .preresume = pool_preresume,
4124         .resume = pool_resume,
4125         .message = pool_message,
4126         .status = pool_status,
4127         .iterate_devices = pool_iterate_devices,
4128         .io_hints = pool_io_hints,
4129 };
4130
4131 /*
4132  *--------------------------------------------------------------
4133  * Thin target methods
4134  *--------------------------------------------------------------
4135  */
4136 static void thin_get(struct thin_c *tc)
4137 {
4138         refcount_inc(&tc->refcount);
4139 }
4140
4141 static void thin_put(struct thin_c *tc)
4142 {
4143         if (refcount_dec_and_test(&tc->refcount))
4144                 complete(&tc->can_destroy);
4145 }
4146
4147 static void thin_dtr(struct dm_target *ti)
4148 {
4149         struct thin_c *tc = ti->private;
4150
4151         spin_lock_irq(&tc->pool->lock);
4152         list_del_rcu(&tc->list);
4153         spin_unlock_irq(&tc->pool->lock);
4154         synchronize_rcu();
4155
4156         thin_put(tc);
4157         wait_for_completion(&tc->can_destroy);
4158
4159         mutex_lock(&dm_thin_pool_table.mutex);
4160
4161         __pool_dec(tc->pool);
4162         dm_pool_close_thin_device(tc->td);
4163         dm_put_device(ti, tc->pool_dev);
4164         if (tc->origin_dev)
4165                 dm_put_device(ti, tc->origin_dev);
4166         kfree(tc);
4167
4168         mutex_unlock(&dm_thin_pool_table.mutex);
4169 }
4170
4171 /*
4172  * Thin target parameters:
4173  *
4174  * <pool_dev> <dev_id> [origin_dev]
4175  *
4176  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4177  * dev_id: the internal device identifier
4178  * origin_dev: a device external to the pool that should act as the origin
4179  *
4180  * If the pool device has discards disabled, they get disabled for the thin
4181  * device as well.
4182  */
4183 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4184 {
4185         int r;
4186         struct thin_c *tc;
4187         struct dm_dev *pool_dev, *origin_dev;
4188         struct mapped_device *pool_md;
4189
4190         mutex_lock(&dm_thin_pool_table.mutex);
4191
4192         if (argc != 2 && argc != 3) {
4193                 ti->error = "Invalid argument count";
4194                 r = -EINVAL;
4195                 goto out_unlock;
4196         }
4197
4198         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4199         if (!tc) {
4200                 ti->error = "Out of memory";
4201                 r = -ENOMEM;
4202                 goto out_unlock;
4203         }
4204         tc->thin_md = dm_table_get_md(ti->table);
4205         spin_lock_init(&tc->lock);
4206         INIT_LIST_HEAD(&tc->deferred_cells);
4207         bio_list_init(&tc->deferred_bio_list);
4208         bio_list_init(&tc->retry_on_resume_list);
4209         tc->sort_bio_list = RB_ROOT;
4210
4211         if (argc == 3) {
4212                 if (!strcmp(argv[0], argv[2])) {
4213                         ti->error = "Error setting origin device";
4214                         r = -EINVAL;
4215                         goto bad_origin_dev;
4216                 }
4217
4218                 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4219                 if (r) {
4220                         ti->error = "Error opening origin device";
4221                         goto bad_origin_dev;
4222                 }
4223                 tc->origin_dev = origin_dev;
4224         }
4225
4226         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4227         if (r) {
4228                 ti->error = "Error opening pool device";
4229                 goto bad_pool_dev;
4230         }
4231         tc->pool_dev = pool_dev;
4232
4233         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4234                 ti->error = "Invalid device id";
4235                 r = -EINVAL;
4236                 goto bad_common;
4237         }
4238
4239         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4240         if (!pool_md) {
4241                 ti->error = "Couldn't get pool mapped device";
4242                 r = -EINVAL;
4243                 goto bad_common;
4244         }
4245
4246         tc->pool = __pool_table_lookup(pool_md);
4247         if (!tc->pool) {
4248                 ti->error = "Couldn't find pool object";
4249                 r = -EINVAL;
4250                 goto bad_pool_lookup;
4251         }
4252         __pool_inc(tc->pool);
4253
4254         if (get_pool_mode(tc->pool) == PM_FAIL) {
4255                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4256                 r = -EINVAL;
4257                 goto bad_pool;
4258         }
4259
4260         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4261         if (r) {
4262                 ti->error = "Couldn't open thin internal device";
4263                 goto bad_pool;
4264         }
4265
4266         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4267         if (r)
4268                 goto bad;
4269
4270         ti->num_flush_bios = 1;
4271         ti->limit_swap_bios = true;
4272         ti->flush_supported = true;
4273         ti->accounts_remapped_io = true;
4274         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4275
4276         /* In case the pool supports discards, pass them on. */
4277         if (tc->pool->pf.discard_enabled) {
4278                 ti->discards_supported = true;
4279                 ti->num_discard_bios = 1;
4280                 ti->max_discard_granularity = true;
4281         }
4282
4283         mutex_unlock(&dm_thin_pool_table.mutex);
4284
4285         spin_lock_irq(&tc->pool->lock);
4286         if (tc->pool->suspended) {
4287                 spin_unlock_irq(&tc->pool->lock);
4288                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4289                 ti->error = "Unable to activate thin device while pool is suspended";
4290                 r = -EINVAL;
4291                 goto bad;
4292         }
4293         refcount_set(&tc->refcount, 1);
4294         init_completion(&tc->can_destroy);
4295         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4296         spin_unlock_irq(&tc->pool->lock);
4297         /*
4298          * This synchronize_rcu() call is needed here otherwise we risk a
4299          * wake_worker() call finding no bios to process (because the newly
4300          * added tc isn't yet visible).  So this reduces latency since we
4301          * aren't then dependent on the periodic commit to wake_worker().
4302          */
4303         synchronize_rcu();
4304
4305         dm_put(pool_md);
4306
4307         return 0;
4308
4309 bad:
4310         dm_pool_close_thin_device(tc->td);
4311 bad_pool:
4312         __pool_dec(tc->pool);
4313 bad_pool_lookup:
4314         dm_put(pool_md);
4315 bad_common:
4316         dm_put_device(ti, tc->pool_dev);
4317 bad_pool_dev:
4318         if (tc->origin_dev)
4319                 dm_put_device(ti, tc->origin_dev);
4320 bad_origin_dev:
4321         kfree(tc);
4322 out_unlock:
4323         mutex_unlock(&dm_thin_pool_table.mutex);
4324
4325         return r;
4326 }
4327
4328 static int thin_map(struct dm_target *ti, struct bio *bio)
4329 {
4330         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4331
4332         return thin_bio_map(ti, bio);
4333 }
4334
4335 static int thin_endio(struct dm_target *ti, struct bio *bio,
4336                 blk_status_t *err)
4337 {
4338         unsigned long flags;
4339         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4340         struct list_head work;
4341         struct dm_thin_new_mapping *m, *tmp;
4342         struct pool *pool = h->tc->pool;
4343
4344         if (h->shared_read_entry) {
4345                 INIT_LIST_HEAD(&work);
4346                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4347
4348                 spin_lock_irqsave(&pool->lock, flags);
4349                 list_for_each_entry_safe(m, tmp, &work, list) {
4350                         list_del(&m->list);
4351                         __complete_mapping_preparation(m);
4352                 }
4353                 spin_unlock_irqrestore(&pool->lock, flags);
4354         }
4355
4356         if (h->all_io_entry) {
4357                 INIT_LIST_HEAD(&work);
4358                 dm_deferred_entry_dec(h->all_io_entry, &work);
4359                 if (!list_empty(&work)) {
4360                         spin_lock_irqsave(&pool->lock, flags);
4361                         list_for_each_entry_safe(m, tmp, &work, list)
4362                                 list_add_tail(&m->list, &pool->prepared_discards);
4363                         spin_unlock_irqrestore(&pool->lock, flags);
4364                         wake_worker(pool);
4365                 }
4366         }
4367
4368         if (h->cell)
4369                 cell_defer_no_holder(h->tc, h->cell);
4370
4371         return DM_ENDIO_DONE;
4372 }
4373
4374 static void thin_presuspend(struct dm_target *ti)
4375 {
4376         struct thin_c *tc = ti->private;
4377
4378         if (dm_noflush_suspending(ti))
4379                 noflush_work(tc, do_noflush_start);
4380 }
4381
4382 static void thin_postsuspend(struct dm_target *ti)
4383 {
4384         struct thin_c *tc = ti->private;
4385
4386         /*
4387          * The dm_noflush_suspending flag has been cleared by now, so
4388          * unfortunately we must always run this.
4389          */
4390         noflush_work(tc, do_noflush_stop);
4391 }
4392
4393 static int thin_preresume(struct dm_target *ti)
4394 {
4395         struct thin_c *tc = ti->private;
4396
4397         if (tc->origin_dev)
4398                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4399
4400         return 0;
4401 }
4402
4403 /*
4404  * <nr mapped sectors> <highest mapped sector>
4405  */
4406 static void thin_status(struct dm_target *ti, status_type_t type,
4407                         unsigned int status_flags, char *result, unsigned int maxlen)
4408 {
4409         int r;
4410         ssize_t sz = 0;
4411         dm_block_t mapped, highest;
4412         char buf[BDEVNAME_SIZE];
4413         struct thin_c *tc = ti->private;
4414
4415         if (get_pool_mode(tc->pool) == PM_FAIL) {
4416                 DMEMIT("Fail");
4417                 return;
4418         }
4419
4420         if (!tc->td)
4421                 DMEMIT("-");
4422         else {
4423                 switch (type) {
4424                 case STATUSTYPE_INFO:
4425                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4426                         if (r) {
4427                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4428                                 goto err;
4429                         }
4430
4431                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4432                         if (r < 0) {
4433                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4434                                 goto err;
4435                         }
4436
4437                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4438                         if (r)
4439                                 DMEMIT("%llu", ((highest + 1) *
4440                                                 tc->pool->sectors_per_block) - 1);
4441                         else
4442                                 DMEMIT("-");
4443                         break;
4444
4445                 case STATUSTYPE_TABLE:
4446                         DMEMIT("%s %lu",
4447                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4448                                (unsigned long) tc->dev_id);
4449                         if (tc->origin_dev)
4450                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4451                         break;
4452
4453                 case STATUSTYPE_IMA:
4454                         *result = '\0';
4455                         break;
4456                 }
4457         }
4458
4459         return;
4460
4461 err:
4462         DMEMIT("Error");
4463 }
4464
4465 static int thin_iterate_devices(struct dm_target *ti,
4466                                 iterate_devices_callout_fn fn, void *data)
4467 {
4468         sector_t blocks;
4469         struct thin_c *tc = ti->private;
4470         struct pool *pool = tc->pool;
4471
4472         /*
4473          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4474          * we follow a more convoluted path through to the pool's target.
4475          */
4476         if (!pool->ti)
4477                 return 0;       /* nothing is bound */
4478
4479         blocks = pool->ti->len;
4480         (void) sector_div(blocks, pool->sectors_per_block);
4481         if (blocks)
4482                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4483
4484         return 0;
4485 }
4486
4487 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4488 {
4489         struct thin_c *tc = ti->private;
4490         struct pool *pool = tc->pool;
4491
4492         if (pool->pf.discard_enabled) {
4493                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4494                 limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4495         }
4496 }
4497
4498 static struct target_type thin_target = {
4499         .name = "thin",
4500         .version = {1, 23, 0},
4501         .module = THIS_MODULE,
4502         .ctr = thin_ctr,
4503         .dtr = thin_dtr,
4504         .map = thin_map,
4505         .end_io = thin_endio,
4506         .preresume = thin_preresume,
4507         .presuspend = thin_presuspend,
4508         .postsuspend = thin_postsuspend,
4509         .status = thin_status,
4510         .iterate_devices = thin_iterate_devices,
4511         .io_hints = thin_io_hints,
4512 };
4513
4514 /*----------------------------------------------------------------*/
4515
4516 static int __init dm_thin_init(void)
4517 {
4518         int r = -ENOMEM;
4519
4520         pool_table_init();
4521
4522         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4523         if (!_new_mapping_cache)
4524                 return r;
4525
4526         r = dm_register_target(&thin_target);
4527         if (r)
4528                 goto bad_new_mapping_cache;
4529
4530         r = dm_register_target(&pool_target);
4531         if (r)
4532                 goto bad_thin_target;
4533
4534         return 0;
4535
4536 bad_thin_target:
4537         dm_unregister_target(&thin_target);
4538 bad_new_mapping_cache:
4539         kmem_cache_destroy(_new_mapping_cache);
4540
4541         return r;
4542 }
4543
4544 static void dm_thin_exit(void)
4545 {
4546         dm_unregister_target(&thin_target);
4547         dm_unregister_target(&pool_target);
4548
4549         kmem_cache_destroy(_new_mapping_cache);
4550
4551         pool_table_exit();
4552 }
4553
4554 module_init(dm_thin_init);
4555 module_exit(dm_thin_exit);
4556
4557 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4558 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4559
4560 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4561 MODULE_AUTHOR("Joe Thornber <[email protected]>");
4562 MODULE_LICENSE("GPL");
This page took 0.273536 seconds and 4 git commands to generate.