4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
51 DEFINE_MUTEX(oom_lock);
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
66 struct task_struct *tsk;
70 for_each_thread(start, tsk) {
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
78 ret = mempolicy_nodemask_intersects(tsk, mask);
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
84 ret = cpuset_mems_allowed_intersects(current, tsk);
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
99 #endif /* CONFIG_NUMA */
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
109 struct task_struct *t;
113 for_each_thread(p, t) {
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
130 static inline bool is_sysrq_oom(struct oom_control *oc)
132 return oc->order == -1;
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
139 if (is_global_init(p))
141 if (p->flags & PF_KTHREAD)
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
170 if (oom_unkillable_task(p, memcg, nodemask))
173 p = find_lock_task_mm(p);
177 adj = (long)p->signal->oom_score_adj;
178 if (adj == OOM_SCORE_ADJ_MIN) {
184 * The baseline for the badness score is the proportion of RAM that each
185 * task's rss, pagetable and swap space use.
187 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
192 * Root processes get 3% bonus, just like the __vm_enough_memory()
193 * implementation used by LSMs.
195 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196 points -= (points * 3) / 100;
198 /* Normalize to oom_score_adj units */
199 adj *= totalpages / 1000;
203 * Never return 0 for an eligible task regardless of the root bonus and
204 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
206 return points > 0 ? points : 1;
210 * Determine the type of allocation constraint.
213 static enum oom_constraint constrained_alloc(struct oom_control *oc,
214 unsigned long *totalpages)
218 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219 bool cpuset_limited = false;
222 /* Default to all available memory */
223 *totalpages = totalram_pages + total_swap_pages;
226 return CONSTRAINT_NONE;
228 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229 * to kill current.We have to random task kill in this case.
230 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
232 if (oc->gfp_mask & __GFP_THISNODE)
233 return CONSTRAINT_NONE;
236 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237 * the page allocator means a mempolicy is in effect. Cpuset policy
238 * is enforced in get_page_from_freelist().
241 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242 *totalpages = total_swap_pages;
243 for_each_node_mask(nid, *oc->nodemask)
244 *totalpages += node_spanned_pages(nid);
245 return CONSTRAINT_MEMORY_POLICY;
248 /* Check this allocation failure is caused by cpuset's wall function */
249 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250 high_zoneidx, oc->nodemask)
251 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252 cpuset_limited = true;
254 if (cpuset_limited) {
255 *totalpages = total_swap_pages;
256 for_each_node_mask(nid, cpuset_current_mems_allowed)
257 *totalpages += node_spanned_pages(nid);
258 return CONSTRAINT_CPUSET;
260 return CONSTRAINT_NONE;
263 static enum oom_constraint constrained_alloc(struct oom_control *oc,
264 unsigned long *totalpages)
266 *totalpages = totalram_pages + total_swap_pages;
267 return CONSTRAINT_NONE;
271 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272 struct task_struct *task, unsigned long totalpages)
274 if (oom_unkillable_task(task, NULL, oc->nodemask))
275 return OOM_SCAN_CONTINUE;
278 * This task already has access to memory reserves and is being killed.
279 * Don't allow any other task to have access to the reserves.
281 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282 if (!is_sysrq_oom(oc))
283 return OOM_SCAN_ABORT;
286 return OOM_SCAN_CONTINUE;
289 * If task is allocating a lot of memory and has been marked to be
290 * killed first if it triggers an oom, then select it.
292 if (oom_task_origin(task))
293 return OOM_SCAN_SELECT;
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'. Returns -1 on scan abort.
302 static struct task_struct *select_bad_process(struct oom_control *oc,
303 unsigned int *ppoints, unsigned long totalpages)
305 struct task_struct *g, *p;
306 struct task_struct *chosen = NULL;
307 unsigned long chosen_points = 0;
310 for_each_process_thread(g, p) {
313 switch (oom_scan_process_thread(oc, p, totalpages)) {
314 case OOM_SCAN_SELECT:
316 chosen_points = ULONG_MAX;
318 case OOM_SCAN_CONTINUE:
322 return (struct task_struct *)(-1UL);
326 points = oom_badness(p, NULL, oc->nodemask, totalpages);
327 if (!points || points < chosen_points)
329 /* Prefer thread group leaders for display purposes */
330 if (points == chosen_points && thread_group_leader(chosen))
334 chosen_points = points;
337 get_task_struct(chosen);
340 *ppoints = chosen_points * 1000 / totalpages;
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
349 * Dumps the current memory state of all eligible tasks. Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
355 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
357 struct task_struct *p;
358 struct task_struct *task;
360 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
362 for_each_process(p) {
363 if (oom_unkillable_task(p, memcg, nodemask))
366 task = find_lock_task_mm(p);
369 * This is a kthread or all of p's threads have already
370 * detached their mm's. There's no need to report
371 * them; they can't be oom killed anyway.
376 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
377 task->pid, from_kuid(&init_user_ns, task_uid(task)),
378 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379 atomic_long_read(&task->mm->nr_ptes),
380 mm_nr_pmds(task->mm),
381 get_mm_counter(task->mm, MM_SWAPENTS),
382 task->signal->oom_score_adj, task->comm);
388 static void dump_header(struct oom_control *oc, struct task_struct *p,
389 struct mem_cgroup *memcg)
391 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393 current->signal->oom_score_adj);
395 cpuset_print_current_mems_allowed();
398 mem_cgroup_print_oom_info(memcg, p);
400 show_mem(SHOW_MEM_FILTER_NODES);
401 if (sysctl_oom_dump_tasks)
402 dump_tasks(memcg, oc->nodemask);
406 * Number of OOM victims in flight
408 static atomic_t oom_victims = ATOMIC_INIT(0);
409 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
411 bool oom_killer_disabled __read_mostly;
415 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
416 * victim (if that is possible) to help the OOM killer to move on.
418 static struct task_struct *oom_reaper_th;
419 static struct mm_struct *mm_to_reap;
420 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
422 static bool __oom_reap_vmas(struct mm_struct *mm)
424 struct mmu_gather tlb;
425 struct vm_area_struct *vma;
426 struct zap_details details = {.check_swap_entries = true,
427 .ignore_dirty = true};
430 /* We might have raced with exit path */
431 if (!atomic_inc_not_zero(&mm->mm_users))
434 if (!down_read_trylock(&mm->mmap_sem)) {
439 tlb_gather_mmu(&tlb, mm, 0, -1);
440 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
441 if (is_vm_hugetlb_page(vma))
445 * mlocked VMAs require explicit munlocking before unmap.
446 * Let's keep it simple here and skip such VMAs.
448 if (vma->vm_flags & VM_LOCKED)
452 * Only anonymous pages have a good chance to be dropped
453 * without additional steps which we cannot afford as we
456 * We do not even care about fs backed pages because all
457 * which are reclaimable have already been reclaimed and
458 * we do not want to block exit_mmap by keeping mm ref
459 * count elevated without a good reason.
461 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
462 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
465 tlb_finish_mmu(&tlb, 0, -1);
466 up_read(&mm->mmap_sem);
472 static void oom_reap_vmas(struct mm_struct *mm)
476 /* Retry the down_read_trylock(mmap_sem) a few times */
477 while (attempts++ < 10 && !__oom_reap_vmas(mm))
478 schedule_timeout_idle(HZ/10);
480 /* Drop a reference taken by wake_oom_reaper */
484 static int oom_reaper(void *unused)
487 struct mm_struct *mm;
489 wait_event_freezable(oom_reaper_wait,
490 (mm = READ_ONCE(mm_to_reap)));
492 WRITE_ONCE(mm_to_reap, NULL);
498 static void wake_oom_reaper(struct mm_struct *mm)
500 struct mm_struct *old_mm;
506 * Pin the given mm. Use mm_count instead of mm_users because
507 * we do not want to delay the address space tear down.
509 atomic_inc(&mm->mm_count);
512 * Make sure that only a single mm is ever queued for the reaper
513 * because multiple are not necessary and the operation might be
514 * disruptive so better reduce it to the bare minimum.
516 old_mm = cmpxchg(&mm_to_reap, NULL, mm);
518 wake_up(&oom_reaper_wait);
523 static int __init oom_init(void)
525 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
526 if (IS_ERR(oom_reaper_th)) {
527 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
528 PTR_ERR(oom_reaper_th));
529 oom_reaper_th = NULL;
533 subsys_initcall(oom_init)
535 static void wake_oom_reaper(struct mm_struct *mm)
541 * mark_oom_victim - mark the given task as OOM victim
544 * Has to be called with oom_lock held and never after
545 * oom has been disabled already.
547 void mark_oom_victim(struct task_struct *tsk)
549 WARN_ON(oom_killer_disabled);
550 /* OOM killer might race with memcg OOM */
551 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
554 * Make sure that the task is woken up from uninterruptible sleep
555 * if it is frozen because OOM killer wouldn't be able to free
556 * any memory and livelock. freezing_slow_path will tell the freezer
557 * that TIF_MEMDIE tasks should be ignored.
560 atomic_inc(&oom_victims);
564 * exit_oom_victim - note the exit of an OOM victim
566 void exit_oom_victim(void)
568 clear_thread_flag(TIF_MEMDIE);
570 if (!atomic_dec_return(&oom_victims))
571 wake_up_all(&oom_victims_wait);
575 * oom_killer_disable - disable OOM killer
577 * Forces all page allocations to fail rather than trigger OOM killer.
578 * Will block and wait until all OOM victims are killed.
580 * The function cannot be called when there are runnable user tasks because
581 * the userspace would see unexpected allocation failures as a result. Any
582 * new usage of this function should be consulted with MM people.
584 * Returns true if successful and false if the OOM killer cannot be
587 bool oom_killer_disable(void)
590 * Make sure to not race with an ongoing OOM killer. Check that the
591 * current is not killed (possibly due to sharing the victim's memory).
593 if (mutex_lock_killable(&oom_lock))
595 oom_killer_disabled = true;
596 mutex_unlock(&oom_lock);
598 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
604 * oom_killer_enable - enable OOM killer
606 void oom_killer_enable(void)
608 oom_killer_disabled = false;
612 * task->mm can be NULL if the task is the exited group leader. So to
613 * determine whether the task is using a particular mm, we examine all the
614 * task's threads: if one of those is using this mm then this task was also
617 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
619 struct task_struct *t;
621 for_each_thread(p, t) {
622 struct mm_struct *t_mm = READ_ONCE(t->mm);
629 #define K(x) ((x) << (PAGE_SHIFT-10))
631 * Must be called while holding a reference to p, which will be released upon
634 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
635 unsigned int points, unsigned long totalpages,
636 struct mem_cgroup *memcg, const char *message)
638 struct task_struct *victim = p;
639 struct task_struct *child;
640 struct task_struct *t;
641 struct mm_struct *mm;
642 unsigned int victim_points = 0;
643 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
644 DEFAULT_RATELIMIT_BURST);
645 bool can_oom_reap = true;
648 * If the task is already exiting, don't alarm the sysadmin or kill
649 * its children or threads, just set TIF_MEMDIE so it can die quickly
652 if (p->mm && task_will_free_mem(p)) {
660 if (__ratelimit(&oom_rs))
661 dump_header(oc, p, memcg);
663 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
664 message, task_pid_nr(p), p->comm, points);
667 * If any of p's children has a different mm and is eligible for kill,
668 * the one with the highest oom_badness() score is sacrificed for its
669 * parent. This attempts to lose the minimal amount of work done while
670 * still freeing memory.
672 read_lock(&tasklist_lock);
673 for_each_thread(p, t) {
674 list_for_each_entry(child, &t->children, sibling) {
675 unsigned int child_points;
677 if (process_shares_mm(child, p->mm))
680 * oom_badness() returns 0 if the thread is unkillable
682 child_points = oom_badness(child, memcg, oc->nodemask,
684 if (child_points > victim_points) {
685 put_task_struct(victim);
687 victim_points = child_points;
688 get_task_struct(victim);
692 read_unlock(&tasklist_lock);
694 p = find_lock_task_mm(victim);
696 put_task_struct(victim);
698 } else if (victim != p) {
700 put_task_struct(victim);
704 /* Get a reference to safely compare mm after task_unlock(victim) */
706 atomic_inc(&mm->mm_count);
708 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
709 * the OOM victim from depleting the memory reserves from the user
710 * space under its control.
712 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
713 mark_oom_victim(victim);
714 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
715 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
716 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
717 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
718 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
722 * Kill all user processes sharing victim->mm in other thread groups, if
723 * any. They don't get access to memory reserves, though, to avoid
724 * depletion of all memory. This prevents mm->mmap_sem livelock when an
725 * oom killed thread cannot exit because it requires the semaphore and
726 * its contended by another thread trying to allocate memory itself.
727 * That thread will now get access to memory reserves since it has a
728 * pending fatal signal.
731 for_each_process(p) {
732 if (!process_shares_mm(p, mm))
734 if (same_thread_group(p, victim))
736 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
737 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
739 * We cannot use oom_reaper for the mm shared by this
740 * process because it wouldn't get killed and so the
741 * memory might be still used.
743 can_oom_reap = false;
746 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
754 put_task_struct(victim);
759 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
761 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
762 struct mem_cgroup *memcg)
764 if (likely(!sysctl_panic_on_oom))
766 if (sysctl_panic_on_oom != 2) {
768 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
769 * does not panic for cpuset, mempolicy, or memcg allocation
772 if (constraint != CONSTRAINT_NONE)
775 /* Do not panic for oom kills triggered by sysrq */
776 if (is_sysrq_oom(oc))
778 dump_header(oc, NULL, memcg);
779 panic("Out of memory: %s panic_on_oom is enabled\n",
780 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
783 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
785 int register_oom_notifier(struct notifier_block *nb)
787 return blocking_notifier_chain_register(&oom_notify_list, nb);
789 EXPORT_SYMBOL_GPL(register_oom_notifier);
791 int unregister_oom_notifier(struct notifier_block *nb)
793 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
795 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
798 * out_of_memory - kill the "best" process when we run out of memory
799 * @oc: pointer to struct oom_control
801 * If we run out of memory, we have the choice between either
802 * killing a random task (bad), letting the system crash (worse)
803 * OR try to be smart about which process to kill. Note that we
804 * don't have to be perfect here, we just have to be good.
806 bool out_of_memory(struct oom_control *oc)
808 struct task_struct *p;
809 unsigned long totalpages;
810 unsigned long freed = 0;
811 unsigned int uninitialized_var(points);
812 enum oom_constraint constraint = CONSTRAINT_NONE;
814 if (oom_killer_disabled)
817 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
819 /* Got some memory back in the last second. */
823 * If current has a pending SIGKILL or is exiting, then automatically
824 * select it. The goal is to allow it to allocate so that it may
825 * quickly exit and free its memory.
827 * But don't select if current has already released its mm and cleared
828 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
831 (fatal_signal_pending(current) || task_will_free_mem(current))) {
832 mark_oom_victim(current);
837 * Check if there were limitations on the allocation (only relevant for
838 * NUMA) that may require different handling.
840 constraint = constrained_alloc(oc, &totalpages);
841 if (constraint != CONSTRAINT_MEMORY_POLICY)
843 check_panic_on_oom(oc, constraint, NULL);
845 if (sysctl_oom_kill_allocating_task && current->mm &&
846 !oom_unkillable_task(current, NULL, oc->nodemask) &&
847 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
848 get_task_struct(current);
849 oom_kill_process(oc, current, 0, totalpages, NULL,
850 "Out of memory (oom_kill_allocating_task)");
854 p = select_bad_process(oc, &points, totalpages);
855 /* Found nothing?!?! Either we hang forever, or we panic. */
856 if (!p && !is_sysrq_oom(oc)) {
857 dump_header(oc, NULL, NULL);
858 panic("Out of memory and no killable processes...\n");
860 if (p && p != (void *)-1UL) {
861 oom_kill_process(oc, p, points, totalpages, NULL,
864 * Give the killed process a good chance to exit before trying
865 * to allocate memory again.
867 schedule_timeout_killable(1);
873 * The pagefault handler calls here because it is out of memory, so kill a
874 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
875 * parallel oom killing is already in progress so do nothing.
877 void pagefault_out_of_memory(void)
879 struct oom_control oc = {
886 if (mem_cgroup_oom_synchronize(true))
889 if (!mutex_trylock(&oom_lock))
892 if (!out_of_memory(&oc)) {
894 * There shouldn't be any user tasks runnable while the
895 * OOM killer is disabled, so the current task has to
896 * be a racing OOM victim for which oom_killer_disable()
899 WARN_ON(test_thread_flag(TIF_MEMDIE));
902 mutex_unlock(&oom_lock);