2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
48 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
49 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 struct iomap iomap = { 0 };
52 loff_t written = 0, ret;
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
66 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
69 if (WARN_ON(iomap.offset > pos))
71 if (WARN_ON(iomap.length == 0))
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
78 if (iomap.offset + iomap.length < pos + length)
79 length = iomap.offset + iomap.length - pos;
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
86 written = actor(inode, pos, length, data, &iomap);
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
93 ret = ops->iomap_end(inode, pos, length,
94 written > 0 ? written : 0,
98 return written ? written : ret;
102 iomap_sector(struct iomap *iomap, loff_t pos)
104 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
107 static struct iomap_page *
108 iomap_page_create(struct inode *inode, struct page *page)
110 struct iomap_page *iop = to_iomap_page(page);
112 if (iop || i_blocksize(inode) == PAGE_SIZE)
115 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
116 atomic_set(&iop->read_count, 0);
117 atomic_set(&iop->write_count, 0);
118 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
121 * migrate_page_move_mapping() assumes that pages with private data have
122 * their count elevated by 1.
125 set_page_private(page, (unsigned long)iop);
126 SetPagePrivate(page);
131 iomap_page_release(struct page *page)
133 struct iomap_page *iop = to_iomap_page(page);
137 WARN_ON_ONCE(atomic_read(&iop->read_count));
138 WARN_ON_ONCE(atomic_read(&iop->write_count));
139 ClearPagePrivate(page);
140 set_page_private(page, 0);
146 * Calculate the range inside the page that we actually need to read.
149 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
150 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
152 loff_t orig_pos = *pos;
153 loff_t isize = i_size_read(inode);
154 unsigned block_bits = inode->i_blkbits;
155 unsigned block_size = (1 << block_bits);
156 unsigned poff = offset_in_page(*pos);
157 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
158 unsigned first = poff >> block_bits;
159 unsigned last = (poff + plen - 1) >> block_bits;
162 * If the block size is smaller than the page size we need to check the
163 * per-block uptodate status and adjust the offset and length if needed
164 * to avoid reading in already uptodate ranges.
169 /* move forward for each leading block marked uptodate */
170 for (i = first; i <= last; i++) {
171 if (!test_bit(i, iop->uptodate))
179 /* truncate len if we find any trailing uptodate block(s) */
180 for ( ; i <= last; i++) {
181 if (test_bit(i, iop->uptodate)) {
182 plen -= (last - i + 1) * block_size;
190 * If the extent spans the block that contains the i_size we need to
191 * handle both halves separately so that we properly zero data in the
192 * page cache for blocks that are entirely outside of i_size.
194 if (orig_pos <= isize && orig_pos + length > isize) {
195 unsigned end = offset_in_page(isize - 1) >> block_bits;
197 if (first <= end && last > end)
198 plen -= (last - end) * block_size;
206 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
208 struct iomap_page *iop = to_iomap_page(page);
209 struct inode *inode = page->mapping->host;
210 unsigned first = off >> inode->i_blkbits;
211 unsigned last = (off + len - 1) >> inode->i_blkbits;
213 bool uptodate = true;
216 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
217 if (i >= first && i <= last)
218 set_bit(i, iop->uptodate);
219 else if (!test_bit(i, iop->uptodate))
224 if (uptodate && !PageError(page))
225 SetPageUptodate(page);
229 iomap_read_finish(struct iomap_page *iop, struct page *page)
231 if (!iop || atomic_dec_and_test(&iop->read_count))
236 iomap_read_page_end_io(struct bio_vec *bvec, int error)
238 struct page *page = bvec->bv_page;
239 struct iomap_page *iop = to_iomap_page(page);
241 if (unlikely(error)) {
242 ClearPageUptodate(page);
245 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
248 iomap_read_finish(iop, page);
252 iomap_read_inline_data(struct inode *inode, struct page *page,
255 size_t size = i_size_read(inode);
258 if (PageUptodate(page))
262 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
264 addr = kmap_atomic(page);
265 memcpy(addr, iomap->inline_data, size);
266 memset(addr + size, 0, PAGE_SIZE - size);
268 SetPageUptodate(page);
272 iomap_read_end_io(struct bio *bio)
274 int error = blk_status_to_errno(bio->bi_status);
275 struct bio_vec *bvec;
277 struct bvec_iter_all iter_all;
279 bio_for_each_segment_all(bvec, bio, i, iter_all)
280 iomap_read_page_end_io(bvec, error);
284 struct iomap_readpage_ctx {
285 struct page *cur_page;
286 bool cur_page_in_bio;
289 struct list_head *pages;
293 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
296 struct iomap_readpage_ctx *ctx = data;
297 struct page *page = ctx->cur_page;
298 struct iomap_page *iop = iomap_page_create(inode, page);
299 bool is_contig = false;
300 loff_t orig_pos = pos;
304 if (iomap->type == IOMAP_INLINE) {
306 iomap_read_inline_data(inode, page, iomap);
310 /* zero post-eof blocks as the page may be mapped */
311 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
315 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
316 zero_user(page, poff, plen);
317 iomap_set_range_uptodate(page, poff, plen);
321 ctx->cur_page_in_bio = true;
324 * Try to merge into a previous segment if we can.
326 sector = iomap_sector(iomap, pos);
327 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
328 if (__bio_try_merge_page(ctx->bio, page, plen, poff, true))
334 * If we start a new segment we need to increase the read count, and we
335 * need to do so before submitting any previous full bio to make sure
336 * that we don't prematurely unlock the page.
339 atomic_inc(&iop->read_count);
341 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
342 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
343 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
346 submit_bio(ctx->bio);
348 if (ctx->is_readahead) /* same as readahead_gfp_mask */
349 gfp |= __GFP_NORETRY | __GFP_NOWARN;
350 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
351 ctx->bio->bi_opf = REQ_OP_READ;
352 if (ctx->is_readahead)
353 ctx->bio->bi_opf |= REQ_RAHEAD;
354 ctx->bio->bi_iter.bi_sector = sector;
355 bio_set_dev(ctx->bio, iomap->bdev);
356 ctx->bio->bi_end_io = iomap_read_end_io;
359 bio_add_page(ctx->bio, page, plen, poff);
362 * Move the caller beyond our range so that it keeps making progress.
363 * For that we have to include any leading non-uptodate ranges, but
364 * we can skip trailing ones as they will be handled in the next
367 return pos - orig_pos + plen;
371 iomap_readpage(struct page *page, const struct iomap_ops *ops)
373 struct iomap_readpage_ctx ctx = { .cur_page = page };
374 struct inode *inode = page->mapping->host;
378 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
379 ret = iomap_apply(inode, page_offset(page) + poff,
380 PAGE_SIZE - poff, 0, ops, &ctx,
381 iomap_readpage_actor);
383 WARN_ON_ONCE(ret == 0);
391 WARN_ON_ONCE(!ctx.cur_page_in_bio);
393 WARN_ON_ONCE(ctx.cur_page_in_bio);
398 * Just like mpage_readpages and block_read_full_page we always
399 * return 0 and just mark the page as PageError on errors. This
400 * should be cleaned up all through the stack eventually.
404 EXPORT_SYMBOL_GPL(iomap_readpage);
407 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
408 loff_t length, loff_t *done)
410 while (!list_empty(pages)) {
411 struct page *page = lru_to_page(pages);
413 if (page_offset(page) >= (u64)pos + length)
416 list_del(&page->lru);
417 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
422 * If we already have a page in the page cache at index we are
423 * done. Upper layers don't care if it is uptodate after the
424 * readpages call itself as every page gets checked again once
435 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
436 void *data, struct iomap *iomap)
438 struct iomap_readpage_ctx *ctx = data;
441 for (done = 0; done < length; done += ret) {
442 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
443 if (!ctx->cur_page_in_bio)
444 unlock_page(ctx->cur_page);
445 put_page(ctx->cur_page);
446 ctx->cur_page = NULL;
448 if (!ctx->cur_page) {
449 ctx->cur_page = iomap_next_page(inode, ctx->pages,
453 ctx->cur_page_in_bio = false;
455 ret = iomap_readpage_actor(inode, pos + done, length - done,
463 iomap_readpages(struct address_space *mapping, struct list_head *pages,
464 unsigned nr_pages, const struct iomap_ops *ops)
466 struct iomap_readpage_ctx ctx = {
468 .is_readahead = true,
470 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
471 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
472 loff_t length = last - pos + PAGE_SIZE, ret = 0;
475 ret = iomap_apply(mapping->host, pos, length, 0, ops,
476 &ctx, iomap_readpages_actor);
478 WARN_ON_ONCE(ret == 0);
489 if (!ctx.cur_page_in_bio)
490 unlock_page(ctx.cur_page);
491 put_page(ctx.cur_page);
495 * Check that we didn't lose a page due to the arcance calling
498 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
501 EXPORT_SYMBOL_GPL(iomap_readpages);
504 * iomap_is_partially_uptodate checks whether blocks within a page are
507 * Returns true if all blocks which correspond to a file portion
508 * we want to read within the page are uptodate.
511 iomap_is_partially_uptodate(struct page *page, unsigned long from,
514 struct iomap_page *iop = to_iomap_page(page);
515 struct inode *inode = page->mapping->host;
516 unsigned len, first, last;
519 /* Limit range to one page */
520 len = min_t(unsigned, PAGE_SIZE - from, count);
522 /* First and last blocks in range within page */
523 first = from >> inode->i_blkbits;
524 last = (from + len - 1) >> inode->i_blkbits;
527 for (i = first; i <= last; i++)
528 if (!test_bit(i, iop->uptodate))
535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
538 iomap_releasepage(struct page *page, gfp_t gfp_mask)
541 * mm accommodates an old ext3 case where clean pages might not have had
542 * the dirty bit cleared. Thus, it can send actual dirty pages to
543 * ->releasepage() via shrink_active_list(), skip those here.
545 if (PageDirty(page) || PageWriteback(page))
547 iomap_page_release(page);
550 EXPORT_SYMBOL_GPL(iomap_releasepage);
553 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
556 * If we are invalidating the entire page, clear the dirty state from it
557 * and release it to avoid unnecessary buildup of the LRU.
559 if (offset == 0 && len == PAGE_SIZE) {
560 WARN_ON_ONCE(PageWriteback(page));
561 cancel_dirty_page(page);
562 iomap_page_release(page);
565 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
567 #ifdef CONFIG_MIGRATION
569 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
570 struct page *page, enum migrate_mode mode)
574 ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
575 if (ret != MIGRATEPAGE_SUCCESS)
578 if (page_has_private(page)) {
579 ClearPagePrivate(page);
581 set_page_private(newpage, page_private(page));
582 set_page_private(page, 0);
584 SetPagePrivate(newpage);
587 if (mode != MIGRATE_SYNC_NO_COPY)
588 migrate_page_copy(newpage, page);
590 migrate_page_states(newpage, page);
591 return MIGRATEPAGE_SUCCESS;
593 EXPORT_SYMBOL_GPL(iomap_migrate_page);
594 #endif /* CONFIG_MIGRATION */
597 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
599 loff_t i_size = i_size_read(inode);
602 * Only truncate newly allocated pages beyoned EOF, even if the
603 * write started inside the existing inode size.
605 if (pos + len > i_size)
606 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
610 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
611 unsigned poff, unsigned plen, unsigned from, unsigned to,
617 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
618 zero_user_segments(page, poff, from, to, poff + plen);
619 iomap_set_range_uptodate(page, poff, plen);
623 bio_init(&bio, &bvec, 1);
624 bio.bi_opf = REQ_OP_READ;
625 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
626 bio_set_dev(&bio, iomap->bdev);
627 __bio_add_page(&bio, page, plen, poff);
628 return submit_bio_wait(&bio);
632 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
633 struct page *page, struct iomap *iomap)
635 struct iomap_page *iop = iomap_page_create(inode, page);
636 loff_t block_size = i_blocksize(inode);
637 loff_t block_start = pos & ~(block_size - 1);
638 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
639 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
642 if (PageUptodate(page))
646 iomap_adjust_read_range(inode, iop, &block_start,
647 block_end - block_start, &poff, &plen);
651 if ((from > poff && from < poff + plen) ||
652 (to > poff && to < poff + plen)) {
653 status = iomap_read_page_sync(inode, block_start, page,
654 poff, plen, from, to, iomap);
659 } while ((block_start += plen) < block_end);
665 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
666 struct page **pagep, struct iomap *iomap)
668 pgoff_t index = pos >> PAGE_SHIFT;
672 BUG_ON(pos + len > iomap->offset + iomap->length);
674 if (fatal_signal_pending(current))
677 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
681 if (iomap->type == IOMAP_INLINE)
682 iomap_read_inline_data(inode, page, iomap);
683 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
684 status = __block_write_begin_int(page, pos, len, NULL, iomap);
686 status = __iomap_write_begin(inode, pos, len, page, iomap);
687 if (unlikely(status)) {
692 iomap_write_failed(inode, pos, len);
700 iomap_set_page_dirty(struct page *page)
702 struct address_space *mapping = page_mapping(page);
705 if (unlikely(!mapping))
706 return !TestSetPageDirty(page);
709 * Lock out page->mem_cgroup migration to keep PageDirty
710 * synchronized with per-memcg dirty page counters.
712 lock_page_memcg(page);
713 newly_dirty = !TestSetPageDirty(page);
715 __set_page_dirty(page, mapping, 0);
716 unlock_page_memcg(page);
719 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
725 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
726 unsigned copied, struct page *page, struct iomap *iomap)
728 flush_dcache_page(page);
731 * The blocks that were entirely written will now be uptodate, so we
732 * don't have to worry about a readpage reading them and overwriting a
733 * partial write. However if we have encountered a short write and only
734 * partially written into a block, it will not be marked uptodate, so a
735 * readpage might come in and destroy our partial write.
737 * Do the simplest thing, and just treat any short write to a non
738 * uptodate page as a zero-length write, and force the caller to redo
741 if (unlikely(copied < len && !PageUptodate(page))) {
744 iomap_set_range_uptodate(page, offset_in_page(pos), len);
745 iomap_set_page_dirty(page);
747 return __generic_write_end(inode, pos, copied, page);
751 iomap_write_end_inline(struct inode *inode, struct page *page,
752 struct iomap *iomap, loff_t pos, unsigned copied)
756 WARN_ON_ONCE(!PageUptodate(page));
757 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
759 addr = kmap_atomic(page);
760 memcpy(iomap->inline_data + pos, addr + pos, copied);
763 mark_inode_dirty(inode);
764 __generic_write_end(inode, pos, copied, page);
769 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
770 unsigned copied, struct page *page, struct iomap *iomap)
774 if (iomap->type == IOMAP_INLINE) {
775 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
776 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
777 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
780 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
783 if (iomap->page_done)
784 iomap->page_done(inode, pos, copied, page, iomap);
787 iomap_write_failed(inode, pos, len);
792 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
795 struct iov_iter *i = data;
798 unsigned int flags = AOP_FLAG_NOFS;
802 unsigned long offset; /* Offset into pagecache page */
803 unsigned long bytes; /* Bytes to write to page */
804 size_t copied; /* Bytes copied from user */
806 offset = offset_in_page(pos);
807 bytes = min_t(unsigned long, PAGE_SIZE - offset,
814 * Bring in the user page that we will copy from _first_.
815 * Otherwise there's a nasty deadlock on copying from the
816 * same page as we're writing to, without it being marked
819 * Not only is this an optimisation, but it is also required
820 * to check that the address is actually valid, when atomic
821 * usercopies are used, below.
823 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
828 status = iomap_write_begin(inode, pos, bytes, flags, &page,
830 if (unlikely(status))
833 if (mapping_writably_mapped(inode->i_mapping))
834 flush_dcache_page(page);
836 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
838 flush_dcache_page(page);
840 status = iomap_write_end(inode, pos, bytes, copied, page,
842 if (unlikely(status < 0))
848 iov_iter_advance(i, copied);
849 if (unlikely(copied == 0)) {
851 * If we were unable to copy any data at all, we must
852 * fall back to a single segment length write.
854 * If we didn't fallback here, we could livelock
855 * because not all segments in the iov can be copied at
856 * once without a pagefault.
858 bytes = min_t(unsigned long, PAGE_SIZE - offset,
859 iov_iter_single_seg_count(i));
866 balance_dirty_pages_ratelimited(inode->i_mapping);
867 } while (iov_iter_count(i) && length);
869 return written ? written : status;
873 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
874 const struct iomap_ops *ops)
876 struct inode *inode = iocb->ki_filp->f_mapping->host;
877 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
879 while (iov_iter_count(iter)) {
880 ret = iomap_apply(inode, pos, iov_iter_count(iter),
881 IOMAP_WRITE, ops, iter, iomap_write_actor);
888 return written ? written : ret;
890 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
893 __iomap_read_page(struct inode *inode, loff_t offset)
895 struct address_space *mapping = inode->i_mapping;
898 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
901 if (!PageUptodate(page)) {
903 return ERR_PTR(-EIO);
909 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
916 struct page *page, *rpage;
917 unsigned long offset; /* Offset into pagecache page */
918 unsigned long bytes; /* Bytes to write to page */
920 offset = offset_in_page(pos);
921 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
923 rpage = __iomap_read_page(inode, pos);
925 return PTR_ERR(rpage);
927 status = iomap_write_begin(inode, pos, bytes,
928 AOP_FLAG_NOFS, &page, iomap);
930 if (unlikely(status))
933 WARN_ON_ONCE(!PageUptodate(page));
935 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
936 if (unlikely(status <= 0)) {
937 if (WARN_ON_ONCE(status == 0))
948 balance_dirty_pages_ratelimited(inode->i_mapping);
955 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
956 const struct iomap_ops *ops)
961 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
971 EXPORT_SYMBOL_GPL(iomap_file_dirty);
973 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
974 unsigned bytes, struct iomap *iomap)
979 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
984 zero_user(page, offset, bytes);
985 mark_page_accessed(page);
987 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
990 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
993 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
994 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
998 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
999 void *data, struct iomap *iomap)
1001 bool *did_zero = data;
1005 /* already zeroed? we're done. */
1006 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1010 unsigned offset, bytes;
1012 offset = offset_in_page(pos);
1013 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1016 status = iomap_dax_zero(pos, offset, bytes, iomap);
1018 status = iomap_zero(inode, pos, offset, bytes, iomap);
1027 } while (count > 0);
1033 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1034 const struct iomap_ops *ops)
1039 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1040 ops, did_zero, iomap_zero_range_actor);
1050 EXPORT_SYMBOL_GPL(iomap_zero_range);
1053 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1054 const struct iomap_ops *ops)
1056 unsigned int blocksize = i_blocksize(inode);
1057 unsigned int off = pos & (blocksize - 1);
1059 /* Block boundary? Nothing to do */
1062 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1064 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1067 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1068 void *data, struct iomap *iomap)
1070 struct page *page = data;
1073 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1074 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1077 block_commit_write(page, 0, length);
1079 WARN_ON_ONCE(!PageUptodate(page));
1080 iomap_page_create(inode, page);
1081 set_page_dirty(page);
1087 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1089 struct page *page = vmf->page;
1090 struct inode *inode = file_inode(vmf->vma->vm_file);
1091 unsigned long length;
1092 loff_t offset, size;
1096 size = i_size_read(inode);
1097 if ((page->mapping != inode->i_mapping) ||
1098 (page_offset(page) > size)) {
1099 /* We overload EFAULT to mean page got truncated */
1104 /* page is wholly or partially inside EOF */
1105 if (((page->index + 1) << PAGE_SHIFT) > size)
1106 length = offset_in_page(size);
1110 offset = page_offset(page);
1111 while (length > 0) {
1112 ret = iomap_apply(inode, offset, length,
1113 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1114 iomap_page_mkwrite_actor);
1115 if (unlikely(ret <= 0))
1121 wait_for_stable_page(page);
1122 return VM_FAULT_LOCKED;
1125 return block_page_mkwrite_return(ret);
1127 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1130 struct fiemap_extent_info *fi;
1134 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1135 struct iomap *iomap, u32 flags)
1137 switch (iomap->type) {
1141 case IOMAP_DELALLOC:
1142 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1146 case IOMAP_UNWRITTEN:
1147 flags |= FIEMAP_EXTENT_UNWRITTEN;
1150 flags |= FIEMAP_EXTENT_DATA_INLINE;
1154 if (iomap->flags & IOMAP_F_MERGED)
1155 flags |= FIEMAP_EXTENT_MERGED;
1156 if (iomap->flags & IOMAP_F_SHARED)
1157 flags |= FIEMAP_EXTENT_SHARED;
1159 return fiemap_fill_next_extent(fi, iomap->offset,
1160 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1161 iomap->length, flags);
1165 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1166 struct iomap *iomap)
1168 struct fiemap_ctx *ctx = data;
1169 loff_t ret = length;
1171 if (iomap->type == IOMAP_HOLE)
1174 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1177 case 0: /* success */
1179 case 1: /* extent array full */
1186 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1187 loff_t start, loff_t len, const struct iomap_ops *ops)
1189 struct fiemap_ctx ctx;
1192 memset(&ctx, 0, sizeof(ctx));
1194 ctx.prev.type = IOMAP_HOLE;
1196 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1200 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1201 ret = filemap_write_and_wait(inode->i_mapping);
1207 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1208 iomap_fiemap_actor);
1209 /* inode with no (attribute) mapping will give ENOENT */
1221 if (ctx.prev.type != IOMAP_HOLE) {
1222 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1229 EXPORT_SYMBOL_GPL(iomap_fiemap);
1232 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1233 * Returns true if found and updates @lastoff to the offset in file.
1236 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1239 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1240 unsigned int bsize = i_blocksize(inode), off;
1241 bool seek_data = whence == SEEK_DATA;
1242 loff_t poff = page_offset(page);
1244 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1247 if (*lastoff < poff) {
1249 * Last offset smaller than the start of the page means we found
1252 if (whence == SEEK_HOLE)
1258 * Just check the page unless we can and should check block ranges:
1260 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1261 return PageUptodate(page) == seek_data;
1264 if (unlikely(page->mapping != inode->i_mapping))
1265 goto out_unlock_not_found;
1267 for (off = 0; off < PAGE_SIZE; off += bsize) {
1268 if (offset_in_page(*lastoff) >= off + bsize)
1270 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1274 *lastoff = poff + off + bsize;
1277 out_unlock_not_found:
1283 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1285 * Within unwritten extents, the page cache determines which parts are holes
1286 * and which are data: uptodate buffer heads count as data; everything else
1289 * Returns the resulting offset on successs, and -ENOENT otherwise.
1292 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1295 pgoff_t index = offset >> PAGE_SHIFT;
1296 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1297 loff_t lastoff = offset;
1298 struct pagevec pvec;
1303 pagevec_init(&pvec);
1306 unsigned nr_pages, i;
1308 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1313 for (i = 0; i < nr_pages; i++) {
1314 struct page *page = pvec.pages[i];
1316 if (page_seek_hole_data(inode, page, &lastoff, whence))
1318 lastoff = page_offset(page) + PAGE_SIZE;
1320 pagevec_release(&pvec);
1321 } while (index < end);
1323 /* When no page at lastoff and we are not done, we found a hole. */
1324 if (whence != SEEK_HOLE)
1328 if (lastoff < offset + length)
1333 pagevec_release(&pvec);
1339 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1340 void *data, struct iomap *iomap)
1342 switch (iomap->type) {
1343 case IOMAP_UNWRITTEN:
1344 offset = page_cache_seek_hole_data(inode, offset, length,
1350 *(loff_t *)data = offset;
1358 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1360 loff_t size = i_size_read(inode);
1361 loff_t length = size - offset;
1364 /* Nothing to be found before or beyond the end of the file. */
1365 if (offset < 0 || offset >= size)
1368 while (length > 0) {
1369 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1370 &offset, iomap_seek_hole_actor);
1382 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1385 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1386 void *data, struct iomap *iomap)
1388 switch (iomap->type) {
1391 case IOMAP_UNWRITTEN:
1392 offset = page_cache_seek_hole_data(inode, offset, length,
1398 *(loff_t *)data = offset;
1404 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1406 loff_t size = i_size_read(inode);
1407 loff_t length = size - offset;
1410 /* Nothing to be found before or beyond the end of the file. */
1411 if (offset < 0 || offset >= size)
1414 while (length > 0) {
1415 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1416 &offset, iomap_seek_data_actor);
1430 EXPORT_SYMBOL_GPL(iomap_seek_data);
1433 * Private flags for iomap_dio, must not overlap with the public ones in
1436 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1437 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1438 #define IOMAP_DIO_WRITE (1 << 30)
1439 #define IOMAP_DIO_DIRTY (1 << 31)
1443 iomap_dio_end_io_t *end_io;
1449 bool wait_for_completion;
1452 /* used during submission and for synchronous completion: */
1454 struct iov_iter *iter;
1455 struct task_struct *waiter;
1456 struct request_queue *last_queue;
1460 /* used for aio completion: */
1462 struct work_struct work;
1467 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
1469 struct request_queue *q = READ_ONCE(kiocb->private);
1473 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
1475 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
1477 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
1480 atomic_inc(&dio->ref);
1482 if (dio->iocb->ki_flags & IOCB_HIPRI)
1483 bio_set_polled(bio, dio->iocb);
1485 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1486 dio->submit.cookie = submit_bio(bio);
1489 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1491 struct kiocb *iocb = dio->iocb;
1492 struct inode *inode = file_inode(iocb->ki_filp);
1493 loff_t offset = iocb->ki_pos;
1497 ret = dio->end_io(iocb,
1498 dio->error ? dio->error : dio->size,
1506 /* check for short read */
1507 if (offset + ret > dio->i_size &&
1508 !(dio->flags & IOMAP_DIO_WRITE))
1509 ret = dio->i_size - offset;
1510 iocb->ki_pos += ret;
1514 * Try again to invalidate clean pages which might have been cached by
1515 * non-direct readahead, or faulted in by get_user_pages() if the source
1516 * of the write was an mmap'ed region of the file we're writing. Either
1517 * one is a pretty crazy thing to do, so we don't support it 100%. If
1518 * this invalidation fails, tough, the write still worked...
1520 * And this page cache invalidation has to be after dio->end_io(), as
1521 * some filesystems convert unwritten extents to real allocations in
1522 * end_io() when necessary, otherwise a racing buffer read would cache
1523 * zeros from unwritten extents.
1526 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1528 err = invalidate_inode_pages2_range(inode->i_mapping,
1529 offset >> PAGE_SHIFT,
1530 (offset + dio->size - 1) >> PAGE_SHIFT);
1532 dio_warn_stale_pagecache(iocb->ki_filp);
1536 * If this is a DSYNC write, make sure we push it to stable storage now
1537 * that we've written data.
1539 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1540 ret = generic_write_sync(iocb, ret);
1542 inode_dio_end(file_inode(iocb->ki_filp));
1548 static void iomap_dio_complete_work(struct work_struct *work)
1550 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1551 struct kiocb *iocb = dio->iocb;
1553 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1557 * Set an error in the dio if none is set yet. We have to use cmpxchg
1558 * as the submission context and the completion context(s) can race to
1561 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1563 cmpxchg(&dio->error, 0, ret);
1566 static void iomap_dio_bio_end_io(struct bio *bio)
1568 struct iomap_dio *dio = bio->bi_private;
1569 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1572 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1574 if (atomic_dec_and_test(&dio->ref)) {
1575 if (dio->wait_for_completion) {
1576 struct task_struct *waiter = dio->submit.waiter;
1577 WRITE_ONCE(dio->submit.waiter, NULL);
1578 blk_wake_io_task(waiter);
1579 } else if (dio->flags & IOMAP_DIO_WRITE) {
1580 struct inode *inode = file_inode(dio->iocb->ki_filp);
1582 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1583 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1585 iomap_dio_complete_work(&dio->aio.work);
1590 bio_check_pages_dirty(bio);
1592 struct bio_vec *bvec;
1594 struct bvec_iter_all iter_all;
1596 bio_for_each_segment_all(bvec, bio, i, iter_all)
1597 put_page(bvec->bv_page);
1603 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1606 struct page *page = ZERO_PAGE(0);
1607 int flags = REQ_SYNC | REQ_IDLE;
1610 bio = bio_alloc(GFP_KERNEL, 1);
1611 bio_set_dev(bio, iomap->bdev);
1612 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1613 bio->bi_private = dio;
1614 bio->bi_end_io = iomap_dio_bio_end_io;
1617 __bio_add_page(bio, page, len, 0);
1618 bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
1619 iomap_dio_submit_bio(dio, iomap, bio);
1623 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1624 struct iomap_dio *dio, struct iomap *iomap)
1626 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1627 unsigned int fs_block_size = i_blocksize(inode), pad;
1628 unsigned int align = iov_iter_alignment(dio->submit.iter);
1629 struct iov_iter iter;
1631 bool need_zeroout = false;
1632 bool use_fua = false;
1633 int nr_pages, ret = 0;
1636 if ((pos | length | align) & ((1 << blkbits) - 1))
1639 if (iomap->type == IOMAP_UNWRITTEN) {
1640 dio->flags |= IOMAP_DIO_UNWRITTEN;
1641 need_zeroout = true;
1644 if (iomap->flags & IOMAP_F_SHARED)
1645 dio->flags |= IOMAP_DIO_COW;
1647 if (iomap->flags & IOMAP_F_NEW) {
1648 need_zeroout = true;
1649 } else if (iomap->type == IOMAP_MAPPED) {
1651 * Use a FUA write if we need datasync semantics, this is a pure
1652 * data IO that doesn't require any metadata updates (including
1653 * after IO completion such as unwritten extent conversion) and
1654 * the underlying device supports FUA. This allows us to avoid
1655 * cache flushes on IO completion.
1657 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1658 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1659 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1664 * Operate on a partial iter trimmed to the extent we were called for.
1665 * We'll update the iter in the dio once we're done with this extent.
1667 iter = *dio->submit.iter;
1668 iov_iter_truncate(&iter, length);
1670 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1675 /* zero out from the start of the block to the write offset */
1676 pad = pos & (fs_block_size - 1);
1678 iomap_dio_zero(dio, iomap, pos - pad, pad);
1684 iov_iter_revert(dio->submit.iter, copied);
1688 bio = bio_alloc(GFP_KERNEL, nr_pages);
1689 bio_set_dev(bio, iomap->bdev);
1690 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1691 bio->bi_write_hint = dio->iocb->ki_hint;
1692 bio->bi_ioprio = dio->iocb->ki_ioprio;
1693 bio->bi_private = dio;
1694 bio->bi_end_io = iomap_dio_bio_end_io;
1696 ret = bio_iov_iter_get_pages(bio, &iter);
1697 if (unlikely(ret)) {
1699 * We have to stop part way through an IO. We must fall
1700 * through to the sub-block tail zeroing here, otherwise
1701 * this short IO may expose stale data in the tail of
1702 * the block we haven't written data to.
1708 n = bio->bi_iter.bi_size;
1709 if (dio->flags & IOMAP_DIO_WRITE) {
1710 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1712 bio->bi_opf |= REQ_FUA;
1714 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1715 task_io_account_write(n);
1717 bio->bi_opf = REQ_OP_READ;
1718 if (dio->flags & IOMAP_DIO_DIRTY)
1719 bio_set_pages_dirty(bio);
1722 iov_iter_advance(dio->submit.iter, n);
1728 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1729 iomap_dio_submit_bio(dio, iomap, bio);
1733 * We need to zeroout the tail of a sub-block write if the extent type
1734 * requires zeroing or the write extends beyond EOF. If we don't zero
1735 * the block tail in the latter case, we can expose stale data via mmap
1736 * reads of the EOF block.
1740 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1741 /* zero out from the end of the write to the end of the block */
1742 pad = pos & (fs_block_size - 1);
1744 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1746 return copied ? copied : ret;
1750 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1752 length = iov_iter_zero(length, dio->submit.iter);
1753 dio->size += length;
1758 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1759 struct iomap_dio *dio, struct iomap *iomap)
1761 struct iov_iter *iter = dio->submit.iter;
1764 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1766 if (dio->flags & IOMAP_DIO_WRITE) {
1767 loff_t size = inode->i_size;
1770 memset(iomap->inline_data + size, 0, pos - size);
1771 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1773 if (pos + copied > size)
1774 i_size_write(inode, pos + copied);
1775 mark_inode_dirty(inode);
1778 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1780 dio->size += copied;
1785 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1786 void *data, struct iomap *iomap)
1788 struct iomap_dio *dio = data;
1790 switch (iomap->type) {
1792 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1794 return iomap_dio_hole_actor(length, dio);
1795 case IOMAP_UNWRITTEN:
1796 if (!(dio->flags & IOMAP_DIO_WRITE))
1797 return iomap_dio_hole_actor(length, dio);
1798 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1800 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1802 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1810 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1811 * is being issued as AIO or not. This allows us to optimise pure data writes
1812 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1813 * REQ_FLUSH post write. This is slightly tricky because a single request here
1814 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1815 * may be pure data writes. In that case, we still need to do a full data sync
1819 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1820 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1822 struct address_space *mapping = iocb->ki_filp->f_mapping;
1823 struct inode *inode = file_inode(iocb->ki_filp);
1824 size_t count = iov_iter_count(iter);
1825 loff_t pos = iocb->ki_pos, start = pos;
1826 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1827 unsigned int flags = IOMAP_DIRECT;
1828 bool wait_for_completion = is_sync_kiocb(iocb);
1829 struct blk_plug plug;
1830 struct iomap_dio *dio;
1832 lockdep_assert_held(&inode->i_rwsem);
1837 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1842 atomic_set(&dio->ref, 1);
1844 dio->i_size = i_size_read(inode);
1845 dio->end_io = end_io;
1849 dio->submit.iter = iter;
1850 dio->submit.waiter = current;
1851 dio->submit.cookie = BLK_QC_T_NONE;
1852 dio->submit.last_queue = NULL;
1854 if (iov_iter_rw(iter) == READ) {
1855 if (pos >= dio->i_size)
1858 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1859 dio->flags |= IOMAP_DIO_DIRTY;
1861 flags |= IOMAP_WRITE;
1862 dio->flags |= IOMAP_DIO_WRITE;
1864 /* for data sync or sync, we need sync completion processing */
1865 if (iocb->ki_flags & IOCB_DSYNC)
1866 dio->flags |= IOMAP_DIO_NEED_SYNC;
1869 * For datasync only writes, we optimistically try using FUA for
1870 * this IO. Any non-FUA write that occurs will clear this flag,
1871 * hence we know before completion whether a cache flush is
1874 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1875 dio->flags |= IOMAP_DIO_WRITE_FUA;
1878 if (iocb->ki_flags & IOCB_NOWAIT) {
1879 if (filemap_range_has_page(mapping, start, end)) {
1883 flags |= IOMAP_NOWAIT;
1886 ret = filemap_write_and_wait_range(mapping, start, end);
1891 * Try to invalidate cache pages for the range we're direct
1892 * writing. If this invalidation fails, tough, the write will
1893 * still work, but racing two incompatible write paths is a
1894 * pretty crazy thing to do, so we don't support it 100%.
1896 ret = invalidate_inode_pages2_range(mapping,
1897 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1899 dio_warn_stale_pagecache(iocb->ki_filp);
1902 if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1903 !inode->i_sb->s_dio_done_wq) {
1904 ret = sb_init_dio_done_wq(inode->i_sb);
1909 inode_dio_begin(inode);
1911 blk_start_plug(&plug);
1913 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1916 /* magic error code to fall back to buffered I/O */
1917 if (ret == -ENOTBLK) {
1918 wait_for_completion = true;
1925 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1927 } while ((count = iov_iter_count(iter)) > 0);
1928 blk_finish_plug(&plug);
1931 iomap_dio_set_error(dio, ret);
1934 * If all the writes we issued were FUA, we don't need to flush the
1935 * cache on IO completion. Clear the sync flag for this case.
1937 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1938 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1940 WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
1941 WRITE_ONCE(iocb->private, dio->submit.last_queue);
1944 * We are about to drop our additional submission reference, which
1945 * might be the last reference to the dio. There are three three
1946 * different ways we can progress here:
1948 * (a) If this is the last reference we will always complete and free
1949 * the dio ourselves.
1950 * (b) If this is not the last reference, and we serve an asynchronous
1951 * iocb, we must never touch the dio after the decrement, the
1952 * I/O completion handler will complete and free it.
1953 * (c) If this is not the last reference, but we serve a synchronous
1954 * iocb, the I/O completion handler will wake us up on the drop
1955 * of the final reference, and we will complete and free it here
1956 * after we got woken by the I/O completion handler.
1958 dio->wait_for_completion = wait_for_completion;
1959 if (!atomic_dec_and_test(&dio->ref)) {
1960 if (!wait_for_completion)
1961 return -EIOCBQUEUED;
1964 set_current_state(TASK_UNINTERRUPTIBLE);
1965 if (!READ_ONCE(dio->submit.waiter))
1968 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1969 !dio->submit.last_queue ||
1970 !blk_poll(dio->submit.last_queue,
1971 dio->submit.cookie, true))
1974 __set_current_state(TASK_RUNNING);
1977 return iomap_dio_complete(dio);
1983 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1985 /* Swapfile activation */
1988 struct iomap_swapfile_info {
1989 struct iomap iomap; /* accumulated iomap */
1990 struct swap_info_struct *sis;
1991 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1992 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1993 unsigned long nr_pages; /* number of pages collected */
1994 int nr_extents; /* extent count */
1998 * Collect physical extents for this swap file. Physical extents reported to
1999 * the swap code must be trimmed to align to a page boundary. The logical
2000 * offset within the file is irrelevant since the swapfile code maps logical
2001 * page numbers of the swap device to the physical page-aligned extents.
2003 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
2005 struct iomap *iomap = &isi->iomap;
2006 unsigned long nr_pages;
2007 uint64_t first_ppage;
2008 uint64_t first_ppage_reported;
2009 uint64_t next_ppage;
2013 * Round the start up and the end down so that the physical
2014 * extent aligns to a page boundary.
2016 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
2017 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
2020 /* Skip too-short physical extents. */
2021 if (first_ppage >= next_ppage)
2023 nr_pages = next_ppage - first_ppage;
2026 * Calculate how much swap space we're adding; the first page contains
2027 * the swap header and doesn't count. The mm still wants that first
2028 * page fed to add_swap_extent, however.
2030 first_ppage_reported = first_ppage;
2031 if (iomap->offset == 0)
2032 first_ppage_reported++;
2033 if (isi->lowest_ppage > first_ppage_reported)
2034 isi->lowest_ppage = first_ppage_reported;
2035 if (isi->highest_ppage < (next_ppage - 1))
2036 isi->highest_ppage = next_ppage - 1;
2038 /* Add extent, set up for the next call. */
2039 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2042 isi->nr_extents += error;
2043 isi->nr_pages += nr_pages;
2048 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2049 * swap only cares about contiguous page-aligned physical extents and makes no
2050 * distinction between written and unwritten extents.
2052 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2053 loff_t count, void *data, struct iomap *iomap)
2055 struct iomap_swapfile_info *isi = data;
2058 switch (iomap->type) {
2060 case IOMAP_UNWRITTEN:
2061 /* Only real or unwritten extents. */
2064 /* No inline data. */
2065 pr_err("swapon: file is inline\n");
2068 pr_err("swapon: file has unallocated extents\n");
2072 /* No uncommitted metadata or shared blocks. */
2073 if (iomap->flags & IOMAP_F_DIRTY) {
2074 pr_err("swapon: file is not committed\n");
2077 if (iomap->flags & IOMAP_F_SHARED) {
2078 pr_err("swapon: file has shared extents\n");
2082 /* Only one bdev per swap file. */
2083 if (iomap->bdev != isi->sis->bdev) {
2084 pr_err("swapon: file is on multiple devices\n");
2088 if (isi->iomap.length == 0) {
2089 /* No accumulated extent, so just store it. */
2090 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2091 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2092 /* Append this to the accumulated extent. */
2093 isi->iomap.length += iomap->length;
2095 /* Otherwise, add the retained iomap and store this one. */
2096 error = iomap_swapfile_add_extent(isi);
2099 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2105 * Iterate a swap file's iomaps to construct physical extents that can be
2106 * passed to the swapfile subsystem.
2108 int iomap_swapfile_activate(struct swap_info_struct *sis,
2109 struct file *swap_file, sector_t *pagespan,
2110 const struct iomap_ops *ops)
2112 struct iomap_swapfile_info isi = {
2114 .lowest_ppage = (sector_t)-1ULL,
2116 struct address_space *mapping = swap_file->f_mapping;
2117 struct inode *inode = mapping->host;
2119 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2123 * Persist all file mapping metadata so that we won't have any
2124 * IOMAP_F_DIRTY iomaps.
2126 ret = vfs_fsync(swap_file, 1);
2131 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2132 ops, &isi, iomap_swapfile_activate_actor);
2140 if (isi.iomap.length) {
2141 ret = iomap_swapfile_add_extent(&isi);
2146 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2147 sis->max = isi.nr_pages;
2148 sis->pages = isi.nr_pages - 1;
2149 sis->highest_bit = isi.nr_pages - 1;
2150 return isi.nr_extents;
2152 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2153 #endif /* CONFIG_SWAP */
2156 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2157 void *data, struct iomap *iomap)
2159 sector_t *bno = data, addr;
2161 if (iomap->type == IOMAP_MAPPED) {
2162 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2164 WARN(1, "would truncate bmap result\n");
2171 /* legacy ->bmap interface. 0 is the error return (!) */
2173 iomap_bmap(struct address_space *mapping, sector_t bno,
2174 const struct iomap_ops *ops)
2176 struct inode *inode = mapping->host;
2177 loff_t pos = bno << inode->i_blkbits;
2178 unsigned blocksize = i_blocksize(inode);
2180 if (filemap_write_and_wait(mapping))
2184 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2187 EXPORT_SYMBOL_GPL(iomap_bmap);