2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
37 * Execute a iomap write on a segment of the mapping that spans a
38 * contiguous range of pages that have identical block mapping state.
40 * This avoids the need to map pages individually, do individual allocations
41 * for each page and most importantly avoid the need for filesystem specific
42 * locking per page. Instead, all the operations are amortised over the entire
43 * range of pages. It is assumed that the filesystems will lock whatever
44 * resources they require in the iomap_begin call, and release them in the
48 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
49 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 struct iomap iomap = { 0 };
52 loff_t written = 0, ret;
55 * Need to map a range from start position for length bytes. This can
56 * span multiple pages - it is only guaranteed to return a range of a
57 * single type of pages (e.g. all into a hole, all mapped or all
58 * unwritten). Failure at this point has nothing to undo.
60 * If allocation is required for this range, reserve the space now so
61 * that the allocation is guaranteed to succeed later on. Once we copy
62 * the data into the page cache pages, then we cannot fail otherwise we
63 * expose transient stale data. If the reserve fails, we can safely
64 * back out at this point as there is nothing to undo.
66 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
69 if (WARN_ON(iomap.offset > pos))
71 if (WARN_ON(iomap.length == 0))
75 * Cut down the length to the one actually provided by the filesystem,
76 * as it might not be able to give us the whole size that we requested.
78 if (iomap.offset + iomap.length < pos + length)
79 length = iomap.offset + iomap.length - pos;
82 * Now that we have guaranteed that the space allocation will succeed.
83 * we can do the copy-in page by page without having to worry about
84 * failures exposing transient data.
86 written = actor(inode, pos, length, data, &iomap);
89 * Now the data has been copied, commit the range we've copied. This
90 * should not fail unless the filesystem has had a fatal error.
93 ret = ops->iomap_end(inode, pos, length,
94 written > 0 ? written : 0,
98 return written ? written : ret;
102 iomap_sector(struct iomap *iomap, loff_t pos)
104 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
107 static struct iomap_page *
108 iomap_page_create(struct inode *inode, struct page *page)
110 struct iomap_page *iop = to_iomap_page(page);
112 if (iop || i_blocksize(inode) == PAGE_SIZE)
115 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
116 atomic_set(&iop->read_count, 0);
117 atomic_set(&iop->write_count, 0);
118 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
119 set_page_private(page, (unsigned long)iop);
120 SetPagePrivate(page);
125 iomap_page_release(struct page *page)
127 struct iomap_page *iop = to_iomap_page(page);
131 WARN_ON_ONCE(atomic_read(&iop->read_count));
132 WARN_ON_ONCE(atomic_read(&iop->write_count));
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
139 * Calculate the range inside the page that we actually need to read.
142 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
143 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
145 unsigned block_bits = inode->i_blkbits;
146 unsigned block_size = (1 << block_bits);
147 unsigned poff = offset_in_page(*pos);
148 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
149 unsigned first = poff >> block_bits;
150 unsigned last = (poff + plen - 1) >> block_bits;
151 unsigned end = offset_in_page(i_size_read(inode)) >> block_bits;
154 * If the block size is smaller than the page size we need to check the
155 * per-block uptodate status and adjust the offset and length if needed
156 * to avoid reading in already uptodate ranges.
161 /* move forward for each leading block marked uptodate */
162 for (i = first; i <= last; i++) {
163 if (!test_bit(i, iop->uptodate))
171 /* truncate len if we find any trailing uptodate block(s) */
172 for ( ; i <= last; i++) {
173 if (test_bit(i, iop->uptodate)) {
174 plen -= (last - i + 1) * block_size;
182 * If the extent spans the block that contains the i_size we need to
183 * handle both halves separately so that we properly zero data in the
184 * page cache for blocks that are entirely outside of i_size.
186 if (first <= end && last > end)
187 plen -= (last - end) * block_size;
194 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
196 struct iomap_page *iop = to_iomap_page(page);
197 struct inode *inode = page->mapping->host;
198 unsigned first = off >> inode->i_blkbits;
199 unsigned last = (off + len - 1) >> inode->i_blkbits;
201 bool uptodate = true;
204 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
205 if (i >= first && i <= last)
206 set_bit(i, iop->uptodate);
207 else if (!test_bit(i, iop->uptodate))
212 if (uptodate && !PageError(page))
213 SetPageUptodate(page);
217 iomap_read_finish(struct iomap_page *iop, struct page *page)
219 if (!iop || atomic_dec_and_test(&iop->read_count))
224 iomap_read_page_end_io(struct bio_vec *bvec, int error)
226 struct page *page = bvec->bv_page;
227 struct iomap_page *iop = to_iomap_page(page);
229 if (unlikely(error)) {
230 ClearPageUptodate(page);
233 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
236 iomap_read_finish(iop, page);
240 iomap_read_inline_data(struct inode *inode, struct page *page,
243 size_t size = i_size_read(inode);
246 if (PageUptodate(page))
250 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
252 addr = kmap_atomic(page);
253 memcpy(addr, iomap->inline_data, size);
254 memset(addr + size, 0, PAGE_SIZE - size);
256 SetPageUptodate(page);
260 iomap_read_end_io(struct bio *bio)
262 int error = blk_status_to_errno(bio->bi_status);
263 struct bio_vec *bvec;
266 bio_for_each_segment_all(bvec, bio, i)
267 iomap_read_page_end_io(bvec, error);
271 struct iomap_readpage_ctx {
272 struct page *cur_page;
273 bool cur_page_in_bio;
276 struct list_head *pages;
280 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
283 struct iomap_readpage_ctx *ctx = data;
284 struct page *page = ctx->cur_page;
285 struct iomap_page *iop = iomap_page_create(inode, page);
286 bool is_contig = false;
287 loff_t orig_pos = pos;
291 if (iomap->type == IOMAP_INLINE) {
293 iomap_read_inline_data(inode, page, iomap);
297 /* zero post-eof blocks as the page may be mapped */
298 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
302 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
303 zero_user(page, poff, plen);
304 iomap_set_range_uptodate(page, poff, plen);
308 ctx->cur_page_in_bio = true;
311 * Try to merge into a previous segment if we can.
313 sector = iomap_sector(iomap, pos);
314 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
315 if (__bio_try_merge_page(ctx->bio, page, plen, poff))
321 * If we start a new segment we need to increase the read count, and we
322 * need to do so before submitting any previous full bio to make sure
323 * that we don't prematurely unlock the page.
326 atomic_inc(&iop->read_count);
328 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
329 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
330 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
333 submit_bio(ctx->bio);
335 if (ctx->is_readahead) /* same as readahead_gfp_mask */
336 gfp |= __GFP_NORETRY | __GFP_NOWARN;
337 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
338 ctx->bio->bi_opf = REQ_OP_READ;
339 if (ctx->is_readahead)
340 ctx->bio->bi_opf |= REQ_RAHEAD;
341 ctx->bio->bi_iter.bi_sector = sector;
342 bio_set_dev(ctx->bio, iomap->bdev);
343 ctx->bio->bi_end_io = iomap_read_end_io;
346 __bio_add_page(ctx->bio, page, plen, poff);
349 * Move the caller beyond our range so that it keeps making progress.
350 * For that we have to include any leading non-uptodate ranges, but
351 * we can skip trailing ones as they will be handled in the next
354 return pos - orig_pos + plen;
358 iomap_readpage(struct page *page, const struct iomap_ops *ops)
360 struct iomap_readpage_ctx ctx = { .cur_page = page };
361 struct inode *inode = page->mapping->host;
365 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
366 ret = iomap_apply(inode, page_offset(page) + poff,
367 PAGE_SIZE - poff, 0, ops, &ctx,
368 iomap_readpage_actor);
370 WARN_ON_ONCE(ret == 0);
378 WARN_ON_ONCE(!ctx.cur_page_in_bio);
380 WARN_ON_ONCE(ctx.cur_page_in_bio);
385 * Just like mpage_readpages and block_read_full_page we always
386 * return 0 and just mark the page as PageError on errors. This
387 * should be cleaned up all through the stack eventually.
391 EXPORT_SYMBOL_GPL(iomap_readpage);
394 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
395 loff_t length, loff_t *done)
397 while (!list_empty(pages)) {
398 struct page *page = lru_to_page(pages);
400 if (page_offset(page) >= (u64)pos + length)
403 list_del(&page->lru);
404 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
409 * If we already have a page in the page cache at index we are
410 * done. Upper layers don't care if it is uptodate after the
411 * readpages call itself as every page gets checked again once
422 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
423 void *data, struct iomap *iomap)
425 struct iomap_readpage_ctx *ctx = data;
428 for (done = 0; done < length; done += ret) {
429 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
430 if (!ctx->cur_page_in_bio)
431 unlock_page(ctx->cur_page);
432 put_page(ctx->cur_page);
433 ctx->cur_page = NULL;
435 if (!ctx->cur_page) {
436 ctx->cur_page = iomap_next_page(inode, ctx->pages,
440 ctx->cur_page_in_bio = false;
442 ret = iomap_readpage_actor(inode, pos + done, length - done,
450 iomap_readpages(struct address_space *mapping, struct list_head *pages,
451 unsigned nr_pages, const struct iomap_ops *ops)
453 struct iomap_readpage_ctx ctx = {
455 .is_readahead = true,
457 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
458 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
459 loff_t length = last - pos + PAGE_SIZE, ret = 0;
462 ret = iomap_apply(mapping->host, pos, length, 0, ops,
463 &ctx, iomap_readpages_actor);
465 WARN_ON_ONCE(ret == 0);
476 if (!ctx.cur_page_in_bio)
477 unlock_page(ctx.cur_page);
478 put_page(ctx.cur_page);
482 * Check that we didn't lose a page due to the arcance calling
485 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
488 EXPORT_SYMBOL_GPL(iomap_readpages);
491 iomap_is_partially_uptodate(struct page *page, unsigned long from,
494 struct iomap_page *iop = to_iomap_page(page);
495 struct inode *inode = page->mapping->host;
496 unsigned first = from >> inode->i_blkbits;
497 unsigned last = (from + count - 1) >> inode->i_blkbits;
501 for (i = first; i <= last; i++)
502 if (!test_bit(i, iop->uptodate))
509 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
512 iomap_releasepage(struct page *page, gfp_t gfp_mask)
515 * mm accommodates an old ext3 case where clean pages might not have had
516 * the dirty bit cleared. Thus, it can send actual dirty pages to
517 * ->releasepage() via shrink_active_list(), skip those here.
519 if (PageDirty(page) || PageWriteback(page))
521 iomap_page_release(page);
524 EXPORT_SYMBOL_GPL(iomap_releasepage);
527 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
530 * If we are invalidating the entire page, clear the dirty state from it
531 * and release it to avoid unnecessary buildup of the LRU.
533 if (offset == 0 && len == PAGE_SIZE) {
534 WARN_ON_ONCE(PageWriteback(page));
535 cancel_dirty_page(page);
536 iomap_page_release(page);
539 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
541 #ifdef CONFIG_MIGRATION
543 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
544 struct page *page, enum migrate_mode mode)
548 ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
549 if (ret != MIGRATEPAGE_SUCCESS)
552 if (page_has_private(page)) {
553 ClearPagePrivate(page);
554 set_page_private(newpage, page_private(page));
555 set_page_private(page, 0);
556 SetPagePrivate(newpage);
559 if (mode != MIGRATE_SYNC_NO_COPY)
560 migrate_page_copy(newpage, page);
562 migrate_page_states(newpage, page);
563 return MIGRATEPAGE_SUCCESS;
565 EXPORT_SYMBOL_GPL(iomap_migrate_page);
566 #endif /* CONFIG_MIGRATION */
569 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
571 loff_t i_size = i_size_read(inode);
574 * Only truncate newly allocated pages beyoned EOF, even if the
575 * write started inside the existing inode size.
577 if (pos + len > i_size)
578 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
582 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
583 unsigned poff, unsigned plen, unsigned from, unsigned to,
589 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
590 zero_user_segments(page, poff, from, to, poff + plen);
591 iomap_set_range_uptodate(page, poff, plen);
595 bio_init(&bio, &bvec, 1);
596 bio.bi_opf = REQ_OP_READ;
597 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
598 bio_set_dev(&bio, iomap->bdev);
599 __bio_add_page(&bio, page, plen, poff);
600 return submit_bio_wait(&bio);
604 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
605 struct page *page, struct iomap *iomap)
607 struct iomap_page *iop = iomap_page_create(inode, page);
608 loff_t block_size = i_blocksize(inode);
609 loff_t block_start = pos & ~(block_size - 1);
610 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
611 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
614 if (PageUptodate(page))
618 iomap_adjust_read_range(inode, iop, &block_start,
619 block_end - block_start, &poff, &plen);
623 if ((from > poff && from < poff + plen) ||
624 (to > poff && to < poff + plen)) {
625 status = iomap_read_page_sync(inode, block_start, page,
626 poff, plen, from, to, iomap);
631 } while ((block_start += plen) < block_end);
637 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
638 struct page **pagep, struct iomap *iomap)
640 pgoff_t index = pos >> PAGE_SHIFT;
644 BUG_ON(pos + len > iomap->offset + iomap->length);
646 if (fatal_signal_pending(current))
649 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
653 if (iomap->type == IOMAP_INLINE)
654 iomap_read_inline_data(inode, page, iomap);
655 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
656 status = __block_write_begin_int(page, pos, len, NULL, iomap);
658 status = __iomap_write_begin(inode, pos, len, page, iomap);
659 if (unlikely(status)) {
664 iomap_write_failed(inode, pos, len);
672 iomap_set_page_dirty(struct page *page)
674 struct address_space *mapping = page_mapping(page);
677 if (unlikely(!mapping))
678 return !TestSetPageDirty(page);
681 * Lock out page->mem_cgroup migration to keep PageDirty
682 * synchronized with per-memcg dirty page counters.
684 lock_page_memcg(page);
685 newly_dirty = !TestSetPageDirty(page);
687 __set_page_dirty(page, mapping, 0);
688 unlock_page_memcg(page);
691 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
694 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
697 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
698 unsigned copied, struct page *page, struct iomap *iomap)
700 flush_dcache_page(page);
703 * The blocks that were entirely written will now be uptodate, so we
704 * don't have to worry about a readpage reading them and overwriting a
705 * partial write. However if we have encountered a short write and only
706 * partially written into a block, it will not be marked uptodate, so a
707 * readpage might come in and destroy our partial write.
709 * Do the simplest thing, and just treat any short write to a non
710 * uptodate page as a zero-length write, and force the caller to redo
713 if (unlikely(copied < len && !PageUptodate(page))) {
716 iomap_set_range_uptodate(page, offset_in_page(pos), len);
717 iomap_set_page_dirty(page);
719 return __generic_write_end(inode, pos, copied, page);
723 iomap_write_end_inline(struct inode *inode, struct page *page,
724 struct iomap *iomap, loff_t pos, unsigned copied)
728 WARN_ON_ONCE(!PageUptodate(page));
729 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
731 addr = kmap_atomic(page);
732 memcpy(iomap->inline_data + pos, addr + pos, copied);
735 mark_inode_dirty(inode);
736 __generic_write_end(inode, pos, copied, page);
741 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
742 unsigned copied, struct page *page, struct iomap *iomap)
746 if (iomap->type == IOMAP_INLINE) {
747 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
748 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
749 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
752 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
755 if (iomap->page_done)
756 iomap->page_done(inode, pos, copied, page, iomap);
759 iomap_write_failed(inode, pos, len);
764 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
767 struct iov_iter *i = data;
770 unsigned int flags = AOP_FLAG_NOFS;
774 unsigned long offset; /* Offset into pagecache page */
775 unsigned long bytes; /* Bytes to write to page */
776 size_t copied; /* Bytes copied from user */
778 offset = offset_in_page(pos);
779 bytes = min_t(unsigned long, PAGE_SIZE - offset,
786 * Bring in the user page that we will copy from _first_.
787 * Otherwise there's a nasty deadlock on copying from the
788 * same page as we're writing to, without it being marked
791 * Not only is this an optimisation, but it is also required
792 * to check that the address is actually valid, when atomic
793 * usercopies are used, below.
795 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
800 status = iomap_write_begin(inode, pos, bytes, flags, &page,
802 if (unlikely(status))
805 if (mapping_writably_mapped(inode->i_mapping))
806 flush_dcache_page(page);
808 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
810 flush_dcache_page(page);
812 status = iomap_write_end(inode, pos, bytes, copied, page,
814 if (unlikely(status < 0))
820 iov_iter_advance(i, copied);
821 if (unlikely(copied == 0)) {
823 * If we were unable to copy any data at all, we must
824 * fall back to a single segment length write.
826 * If we didn't fallback here, we could livelock
827 * because not all segments in the iov can be copied at
828 * once without a pagefault.
830 bytes = min_t(unsigned long, PAGE_SIZE - offset,
831 iov_iter_single_seg_count(i));
838 balance_dirty_pages_ratelimited(inode->i_mapping);
839 } while (iov_iter_count(i) && length);
841 return written ? written : status;
845 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
846 const struct iomap_ops *ops)
848 struct inode *inode = iocb->ki_filp->f_mapping->host;
849 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
851 while (iov_iter_count(iter)) {
852 ret = iomap_apply(inode, pos, iov_iter_count(iter),
853 IOMAP_WRITE, ops, iter, iomap_write_actor);
860 return written ? written : ret;
862 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
865 __iomap_read_page(struct inode *inode, loff_t offset)
867 struct address_space *mapping = inode->i_mapping;
870 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
873 if (!PageUptodate(page)) {
875 return ERR_PTR(-EIO);
881 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
888 struct page *page, *rpage;
889 unsigned long offset; /* Offset into pagecache page */
890 unsigned long bytes; /* Bytes to write to page */
892 offset = offset_in_page(pos);
893 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
895 rpage = __iomap_read_page(inode, pos);
897 return PTR_ERR(rpage);
899 status = iomap_write_begin(inode, pos, bytes,
900 AOP_FLAG_NOFS, &page, iomap);
902 if (unlikely(status))
905 WARN_ON_ONCE(!PageUptodate(page));
907 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
908 if (unlikely(status <= 0)) {
909 if (WARN_ON_ONCE(status == 0))
920 balance_dirty_pages_ratelimited(inode->i_mapping);
927 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
928 const struct iomap_ops *ops)
933 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
943 EXPORT_SYMBOL_GPL(iomap_file_dirty);
945 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
946 unsigned bytes, struct iomap *iomap)
951 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
956 zero_user(page, offset, bytes);
957 mark_page_accessed(page);
959 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
962 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
965 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
966 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
970 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
971 void *data, struct iomap *iomap)
973 bool *did_zero = data;
977 /* already zeroed? we're done. */
978 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
982 unsigned offset, bytes;
984 offset = offset_in_page(pos);
985 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
988 status = iomap_dax_zero(pos, offset, bytes, iomap);
990 status = iomap_zero(inode, pos, offset, bytes, iomap);
1005 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1006 const struct iomap_ops *ops)
1011 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1012 ops, did_zero, iomap_zero_range_actor);
1022 EXPORT_SYMBOL_GPL(iomap_zero_range);
1025 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1026 const struct iomap_ops *ops)
1028 unsigned int blocksize = i_blocksize(inode);
1029 unsigned int off = pos & (blocksize - 1);
1031 /* Block boundary? Nothing to do */
1034 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1036 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1039 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1040 void *data, struct iomap *iomap)
1042 struct page *page = data;
1045 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1046 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1049 block_commit_write(page, 0, length);
1051 WARN_ON_ONCE(!PageUptodate(page));
1052 iomap_page_create(inode, page);
1053 set_page_dirty(page);
1059 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1061 struct page *page = vmf->page;
1062 struct inode *inode = file_inode(vmf->vma->vm_file);
1063 unsigned long length;
1064 loff_t offset, size;
1068 size = i_size_read(inode);
1069 if ((page->mapping != inode->i_mapping) ||
1070 (page_offset(page) > size)) {
1071 /* We overload EFAULT to mean page got truncated */
1076 /* page is wholly or partially inside EOF */
1077 if (((page->index + 1) << PAGE_SHIFT) > size)
1078 length = offset_in_page(size);
1082 offset = page_offset(page);
1083 while (length > 0) {
1084 ret = iomap_apply(inode, offset, length,
1085 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1086 iomap_page_mkwrite_actor);
1087 if (unlikely(ret <= 0))
1093 wait_for_stable_page(page);
1094 return VM_FAULT_LOCKED;
1097 return block_page_mkwrite_return(ret);
1099 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1102 struct fiemap_extent_info *fi;
1106 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1107 struct iomap *iomap, u32 flags)
1109 switch (iomap->type) {
1113 case IOMAP_DELALLOC:
1114 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1118 case IOMAP_UNWRITTEN:
1119 flags |= FIEMAP_EXTENT_UNWRITTEN;
1122 flags |= FIEMAP_EXTENT_DATA_INLINE;
1126 if (iomap->flags & IOMAP_F_MERGED)
1127 flags |= FIEMAP_EXTENT_MERGED;
1128 if (iomap->flags & IOMAP_F_SHARED)
1129 flags |= FIEMAP_EXTENT_SHARED;
1131 return fiemap_fill_next_extent(fi, iomap->offset,
1132 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1133 iomap->length, flags);
1137 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1138 struct iomap *iomap)
1140 struct fiemap_ctx *ctx = data;
1141 loff_t ret = length;
1143 if (iomap->type == IOMAP_HOLE)
1146 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1149 case 0: /* success */
1151 case 1: /* extent array full */
1158 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1159 loff_t start, loff_t len, const struct iomap_ops *ops)
1161 struct fiemap_ctx ctx;
1164 memset(&ctx, 0, sizeof(ctx));
1166 ctx.prev.type = IOMAP_HOLE;
1168 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1172 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1173 ret = filemap_write_and_wait(inode->i_mapping);
1179 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1180 iomap_fiemap_actor);
1181 /* inode with no (attribute) mapping will give ENOENT */
1193 if (ctx.prev.type != IOMAP_HOLE) {
1194 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1201 EXPORT_SYMBOL_GPL(iomap_fiemap);
1204 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1205 * Returns true if found and updates @lastoff to the offset in file.
1208 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1211 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1212 unsigned int bsize = i_blocksize(inode), off;
1213 bool seek_data = whence == SEEK_DATA;
1214 loff_t poff = page_offset(page);
1216 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1219 if (*lastoff < poff) {
1221 * Last offset smaller than the start of the page means we found
1224 if (whence == SEEK_HOLE)
1230 * Just check the page unless we can and should check block ranges:
1232 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1233 return PageUptodate(page) == seek_data;
1236 if (unlikely(page->mapping != inode->i_mapping))
1237 goto out_unlock_not_found;
1239 for (off = 0; off < PAGE_SIZE; off += bsize) {
1240 if (offset_in_page(*lastoff) >= off + bsize)
1242 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1246 *lastoff = poff + off + bsize;
1249 out_unlock_not_found:
1255 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1257 * Within unwritten extents, the page cache determines which parts are holes
1258 * and which are data: uptodate buffer heads count as data; everything else
1261 * Returns the resulting offset on successs, and -ENOENT otherwise.
1264 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1267 pgoff_t index = offset >> PAGE_SHIFT;
1268 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1269 loff_t lastoff = offset;
1270 struct pagevec pvec;
1275 pagevec_init(&pvec);
1278 unsigned nr_pages, i;
1280 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1285 for (i = 0; i < nr_pages; i++) {
1286 struct page *page = pvec.pages[i];
1288 if (page_seek_hole_data(inode, page, &lastoff, whence))
1290 lastoff = page_offset(page) + PAGE_SIZE;
1292 pagevec_release(&pvec);
1293 } while (index < end);
1295 /* When no page at lastoff and we are not done, we found a hole. */
1296 if (whence != SEEK_HOLE)
1300 if (lastoff < offset + length)
1305 pagevec_release(&pvec);
1311 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1312 void *data, struct iomap *iomap)
1314 switch (iomap->type) {
1315 case IOMAP_UNWRITTEN:
1316 offset = page_cache_seek_hole_data(inode, offset, length,
1322 *(loff_t *)data = offset;
1330 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1332 loff_t size = i_size_read(inode);
1333 loff_t length = size - offset;
1336 /* Nothing to be found before or beyond the end of the file. */
1337 if (offset < 0 || offset >= size)
1340 while (length > 0) {
1341 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1342 &offset, iomap_seek_hole_actor);
1354 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1357 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1358 void *data, struct iomap *iomap)
1360 switch (iomap->type) {
1363 case IOMAP_UNWRITTEN:
1364 offset = page_cache_seek_hole_data(inode, offset, length,
1370 *(loff_t *)data = offset;
1376 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1378 loff_t size = i_size_read(inode);
1379 loff_t length = size - offset;
1382 /* Nothing to be found before or beyond the end of the file. */
1383 if (offset < 0 || offset >= size)
1386 while (length > 0) {
1387 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1388 &offset, iomap_seek_data_actor);
1402 EXPORT_SYMBOL_GPL(iomap_seek_data);
1405 * Private flags for iomap_dio, must not overlap with the public ones in
1408 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1409 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1410 #define IOMAP_DIO_WRITE (1 << 30)
1411 #define IOMAP_DIO_DIRTY (1 << 31)
1415 iomap_dio_end_io_t *end_io;
1421 bool wait_for_completion;
1424 /* used during submission and for synchronous completion: */
1426 struct iov_iter *iter;
1427 struct task_struct *waiter;
1428 struct request_queue *last_queue;
1432 /* used for aio completion: */
1434 struct work_struct work;
1439 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1441 struct kiocb *iocb = dio->iocb;
1442 struct inode *inode = file_inode(iocb->ki_filp);
1443 loff_t offset = iocb->ki_pos;
1447 ret = dio->end_io(iocb,
1448 dio->error ? dio->error : dio->size,
1456 /* check for short read */
1457 if (offset + ret > dio->i_size &&
1458 !(dio->flags & IOMAP_DIO_WRITE))
1459 ret = dio->i_size - offset;
1460 iocb->ki_pos += ret;
1464 * Try again to invalidate clean pages which might have been cached by
1465 * non-direct readahead, or faulted in by get_user_pages() if the source
1466 * of the write was an mmap'ed region of the file we're writing. Either
1467 * one is a pretty crazy thing to do, so we don't support it 100%. If
1468 * this invalidation fails, tough, the write still worked...
1470 * And this page cache invalidation has to be after dio->end_io(), as
1471 * some filesystems convert unwritten extents to real allocations in
1472 * end_io() when necessary, otherwise a racing buffer read would cache
1473 * zeros from unwritten extents.
1476 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1478 err = invalidate_inode_pages2_range(inode->i_mapping,
1479 offset >> PAGE_SHIFT,
1480 (offset + dio->size - 1) >> PAGE_SHIFT);
1482 dio_warn_stale_pagecache(iocb->ki_filp);
1486 * If this is a DSYNC write, make sure we push it to stable storage now
1487 * that we've written data.
1489 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1490 ret = generic_write_sync(iocb, ret);
1492 inode_dio_end(file_inode(iocb->ki_filp));
1498 static void iomap_dio_complete_work(struct work_struct *work)
1500 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1501 struct kiocb *iocb = dio->iocb;
1503 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1507 * Set an error in the dio if none is set yet. We have to use cmpxchg
1508 * as the submission context and the completion context(s) can race to
1511 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1513 cmpxchg(&dio->error, 0, ret);
1516 static void iomap_dio_bio_end_io(struct bio *bio)
1518 struct iomap_dio *dio = bio->bi_private;
1519 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1522 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1524 if (atomic_dec_and_test(&dio->ref)) {
1525 if (dio->wait_for_completion) {
1526 struct task_struct *waiter = dio->submit.waiter;
1527 WRITE_ONCE(dio->submit.waiter, NULL);
1528 wake_up_process(waiter);
1529 } else if (dio->flags & IOMAP_DIO_WRITE) {
1530 struct inode *inode = file_inode(dio->iocb->ki_filp);
1532 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1533 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1535 iomap_dio_complete_work(&dio->aio.work);
1540 bio_check_pages_dirty(bio);
1542 struct bio_vec *bvec;
1545 bio_for_each_segment_all(bvec, bio, i)
1546 put_page(bvec->bv_page);
1552 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1555 struct page *page = ZERO_PAGE(0);
1558 bio = bio_alloc(GFP_KERNEL, 1);
1559 bio_set_dev(bio, iomap->bdev);
1560 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1561 bio->bi_private = dio;
1562 bio->bi_end_io = iomap_dio_bio_end_io;
1565 __bio_add_page(bio, page, len, 0);
1566 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
1568 atomic_inc(&dio->ref);
1569 return submit_bio(bio);
1573 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1574 struct iomap_dio *dio, struct iomap *iomap)
1576 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1577 unsigned int fs_block_size = i_blocksize(inode), pad;
1578 unsigned int align = iov_iter_alignment(dio->submit.iter);
1579 struct iov_iter iter;
1581 bool need_zeroout = false;
1582 bool use_fua = false;
1586 if ((pos | length | align) & ((1 << blkbits) - 1))
1589 if (iomap->type == IOMAP_UNWRITTEN) {
1590 dio->flags |= IOMAP_DIO_UNWRITTEN;
1591 need_zeroout = true;
1594 if (iomap->flags & IOMAP_F_SHARED)
1595 dio->flags |= IOMAP_DIO_COW;
1597 if (iomap->flags & IOMAP_F_NEW) {
1598 need_zeroout = true;
1601 * Use a FUA write if we need datasync semantics, this
1602 * is a pure data IO that doesn't require any metadata
1603 * updates and the underlying device supports FUA. This
1604 * allows us to avoid cache flushes on IO completion.
1606 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1607 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1608 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1613 * Operate on a partial iter trimmed to the extent we were called for.
1614 * We'll update the iter in the dio once we're done with this extent.
1616 iter = *dio->submit.iter;
1617 iov_iter_truncate(&iter, length);
1619 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1624 /* zero out from the start of the block to the write offset */
1625 pad = pos & (fs_block_size - 1);
1627 iomap_dio_zero(dio, iomap, pos - pad, pad);
1633 iov_iter_revert(dio->submit.iter, copied);
1637 bio = bio_alloc(GFP_KERNEL, nr_pages);
1638 bio_set_dev(bio, iomap->bdev);
1639 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1640 bio->bi_write_hint = dio->iocb->ki_hint;
1641 bio->bi_ioprio = dio->iocb->ki_ioprio;
1642 bio->bi_private = dio;
1643 bio->bi_end_io = iomap_dio_bio_end_io;
1645 ret = bio_iov_iter_get_pages(bio, &iter);
1646 if (unlikely(ret)) {
1648 return copied ? copied : ret;
1651 n = bio->bi_iter.bi_size;
1652 if (dio->flags & IOMAP_DIO_WRITE) {
1653 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1655 bio->bi_opf |= REQ_FUA;
1657 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1658 task_io_account_write(n);
1660 bio->bi_opf = REQ_OP_READ;
1661 if (dio->flags & IOMAP_DIO_DIRTY)
1662 bio_set_pages_dirty(bio);
1665 iov_iter_advance(dio->submit.iter, n);
1671 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1673 atomic_inc(&dio->ref);
1675 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1676 dio->submit.cookie = submit_bio(bio);
1680 /* zero out from the end of the write to the end of the block */
1681 pad = pos & (fs_block_size - 1);
1683 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1689 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1691 length = iov_iter_zero(length, dio->submit.iter);
1692 dio->size += length;
1697 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1698 struct iomap_dio *dio, struct iomap *iomap)
1700 struct iov_iter *iter = dio->submit.iter;
1703 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1705 if (dio->flags & IOMAP_DIO_WRITE) {
1706 loff_t size = inode->i_size;
1709 memset(iomap->inline_data + size, 0, pos - size);
1710 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1712 if (pos + copied > size)
1713 i_size_write(inode, pos + copied);
1714 mark_inode_dirty(inode);
1717 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1719 dio->size += copied;
1724 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1725 void *data, struct iomap *iomap)
1727 struct iomap_dio *dio = data;
1729 switch (iomap->type) {
1731 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1733 return iomap_dio_hole_actor(length, dio);
1734 case IOMAP_UNWRITTEN:
1735 if (!(dio->flags & IOMAP_DIO_WRITE))
1736 return iomap_dio_hole_actor(length, dio);
1737 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1739 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1741 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1749 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1750 * is being issued as AIO or not. This allows us to optimise pure data writes
1751 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1752 * REQ_FLUSH post write. This is slightly tricky because a single request here
1753 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1754 * may be pure data writes. In that case, we still need to do a full data sync
1758 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1759 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1761 struct address_space *mapping = iocb->ki_filp->f_mapping;
1762 struct inode *inode = file_inode(iocb->ki_filp);
1763 size_t count = iov_iter_count(iter);
1764 loff_t pos = iocb->ki_pos, start = pos;
1765 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1766 unsigned int flags = IOMAP_DIRECT;
1767 struct blk_plug plug;
1768 struct iomap_dio *dio;
1770 lockdep_assert_held(&inode->i_rwsem);
1775 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1780 atomic_set(&dio->ref, 1);
1782 dio->i_size = i_size_read(inode);
1783 dio->end_io = end_io;
1786 dio->wait_for_completion = is_sync_kiocb(iocb);
1788 dio->submit.iter = iter;
1789 dio->submit.waiter = current;
1790 dio->submit.cookie = BLK_QC_T_NONE;
1791 dio->submit.last_queue = NULL;
1793 if (iov_iter_rw(iter) == READ) {
1794 if (pos >= dio->i_size)
1797 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1798 dio->flags |= IOMAP_DIO_DIRTY;
1800 flags |= IOMAP_WRITE;
1801 dio->flags |= IOMAP_DIO_WRITE;
1803 /* for data sync or sync, we need sync completion processing */
1804 if (iocb->ki_flags & IOCB_DSYNC)
1805 dio->flags |= IOMAP_DIO_NEED_SYNC;
1808 * For datasync only writes, we optimistically try using FUA for
1809 * this IO. Any non-FUA write that occurs will clear this flag,
1810 * hence we know before completion whether a cache flush is
1813 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1814 dio->flags |= IOMAP_DIO_WRITE_FUA;
1817 if (iocb->ki_flags & IOCB_NOWAIT) {
1818 if (filemap_range_has_page(mapping, start, end)) {
1822 flags |= IOMAP_NOWAIT;
1825 ret = filemap_write_and_wait_range(mapping, start, end);
1830 * Try to invalidate cache pages for the range we're direct
1831 * writing. If this invalidation fails, tough, the write will
1832 * still work, but racing two incompatible write paths is a
1833 * pretty crazy thing to do, so we don't support it 100%.
1835 ret = invalidate_inode_pages2_range(mapping,
1836 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1838 dio_warn_stale_pagecache(iocb->ki_filp);
1841 if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion &&
1842 !inode->i_sb->s_dio_done_wq) {
1843 ret = sb_init_dio_done_wq(inode->i_sb);
1848 inode_dio_begin(inode);
1850 blk_start_plug(&plug);
1852 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1855 /* magic error code to fall back to buffered I/O */
1856 if (ret == -ENOTBLK) {
1857 dio->wait_for_completion = true;
1864 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1866 } while ((count = iov_iter_count(iter)) > 0);
1867 blk_finish_plug(&plug);
1870 iomap_dio_set_error(dio, ret);
1873 * If all the writes we issued were FUA, we don't need to flush the
1874 * cache on IO completion. Clear the sync flag for this case.
1876 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1877 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1879 if (!atomic_dec_and_test(&dio->ref)) {
1880 if (!dio->wait_for_completion)
1881 return -EIOCBQUEUED;
1884 set_current_state(TASK_UNINTERRUPTIBLE);
1885 if (!READ_ONCE(dio->submit.waiter))
1888 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1889 !dio->submit.last_queue ||
1890 !blk_poll(dio->submit.last_queue,
1891 dio->submit.cookie))
1894 __set_current_state(TASK_RUNNING);
1897 ret = iomap_dio_complete(dio);
1905 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1907 /* Swapfile activation */
1910 struct iomap_swapfile_info {
1911 struct iomap iomap; /* accumulated iomap */
1912 struct swap_info_struct *sis;
1913 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1914 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1915 unsigned long nr_pages; /* number of pages collected */
1916 int nr_extents; /* extent count */
1920 * Collect physical extents for this swap file. Physical extents reported to
1921 * the swap code must be trimmed to align to a page boundary. The logical
1922 * offset within the file is irrelevant since the swapfile code maps logical
1923 * page numbers of the swap device to the physical page-aligned extents.
1925 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1927 struct iomap *iomap = &isi->iomap;
1928 unsigned long nr_pages;
1929 uint64_t first_ppage;
1930 uint64_t first_ppage_reported;
1931 uint64_t next_ppage;
1935 * Round the start up and the end down so that the physical
1936 * extent aligns to a page boundary.
1938 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1939 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1942 /* Skip too-short physical extents. */
1943 if (first_ppage >= next_ppage)
1945 nr_pages = next_ppage - first_ppage;
1948 * Calculate how much swap space we're adding; the first page contains
1949 * the swap header and doesn't count. The mm still wants that first
1950 * page fed to add_swap_extent, however.
1952 first_ppage_reported = first_ppage;
1953 if (iomap->offset == 0)
1954 first_ppage_reported++;
1955 if (isi->lowest_ppage > first_ppage_reported)
1956 isi->lowest_ppage = first_ppage_reported;
1957 if (isi->highest_ppage < (next_ppage - 1))
1958 isi->highest_ppage = next_ppage - 1;
1960 /* Add extent, set up for the next call. */
1961 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
1964 isi->nr_extents += error;
1965 isi->nr_pages += nr_pages;
1970 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
1971 * swap only cares about contiguous page-aligned physical extents and makes no
1972 * distinction between written and unwritten extents.
1974 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
1975 loff_t count, void *data, struct iomap *iomap)
1977 struct iomap_swapfile_info *isi = data;
1980 switch (iomap->type) {
1982 case IOMAP_UNWRITTEN:
1983 /* Only real or unwritten extents. */
1986 /* No inline data. */
1987 pr_err("swapon: file is inline\n");
1990 pr_err("swapon: file has unallocated extents\n");
1994 /* No uncommitted metadata or shared blocks. */
1995 if (iomap->flags & IOMAP_F_DIRTY) {
1996 pr_err("swapon: file is not committed\n");
1999 if (iomap->flags & IOMAP_F_SHARED) {
2000 pr_err("swapon: file has shared extents\n");
2004 /* Only one bdev per swap file. */
2005 if (iomap->bdev != isi->sis->bdev) {
2006 pr_err("swapon: file is on multiple devices\n");
2010 if (isi->iomap.length == 0) {
2011 /* No accumulated extent, so just store it. */
2012 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2013 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2014 /* Append this to the accumulated extent. */
2015 isi->iomap.length += iomap->length;
2017 /* Otherwise, add the retained iomap and store this one. */
2018 error = iomap_swapfile_add_extent(isi);
2021 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2027 * Iterate a swap file's iomaps to construct physical extents that can be
2028 * passed to the swapfile subsystem.
2030 int iomap_swapfile_activate(struct swap_info_struct *sis,
2031 struct file *swap_file, sector_t *pagespan,
2032 const struct iomap_ops *ops)
2034 struct iomap_swapfile_info isi = {
2036 .lowest_ppage = (sector_t)-1ULL,
2038 struct address_space *mapping = swap_file->f_mapping;
2039 struct inode *inode = mapping->host;
2041 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2045 * Persist all file mapping metadata so that we won't have any
2046 * IOMAP_F_DIRTY iomaps.
2048 ret = vfs_fsync(swap_file, 1);
2053 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2054 ops, &isi, iomap_swapfile_activate_actor);
2062 if (isi.iomap.length) {
2063 ret = iomap_swapfile_add_extent(&isi);
2068 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2069 sis->max = isi.nr_pages;
2070 sis->pages = isi.nr_pages - 1;
2071 sis->highest_bit = isi.nr_pages - 1;
2072 return isi.nr_extents;
2074 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2075 #endif /* CONFIG_SWAP */
2078 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2079 void *data, struct iomap *iomap)
2081 sector_t *bno = data, addr;
2083 if (iomap->type == IOMAP_MAPPED) {
2084 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2086 WARN(1, "would truncate bmap result\n");
2093 /* legacy ->bmap interface. 0 is the error return (!) */
2095 iomap_bmap(struct address_space *mapping, sector_t bno,
2096 const struct iomap_ops *ops)
2098 struct inode *inode = mapping->host;
2099 loff_t pos = bno << inode->i_blkbits;
2100 unsigned blocksize = i_blocksize(inode);
2102 if (filemap_write_and_wait(mapping))
2106 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2109 EXPORT_SYMBOL_GPL(iomap_bmap);