jbd2: fix fsync() tid wraparound bug
[linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 /*
104  * Helper function used to manage commit timeouts
105  */
106
107 static void commit_timeout(unsigned long __data)
108 {
109         struct task_struct * p = (struct task_struct *) __data;
110
111         wake_up_process(p);
112 }
113
114 /*
115  * kjournald2: The main thread function used to manage a logging device
116  * journal.
117  *
118  * This kernel thread is responsible for two things:
119  *
120  * 1) COMMIT:  Every so often we need to commit the current state of the
121  *    filesystem to disk.  The journal thread is responsible for writing
122  *    all of the metadata buffers to disk.
123  *
124  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125  *    of the data in that part of the log has been rewritten elsewhere on
126  *    the disk.  Flushing these old buffers to reclaim space in the log is
127  *    known as checkpointing, and this thread is responsible for that job.
128  */
129
130 static int kjournald2(void *arg)
131 {
132         journal_t *journal = arg;
133         transaction_t *transaction;
134
135         /*
136          * Set up an interval timer which can be used to trigger a commit wakeup
137          * after the commit interval expires
138          */
139         setup_timer(&journal->j_commit_timer, commit_timeout,
140                         (unsigned long)current);
141
142         /* Record that the journal thread is running */
143         journal->j_task = current;
144         wake_up(&journal->j_wait_done_commit);
145
146         /*
147          * And now, wait forever for commit wakeup events.
148          */
149         write_lock(&journal->j_state_lock);
150
151 loop:
152         if (journal->j_flags & JBD2_UNMOUNT)
153                 goto end_loop;
154
155         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156                 journal->j_commit_sequence, journal->j_commit_request);
157
158         if (journal->j_commit_sequence != journal->j_commit_request) {
159                 jbd_debug(1, "OK, requests differ\n");
160                 write_unlock(&journal->j_state_lock);
161                 del_timer_sync(&journal->j_commit_timer);
162                 jbd2_journal_commit_transaction(journal);
163                 write_lock(&journal->j_state_lock);
164                 goto loop;
165         }
166
167         wake_up(&journal->j_wait_done_commit);
168         if (freezing(current)) {
169                 /*
170                  * The simpler the better. Flushing journal isn't a
171                  * good idea, because that depends on threads that may
172                  * be already stopped.
173                  */
174                 jbd_debug(1, "Now suspending kjournald2\n");
175                 write_unlock(&journal->j_state_lock);
176                 refrigerator();
177                 write_lock(&journal->j_state_lock);
178         } else {
179                 /*
180                  * We assume on resume that commits are already there,
181                  * so we don't sleep
182                  */
183                 DEFINE_WAIT(wait);
184                 int should_sleep = 1;
185
186                 prepare_to_wait(&journal->j_wait_commit, &wait,
187                                 TASK_INTERRUPTIBLE);
188                 if (journal->j_commit_sequence != journal->j_commit_request)
189                         should_sleep = 0;
190                 transaction = journal->j_running_transaction;
191                 if (transaction && time_after_eq(jiffies,
192                                                 transaction->t_expires))
193                         should_sleep = 0;
194                 if (journal->j_flags & JBD2_UNMOUNT)
195                         should_sleep = 0;
196                 if (should_sleep) {
197                         write_unlock(&journal->j_state_lock);
198                         schedule();
199                         write_lock(&journal->j_state_lock);
200                 }
201                 finish_wait(&journal->j_wait_commit, &wait);
202         }
203
204         jbd_debug(1, "kjournald2 wakes\n");
205
206         /*
207          * Were we woken up by a commit wakeup event?
208          */
209         transaction = journal->j_running_transaction;
210         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211                 journal->j_commit_request = transaction->t_tid;
212                 jbd_debug(1, "woke because of timeout\n");
213         }
214         goto loop;
215
216 end_loop:
217         write_unlock(&journal->j_state_lock);
218         del_timer_sync(&journal->j_commit_timer);
219         journal->j_task = NULL;
220         wake_up(&journal->j_wait_done_commit);
221         jbd_debug(1, "Journal thread exiting.\n");
222         return 0;
223 }
224
225 static int jbd2_journal_start_thread(journal_t *journal)
226 {
227         struct task_struct *t;
228
229         t = kthread_run(kjournald2, journal, "jbd2/%s",
230                         journal->j_devname);
231         if (IS_ERR(t))
232                 return PTR_ERR(t);
233
234         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235         return 0;
236 }
237
238 static void journal_kill_thread(journal_t *journal)
239 {
240         write_lock(&journal->j_state_lock);
241         journal->j_flags |= JBD2_UNMOUNT;
242
243         while (journal->j_task) {
244                 wake_up(&journal->j_wait_commit);
245                 write_unlock(&journal->j_state_lock);
246                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247                 write_lock(&journal->j_state_lock);
248         }
249         write_unlock(&journal->j_state_lock);
250 }
251
252 /*
253  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254  *
255  * Writes a metadata buffer to a given disk block.  The actual IO is not
256  * performed but a new buffer_head is constructed which labels the data
257  * to be written with the correct destination disk block.
258  *
259  * Any magic-number escaping which needs to be done will cause a
260  * copy-out here.  If the buffer happens to start with the
261  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262  * magic number is only written to the log for descripter blocks.  In
263  * this case, we copy the data and replace the first word with 0, and we
264  * return a result code which indicates that this buffer needs to be
265  * marked as an escaped buffer in the corresponding log descriptor
266  * block.  The missing word can then be restored when the block is read
267  * during recovery.
268  *
269  * If the source buffer has already been modified by a new transaction
270  * since we took the last commit snapshot, we use the frozen copy of
271  * that data for IO.  If we end up using the existing buffer_head's data
272  * for the write, then we *have* to lock the buffer to prevent anyone
273  * else from using and possibly modifying it while the IO is in
274  * progress.
275  *
276  * The function returns a pointer to the buffer_heads to be used for IO.
277  *
278  * We assume that the journal has already been locked in this function.
279  *
280  * Return value:
281  *  <0: Error
282  * >=0: Finished OK
283  *
284  * On success:
285  * Bit 0 set == escape performed on the data
286  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
287  */
288
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290                                   struct journal_head  *jh_in,
291                                   struct journal_head **jh_out,
292                                   unsigned long long blocknr)
293 {
294         int need_copy_out = 0;
295         int done_copy_out = 0;
296         int do_escape = 0;
297         char *mapped_data;
298         struct buffer_head *new_bh;
299         struct journal_head *new_jh;
300         struct page *new_page;
301         unsigned int new_offset;
302         struct buffer_head *bh_in = jh2bh(jh_in);
303         journal_t *journal = transaction->t_journal;
304
305         /*
306          * The buffer really shouldn't be locked: only the current committing
307          * transaction is allowed to write it, so nobody else is allowed
308          * to do any IO.
309          *
310          * akpm: except if we're journalling data, and write() output is
311          * also part of a shared mapping, and another thread has
312          * decided to launch a writepage() against this buffer.
313          */
314         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
315
316 retry_alloc:
317         new_bh = alloc_buffer_head(GFP_NOFS);
318         if (!new_bh) {
319                 /*
320                  * Failure is not an option, but __GFP_NOFAIL is going
321                  * away; so we retry ourselves here.
322                  */
323                 congestion_wait(BLK_RW_ASYNC, HZ/50);
324                 goto retry_alloc;
325         }
326
327         /* keep subsequent assertions sane */
328         new_bh->b_state = 0;
329         init_buffer(new_bh, NULL, NULL);
330         atomic_set(&new_bh->b_count, 1);
331         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
332
333         /*
334          * If a new transaction has already done a buffer copy-out, then
335          * we use that version of the data for the commit.
336          */
337         jbd_lock_bh_state(bh_in);
338 repeat:
339         if (jh_in->b_frozen_data) {
340                 done_copy_out = 1;
341                 new_page = virt_to_page(jh_in->b_frozen_data);
342                 new_offset = offset_in_page(jh_in->b_frozen_data);
343         } else {
344                 new_page = jh2bh(jh_in)->b_page;
345                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
346         }
347
348         mapped_data = kmap_atomic(new_page, KM_USER0);
349         /*
350          * Fire data frozen trigger if data already wasn't frozen.  Do this
351          * before checking for escaping, as the trigger may modify the magic
352          * offset.  If a copy-out happens afterwards, it will have the correct
353          * data in the buffer.
354          */
355         if (!done_copy_out)
356                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357                                            jh_in->b_triggers);
358
359         /*
360          * Check for escaping
361          */
362         if (*((__be32 *)(mapped_data + new_offset)) ==
363                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364                 need_copy_out = 1;
365                 do_escape = 1;
366         }
367         kunmap_atomic(mapped_data, KM_USER0);
368
369         /*
370          * Do we need to do a data copy?
371          */
372         if (need_copy_out && !done_copy_out) {
373                 char *tmp;
374
375                 jbd_unlock_bh_state(bh_in);
376                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377                 if (!tmp) {
378                         jbd2_journal_put_journal_head(new_jh);
379                         return -ENOMEM;
380                 }
381                 jbd_lock_bh_state(bh_in);
382                 if (jh_in->b_frozen_data) {
383                         jbd2_free(tmp, bh_in->b_size);
384                         goto repeat;
385                 }
386
387                 jh_in->b_frozen_data = tmp;
388                 mapped_data = kmap_atomic(new_page, KM_USER0);
389                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390                 kunmap_atomic(mapped_data, KM_USER0);
391
392                 new_page = virt_to_page(tmp);
393                 new_offset = offset_in_page(tmp);
394                 done_copy_out = 1;
395
396                 /*
397                  * This isn't strictly necessary, as we're using frozen
398                  * data for the escaping, but it keeps consistency with
399                  * b_frozen_data usage.
400                  */
401                 jh_in->b_frozen_triggers = jh_in->b_triggers;
402         }
403
404         /*
405          * Did we need to do an escaping?  Now we've done all the
406          * copying, we can finally do so.
407          */
408         if (do_escape) {
409                 mapped_data = kmap_atomic(new_page, KM_USER0);
410                 *((unsigned int *)(mapped_data + new_offset)) = 0;
411                 kunmap_atomic(mapped_data, KM_USER0);
412         }
413
414         set_bh_page(new_bh, new_page, new_offset);
415         new_jh->b_transaction = NULL;
416         new_bh->b_size = jh2bh(jh_in)->b_size;
417         new_bh->b_bdev = transaction->t_journal->j_dev;
418         new_bh->b_blocknr = blocknr;
419         set_buffer_mapped(new_bh);
420         set_buffer_dirty(new_bh);
421
422         *jh_out = new_jh;
423
424         /*
425          * The to-be-written buffer needs to get moved to the io queue,
426          * and the original buffer whose contents we are shadowing or
427          * copying is moved to the transaction's shadow queue.
428          */
429         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430         spin_lock(&journal->j_list_lock);
431         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432         spin_unlock(&journal->j_list_lock);
433         jbd_unlock_bh_state(bh_in);
434
435         JBUFFER_TRACE(new_jh, "file as BJ_IO");
436         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437
438         return do_escape | (done_copy_out << 1);
439 }
440
441 /*
442  * Allocation code for the journal file.  Manage the space left in the
443  * journal, so that we can begin checkpointing when appropriate.
444  */
445
446 /*
447  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448  *
449  * Called with the journal already locked.
450  *
451  * Called under j_state_lock
452  */
453
454 int __jbd2_log_space_left(journal_t *journal)
455 {
456         int left = journal->j_free;
457
458         /* assert_spin_locked(&journal->j_state_lock); */
459
460         /*
461          * Be pessimistic here about the number of those free blocks which
462          * might be required for log descriptor control blocks.
463          */
464
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466
467         left -= MIN_LOG_RESERVED_BLOCKS;
468
469         if (left <= 0)
470                 return 0;
471         left -= (left >> 3);
472         return left;
473 }
474
475 /*
476  * Called with j_state_lock locked for writing.
477  * Returns true if a transaction commit was started.
478  */
479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 {
481         /*
482          * The only transaction we can possibly wait upon is the
483          * currently running transaction (if it exists).  Otherwise,
484          * the target tid must be an old one.
485          */
486         if (journal->j_running_transaction &&
487             journal->j_running_transaction->t_tid == target) {
488                 /*
489                  * We want a new commit: OK, mark the request and wakeup the
490                  * commit thread.  We do _not_ do the commit ourselves.
491                  */
492
493                 journal->j_commit_request = target;
494                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
495                           journal->j_commit_request,
496                           journal->j_commit_sequence);
497                 wake_up(&journal->j_wait_commit);
498                 return 1;
499         } else if (!tid_geq(journal->j_commit_request, target))
500                 /* This should never happen, but if it does, preserve
501                    the evidence before kjournald goes into a loop and
502                    increments j_commit_sequence beyond all recognition. */
503                 WARN(1, "jbd: bad log_start_commit: %u %u %u %u\n",
504                      journal->j_commit_request, journal->j_commit_sequence,
505                      target, journal->j_running_transaction ? 
506                      journal->j_running_transaction->t_tid : 0);
507         return 0;
508 }
509
510 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
511 {
512         int ret;
513
514         write_lock(&journal->j_state_lock);
515         ret = __jbd2_log_start_commit(journal, tid);
516         write_unlock(&journal->j_state_lock);
517         return ret;
518 }
519
520 /*
521  * Force and wait upon a commit if the calling process is not within
522  * transaction.  This is used for forcing out undo-protected data which contains
523  * bitmaps, when the fs is running out of space.
524  *
525  * We can only force the running transaction if we don't have an active handle;
526  * otherwise, we will deadlock.
527  *
528  * Returns true if a transaction was started.
529  */
530 int jbd2_journal_force_commit_nested(journal_t *journal)
531 {
532         transaction_t *transaction = NULL;
533         tid_t tid;
534         int need_to_start = 0;
535
536         read_lock(&journal->j_state_lock);
537         if (journal->j_running_transaction && !current->journal_info) {
538                 transaction = journal->j_running_transaction;
539                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
540                         need_to_start = 1;
541         } else if (journal->j_committing_transaction)
542                 transaction = journal->j_committing_transaction;
543
544         if (!transaction) {
545                 read_unlock(&journal->j_state_lock);
546                 return 0;       /* Nothing to retry */
547         }
548
549         tid = transaction->t_tid;
550         read_unlock(&journal->j_state_lock);
551         if (need_to_start)
552                 jbd2_log_start_commit(journal, tid);
553         jbd2_log_wait_commit(journal, tid);
554         return 1;
555 }
556
557 /*
558  * Start a commit of the current running transaction (if any).  Returns true
559  * if a transaction is going to be committed (or is currently already
560  * committing), and fills its tid in at *ptid
561  */
562 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
563 {
564         int ret = 0;
565
566         write_lock(&journal->j_state_lock);
567         if (journal->j_running_transaction) {
568                 tid_t tid = journal->j_running_transaction->t_tid;
569
570                 __jbd2_log_start_commit(journal, tid);
571                 /* There's a running transaction and we've just made sure
572                  * it's commit has been scheduled. */
573                 if (ptid)
574                         *ptid = tid;
575                 ret = 1;
576         } else if (journal->j_committing_transaction) {
577                 /*
578                  * If ext3_write_super() recently started a commit, then we
579                  * have to wait for completion of that transaction
580                  */
581                 if (ptid)
582                         *ptid = journal->j_committing_transaction->t_tid;
583                 ret = 1;
584         }
585         write_unlock(&journal->j_state_lock);
586         return ret;
587 }
588
589 /*
590  * Wait for a specified commit to complete.
591  * The caller may not hold the journal lock.
592  */
593 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
594 {
595         int err = 0;
596
597         read_lock(&journal->j_state_lock);
598 #ifdef CONFIG_JBD2_DEBUG
599         if (!tid_geq(journal->j_commit_request, tid)) {
600                 printk(KERN_EMERG
601                        "%s: error: j_commit_request=%d, tid=%d\n",
602                        __func__, journal->j_commit_request, tid);
603         }
604 #endif
605         while (tid_gt(tid, journal->j_commit_sequence)) {
606                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
607                                   tid, journal->j_commit_sequence);
608                 wake_up(&journal->j_wait_commit);
609                 read_unlock(&journal->j_state_lock);
610                 wait_event(journal->j_wait_done_commit,
611                                 !tid_gt(tid, journal->j_commit_sequence));
612                 read_lock(&journal->j_state_lock);
613         }
614         read_unlock(&journal->j_state_lock);
615
616         if (unlikely(is_journal_aborted(journal))) {
617                 printk(KERN_EMERG "journal commit I/O error\n");
618                 err = -EIO;
619         }
620         return err;
621 }
622
623 /*
624  * Log buffer allocation routines:
625  */
626
627 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
628 {
629         unsigned long blocknr;
630
631         write_lock(&journal->j_state_lock);
632         J_ASSERT(journal->j_free > 1);
633
634         blocknr = journal->j_head;
635         journal->j_head++;
636         journal->j_free--;
637         if (journal->j_head == journal->j_last)
638                 journal->j_head = journal->j_first;
639         write_unlock(&journal->j_state_lock);
640         return jbd2_journal_bmap(journal, blocknr, retp);
641 }
642
643 /*
644  * Conversion of logical to physical block numbers for the journal
645  *
646  * On external journals the journal blocks are identity-mapped, so
647  * this is a no-op.  If needed, we can use j_blk_offset - everything is
648  * ready.
649  */
650 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
651                  unsigned long long *retp)
652 {
653         int err = 0;
654         unsigned long long ret;
655
656         if (journal->j_inode) {
657                 ret = bmap(journal->j_inode, blocknr);
658                 if (ret)
659                         *retp = ret;
660                 else {
661                         printk(KERN_ALERT "%s: journal block not found "
662                                         "at offset %lu on %s\n",
663                                __func__, blocknr, journal->j_devname);
664                         err = -EIO;
665                         __journal_abort_soft(journal, err);
666                 }
667         } else {
668                 *retp = blocknr; /* +journal->j_blk_offset */
669         }
670         return err;
671 }
672
673 /*
674  * We play buffer_head aliasing tricks to write data/metadata blocks to
675  * the journal without copying their contents, but for journal
676  * descriptor blocks we do need to generate bona fide buffers.
677  *
678  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
679  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
680  * But we don't bother doing that, so there will be coherency problems with
681  * mmaps of blockdevs which hold live JBD-controlled filesystems.
682  */
683 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
684 {
685         struct buffer_head *bh;
686         unsigned long long blocknr;
687         int err;
688
689         err = jbd2_journal_next_log_block(journal, &blocknr);
690
691         if (err)
692                 return NULL;
693
694         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
695         if (!bh)
696                 return NULL;
697         lock_buffer(bh);
698         memset(bh->b_data, 0, journal->j_blocksize);
699         set_buffer_uptodate(bh);
700         unlock_buffer(bh);
701         BUFFER_TRACE(bh, "return this buffer");
702         return jbd2_journal_add_journal_head(bh);
703 }
704
705 struct jbd2_stats_proc_session {
706         journal_t *journal;
707         struct transaction_stats_s *stats;
708         int start;
709         int max;
710 };
711
712 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
713 {
714         return *pos ? NULL : SEQ_START_TOKEN;
715 }
716
717 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
718 {
719         return NULL;
720 }
721
722 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
723 {
724         struct jbd2_stats_proc_session *s = seq->private;
725
726         if (v != SEQ_START_TOKEN)
727                 return 0;
728         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
729                         s->stats->ts_tid,
730                         s->journal->j_max_transaction_buffers);
731         if (s->stats->ts_tid == 0)
732                 return 0;
733         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
734             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
735         seq_printf(seq, "  %ums running transaction\n",
736             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
737         seq_printf(seq, "  %ums transaction was being locked\n",
738             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
739         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
740             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
741         seq_printf(seq, "  %ums logging transaction\n",
742             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
743         seq_printf(seq, "  %lluus average transaction commit time\n",
744                    div_u64(s->journal->j_average_commit_time, 1000));
745         seq_printf(seq, "  %lu handles per transaction\n",
746             s->stats->run.rs_handle_count / s->stats->ts_tid);
747         seq_printf(seq, "  %lu blocks per transaction\n",
748             s->stats->run.rs_blocks / s->stats->ts_tid);
749         seq_printf(seq, "  %lu logged blocks per transaction\n",
750             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
751         return 0;
752 }
753
754 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
755 {
756 }
757
758 static const struct seq_operations jbd2_seq_info_ops = {
759         .start  = jbd2_seq_info_start,
760         .next   = jbd2_seq_info_next,
761         .stop   = jbd2_seq_info_stop,
762         .show   = jbd2_seq_info_show,
763 };
764
765 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
766 {
767         journal_t *journal = PDE(inode)->data;
768         struct jbd2_stats_proc_session *s;
769         int rc, size;
770
771         s = kmalloc(sizeof(*s), GFP_KERNEL);
772         if (s == NULL)
773                 return -ENOMEM;
774         size = sizeof(struct transaction_stats_s);
775         s->stats = kmalloc(size, GFP_KERNEL);
776         if (s->stats == NULL) {
777                 kfree(s);
778                 return -ENOMEM;
779         }
780         spin_lock(&journal->j_history_lock);
781         memcpy(s->stats, &journal->j_stats, size);
782         s->journal = journal;
783         spin_unlock(&journal->j_history_lock);
784
785         rc = seq_open(file, &jbd2_seq_info_ops);
786         if (rc == 0) {
787                 struct seq_file *m = file->private_data;
788                 m->private = s;
789         } else {
790                 kfree(s->stats);
791                 kfree(s);
792         }
793         return rc;
794
795 }
796
797 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
798 {
799         struct seq_file *seq = file->private_data;
800         struct jbd2_stats_proc_session *s = seq->private;
801         kfree(s->stats);
802         kfree(s);
803         return seq_release(inode, file);
804 }
805
806 static const struct file_operations jbd2_seq_info_fops = {
807         .owner          = THIS_MODULE,
808         .open           = jbd2_seq_info_open,
809         .read           = seq_read,
810         .llseek         = seq_lseek,
811         .release        = jbd2_seq_info_release,
812 };
813
814 static struct proc_dir_entry *proc_jbd2_stats;
815
816 static void jbd2_stats_proc_init(journal_t *journal)
817 {
818         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
819         if (journal->j_proc_entry) {
820                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
821                                  &jbd2_seq_info_fops, journal);
822         }
823 }
824
825 static void jbd2_stats_proc_exit(journal_t *journal)
826 {
827         remove_proc_entry("info", journal->j_proc_entry);
828         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
829 }
830
831 /*
832  * Management for journal control blocks: functions to create and
833  * destroy journal_t structures, and to initialise and read existing
834  * journal blocks from disk.  */
835
836 /* First: create and setup a journal_t object in memory.  We initialise
837  * very few fields yet: that has to wait until we have created the
838  * journal structures from from scratch, or loaded them from disk. */
839
840 static journal_t * journal_init_common (void)
841 {
842         journal_t *journal;
843         int err;
844
845         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
846         if (!journal)
847                 return NULL;
848
849         init_waitqueue_head(&journal->j_wait_transaction_locked);
850         init_waitqueue_head(&journal->j_wait_logspace);
851         init_waitqueue_head(&journal->j_wait_done_commit);
852         init_waitqueue_head(&journal->j_wait_checkpoint);
853         init_waitqueue_head(&journal->j_wait_commit);
854         init_waitqueue_head(&journal->j_wait_updates);
855         mutex_init(&journal->j_barrier);
856         mutex_init(&journal->j_checkpoint_mutex);
857         spin_lock_init(&journal->j_revoke_lock);
858         spin_lock_init(&journal->j_list_lock);
859         rwlock_init(&journal->j_state_lock);
860
861         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
862         journal->j_min_batch_time = 0;
863         journal->j_max_batch_time = 15000; /* 15ms */
864
865         /* The journal is marked for error until we succeed with recovery! */
866         journal->j_flags = JBD2_ABORT;
867
868         /* Set up a default-sized revoke table for the new mount. */
869         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
870         if (err) {
871                 kfree(journal);
872                 return NULL;
873         }
874
875         spin_lock_init(&journal->j_history_lock);
876
877         return journal;
878 }
879
880 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
881  *
882  * Create a journal structure assigned some fixed set of disk blocks to
883  * the journal.  We don't actually touch those disk blocks yet, but we
884  * need to set up all of the mapping information to tell the journaling
885  * system where the journal blocks are.
886  *
887  */
888
889 /**
890  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
891  *  @bdev: Block device on which to create the journal
892  *  @fs_dev: Device which hold journalled filesystem for this journal.
893  *  @start: Block nr Start of journal.
894  *  @len:  Length of the journal in blocks.
895  *  @blocksize: blocksize of journalling device
896  *
897  *  Returns: a newly created journal_t *
898  *
899  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
900  *  range of blocks on an arbitrary block device.
901  *
902  */
903 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
904                         struct block_device *fs_dev,
905                         unsigned long long start, int len, int blocksize)
906 {
907         journal_t *journal = journal_init_common();
908         struct buffer_head *bh;
909         char *p;
910         int n;
911
912         if (!journal)
913                 return NULL;
914
915         /* journal descriptor can store up to n blocks -bzzz */
916         journal->j_blocksize = blocksize;
917         journal->j_dev = bdev;
918         journal->j_fs_dev = fs_dev;
919         journal->j_blk_offset = start;
920         journal->j_maxlen = len;
921         bdevname(journal->j_dev, journal->j_devname);
922         p = journal->j_devname;
923         while ((p = strchr(p, '/')))
924                 *p = '!';
925         jbd2_stats_proc_init(journal);
926         n = journal->j_blocksize / sizeof(journal_block_tag_t);
927         journal->j_wbufsize = n;
928         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
929         if (!journal->j_wbuf) {
930                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
931                         __func__);
932                 goto out_err;
933         }
934
935         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
936         if (!bh) {
937                 printk(KERN_ERR
938                        "%s: Cannot get buffer for journal superblock\n",
939                        __func__);
940                 goto out_err;
941         }
942         journal->j_sb_buffer = bh;
943         journal->j_superblock = (journal_superblock_t *)bh->b_data;
944
945         return journal;
946 out_err:
947         kfree(journal->j_wbuf);
948         jbd2_stats_proc_exit(journal);
949         kfree(journal);
950         return NULL;
951 }
952
953 /**
954  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
955  *  @inode: An inode to create the journal in
956  *
957  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
958  * the journal.  The inode must exist already, must support bmap() and
959  * must have all data blocks preallocated.
960  */
961 journal_t * jbd2_journal_init_inode (struct inode *inode)
962 {
963         struct buffer_head *bh;
964         journal_t *journal = journal_init_common();
965         char *p;
966         int err;
967         int n;
968         unsigned long long blocknr;
969
970         if (!journal)
971                 return NULL;
972
973         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
974         journal->j_inode = inode;
975         bdevname(journal->j_dev, journal->j_devname);
976         p = journal->j_devname;
977         while ((p = strchr(p, '/')))
978                 *p = '!';
979         p = journal->j_devname + strlen(journal->j_devname);
980         sprintf(p, "-%lu", journal->j_inode->i_ino);
981         jbd_debug(1,
982                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
983                   journal, inode->i_sb->s_id, inode->i_ino,
984                   (long long) inode->i_size,
985                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
986
987         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
988         journal->j_blocksize = inode->i_sb->s_blocksize;
989         jbd2_stats_proc_init(journal);
990
991         /* journal descriptor can store up to n blocks -bzzz */
992         n = journal->j_blocksize / sizeof(journal_block_tag_t);
993         journal->j_wbufsize = n;
994         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
995         if (!journal->j_wbuf) {
996                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
997                         __func__);
998                 goto out_err;
999         }
1000
1001         err = jbd2_journal_bmap(journal, 0, &blocknr);
1002         /* If that failed, give up */
1003         if (err) {
1004                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1005                        __func__);
1006                 goto out_err;
1007         }
1008
1009         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1010         if (!bh) {
1011                 printk(KERN_ERR
1012                        "%s: Cannot get buffer for journal superblock\n",
1013                        __func__);
1014                 goto out_err;
1015         }
1016         journal->j_sb_buffer = bh;
1017         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1018
1019         return journal;
1020 out_err:
1021         kfree(journal->j_wbuf);
1022         jbd2_stats_proc_exit(journal);
1023         kfree(journal);
1024         return NULL;
1025 }
1026
1027 /*
1028  * If the journal init or create aborts, we need to mark the journal
1029  * superblock as being NULL to prevent the journal destroy from writing
1030  * back a bogus superblock.
1031  */
1032 static void journal_fail_superblock (journal_t *journal)
1033 {
1034         struct buffer_head *bh = journal->j_sb_buffer;
1035         brelse(bh);
1036         journal->j_sb_buffer = NULL;
1037 }
1038
1039 /*
1040  * Given a journal_t structure, initialise the various fields for
1041  * startup of a new journaling session.  We use this both when creating
1042  * a journal, and after recovering an old journal to reset it for
1043  * subsequent use.
1044  */
1045
1046 static int journal_reset(journal_t *journal)
1047 {
1048         journal_superblock_t *sb = journal->j_superblock;
1049         unsigned long long first, last;
1050
1051         first = be32_to_cpu(sb->s_first);
1052         last = be32_to_cpu(sb->s_maxlen);
1053         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1054                 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1055                        first, last);
1056                 journal_fail_superblock(journal);
1057                 return -EINVAL;
1058         }
1059
1060         journal->j_first = first;
1061         journal->j_last = last;
1062
1063         journal->j_head = first;
1064         journal->j_tail = first;
1065         journal->j_free = last - first;
1066
1067         journal->j_tail_sequence = journal->j_transaction_sequence;
1068         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1069         journal->j_commit_request = journal->j_commit_sequence;
1070
1071         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1072
1073         /* Add the dynamic fields and write it to disk. */
1074         jbd2_journal_update_superblock(journal, 1);
1075         return jbd2_journal_start_thread(journal);
1076 }
1077
1078 /**
1079  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1080  * @journal: The journal to update.
1081  * @wait: Set to '0' if you don't want to wait for IO completion.
1082  *
1083  * Update a journal's dynamic superblock fields and write it to disk,
1084  * optionally waiting for the IO to complete.
1085  */
1086 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1087 {
1088         journal_superblock_t *sb = journal->j_superblock;
1089         struct buffer_head *bh = journal->j_sb_buffer;
1090
1091         /*
1092          * As a special case, if the on-disk copy is already marked as needing
1093          * no recovery (s_start == 0) and there are no outstanding transactions
1094          * in the filesystem, then we can safely defer the superblock update
1095          * until the next commit by setting JBD2_FLUSHED.  This avoids
1096          * attempting a write to a potential-readonly device.
1097          */
1098         if (sb->s_start == 0 && journal->j_tail_sequence ==
1099                                 journal->j_transaction_sequence) {
1100                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1101                         "(start %ld, seq %d, errno %d)\n",
1102                         journal->j_tail, journal->j_tail_sequence,
1103                         journal->j_errno);
1104                 goto out;
1105         }
1106
1107         if (buffer_write_io_error(bh)) {
1108                 /*
1109                  * Oh, dear.  A previous attempt to write the journal
1110                  * superblock failed.  This could happen because the
1111                  * USB device was yanked out.  Or it could happen to
1112                  * be a transient write error and maybe the block will
1113                  * be remapped.  Nothing we can do but to retry the
1114                  * write and hope for the best.
1115                  */
1116                 printk(KERN_ERR "JBD2: previous I/O error detected "
1117                        "for journal superblock update for %s.\n",
1118                        journal->j_devname);
1119                 clear_buffer_write_io_error(bh);
1120                 set_buffer_uptodate(bh);
1121         }
1122
1123         read_lock(&journal->j_state_lock);
1124         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1125                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1126
1127         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1128         sb->s_start    = cpu_to_be32(journal->j_tail);
1129         sb->s_errno    = cpu_to_be32(journal->j_errno);
1130         read_unlock(&journal->j_state_lock);
1131
1132         BUFFER_TRACE(bh, "marking dirty");
1133         mark_buffer_dirty(bh);
1134         if (wait) {
1135                 sync_dirty_buffer(bh);
1136                 if (buffer_write_io_error(bh)) {
1137                         printk(KERN_ERR "JBD2: I/O error detected "
1138                                "when updating journal superblock for %s.\n",
1139                                journal->j_devname);
1140                         clear_buffer_write_io_error(bh);
1141                         set_buffer_uptodate(bh);
1142                 }
1143         } else
1144                 write_dirty_buffer(bh, WRITE);
1145
1146 out:
1147         /* If we have just flushed the log (by marking s_start==0), then
1148          * any future commit will have to be careful to update the
1149          * superblock again to re-record the true start of the log. */
1150
1151         write_lock(&journal->j_state_lock);
1152         if (sb->s_start)
1153                 journal->j_flags &= ~JBD2_FLUSHED;
1154         else
1155                 journal->j_flags |= JBD2_FLUSHED;
1156         write_unlock(&journal->j_state_lock);
1157 }
1158
1159 /*
1160  * Read the superblock for a given journal, performing initial
1161  * validation of the format.
1162  */
1163
1164 static int journal_get_superblock(journal_t *journal)
1165 {
1166         struct buffer_head *bh;
1167         journal_superblock_t *sb;
1168         int err = -EIO;
1169
1170         bh = journal->j_sb_buffer;
1171
1172         J_ASSERT(bh != NULL);
1173         if (!buffer_uptodate(bh)) {
1174                 ll_rw_block(READ, 1, &bh);
1175                 wait_on_buffer(bh);
1176                 if (!buffer_uptodate(bh)) {
1177                         printk (KERN_ERR
1178                                 "JBD: IO error reading journal superblock\n");
1179                         goto out;
1180                 }
1181         }
1182
1183         sb = journal->j_superblock;
1184
1185         err = -EINVAL;
1186
1187         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1188             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1189                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1190                 goto out;
1191         }
1192
1193         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1194         case JBD2_SUPERBLOCK_V1:
1195                 journal->j_format_version = 1;
1196                 break;
1197         case JBD2_SUPERBLOCK_V2:
1198                 journal->j_format_version = 2;
1199                 break;
1200         default:
1201                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1202                 goto out;
1203         }
1204
1205         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1206                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1207         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1208                 printk (KERN_WARNING "JBD: journal file too short\n");
1209                 goto out;
1210         }
1211
1212         return 0;
1213
1214 out:
1215         journal_fail_superblock(journal);
1216         return err;
1217 }
1218
1219 /*
1220  * Load the on-disk journal superblock and read the key fields into the
1221  * journal_t.
1222  */
1223
1224 static int load_superblock(journal_t *journal)
1225 {
1226         int err;
1227         journal_superblock_t *sb;
1228
1229         err = journal_get_superblock(journal);
1230         if (err)
1231                 return err;
1232
1233         sb = journal->j_superblock;
1234
1235         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1236         journal->j_tail = be32_to_cpu(sb->s_start);
1237         journal->j_first = be32_to_cpu(sb->s_first);
1238         journal->j_last = be32_to_cpu(sb->s_maxlen);
1239         journal->j_errno = be32_to_cpu(sb->s_errno);
1240
1241         return 0;
1242 }
1243
1244
1245 /**
1246  * int jbd2_journal_load() - Read journal from disk.
1247  * @journal: Journal to act on.
1248  *
1249  * Given a journal_t structure which tells us which disk blocks contain
1250  * a journal, read the journal from disk to initialise the in-memory
1251  * structures.
1252  */
1253 int jbd2_journal_load(journal_t *journal)
1254 {
1255         int err;
1256         journal_superblock_t *sb;
1257
1258         err = load_superblock(journal);
1259         if (err)
1260                 return err;
1261
1262         sb = journal->j_superblock;
1263         /* If this is a V2 superblock, then we have to check the
1264          * features flags on it. */
1265
1266         if (journal->j_format_version >= 2) {
1267                 if ((sb->s_feature_ro_compat &
1268                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1269                     (sb->s_feature_incompat &
1270                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1271                         printk (KERN_WARNING
1272                                 "JBD: Unrecognised features on journal\n");
1273                         return -EINVAL;
1274                 }
1275         }
1276
1277         /*
1278          * Create a slab for this blocksize
1279          */
1280         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1281         if (err)
1282                 return err;
1283
1284         /* Let the recovery code check whether it needs to recover any
1285          * data from the journal. */
1286         if (jbd2_journal_recover(journal))
1287                 goto recovery_error;
1288
1289         if (journal->j_failed_commit) {
1290                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1291                        "is corrupt.\n", journal->j_failed_commit,
1292                        journal->j_devname);
1293                 return -EIO;
1294         }
1295
1296         /* OK, we've finished with the dynamic journal bits:
1297          * reinitialise the dynamic contents of the superblock in memory
1298          * and reset them on disk. */
1299         if (journal_reset(journal))
1300                 goto recovery_error;
1301
1302         journal->j_flags &= ~JBD2_ABORT;
1303         journal->j_flags |= JBD2_LOADED;
1304         return 0;
1305
1306 recovery_error:
1307         printk (KERN_WARNING "JBD: recovery failed\n");
1308         return -EIO;
1309 }
1310
1311 /**
1312  * void jbd2_journal_destroy() - Release a journal_t structure.
1313  * @journal: Journal to act on.
1314  *
1315  * Release a journal_t structure once it is no longer in use by the
1316  * journaled object.
1317  * Return <0 if we couldn't clean up the journal.
1318  */
1319 int jbd2_journal_destroy(journal_t *journal)
1320 {
1321         int err = 0;
1322
1323         /* Wait for the commit thread to wake up and die. */
1324         journal_kill_thread(journal);
1325
1326         /* Force a final log commit */
1327         if (journal->j_running_transaction)
1328                 jbd2_journal_commit_transaction(journal);
1329
1330         /* Force any old transactions to disk */
1331
1332         /* Totally anal locking here... */
1333         spin_lock(&journal->j_list_lock);
1334         while (journal->j_checkpoint_transactions != NULL) {
1335                 spin_unlock(&journal->j_list_lock);
1336                 mutex_lock(&journal->j_checkpoint_mutex);
1337                 jbd2_log_do_checkpoint(journal);
1338                 mutex_unlock(&journal->j_checkpoint_mutex);
1339                 spin_lock(&journal->j_list_lock);
1340         }
1341
1342         J_ASSERT(journal->j_running_transaction == NULL);
1343         J_ASSERT(journal->j_committing_transaction == NULL);
1344         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1345         spin_unlock(&journal->j_list_lock);
1346
1347         if (journal->j_sb_buffer) {
1348                 if (!is_journal_aborted(journal)) {
1349                         /* We can now mark the journal as empty. */
1350                         journal->j_tail = 0;
1351                         journal->j_tail_sequence =
1352                                 ++journal->j_transaction_sequence;
1353                         jbd2_journal_update_superblock(journal, 1);
1354                 } else {
1355                         err = -EIO;
1356                 }
1357                 brelse(journal->j_sb_buffer);
1358         }
1359
1360         if (journal->j_proc_entry)
1361                 jbd2_stats_proc_exit(journal);
1362         if (journal->j_inode)
1363                 iput(journal->j_inode);
1364         if (journal->j_revoke)
1365                 jbd2_journal_destroy_revoke(journal);
1366         kfree(journal->j_wbuf);
1367         kfree(journal);
1368
1369         return err;
1370 }
1371
1372
1373 /**
1374  *int jbd2_journal_check_used_features () - Check if features specified are used.
1375  * @journal: Journal to check.
1376  * @compat: bitmask of compatible features
1377  * @ro: bitmask of features that force read-only mount
1378  * @incompat: bitmask of incompatible features
1379  *
1380  * Check whether the journal uses all of a given set of
1381  * features.  Return true (non-zero) if it does.
1382  **/
1383
1384 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1385                                  unsigned long ro, unsigned long incompat)
1386 {
1387         journal_superblock_t *sb;
1388
1389         if (!compat && !ro && !incompat)
1390                 return 1;
1391         /* Load journal superblock if it is not loaded yet. */
1392         if (journal->j_format_version == 0 &&
1393             journal_get_superblock(journal) != 0)
1394                 return 0;
1395         if (journal->j_format_version == 1)
1396                 return 0;
1397
1398         sb = journal->j_superblock;
1399
1400         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1401             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1402             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1403                 return 1;
1404
1405         return 0;
1406 }
1407
1408 /**
1409  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1410  * @journal: Journal to check.
1411  * @compat: bitmask of compatible features
1412  * @ro: bitmask of features that force read-only mount
1413  * @incompat: bitmask of incompatible features
1414  *
1415  * Check whether the journaling code supports the use of
1416  * all of a given set of features on this journal.  Return true
1417  * (non-zero) if it can. */
1418
1419 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1420                                       unsigned long ro, unsigned long incompat)
1421 {
1422         if (!compat && !ro && !incompat)
1423                 return 1;
1424
1425         /* We can support any known requested features iff the
1426          * superblock is in version 2.  Otherwise we fail to support any
1427          * extended sb features. */
1428
1429         if (journal->j_format_version != 2)
1430                 return 0;
1431
1432         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1433             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1434             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1435                 return 1;
1436
1437         return 0;
1438 }
1439
1440 /**
1441  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1442  * @journal: Journal to act on.
1443  * @compat: bitmask of compatible features
1444  * @ro: bitmask of features that force read-only mount
1445  * @incompat: bitmask of incompatible features
1446  *
1447  * Mark a given journal feature as present on the
1448  * superblock.  Returns true if the requested features could be set.
1449  *
1450  */
1451
1452 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1453                           unsigned long ro, unsigned long incompat)
1454 {
1455         journal_superblock_t *sb;
1456
1457         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1458                 return 1;
1459
1460         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1461                 return 0;
1462
1463         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1464                   compat, ro, incompat);
1465
1466         sb = journal->j_superblock;
1467
1468         sb->s_feature_compat    |= cpu_to_be32(compat);
1469         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1470         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1471
1472         return 1;
1473 }
1474
1475 /*
1476  * jbd2_journal_clear_features () - Clear a given journal feature in the
1477  *                                  superblock
1478  * @journal: Journal to act on.
1479  * @compat: bitmask of compatible features
1480  * @ro: bitmask of features that force read-only mount
1481  * @incompat: bitmask of incompatible features
1482  *
1483  * Clear a given journal feature as present on the
1484  * superblock.
1485  */
1486 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1487                                 unsigned long ro, unsigned long incompat)
1488 {
1489         journal_superblock_t *sb;
1490
1491         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1492                   compat, ro, incompat);
1493
1494         sb = journal->j_superblock;
1495
1496         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1497         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1498         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1499 }
1500 EXPORT_SYMBOL(jbd2_journal_clear_features);
1501
1502 /**
1503  * int jbd2_journal_update_format () - Update on-disk journal structure.
1504  * @journal: Journal to act on.
1505  *
1506  * Given an initialised but unloaded journal struct, poke about in the
1507  * on-disk structure to update it to the most recent supported version.
1508  */
1509 int jbd2_journal_update_format (journal_t *journal)
1510 {
1511         journal_superblock_t *sb;
1512         int err;
1513
1514         err = journal_get_superblock(journal);
1515         if (err)
1516                 return err;
1517
1518         sb = journal->j_superblock;
1519
1520         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1521         case JBD2_SUPERBLOCK_V2:
1522                 return 0;
1523         case JBD2_SUPERBLOCK_V1:
1524                 return journal_convert_superblock_v1(journal, sb);
1525         default:
1526                 break;
1527         }
1528         return -EINVAL;
1529 }
1530
1531 static int journal_convert_superblock_v1(journal_t *journal,
1532                                          journal_superblock_t *sb)
1533 {
1534         int offset, blocksize;
1535         struct buffer_head *bh;
1536
1537         printk(KERN_WARNING
1538                 "JBD: Converting superblock from version 1 to 2.\n");
1539
1540         /* Pre-initialise new fields to zero */
1541         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1542         blocksize = be32_to_cpu(sb->s_blocksize);
1543         memset(&sb->s_feature_compat, 0, blocksize-offset);
1544
1545         sb->s_nr_users = cpu_to_be32(1);
1546         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1547         journal->j_format_version = 2;
1548
1549         bh = journal->j_sb_buffer;
1550         BUFFER_TRACE(bh, "marking dirty");
1551         mark_buffer_dirty(bh);
1552         sync_dirty_buffer(bh);
1553         return 0;
1554 }
1555
1556
1557 /**
1558  * int jbd2_journal_flush () - Flush journal
1559  * @journal: Journal to act on.
1560  *
1561  * Flush all data for a given journal to disk and empty the journal.
1562  * Filesystems can use this when remounting readonly to ensure that
1563  * recovery does not need to happen on remount.
1564  */
1565
1566 int jbd2_journal_flush(journal_t *journal)
1567 {
1568         int err = 0;
1569         transaction_t *transaction = NULL;
1570         unsigned long old_tail;
1571
1572         write_lock(&journal->j_state_lock);
1573
1574         /* Force everything buffered to the log... */
1575         if (journal->j_running_transaction) {
1576                 transaction = journal->j_running_transaction;
1577                 __jbd2_log_start_commit(journal, transaction->t_tid);
1578         } else if (journal->j_committing_transaction)
1579                 transaction = journal->j_committing_transaction;
1580
1581         /* Wait for the log commit to complete... */
1582         if (transaction) {
1583                 tid_t tid = transaction->t_tid;
1584
1585                 write_unlock(&journal->j_state_lock);
1586                 jbd2_log_wait_commit(journal, tid);
1587         } else {
1588                 write_unlock(&journal->j_state_lock);
1589         }
1590
1591         /* ...and flush everything in the log out to disk. */
1592         spin_lock(&journal->j_list_lock);
1593         while (!err && journal->j_checkpoint_transactions != NULL) {
1594                 spin_unlock(&journal->j_list_lock);
1595                 mutex_lock(&journal->j_checkpoint_mutex);
1596                 err = jbd2_log_do_checkpoint(journal);
1597                 mutex_unlock(&journal->j_checkpoint_mutex);
1598                 spin_lock(&journal->j_list_lock);
1599         }
1600         spin_unlock(&journal->j_list_lock);
1601
1602         if (is_journal_aborted(journal))
1603                 return -EIO;
1604
1605         jbd2_cleanup_journal_tail(journal);
1606
1607         /* Finally, mark the journal as really needing no recovery.
1608          * This sets s_start==0 in the underlying superblock, which is
1609          * the magic code for a fully-recovered superblock.  Any future
1610          * commits of data to the journal will restore the current
1611          * s_start value. */
1612         write_lock(&journal->j_state_lock);
1613         old_tail = journal->j_tail;
1614         journal->j_tail = 0;
1615         write_unlock(&journal->j_state_lock);
1616         jbd2_journal_update_superblock(journal, 1);
1617         write_lock(&journal->j_state_lock);
1618         journal->j_tail = old_tail;
1619
1620         J_ASSERT(!journal->j_running_transaction);
1621         J_ASSERT(!journal->j_committing_transaction);
1622         J_ASSERT(!journal->j_checkpoint_transactions);
1623         J_ASSERT(journal->j_head == journal->j_tail);
1624         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1625         write_unlock(&journal->j_state_lock);
1626         return 0;
1627 }
1628
1629 /**
1630  * int jbd2_journal_wipe() - Wipe journal contents
1631  * @journal: Journal to act on.
1632  * @write: flag (see below)
1633  *
1634  * Wipe out all of the contents of a journal, safely.  This will produce
1635  * a warning if the journal contains any valid recovery information.
1636  * Must be called between journal_init_*() and jbd2_journal_load().
1637  *
1638  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1639  * we merely suppress recovery.
1640  */
1641
1642 int jbd2_journal_wipe(journal_t *journal, int write)
1643 {
1644         int err = 0;
1645
1646         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1647
1648         err = load_superblock(journal);
1649         if (err)
1650                 return err;
1651
1652         if (!journal->j_tail)
1653                 goto no_recovery;
1654
1655         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1656                 write ? "Clearing" : "Ignoring");
1657
1658         err = jbd2_journal_skip_recovery(journal);
1659         if (write)
1660                 jbd2_journal_update_superblock(journal, 1);
1661
1662  no_recovery:
1663         return err;
1664 }
1665
1666 /*
1667  * Journal abort has very specific semantics, which we describe
1668  * for journal abort.
1669  *
1670  * Two internal functions, which provide abort to the jbd layer
1671  * itself are here.
1672  */
1673
1674 /*
1675  * Quick version for internal journal use (doesn't lock the journal).
1676  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1677  * and don't attempt to make any other journal updates.
1678  */
1679 void __jbd2_journal_abort_hard(journal_t *journal)
1680 {
1681         transaction_t *transaction;
1682
1683         if (journal->j_flags & JBD2_ABORT)
1684                 return;
1685
1686         printk(KERN_ERR "Aborting journal on device %s.\n",
1687                journal->j_devname);
1688
1689         write_lock(&journal->j_state_lock);
1690         journal->j_flags |= JBD2_ABORT;
1691         transaction = journal->j_running_transaction;
1692         if (transaction)
1693                 __jbd2_log_start_commit(journal, transaction->t_tid);
1694         write_unlock(&journal->j_state_lock);
1695 }
1696
1697 /* Soft abort: record the abort error status in the journal superblock,
1698  * but don't do any other IO. */
1699 static void __journal_abort_soft (journal_t *journal, int errno)
1700 {
1701         if (journal->j_flags & JBD2_ABORT)
1702                 return;
1703
1704         if (!journal->j_errno)
1705                 journal->j_errno = errno;
1706
1707         __jbd2_journal_abort_hard(journal);
1708
1709         if (errno)
1710                 jbd2_journal_update_superblock(journal, 1);
1711 }
1712
1713 /**
1714  * void jbd2_journal_abort () - Shutdown the journal immediately.
1715  * @journal: the journal to shutdown.
1716  * @errno:   an error number to record in the journal indicating
1717  *           the reason for the shutdown.
1718  *
1719  * Perform a complete, immediate shutdown of the ENTIRE
1720  * journal (not of a single transaction).  This operation cannot be
1721  * undone without closing and reopening the journal.
1722  *
1723  * The jbd2_journal_abort function is intended to support higher level error
1724  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1725  * mode.
1726  *
1727  * Journal abort has very specific semantics.  Any existing dirty,
1728  * unjournaled buffers in the main filesystem will still be written to
1729  * disk by bdflush, but the journaling mechanism will be suspended
1730  * immediately and no further transaction commits will be honoured.
1731  *
1732  * Any dirty, journaled buffers will be written back to disk without
1733  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1734  * filesystem, but we _do_ attempt to leave as much data as possible
1735  * behind for fsck to use for cleanup.
1736  *
1737  * Any attempt to get a new transaction handle on a journal which is in
1738  * ABORT state will just result in an -EROFS error return.  A
1739  * jbd2_journal_stop on an existing handle will return -EIO if we have
1740  * entered abort state during the update.
1741  *
1742  * Recursive transactions are not disturbed by journal abort until the
1743  * final jbd2_journal_stop, which will receive the -EIO error.
1744  *
1745  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1746  * which will be recorded (if possible) in the journal superblock.  This
1747  * allows a client to record failure conditions in the middle of a
1748  * transaction without having to complete the transaction to record the
1749  * failure to disk.  ext3_error, for example, now uses this
1750  * functionality.
1751  *
1752  * Errors which originate from within the journaling layer will NOT
1753  * supply an errno; a null errno implies that absolutely no further
1754  * writes are done to the journal (unless there are any already in
1755  * progress).
1756  *
1757  */
1758
1759 void jbd2_journal_abort(journal_t *journal, int errno)
1760 {
1761         __journal_abort_soft(journal, errno);
1762 }
1763
1764 /**
1765  * int jbd2_journal_errno () - returns the journal's error state.
1766  * @journal: journal to examine.
1767  *
1768  * This is the errno number set with jbd2_journal_abort(), the last
1769  * time the journal was mounted - if the journal was stopped
1770  * without calling abort this will be 0.
1771  *
1772  * If the journal has been aborted on this mount time -EROFS will
1773  * be returned.
1774  */
1775 int jbd2_journal_errno(journal_t *journal)
1776 {
1777         int err;
1778
1779         read_lock(&journal->j_state_lock);
1780         if (journal->j_flags & JBD2_ABORT)
1781                 err = -EROFS;
1782         else
1783                 err = journal->j_errno;
1784         read_unlock(&journal->j_state_lock);
1785         return err;
1786 }
1787
1788 /**
1789  * int jbd2_journal_clear_err () - clears the journal's error state
1790  * @journal: journal to act on.
1791  *
1792  * An error must be cleared or acked to take a FS out of readonly
1793  * mode.
1794  */
1795 int jbd2_journal_clear_err(journal_t *journal)
1796 {
1797         int err = 0;
1798
1799         write_lock(&journal->j_state_lock);
1800         if (journal->j_flags & JBD2_ABORT)
1801                 err = -EROFS;
1802         else
1803                 journal->j_errno = 0;
1804         write_unlock(&journal->j_state_lock);
1805         return err;
1806 }
1807
1808 /**
1809  * void jbd2_journal_ack_err() - Ack journal err.
1810  * @journal: journal to act on.
1811  *
1812  * An error must be cleared or acked to take a FS out of readonly
1813  * mode.
1814  */
1815 void jbd2_journal_ack_err(journal_t *journal)
1816 {
1817         write_lock(&journal->j_state_lock);
1818         if (journal->j_errno)
1819                 journal->j_flags |= JBD2_ACK_ERR;
1820         write_unlock(&journal->j_state_lock);
1821 }
1822
1823 int jbd2_journal_blocks_per_page(struct inode *inode)
1824 {
1825         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1826 }
1827
1828 /*
1829  * helper functions to deal with 32 or 64bit block numbers.
1830  */
1831 size_t journal_tag_bytes(journal_t *journal)
1832 {
1833         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1834                 return JBD2_TAG_SIZE64;
1835         else
1836                 return JBD2_TAG_SIZE32;
1837 }
1838
1839 /*
1840  * JBD memory management
1841  *
1842  * These functions are used to allocate block-sized chunks of memory
1843  * used for making copies of buffer_head data.  Very often it will be
1844  * page-sized chunks of data, but sometimes it will be in
1845  * sub-page-size chunks.  (For example, 16k pages on Power systems
1846  * with a 4k block file system.)  For blocks smaller than a page, we
1847  * use a SLAB allocator.  There are slab caches for each block size,
1848  * which are allocated at mount time, if necessary, and we only free
1849  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1850  * this reason we don't need to a mutex to protect access to
1851  * jbd2_slab[] allocating or releasing memory; only in
1852  * jbd2_journal_create_slab().
1853  */
1854 #define JBD2_MAX_SLABS 8
1855 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1856
1857 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1858         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1859         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1860 };
1861
1862
1863 static void jbd2_journal_destroy_slabs(void)
1864 {
1865         int i;
1866
1867         for (i = 0; i < JBD2_MAX_SLABS; i++) {
1868                 if (jbd2_slab[i])
1869                         kmem_cache_destroy(jbd2_slab[i]);
1870                 jbd2_slab[i] = NULL;
1871         }
1872 }
1873
1874 static int jbd2_journal_create_slab(size_t size)
1875 {
1876         static DEFINE_MUTEX(jbd2_slab_create_mutex);
1877         int i = order_base_2(size) - 10;
1878         size_t slab_size;
1879
1880         if (size == PAGE_SIZE)
1881                 return 0;
1882
1883         if (i >= JBD2_MAX_SLABS)
1884                 return -EINVAL;
1885
1886         if (unlikely(i < 0))
1887                 i = 0;
1888         mutex_lock(&jbd2_slab_create_mutex);
1889         if (jbd2_slab[i]) {
1890                 mutex_unlock(&jbd2_slab_create_mutex);
1891                 return 0;       /* Already created */
1892         }
1893
1894         slab_size = 1 << (i+10);
1895         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1896                                          slab_size, 0, NULL);
1897         mutex_unlock(&jbd2_slab_create_mutex);
1898         if (!jbd2_slab[i]) {
1899                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1900                 return -ENOMEM;
1901         }
1902         return 0;
1903 }
1904
1905 static struct kmem_cache *get_slab(size_t size)
1906 {
1907         int i = order_base_2(size) - 10;
1908
1909         BUG_ON(i >= JBD2_MAX_SLABS);
1910         if (unlikely(i < 0))
1911                 i = 0;
1912         BUG_ON(jbd2_slab[i] == NULL);
1913         return jbd2_slab[i];
1914 }
1915
1916 void *jbd2_alloc(size_t size, gfp_t flags)
1917 {
1918         void *ptr;
1919
1920         BUG_ON(size & (size-1)); /* Must be a power of 2 */
1921
1922         flags |= __GFP_REPEAT;
1923         if (size == PAGE_SIZE)
1924                 ptr = (void *)__get_free_pages(flags, 0);
1925         else if (size > PAGE_SIZE) {
1926                 int order = get_order(size);
1927
1928                 if (order < 3)
1929                         ptr = (void *)__get_free_pages(flags, order);
1930                 else
1931                         ptr = vmalloc(size);
1932         } else
1933                 ptr = kmem_cache_alloc(get_slab(size), flags);
1934
1935         /* Check alignment; SLUB has gotten this wrong in the past,
1936          * and this can lead to user data corruption! */
1937         BUG_ON(((unsigned long) ptr) & (size-1));
1938
1939         return ptr;
1940 }
1941
1942 void jbd2_free(void *ptr, size_t size)
1943 {
1944         if (size == PAGE_SIZE) {
1945                 free_pages((unsigned long)ptr, 0);
1946                 return;
1947         }
1948         if (size > PAGE_SIZE) {
1949                 int order = get_order(size);
1950
1951                 if (order < 3)
1952                         free_pages((unsigned long)ptr, order);
1953                 else
1954                         vfree(ptr);
1955                 return;
1956         }
1957         kmem_cache_free(get_slab(size), ptr);
1958 };
1959
1960 /*
1961  * Journal_head storage management
1962  */
1963 static struct kmem_cache *jbd2_journal_head_cache;
1964 #ifdef CONFIG_JBD2_DEBUG
1965 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1966 #endif
1967
1968 static int journal_init_jbd2_journal_head_cache(void)
1969 {
1970         int retval;
1971
1972         J_ASSERT(jbd2_journal_head_cache == NULL);
1973         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1974                                 sizeof(struct journal_head),
1975                                 0,              /* offset */
1976                                 SLAB_TEMPORARY, /* flags */
1977                                 NULL);          /* ctor */
1978         retval = 0;
1979         if (!jbd2_journal_head_cache) {
1980                 retval = -ENOMEM;
1981                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1982         }
1983         return retval;
1984 }
1985
1986 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1987 {
1988         if (jbd2_journal_head_cache) {
1989                 kmem_cache_destroy(jbd2_journal_head_cache);
1990                 jbd2_journal_head_cache = NULL;
1991         }
1992 }
1993
1994 /*
1995  * journal_head splicing and dicing
1996  */
1997 static struct journal_head *journal_alloc_journal_head(void)
1998 {
1999         struct journal_head *ret;
2000
2001 #ifdef CONFIG_JBD2_DEBUG
2002         atomic_inc(&nr_journal_heads);
2003 #endif
2004         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2005         if (!ret) {
2006                 jbd_debug(1, "out of memory for journal_head\n");
2007                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2008                 while (!ret) {
2009                         yield();
2010                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2011                 }
2012         }
2013         return ret;
2014 }
2015
2016 static void journal_free_journal_head(struct journal_head *jh)
2017 {
2018 #ifdef CONFIG_JBD2_DEBUG
2019         atomic_dec(&nr_journal_heads);
2020         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2021 #endif
2022         kmem_cache_free(jbd2_journal_head_cache, jh);
2023 }
2024
2025 /*
2026  * A journal_head is attached to a buffer_head whenever JBD has an
2027  * interest in the buffer.
2028  *
2029  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2030  * is set.  This bit is tested in core kernel code where we need to take
2031  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2032  * there.
2033  *
2034  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2035  *
2036  * When a buffer has its BH_JBD bit set it is immune from being released by
2037  * core kernel code, mainly via ->b_count.
2038  *
2039  * A journal_head may be detached from its buffer_head when the journal_head's
2040  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2041  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2042  * journal_head can be dropped if needed.
2043  *
2044  * Various places in the kernel want to attach a journal_head to a buffer_head
2045  * _before_ attaching the journal_head to a transaction.  To protect the
2046  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2047  * journal_head's b_jcount refcount by one.  The caller must call
2048  * jbd2_journal_put_journal_head() to undo this.
2049  *
2050  * So the typical usage would be:
2051  *
2052  *      (Attach a journal_head if needed.  Increments b_jcount)
2053  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2054  *      ...
2055  *      jh->b_transaction = xxx;
2056  *      jbd2_journal_put_journal_head(jh);
2057  *
2058  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2059  * because it has a non-zero b_transaction.
2060  */
2061
2062 /*
2063  * Give a buffer_head a journal_head.
2064  *
2065  * Doesn't need the journal lock.
2066  * May sleep.
2067  */
2068 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2069 {
2070         struct journal_head *jh;
2071         struct journal_head *new_jh = NULL;
2072
2073 repeat:
2074         if (!buffer_jbd(bh)) {
2075                 new_jh = journal_alloc_journal_head();
2076                 memset(new_jh, 0, sizeof(*new_jh));
2077         }
2078
2079         jbd_lock_bh_journal_head(bh);
2080         if (buffer_jbd(bh)) {
2081                 jh = bh2jh(bh);
2082         } else {
2083                 J_ASSERT_BH(bh,
2084                         (atomic_read(&bh->b_count) > 0) ||
2085                         (bh->b_page && bh->b_page->mapping));
2086
2087                 if (!new_jh) {
2088                         jbd_unlock_bh_journal_head(bh);
2089                         goto repeat;
2090                 }
2091
2092                 jh = new_jh;
2093                 new_jh = NULL;          /* We consumed it */
2094                 set_buffer_jbd(bh);
2095                 bh->b_private = jh;
2096                 jh->b_bh = bh;
2097                 get_bh(bh);
2098                 BUFFER_TRACE(bh, "added journal_head");
2099         }
2100         jh->b_jcount++;
2101         jbd_unlock_bh_journal_head(bh);
2102         if (new_jh)
2103                 journal_free_journal_head(new_jh);
2104         return bh->b_private;
2105 }
2106
2107 /*
2108  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2109  * having a journal_head, return NULL
2110  */
2111 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2112 {
2113         struct journal_head *jh = NULL;
2114
2115         jbd_lock_bh_journal_head(bh);
2116         if (buffer_jbd(bh)) {
2117                 jh = bh2jh(bh);
2118                 jh->b_jcount++;
2119         }
2120         jbd_unlock_bh_journal_head(bh);
2121         return jh;
2122 }
2123
2124 static void __journal_remove_journal_head(struct buffer_head *bh)
2125 {
2126         struct journal_head *jh = bh2jh(bh);
2127
2128         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2129
2130         get_bh(bh);
2131         if (jh->b_jcount == 0) {
2132                 if (jh->b_transaction == NULL &&
2133                                 jh->b_next_transaction == NULL &&
2134                                 jh->b_cp_transaction == NULL) {
2135                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2136                         J_ASSERT_BH(bh, buffer_jbd(bh));
2137                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2138                         BUFFER_TRACE(bh, "remove journal_head");
2139                         if (jh->b_frozen_data) {
2140                                 printk(KERN_WARNING "%s: freeing "
2141                                                 "b_frozen_data\n",
2142                                                 __func__);
2143                                 jbd2_free(jh->b_frozen_data, bh->b_size);
2144                         }
2145                         if (jh->b_committed_data) {
2146                                 printk(KERN_WARNING "%s: freeing "
2147                                                 "b_committed_data\n",
2148                                                 __func__);
2149                                 jbd2_free(jh->b_committed_data, bh->b_size);
2150                         }
2151                         bh->b_private = NULL;
2152                         jh->b_bh = NULL;        /* debug, really */
2153                         clear_buffer_jbd(bh);
2154                         __brelse(bh);
2155                         journal_free_journal_head(jh);
2156                 } else {
2157                         BUFFER_TRACE(bh, "journal_head was locked");
2158                 }
2159         }
2160 }
2161
2162 /*
2163  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2164  * and has a zero b_jcount then remove and release its journal_head.   If we did
2165  * see that the buffer is not used by any transaction we also "logically"
2166  * decrement ->b_count.
2167  *
2168  * We in fact take an additional increment on ->b_count as a convenience,
2169  * because the caller usually wants to do additional things with the bh
2170  * after calling here.
2171  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2172  * time.  Once the caller has run __brelse(), the buffer is eligible for
2173  * reaping by try_to_free_buffers().
2174  */
2175 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2176 {
2177         jbd_lock_bh_journal_head(bh);
2178         __journal_remove_journal_head(bh);
2179         jbd_unlock_bh_journal_head(bh);
2180 }
2181
2182 /*
2183  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2184  * release the journal_head from the buffer_head.
2185  */
2186 void jbd2_journal_put_journal_head(struct journal_head *jh)
2187 {
2188         struct buffer_head *bh = jh2bh(jh);
2189
2190         jbd_lock_bh_journal_head(bh);
2191         J_ASSERT_JH(jh, jh->b_jcount > 0);
2192         --jh->b_jcount;
2193         if (!jh->b_jcount && !jh->b_transaction) {
2194                 __journal_remove_journal_head(bh);
2195                 __brelse(bh);
2196         }
2197         jbd_unlock_bh_journal_head(bh);
2198 }
2199
2200 /*
2201  * Initialize jbd inode head
2202  */
2203 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2204 {
2205         jinode->i_transaction = NULL;
2206         jinode->i_next_transaction = NULL;
2207         jinode->i_vfs_inode = inode;
2208         jinode->i_flags = 0;
2209         INIT_LIST_HEAD(&jinode->i_list);
2210 }
2211
2212 /*
2213  * Function to be called before we start removing inode from memory (i.e.,
2214  * clear_inode() is a fine place to be called from). It removes inode from
2215  * transaction's lists.
2216  */
2217 void jbd2_journal_release_jbd_inode(journal_t *journal,
2218                                     struct jbd2_inode *jinode)
2219 {
2220         if (!journal)
2221                 return;
2222 restart:
2223         spin_lock(&journal->j_list_lock);
2224         /* Is commit writing out inode - we have to wait */
2225         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2226                 wait_queue_head_t *wq;
2227                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2228                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2229                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2230                 spin_unlock(&journal->j_list_lock);
2231                 schedule();
2232                 finish_wait(wq, &wait.wait);
2233                 goto restart;
2234         }
2235
2236         if (jinode->i_transaction) {
2237                 list_del(&jinode->i_list);
2238                 jinode->i_transaction = NULL;
2239         }
2240         spin_unlock(&journal->j_list_lock);
2241 }
2242
2243 /*
2244  * debugfs tunables
2245  */
2246 #ifdef CONFIG_JBD2_DEBUG
2247 u8 jbd2_journal_enable_debug __read_mostly;
2248 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2249
2250 #define JBD2_DEBUG_NAME "jbd2-debug"
2251
2252 static struct dentry *jbd2_debugfs_dir;
2253 static struct dentry *jbd2_debug;
2254
2255 static void __init jbd2_create_debugfs_entry(void)
2256 {
2257         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2258         if (jbd2_debugfs_dir)
2259                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2260                                                S_IRUGO | S_IWUSR,
2261                                                jbd2_debugfs_dir,
2262                                                &jbd2_journal_enable_debug);
2263 }
2264
2265 static void __exit jbd2_remove_debugfs_entry(void)
2266 {
2267         debugfs_remove(jbd2_debug);
2268         debugfs_remove(jbd2_debugfs_dir);
2269 }
2270
2271 #else
2272
2273 static void __init jbd2_create_debugfs_entry(void)
2274 {
2275 }
2276
2277 static void __exit jbd2_remove_debugfs_entry(void)
2278 {
2279 }
2280
2281 #endif
2282
2283 #ifdef CONFIG_PROC_FS
2284
2285 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2286
2287 static void __init jbd2_create_jbd_stats_proc_entry(void)
2288 {
2289         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2290 }
2291
2292 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2293 {
2294         if (proc_jbd2_stats)
2295                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2296 }
2297
2298 #else
2299
2300 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2301 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2302
2303 #endif
2304
2305 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2306
2307 static int __init journal_init_handle_cache(void)
2308 {
2309         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2310         if (jbd2_handle_cache == NULL) {
2311                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2312                 return -ENOMEM;
2313         }
2314         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2315         if (jbd2_inode_cache == NULL) {
2316                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2317                 kmem_cache_destroy(jbd2_handle_cache);
2318                 return -ENOMEM;
2319         }
2320         return 0;
2321 }
2322
2323 static void jbd2_journal_destroy_handle_cache(void)
2324 {
2325         if (jbd2_handle_cache)
2326                 kmem_cache_destroy(jbd2_handle_cache);
2327         if (jbd2_inode_cache)
2328                 kmem_cache_destroy(jbd2_inode_cache);
2329
2330 }
2331
2332 /*
2333  * Module startup and shutdown
2334  */
2335
2336 static int __init journal_init_caches(void)
2337 {
2338         int ret;
2339
2340         ret = jbd2_journal_init_revoke_caches();
2341         if (ret == 0)
2342                 ret = journal_init_jbd2_journal_head_cache();
2343         if (ret == 0)
2344                 ret = journal_init_handle_cache();
2345         return ret;
2346 }
2347
2348 static void jbd2_journal_destroy_caches(void)
2349 {
2350         jbd2_journal_destroy_revoke_caches();
2351         jbd2_journal_destroy_jbd2_journal_head_cache();
2352         jbd2_journal_destroy_handle_cache();
2353         jbd2_journal_destroy_slabs();
2354 }
2355
2356 static int __init journal_init(void)
2357 {
2358         int ret;
2359
2360         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2361
2362         ret = journal_init_caches();
2363         if (ret == 0) {
2364                 jbd2_create_debugfs_entry();
2365                 jbd2_create_jbd_stats_proc_entry();
2366         } else {
2367                 jbd2_journal_destroy_caches();
2368         }
2369         return ret;
2370 }
2371
2372 static void __exit journal_exit(void)
2373 {
2374 #ifdef CONFIG_JBD2_DEBUG
2375         int n = atomic_read(&nr_journal_heads);
2376         if (n)
2377                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2378 #endif
2379         jbd2_remove_debugfs_entry();
2380         jbd2_remove_jbd_stats_proc_entry();
2381         jbd2_journal_destroy_caches();
2382 }
2383
2384 /* 
2385  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
2386  * tracing infrastructure to map a dev_t to a device name.
2387  *
2388  * The caller should use rcu_read_lock() in order to make sure the
2389  * device name stays valid until its done with it.  We use
2390  * rcu_read_lock() as well to make sure we're safe in case the caller
2391  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2392  * nested.
2393  */
2394 struct devname_cache {
2395         struct rcu_head rcu;
2396         dev_t           device;
2397         char            devname[BDEVNAME_SIZE];
2398 };
2399 #define CACHE_SIZE_BITS 6
2400 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2401 static DEFINE_SPINLOCK(devname_cache_lock);
2402
2403 static void free_devcache(struct rcu_head *rcu)
2404 {
2405         kfree(rcu);
2406 }
2407
2408 const char *jbd2_dev_to_name(dev_t device)
2409 {
2410         int     i = hash_32(device, CACHE_SIZE_BITS);
2411         char    *ret;
2412         struct block_device *bd;
2413         static struct devname_cache *new_dev;
2414
2415         rcu_read_lock();
2416         if (devcache[i] && devcache[i]->device == device) {
2417                 ret = devcache[i]->devname;
2418                 rcu_read_unlock();
2419                 return ret;
2420         }
2421         rcu_read_unlock();
2422
2423         new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2424         if (!new_dev)
2425                 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2426         bd = bdget(device);
2427         spin_lock(&devname_cache_lock);
2428         if (devcache[i]) {
2429                 if (devcache[i]->device == device) {
2430                         kfree(new_dev);
2431                         bdput(bd);
2432                         ret = devcache[i]->devname;
2433                         spin_unlock(&devname_cache_lock);
2434                         return ret;
2435                 }
2436                 call_rcu(&devcache[i]->rcu, free_devcache);
2437         }
2438         devcache[i] = new_dev;
2439         devcache[i]->device = device;
2440         if (bd) {
2441                 bdevname(bd, devcache[i]->devname);
2442                 bdput(bd);
2443         } else
2444                 __bdevname(device, devcache[i]->devname);
2445         ret = devcache[i]->devname;
2446         spin_unlock(&devname_cache_lock);
2447         return ret;
2448 }
2449 EXPORT_SYMBOL(jbd2_dev_to_name);
2450
2451 MODULE_LICENSE("GPL");
2452 module_init(journal_init);
2453 module_exit(journal_exit);
2454
This page took 0.165017 seconds and 4 git commands to generate.