1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side. When the application reads the CQ ring
8 * tail, it must use an appropriate smp_rmb() to order with the smp_wmb()
9 * the kernel uses after writing the tail. Failure to do so could cause a
10 * delay in when the application notices that completion events available.
11 * This isn't a fatal condition. Likewise, the application must use an
12 * appropriate smp_wmb() both before writing the SQ tail, and after writing
13 * the SQ tail. The first one orders the sqe writes with the tail write, and
14 * the latter is paired with the smp_rmb() the kernel will issue before
15 * reading the SQ tail on submission.
17 * Also see the examples in the liburing library:
19 * git://git.kernel.dk/liburing
21 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
22 * from data shared between the kernel and application. This is done both
23 * for ordering purposes, but also to ensure that once a value is loaded from
24 * data that the application could potentially modify, it remains stable.
26 * Copyright (C) 2018-2019 Jens Axboe
27 * Copyright (c) 2018-2019 Christoph Hellwig
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/errno.h>
32 #include <linux/syscalls.h>
33 #include <linux/compat.h>
34 #include <linux/refcount.h>
35 #include <linux/uio.h>
37 #include <linux/sched/signal.h>
39 #include <linux/file.h>
40 #include <linux/fdtable.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_context.h>
44 #include <linux/percpu.h>
45 #include <linux/slab.h>
46 #include <linux/workqueue.h>
47 #include <linux/kthread.h>
48 #include <linux/blkdev.h>
49 #include <linux/bvec.h>
50 #include <linux/net.h>
52 #include <net/af_unix.h>
54 #include <linux/anon_inodes.h>
55 #include <linux/sched/mm.h>
56 #include <linux/uaccess.h>
57 #include <linux/nospec.h>
58 #include <linux/sizes.h>
59 #include <linux/hugetlb.h>
61 #include <uapi/linux/io_uring.h>
65 #define IORING_MAX_ENTRIES 4096
66 #define IORING_MAX_FIXED_FILES 1024
69 u32 head ____cacheline_aligned_in_smp;
70 u32 tail ____cacheline_aligned_in_smp;
87 struct io_uring_cqe cqes[];
90 struct io_mapped_ubuf {
94 unsigned int nr_bvecs;
100 struct list_head list;
109 struct percpu_ref refs;
110 } ____cacheline_aligned_in_smp;
118 struct io_sq_ring *sq_ring;
119 unsigned cached_sq_head;
122 unsigned sq_thread_idle;
123 struct io_uring_sqe *sq_sqes;
124 } ____cacheline_aligned_in_smp;
127 struct workqueue_struct *sqo_wq;
128 struct task_struct *sqo_thread; /* if using sq thread polling */
129 struct mm_struct *sqo_mm;
130 wait_queue_head_t sqo_wait;
135 struct io_cq_ring *cq_ring;
136 unsigned cached_cq_tail;
139 struct wait_queue_head cq_wait;
140 struct fasync_struct *cq_fasync;
141 } ____cacheline_aligned_in_smp;
144 * If used, fixed file set. Writers must ensure that ->refs is dead,
145 * readers must ensure that ->refs is alive as long as the file* is
146 * used. Only updated through io_uring_register(2).
148 struct file **user_files;
149 unsigned nr_user_files;
151 /* if used, fixed mapped user buffers */
152 unsigned nr_user_bufs;
153 struct io_mapped_ubuf *user_bufs;
155 struct user_struct *user;
157 struct completion ctx_done;
160 struct mutex uring_lock;
161 wait_queue_head_t wait;
162 } ____cacheline_aligned_in_smp;
165 spinlock_t completion_lock;
166 bool poll_multi_file;
168 * ->poll_list is protected by the ctx->uring_lock for
169 * io_uring instances that don't use IORING_SETUP_SQPOLL.
170 * For SQPOLL, only the single threaded io_sq_thread() will
171 * manipulate the list, hence no extra locking is needed there.
173 struct list_head poll_list;
174 struct list_head cancel_list;
175 } ____cacheline_aligned_in_smp;
177 struct async_list pending_async[2];
179 #if defined(CONFIG_UNIX)
180 struct socket *ring_sock;
185 const struct io_uring_sqe *sqe;
186 unsigned short index;
189 bool needs_fixed_file;
192 struct io_poll_iocb {
194 struct wait_queue_head *head;
198 struct wait_queue_entry wait;
204 struct io_poll_iocb poll;
207 struct sqe_submit submit;
209 struct io_ring_ctx *ctx;
210 struct list_head list;
213 #define REQ_F_FORCE_NONBLOCK 1 /* inline submission attempt */
214 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
215 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
216 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
220 struct work_struct work;
223 #define IO_PLUG_THRESHOLD 2
224 #define IO_IOPOLL_BATCH 8
226 struct io_submit_state {
227 struct blk_plug plug;
230 * io_kiocb alloc cache
232 void *reqs[IO_IOPOLL_BATCH];
233 unsigned int free_reqs;
234 unsigned int cur_req;
237 * File reference cache
241 unsigned int has_refs;
242 unsigned int used_refs;
243 unsigned int ios_left;
246 static struct kmem_cache *req_cachep;
248 static const struct file_operations io_uring_fops;
250 struct sock *io_uring_get_socket(struct file *file)
252 #if defined(CONFIG_UNIX)
253 if (file->f_op == &io_uring_fops) {
254 struct io_ring_ctx *ctx = file->private_data;
256 return ctx->ring_sock->sk;
261 EXPORT_SYMBOL(io_uring_get_socket);
263 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
265 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
267 complete(&ctx->ctx_done);
270 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
272 struct io_ring_ctx *ctx;
275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
279 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
284 ctx->flags = p->flags;
285 init_waitqueue_head(&ctx->cq_wait);
286 init_completion(&ctx->ctx_done);
287 mutex_init(&ctx->uring_lock);
288 init_waitqueue_head(&ctx->wait);
289 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
290 spin_lock_init(&ctx->pending_async[i].lock);
291 INIT_LIST_HEAD(&ctx->pending_async[i].list);
292 atomic_set(&ctx->pending_async[i].cnt, 0);
294 spin_lock_init(&ctx->completion_lock);
295 INIT_LIST_HEAD(&ctx->poll_list);
296 INIT_LIST_HEAD(&ctx->cancel_list);
300 static void io_commit_cqring(struct io_ring_ctx *ctx)
302 struct io_cq_ring *ring = ctx->cq_ring;
304 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
305 /* order cqe stores with ring update */
306 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
309 * Write sider barrier of tail update, app has read side. See
310 * comment at the top of this file.
314 if (wq_has_sleeper(&ctx->cq_wait)) {
315 wake_up_interruptible(&ctx->cq_wait);
316 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
321 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
323 struct io_cq_ring *ring = ctx->cq_ring;
326 tail = ctx->cached_cq_tail;
327 /* See comment at the top of the file */
329 if (tail + 1 == READ_ONCE(ring->r.head))
332 ctx->cached_cq_tail++;
333 return &ring->cqes[tail & ctx->cq_mask];
336 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
337 long res, unsigned ev_flags)
339 struct io_uring_cqe *cqe;
342 * If we can't get a cq entry, userspace overflowed the
343 * submission (by quite a lot). Increment the overflow count in
346 cqe = io_get_cqring(ctx);
348 WRITE_ONCE(cqe->user_data, ki_user_data);
349 WRITE_ONCE(cqe->res, res);
350 WRITE_ONCE(cqe->flags, ev_flags);
352 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
354 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
358 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 ki_user_data,
359 long res, unsigned ev_flags)
363 spin_lock_irqsave(&ctx->completion_lock, flags);
364 io_cqring_fill_event(ctx, ki_user_data, res, ev_flags);
365 io_commit_cqring(ctx);
366 spin_unlock_irqrestore(&ctx->completion_lock, flags);
368 if (waitqueue_active(&ctx->wait))
370 if (waitqueue_active(&ctx->sqo_wait))
371 wake_up(&ctx->sqo_wait);
374 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
376 percpu_ref_put_many(&ctx->refs, refs);
378 if (waitqueue_active(&ctx->wait))
382 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
383 struct io_submit_state *state)
385 struct io_kiocb *req;
387 if (!percpu_ref_tryget(&ctx->refs))
391 req = kmem_cache_alloc(req_cachep, __GFP_NOWARN);
394 } else if (!state->free_reqs) {
398 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
399 ret = kmem_cache_alloc_bulk(req_cachep, __GFP_NOWARN, sz,
401 if (unlikely(ret <= 0))
403 state->free_reqs = ret - 1;
405 req = state->reqs[0];
407 req = state->reqs[state->cur_req];
414 refcount_set(&req->refs, 0);
417 io_ring_drop_ctx_refs(ctx, 1);
421 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
424 kmem_cache_free_bulk(req_cachep, *nr, reqs);
425 io_ring_drop_ctx_refs(ctx, *nr);
430 static void io_free_req(struct io_kiocb *req)
432 if (!refcount_read(&req->refs) || refcount_dec_and_test(&req->refs)) {
433 io_ring_drop_ctx_refs(req->ctx, 1);
434 kmem_cache_free(req_cachep, req);
439 * Find and free completed poll iocbs
441 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
442 struct list_head *done)
444 void *reqs[IO_IOPOLL_BATCH];
445 int file_count, to_free;
446 struct file *file = NULL;
447 struct io_kiocb *req;
449 file_count = to_free = 0;
450 while (!list_empty(done)) {
451 req = list_first_entry(done, struct io_kiocb, list);
452 list_del(&req->list);
454 io_cqring_fill_event(ctx, req->user_data, req->error, 0);
456 reqs[to_free++] = req;
460 * Batched puts of the same file, to avoid dirtying the
461 * file usage count multiple times, if avoidable.
463 if (!(req->flags & REQ_F_FIXED_FILE)) {
465 file = req->rw.ki_filp;
467 } else if (file == req->rw.ki_filp) {
470 fput_many(file, file_count);
471 file = req->rw.ki_filp;
476 if (to_free == ARRAY_SIZE(reqs))
477 io_free_req_many(ctx, reqs, &to_free);
479 io_commit_cqring(ctx);
482 fput_many(file, file_count);
483 io_free_req_many(ctx, reqs, &to_free);
486 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
489 struct io_kiocb *req, *tmp;
495 * Only spin for completions if we don't have multiple devices hanging
496 * off our complete list, and we're under the requested amount.
498 spin = !ctx->poll_multi_file && *nr_events < min;
501 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
502 struct kiocb *kiocb = &req->rw;
505 * Move completed entries to our local list. If we find a
506 * request that requires polling, break out and complete
507 * the done list first, if we have entries there.
509 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
510 list_move_tail(&req->list, &done);
513 if (!list_empty(&done))
516 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
525 if (!list_empty(&done))
526 io_iopoll_complete(ctx, nr_events, &done);
532 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
533 * non-spinning poll check - we'll still enter the driver poll loop, but only
534 * as a non-spinning completion check.
536 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
539 while (!list_empty(&ctx->poll_list)) {
542 ret = io_do_iopoll(ctx, nr_events, min);
545 if (!min || *nr_events >= min)
553 * We can't just wait for polled events to come to us, we have to actively
554 * find and complete them.
556 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
558 if (!(ctx->flags & IORING_SETUP_IOPOLL))
561 mutex_lock(&ctx->uring_lock);
562 while (!list_empty(&ctx->poll_list)) {
563 unsigned int nr_events = 0;
565 io_iopoll_getevents(ctx, &nr_events, 1);
567 mutex_unlock(&ctx->uring_lock);
570 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
578 if (*nr_events < min)
579 tmin = min - *nr_events;
581 ret = io_iopoll_getevents(ctx, nr_events, tmin);
585 } while (min && !*nr_events && !need_resched());
590 static void kiocb_end_write(struct kiocb *kiocb)
592 if (kiocb->ki_flags & IOCB_WRITE) {
593 struct inode *inode = file_inode(kiocb->ki_filp);
596 * Tell lockdep we inherited freeze protection from submission
599 if (S_ISREG(inode->i_mode))
600 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
601 file_end_write(kiocb->ki_filp);
605 static void io_fput(struct io_kiocb *req)
607 if (!(req->flags & REQ_F_FIXED_FILE))
608 fput(req->rw.ki_filp);
611 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
613 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
615 kiocb_end_write(kiocb);
618 io_cqring_add_event(req->ctx, req->user_data, res, 0);
622 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
624 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
626 kiocb_end_write(kiocb);
630 req->flags |= REQ_F_IOPOLL_COMPLETED;
634 * After the iocb has been issued, it's safe to be found on the poll list.
635 * Adding the kiocb to the list AFTER submission ensures that we don't
636 * find it from a io_iopoll_getevents() thread before the issuer is done
637 * accessing the kiocb cookie.
639 static void io_iopoll_req_issued(struct io_kiocb *req)
641 struct io_ring_ctx *ctx = req->ctx;
644 * Track whether we have multiple files in our lists. This will impact
645 * how we do polling eventually, not spinning if we're on potentially
648 if (list_empty(&ctx->poll_list)) {
649 ctx->poll_multi_file = false;
650 } else if (!ctx->poll_multi_file) {
651 struct io_kiocb *list_req;
653 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
655 if (list_req->rw.ki_filp != req->rw.ki_filp)
656 ctx->poll_multi_file = true;
660 * For fast devices, IO may have already completed. If it has, add
661 * it to the front so we find it first.
663 if (req->flags & REQ_F_IOPOLL_COMPLETED)
664 list_add(&req->list, &ctx->poll_list);
666 list_add_tail(&req->list, &ctx->poll_list);
669 static void io_file_put(struct io_submit_state *state, struct file *file)
673 } else if (state->file) {
674 int diff = state->has_refs - state->used_refs;
677 fput_many(state->file, diff);
683 * Get as many references to a file as we have IOs left in this submission,
684 * assuming most submissions are for one file, or at least that each file
685 * has more than one submission.
687 static struct file *io_file_get(struct io_submit_state *state, int fd)
693 if (state->fd == fd) {
698 io_file_put(state, NULL);
700 state->file = fget_many(fd, state->ios_left);
705 state->has_refs = state->ios_left;
706 state->used_refs = 1;
712 * If we tracked the file through the SCM inflight mechanism, we could support
713 * any file. For now, just ensure that anything potentially problematic is done
716 static bool io_file_supports_async(struct file *file)
718 umode_t mode = file_inode(file)->i_mode;
720 if (S_ISBLK(mode) || S_ISCHR(mode))
722 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
728 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
729 bool force_nonblock, struct io_submit_state *state)
731 const struct io_uring_sqe *sqe = s->sqe;
732 struct io_ring_ctx *ctx = req->ctx;
733 struct kiocb *kiocb = &req->rw;
734 unsigned ioprio, flags;
737 /* For -EAGAIN retry, everything is already prepped */
741 flags = READ_ONCE(sqe->flags);
742 fd = READ_ONCE(sqe->fd);
744 if (flags & IOSQE_FIXED_FILE) {
745 if (unlikely(!ctx->user_files ||
746 (unsigned) fd >= ctx->nr_user_files))
748 kiocb->ki_filp = ctx->user_files[fd];
749 req->flags |= REQ_F_FIXED_FILE;
751 if (s->needs_fixed_file)
753 kiocb->ki_filp = io_file_get(state, fd);
754 if (unlikely(!kiocb->ki_filp))
756 if (force_nonblock && !io_file_supports_async(kiocb->ki_filp))
757 force_nonblock = false;
759 kiocb->ki_pos = READ_ONCE(sqe->off);
760 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
761 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
763 ioprio = READ_ONCE(sqe->ioprio);
765 ret = ioprio_check_cap(ioprio);
769 kiocb->ki_ioprio = ioprio;
771 kiocb->ki_ioprio = get_current_ioprio();
773 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
776 if (force_nonblock) {
777 kiocb->ki_flags |= IOCB_NOWAIT;
778 req->flags |= REQ_F_FORCE_NONBLOCK;
780 if (ctx->flags & IORING_SETUP_IOPOLL) {
782 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
783 !kiocb->ki_filp->f_op->iopoll)
787 kiocb->ki_flags |= IOCB_HIPRI;
788 kiocb->ki_complete = io_complete_rw_iopoll;
790 if (kiocb->ki_flags & IOCB_HIPRI) {
794 kiocb->ki_complete = io_complete_rw;
798 if (!(flags & IOSQE_FIXED_FILE)) {
800 * in case of error, we didn't use this file reference. drop it.
804 io_file_put(state, kiocb->ki_filp);
809 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
815 case -ERESTARTNOINTR:
816 case -ERESTARTNOHAND:
817 case -ERESTART_RESTARTBLOCK:
819 * We can't just restart the syscall, since previously
820 * submitted sqes may already be in progress. Just fail this
826 kiocb->ki_complete(kiocb, ret, 0);
830 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
831 const struct io_uring_sqe *sqe,
832 struct iov_iter *iter)
834 size_t len = READ_ONCE(sqe->len);
835 struct io_mapped_ubuf *imu;
836 unsigned index, buf_index;
840 /* attempt to use fixed buffers without having provided iovecs */
841 if (unlikely(!ctx->user_bufs))
844 buf_index = READ_ONCE(sqe->buf_index);
845 if (unlikely(buf_index >= ctx->nr_user_bufs))
848 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
849 imu = &ctx->user_bufs[index];
850 buf_addr = READ_ONCE(sqe->addr);
853 if (buf_addr + len < buf_addr)
855 /* not inside the mapped region */
856 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
860 * May not be a start of buffer, set size appropriately
861 * and advance us to the beginning.
863 offset = buf_addr - imu->ubuf;
864 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
866 iov_iter_advance(iter, offset);
870 static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
871 const struct sqe_submit *s, struct iovec **iovec,
872 struct iov_iter *iter)
874 const struct io_uring_sqe *sqe = s->sqe;
875 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
876 size_t sqe_len = READ_ONCE(sqe->len);
880 * We're reading ->opcode for the second time, but the first read
881 * doesn't care whether it's _FIXED or not, so it doesn't matter
882 * whether ->opcode changes concurrently. The first read does care
883 * about whether it is a READ or a WRITE, so we don't trust this read
884 * for that purpose and instead let the caller pass in the read/write
887 opcode = READ_ONCE(sqe->opcode);
888 if (opcode == IORING_OP_READ_FIXED ||
889 opcode == IORING_OP_WRITE_FIXED) {
890 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
900 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
904 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
908 * Make a note of the last file/offset/direction we punted to async
909 * context. We'll use this information to see if we can piggy back a
910 * sequential request onto the previous one, if it's still hasn't been
911 * completed by the async worker.
913 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
915 struct async_list *async_list = &req->ctx->pending_async[rw];
916 struct kiocb *kiocb = &req->rw;
917 struct file *filp = kiocb->ki_filp;
918 off_t io_end = kiocb->ki_pos + len;
920 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
921 unsigned long max_pages;
923 /* Use 8x RA size as a decent limiter for both reads/writes */
924 max_pages = filp->f_ra.ra_pages;
926 max_pages = VM_READAHEAD_PAGES;
929 /* If max pages are exceeded, reset the state */
931 if (async_list->io_pages + len <= max_pages) {
932 req->flags |= REQ_F_SEQ_PREV;
933 async_list->io_pages += len;
936 async_list->io_pages = 0;
940 /* New file? Reset state. */
941 if (async_list->file != filp) {
942 async_list->io_pages = 0;
943 async_list->file = filp;
945 async_list->io_end = io_end;
948 static ssize_t io_read(struct io_kiocb *req, const struct sqe_submit *s,
949 bool force_nonblock, struct io_submit_state *state)
951 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
952 struct kiocb *kiocb = &req->rw;
953 struct iov_iter iter;
958 ret = io_prep_rw(req, s, force_nonblock, state);
961 file = kiocb->ki_filp;
964 if (unlikely(!(file->f_mode & FMODE_READ)))
967 if (unlikely(!file->f_op->read_iter))
970 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
974 iov_count = iov_iter_count(&iter);
975 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
979 /* Catch -EAGAIN return for forced non-blocking submission */
980 ret2 = call_read_iter(file, kiocb, &iter);
981 if (!force_nonblock || ret2 != -EAGAIN) {
982 io_rw_done(kiocb, ret2);
985 * If ->needs_lock is true, we're already in async
989 io_async_list_note(READ, req, iov_count);
995 /* Hold on to the file for -EAGAIN */
996 if (unlikely(ret && ret != -EAGAIN))
1001 static ssize_t io_write(struct io_kiocb *req, const struct sqe_submit *s,
1002 bool force_nonblock, struct io_submit_state *state)
1004 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1005 struct kiocb *kiocb = &req->rw;
1006 struct iov_iter iter;
1011 ret = io_prep_rw(req, s, force_nonblock, state);
1016 file = kiocb->ki_filp;
1017 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1020 if (unlikely(!file->f_op->write_iter))
1023 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1027 iov_count = iov_iter_count(&iter);
1030 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1031 /* If ->needs_lock is true, we're already in async context. */
1033 io_async_list_note(WRITE, req, iov_count);
1037 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1040 * Open-code file_start_write here to grab freeze protection,
1041 * which will be released by another thread in
1042 * io_complete_rw(). Fool lockdep by telling it the lock got
1043 * released so that it doesn't complain about the held lock when
1044 * we return to userspace.
1046 if (S_ISREG(file_inode(file)->i_mode)) {
1047 __sb_start_write(file_inode(file)->i_sb,
1048 SB_FREEZE_WRITE, true);
1049 __sb_writers_release(file_inode(file)->i_sb,
1052 kiocb->ki_flags |= IOCB_WRITE;
1053 io_rw_done(kiocb, call_write_iter(file, kiocb, &iter));
1058 /* Hold on to the file for -EAGAIN */
1059 if (unlikely(ret && ret != -EAGAIN))
1065 * IORING_OP_NOP just posts a completion event, nothing else.
1067 static int io_nop(struct io_kiocb *req, u64 user_data)
1069 struct io_ring_ctx *ctx = req->ctx;
1072 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1076 * Twilight zone - it's possible that someone issued an opcode that
1077 * has a file attached, then got -EAGAIN on submission, and changed
1078 * the sqe before we retried it from async context. Avoid dropping
1079 * a file reference for this malicious case, and flag the error.
1081 if (req->rw.ki_filp) {
1085 io_cqring_add_event(ctx, user_data, err, 0);
1090 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1092 struct io_ring_ctx *ctx = req->ctx;
1096 /* Prep already done */
1097 if (req->rw.ki_filp)
1100 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1102 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1105 fd = READ_ONCE(sqe->fd);
1106 flags = READ_ONCE(sqe->flags);
1108 if (flags & IOSQE_FIXED_FILE) {
1109 if (unlikely(!ctx->user_files || fd >= ctx->nr_user_files))
1111 req->rw.ki_filp = ctx->user_files[fd];
1112 req->flags |= REQ_F_FIXED_FILE;
1114 req->rw.ki_filp = fget(fd);
1115 if (unlikely(!req->rw.ki_filp))
1122 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1123 bool force_nonblock)
1125 loff_t sqe_off = READ_ONCE(sqe->off);
1126 loff_t sqe_len = READ_ONCE(sqe->len);
1127 loff_t end = sqe_off + sqe_len;
1128 unsigned fsync_flags;
1131 fsync_flags = READ_ONCE(sqe->fsync_flags);
1132 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1135 ret = io_prep_fsync(req, sqe);
1139 /* fsync always requires a blocking context */
1143 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1144 end > 0 ? end : LLONG_MAX,
1145 fsync_flags & IORING_FSYNC_DATASYNC);
1148 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1153 static void io_poll_remove_one(struct io_kiocb *req)
1155 struct io_poll_iocb *poll = &req->poll;
1157 spin_lock(&poll->head->lock);
1158 WRITE_ONCE(poll->canceled, true);
1159 if (!list_empty(&poll->wait.entry)) {
1160 list_del_init(&poll->wait.entry);
1161 queue_work(req->ctx->sqo_wq, &req->work);
1163 spin_unlock(&poll->head->lock);
1165 list_del_init(&req->list);
1168 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1170 struct io_kiocb *req;
1172 spin_lock_irq(&ctx->completion_lock);
1173 while (!list_empty(&ctx->cancel_list)) {
1174 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1175 io_poll_remove_one(req);
1177 spin_unlock_irq(&ctx->completion_lock);
1181 * Find a running poll command that matches one specified in sqe->addr,
1182 * and remove it if found.
1184 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1186 struct io_ring_ctx *ctx = req->ctx;
1187 struct io_kiocb *poll_req, *next;
1190 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1192 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1196 spin_lock_irq(&ctx->completion_lock);
1197 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1198 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1199 io_poll_remove_one(poll_req);
1204 spin_unlock_irq(&ctx->completion_lock);
1206 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1211 static void io_poll_complete(struct io_kiocb *req, __poll_t mask)
1213 io_cqring_add_event(req->ctx, req->user_data, mangle_poll(mask), 0);
1218 static void io_poll_complete_work(struct work_struct *work)
1220 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1221 struct io_poll_iocb *poll = &req->poll;
1222 struct poll_table_struct pt = { ._key = poll->events };
1223 struct io_ring_ctx *ctx = req->ctx;
1226 if (!READ_ONCE(poll->canceled))
1227 mask = vfs_poll(poll->file, &pt) & poll->events;
1230 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1231 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1232 * synchronize with them. In the cancellation case the list_del_init
1233 * itself is not actually needed, but harmless so we keep it in to
1234 * avoid further branches in the fast path.
1236 spin_lock_irq(&ctx->completion_lock);
1237 if (!mask && !READ_ONCE(poll->canceled)) {
1238 add_wait_queue(poll->head, &poll->wait);
1239 spin_unlock_irq(&ctx->completion_lock);
1242 list_del_init(&req->list);
1243 spin_unlock_irq(&ctx->completion_lock);
1245 io_poll_complete(req, mask);
1248 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1251 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1253 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1254 struct io_ring_ctx *ctx = req->ctx;
1255 __poll_t mask = key_to_poll(key);
1259 /* for instances that support it check for an event match first: */
1261 unsigned long flags;
1263 if (!(mask & poll->events))
1266 /* try to complete the iocb inline if we can: */
1267 if (spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1268 list_del(&req->list);
1269 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1271 list_del_init(&poll->wait.entry);
1272 io_poll_complete(req, mask);
1277 list_del_init(&poll->wait.entry);
1278 queue_work(ctx->sqo_wq, &req->work);
1282 struct io_poll_table {
1283 struct poll_table_struct pt;
1284 struct io_kiocb *req;
1288 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1289 struct poll_table_struct *p)
1291 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1293 if (unlikely(pt->req->poll.head)) {
1294 pt->error = -EINVAL;
1299 pt->req->poll.head = head;
1300 add_wait_queue(head, &pt->req->poll.wait);
1303 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1305 struct io_poll_iocb *poll = &req->poll;
1306 struct io_ring_ctx *ctx = req->ctx;
1307 struct io_poll_table ipt;
1313 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1315 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1318 INIT_WORK(&req->work, io_poll_complete_work);
1319 events = READ_ONCE(sqe->poll_events);
1320 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1322 flags = READ_ONCE(sqe->flags);
1323 fd = READ_ONCE(sqe->fd);
1325 if (flags & IOSQE_FIXED_FILE) {
1326 if (unlikely(!ctx->user_files || fd >= ctx->nr_user_files))
1328 poll->file = ctx->user_files[fd];
1329 req->flags |= REQ_F_FIXED_FILE;
1331 poll->file = fget(fd);
1333 if (unlikely(!poll->file))
1337 poll->woken = false;
1338 poll->canceled = false;
1340 ipt.pt._qproc = io_poll_queue_proc;
1341 ipt.pt._key = poll->events;
1343 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1345 /* initialized the list so that we can do list_empty checks */
1346 INIT_LIST_HEAD(&poll->wait.entry);
1347 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1349 /* one for removal from waitqueue, one for this function */
1350 refcount_set(&req->refs, 2);
1352 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1353 if (unlikely(!poll->head)) {
1354 /* we did not manage to set up a waitqueue, done */
1358 spin_lock_irq(&ctx->completion_lock);
1359 spin_lock(&poll->head->lock);
1361 /* wake_up context handles the rest */
1364 } else if (mask || ipt.error) {
1365 /* if we get an error or a mask we are done */
1366 WARN_ON_ONCE(list_empty(&poll->wait.entry));
1367 list_del_init(&poll->wait.entry);
1369 /* actually waiting for an event */
1370 list_add_tail(&req->list, &ctx->cancel_list);
1372 spin_unlock(&poll->head->lock);
1373 spin_unlock_irq(&ctx->completion_lock);
1376 if (unlikely(ipt.error)) {
1377 if (!(flags & IOSQE_FIXED_FILE))
1380 * Drop one of our refs to this req, __io_submit_sqe() will
1381 * drop the other one since we're returning an error.
1388 io_poll_complete(req, mask);
1393 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1394 const struct sqe_submit *s, bool force_nonblock,
1395 struct io_submit_state *state)
1400 if (unlikely(s->index >= ctx->sq_entries))
1402 req->user_data = READ_ONCE(s->sqe->user_data);
1404 opcode = READ_ONCE(s->sqe->opcode);
1407 ret = io_nop(req, req->user_data);
1409 case IORING_OP_READV:
1410 if (unlikely(s->sqe->buf_index))
1412 ret = io_read(req, s, force_nonblock, state);
1414 case IORING_OP_WRITEV:
1415 if (unlikely(s->sqe->buf_index))
1417 ret = io_write(req, s, force_nonblock, state);
1419 case IORING_OP_READ_FIXED:
1420 ret = io_read(req, s, force_nonblock, state);
1422 case IORING_OP_WRITE_FIXED:
1423 ret = io_write(req, s, force_nonblock, state);
1425 case IORING_OP_FSYNC:
1426 ret = io_fsync(req, s->sqe, force_nonblock);
1428 case IORING_OP_POLL_ADD:
1429 ret = io_poll_add(req, s->sqe);
1431 case IORING_OP_POLL_REMOVE:
1432 ret = io_poll_remove(req, s->sqe);
1442 if (ctx->flags & IORING_SETUP_IOPOLL) {
1443 if (req->error == -EAGAIN)
1446 /* workqueue context doesn't hold uring_lock, grab it now */
1448 mutex_lock(&ctx->uring_lock);
1449 io_iopoll_req_issued(req);
1451 mutex_unlock(&ctx->uring_lock);
1457 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1458 const struct io_uring_sqe *sqe)
1460 switch (sqe->opcode) {
1461 case IORING_OP_READV:
1462 case IORING_OP_READ_FIXED:
1463 return &ctx->pending_async[READ];
1464 case IORING_OP_WRITEV:
1465 case IORING_OP_WRITE_FIXED:
1466 return &ctx->pending_async[WRITE];
1472 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1474 u8 opcode = READ_ONCE(sqe->opcode);
1476 return !(opcode == IORING_OP_READ_FIXED ||
1477 opcode == IORING_OP_WRITE_FIXED);
1480 static void io_sq_wq_submit_work(struct work_struct *work)
1482 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1483 struct io_ring_ctx *ctx = req->ctx;
1484 struct mm_struct *cur_mm = NULL;
1485 struct async_list *async_list;
1486 LIST_HEAD(req_list);
1487 mm_segment_t old_fs;
1490 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1493 struct sqe_submit *s = &req->submit;
1494 const struct io_uring_sqe *sqe = s->sqe;
1496 /* Ensure we clear previously set forced non-block flag */
1497 req->flags &= ~REQ_F_FORCE_NONBLOCK;
1498 req->rw.ki_flags &= ~IOCB_NOWAIT;
1501 if (io_sqe_needs_user(sqe) && !cur_mm) {
1502 if (!mmget_not_zero(ctx->sqo_mm)) {
1505 cur_mm = ctx->sqo_mm;
1513 s->has_user = cur_mm != NULL;
1514 s->needs_lock = true;
1516 ret = __io_submit_sqe(ctx, req, s, false, NULL);
1518 * We can get EAGAIN for polled IO even though
1519 * we're forcing a sync submission from here,
1520 * since we can't wait for request slots on the
1529 io_cqring_add_event(ctx, sqe->user_data, ret, 0);
1533 /* async context always use a copy of the sqe */
1538 if (!list_empty(&req_list)) {
1539 req = list_first_entry(&req_list, struct io_kiocb,
1541 list_del(&req->list);
1544 if (list_empty(&async_list->list))
1548 spin_lock(&async_list->lock);
1549 if (list_empty(&async_list->list)) {
1550 spin_unlock(&async_list->lock);
1553 list_splice_init(&async_list->list, &req_list);
1554 spin_unlock(&async_list->lock);
1556 req = list_first_entry(&req_list, struct io_kiocb, list);
1557 list_del(&req->list);
1561 * Rare case of racing with a submitter. If we find the count has
1562 * dropped to zero AND we have pending work items, then restart
1563 * the processing. This is a tiny race window.
1566 ret = atomic_dec_return(&async_list->cnt);
1567 while (!ret && !list_empty(&async_list->list)) {
1568 spin_lock(&async_list->lock);
1569 atomic_inc(&async_list->cnt);
1570 list_splice_init(&async_list->list, &req_list);
1571 spin_unlock(&async_list->lock);
1573 if (!list_empty(&req_list)) {
1574 req = list_first_entry(&req_list,
1575 struct io_kiocb, list);
1576 list_del(&req->list);
1579 ret = atomic_dec_return(&async_list->cnt);
1591 * See if we can piggy back onto previously submitted work, that is still
1592 * running. We currently only allow this if the new request is sequential
1593 * to the previous one we punted.
1595 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1601 if (!(req->flags & REQ_F_SEQ_PREV))
1603 if (!atomic_read(&list->cnt))
1607 spin_lock(&list->lock);
1608 list_add_tail(&req->list, &list->list);
1609 if (!atomic_read(&list->cnt)) {
1610 list_del_init(&req->list);
1613 spin_unlock(&list->lock);
1617 static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
1618 struct io_submit_state *state)
1620 struct io_kiocb *req;
1623 /* enforce forwards compatibility on users */
1624 if (unlikely(s->sqe->flags & ~IOSQE_FIXED_FILE))
1627 req = io_get_req(ctx, state);
1631 req->rw.ki_filp = NULL;
1633 ret = __io_submit_sqe(ctx, req, s, true, state);
1634 if (ret == -EAGAIN) {
1635 struct io_uring_sqe *sqe_copy;
1637 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1639 struct async_list *list;
1641 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
1644 memcpy(&req->submit, s, sizeof(*s));
1645 list = io_async_list_from_sqe(ctx, s->sqe);
1646 if (!io_add_to_prev_work(list, req)) {
1648 atomic_inc(&list->cnt);
1649 INIT_WORK(&req->work, io_sq_wq_submit_work);
1650 queue_work(ctx->sqo_wq, &req->work);
1662 * Batched submission is done, ensure local IO is flushed out.
1664 static void io_submit_state_end(struct io_submit_state *state)
1666 blk_finish_plug(&state->plug);
1667 io_file_put(state, NULL);
1668 if (state->free_reqs)
1669 kmem_cache_free_bulk(req_cachep, state->free_reqs,
1670 &state->reqs[state->cur_req]);
1674 * Start submission side cache.
1676 static void io_submit_state_start(struct io_submit_state *state,
1677 struct io_ring_ctx *ctx, unsigned max_ios)
1679 blk_start_plug(&state->plug);
1680 state->free_reqs = 0;
1682 state->ios_left = max_ios;
1685 static void io_commit_sqring(struct io_ring_ctx *ctx)
1687 struct io_sq_ring *ring = ctx->sq_ring;
1689 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
1691 * Ensure any loads from the SQEs are done at this point,
1692 * since once we write the new head, the application could
1693 * write new data to them.
1695 smp_store_release(&ring->r.head, ctx->cached_sq_head);
1698 * write side barrier of head update, app has read side. See
1699 * comment at the top of this file
1706 * Undo last io_get_sqring()
1708 static void io_drop_sqring(struct io_ring_ctx *ctx)
1710 ctx->cached_sq_head--;
1714 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1715 * that is mapped by userspace. This means that care needs to be taken to
1716 * ensure that reads are stable, as we cannot rely on userspace always
1717 * being a good citizen. If members of the sqe are validated and then later
1718 * used, it's important that those reads are done through READ_ONCE() to
1719 * prevent a re-load down the line.
1721 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
1723 struct io_sq_ring *ring = ctx->sq_ring;
1727 * The cached sq head (or cq tail) serves two purposes:
1729 * 1) allows us to batch the cost of updating the user visible
1731 * 2) allows the kernel side to track the head on its own, even
1732 * though the application is the one updating it.
1734 head = ctx->cached_sq_head;
1735 /* See comment at the top of this file */
1737 if (head == READ_ONCE(ring->r.tail))
1740 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
1741 if (head < ctx->sq_entries) {
1743 s->sqe = &ctx->sq_sqes[head];
1744 ctx->cached_sq_head++;
1748 /* drop invalid entries */
1749 ctx->cached_sq_head++;
1751 /* See comment at the top of this file */
1756 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
1757 unsigned int nr, bool has_user, bool mm_fault)
1759 struct io_submit_state state, *statep = NULL;
1760 int ret, i, submitted = 0;
1762 if (nr > IO_PLUG_THRESHOLD) {
1763 io_submit_state_start(&state, ctx, nr);
1767 for (i = 0; i < nr; i++) {
1768 if (unlikely(mm_fault)) {
1771 sqes[i].has_user = has_user;
1772 sqes[i].needs_lock = true;
1773 sqes[i].needs_fixed_file = true;
1774 ret = io_submit_sqe(ctx, &sqes[i], statep);
1781 io_cqring_add_event(ctx, sqes[i].sqe->user_data, ret, 0);
1785 io_submit_state_end(&state);
1790 static int io_sq_thread(void *data)
1792 struct sqe_submit sqes[IO_IOPOLL_BATCH];
1793 struct io_ring_ctx *ctx = data;
1794 struct mm_struct *cur_mm = NULL;
1795 mm_segment_t old_fs;
1798 unsigned long timeout;
1803 timeout = inflight = 0;
1804 while (!kthread_should_stop() && !ctx->sqo_stop) {
1805 bool all_fixed, mm_fault = false;
1809 unsigned nr_events = 0;
1811 if (ctx->flags & IORING_SETUP_IOPOLL) {
1813 * We disallow the app entering submit/complete
1814 * with polling, but we still need to lock the
1815 * ring to prevent racing with polled issue
1816 * that got punted to a workqueue.
1818 mutex_lock(&ctx->uring_lock);
1819 io_iopoll_check(ctx, &nr_events, 0);
1820 mutex_unlock(&ctx->uring_lock);
1823 * Normal IO, just pretend everything completed.
1824 * We don't have to poll completions for that.
1826 nr_events = inflight;
1829 inflight -= nr_events;
1831 timeout = jiffies + ctx->sq_thread_idle;
1834 if (!io_get_sqring(ctx, &sqes[0])) {
1836 * We're polling. If we're within the defined idle
1837 * period, then let us spin without work before going
1840 if (inflight || !time_after(jiffies, timeout)) {
1846 * Drop cur_mm before scheduling, we can't hold it for
1847 * long periods (or over schedule()). Do this before
1848 * adding ourselves to the waitqueue, as the unuse/drop
1857 prepare_to_wait(&ctx->sqo_wait, &wait,
1858 TASK_INTERRUPTIBLE);
1860 /* Tell userspace we may need a wakeup call */
1861 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
1864 if (!io_get_sqring(ctx, &sqes[0])) {
1865 if (kthread_should_stop()) {
1866 finish_wait(&ctx->sqo_wait, &wait);
1869 if (signal_pending(current))
1870 flush_signals(current);
1872 finish_wait(&ctx->sqo_wait, &wait);
1874 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1878 finish_wait(&ctx->sqo_wait, &wait);
1880 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1887 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
1891 if (i == ARRAY_SIZE(sqes))
1893 } while (io_get_sqring(ctx, &sqes[i]));
1895 /* Unless all new commands are FIXED regions, grab mm */
1896 if (!all_fixed && !cur_mm) {
1897 mm_fault = !mmget_not_zero(ctx->sqo_mm);
1899 use_mm(ctx->sqo_mm);
1900 cur_mm = ctx->sqo_mm;
1904 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
1907 /* Commit SQ ring head once we've consumed all SQEs */
1908 io_commit_sqring(ctx);
1919 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
1921 struct io_submit_state state, *statep = NULL;
1922 int i, ret = 0, submit = 0;
1924 if (to_submit > IO_PLUG_THRESHOLD) {
1925 io_submit_state_start(&state, ctx, to_submit);
1929 for (i = 0; i < to_submit; i++) {
1930 struct sqe_submit s;
1932 if (!io_get_sqring(ctx, &s))
1936 s.needs_lock = false;
1937 s.needs_fixed_file = false;
1939 ret = io_submit_sqe(ctx, &s, statep);
1941 io_drop_sqring(ctx);
1947 io_commit_sqring(ctx);
1950 io_submit_state_end(statep);
1952 return submit ? submit : ret;
1955 static unsigned io_cqring_events(struct io_cq_ring *ring)
1957 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
1961 * Wait until events become available, if we don't already have some. The
1962 * application must reap them itself, as they reside on the shared cq ring.
1964 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
1965 const sigset_t __user *sig, size_t sigsz)
1967 struct io_cq_ring *ring = ctx->cq_ring;
1968 sigset_t ksigmask, sigsaved;
1972 /* See comment at the top of this file */
1974 if (io_cqring_events(ring) >= min_events)
1978 ret = set_user_sigmask(sig, &ksigmask, &sigsaved, sigsz);
1984 prepare_to_wait(&ctx->wait, &wait, TASK_INTERRUPTIBLE);
1987 /* See comment at the top of this file */
1989 if (io_cqring_events(ring) >= min_events)
1995 if (signal_pending(current))
1999 finish_wait(&ctx->wait, &wait);
2002 restore_user_sigmask(sig, &sigsaved);
2004 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2007 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2009 #if defined(CONFIG_UNIX)
2010 if (ctx->ring_sock) {
2011 struct sock *sock = ctx->ring_sock->sk;
2012 struct sk_buff *skb;
2014 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2020 for (i = 0; i < ctx->nr_user_files; i++)
2021 fput(ctx->user_files[i]);
2025 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2027 if (!ctx->user_files)
2030 __io_sqe_files_unregister(ctx);
2031 kfree(ctx->user_files);
2032 ctx->user_files = NULL;
2033 ctx->nr_user_files = 0;
2037 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2039 if (ctx->sqo_thread) {
2042 kthread_stop(ctx->sqo_thread);
2043 ctx->sqo_thread = NULL;
2047 static void io_finish_async(struct io_ring_ctx *ctx)
2049 io_sq_thread_stop(ctx);
2052 destroy_workqueue(ctx->sqo_wq);
2057 #if defined(CONFIG_UNIX)
2058 static void io_destruct_skb(struct sk_buff *skb)
2060 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2062 io_finish_async(ctx);
2063 unix_destruct_scm(skb);
2067 * Ensure the UNIX gc is aware of our file set, so we are certain that
2068 * the io_uring can be safely unregistered on process exit, even if we have
2069 * loops in the file referencing.
2071 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2073 struct sock *sk = ctx->ring_sock->sk;
2074 struct scm_fp_list *fpl;
2075 struct sk_buff *skb;
2078 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2079 unsigned long inflight = ctx->user->unix_inflight + nr;
2081 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2085 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2089 skb = alloc_skb(0, GFP_KERNEL);
2096 skb->destructor = io_destruct_skb;
2098 fpl->user = get_uid(ctx->user);
2099 for (i = 0; i < nr; i++) {
2100 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2101 unix_inflight(fpl->user, fpl->fp[i]);
2104 fpl->max = fpl->count = nr;
2105 UNIXCB(skb).fp = fpl;
2106 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2107 skb_queue_head(&sk->sk_receive_queue, skb);
2109 for (i = 0; i < nr; i++)
2116 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2117 * causes regular reference counting to break down. We rely on the UNIX
2118 * garbage collection to take care of this problem for us.
2120 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2122 unsigned left, total;
2126 left = ctx->nr_user_files;
2128 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2131 ret = __io_sqe_files_scm(ctx, this_files, total);
2135 total += this_files;
2141 while (total < ctx->nr_user_files) {
2142 fput(ctx->user_files[total]);
2149 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2155 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2158 __s32 __user *fds = (__s32 __user *) arg;
2162 if (ctx->user_files)
2166 if (nr_args > IORING_MAX_FIXED_FILES)
2169 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2170 if (!ctx->user_files)
2173 for (i = 0; i < nr_args; i++) {
2175 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2178 ctx->user_files[i] = fget(fd);
2181 if (!ctx->user_files[i])
2184 * Don't allow io_uring instances to be registered. If UNIX
2185 * isn't enabled, then this causes a reference cycle and this
2186 * instance can never get freed. If UNIX is enabled we'll
2187 * handle it just fine, but there's still no point in allowing
2188 * a ring fd as it doesn't support regular read/write anyway.
2190 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2191 fput(ctx->user_files[i]);
2194 ctx->nr_user_files++;
2199 for (i = 0; i < ctx->nr_user_files; i++)
2200 fput(ctx->user_files[i]);
2202 kfree(ctx->user_files);
2203 ctx->nr_user_files = 0;
2207 ret = io_sqe_files_scm(ctx);
2209 io_sqe_files_unregister(ctx);
2214 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2215 struct io_uring_params *p)
2219 init_waitqueue_head(&ctx->sqo_wait);
2220 mmgrab(current->mm);
2221 ctx->sqo_mm = current->mm;
2223 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2224 if (!ctx->sq_thread_idle)
2225 ctx->sq_thread_idle = HZ;
2228 if (!cpu_possible(p->sq_thread_cpu))
2231 if (ctx->flags & IORING_SETUP_SQPOLL) {
2232 if (p->flags & IORING_SETUP_SQ_AFF) {
2235 cpu = array_index_nospec(p->sq_thread_cpu, NR_CPUS);
2236 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2240 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2243 if (IS_ERR(ctx->sqo_thread)) {
2244 ret = PTR_ERR(ctx->sqo_thread);
2245 ctx->sqo_thread = NULL;
2248 wake_up_process(ctx->sqo_thread);
2249 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2250 /* Can't have SQ_AFF without SQPOLL */
2255 /* Do QD, or 2 * CPUS, whatever is smallest */
2256 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2257 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2265 io_sq_thread_stop(ctx);
2266 mmdrop(ctx->sqo_mm);
2271 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2273 atomic_long_sub(nr_pages, &user->locked_vm);
2276 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2278 unsigned long page_limit, cur_pages, new_pages;
2280 /* Don't allow more pages than we can safely lock */
2281 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2284 cur_pages = atomic_long_read(&user->locked_vm);
2285 new_pages = cur_pages + nr_pages;
2286 if (new_pages > page_limit)
2288 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2289 new_pages) != cur_pages);
2294 static void io_mem_free(void *ptr)
2296 struct page *page = virt_to_head_page(ptr);
2298 if (put_page_testzero(page))
2299 free_compound_page(page);
2302 static void *io_mem_alloc(size_t size)
2304 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2307 return (void *) __get_free_pages(gfp_flags, get_order(size));
2310 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2312 struct io_sq_ring *sq_ring;
2313 struct io_cq_ring *cq_ring;
2316 bytes = struct_size(sq_ring, array, sq_entries);
2317 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2318 bytes += struct_size(cq_ring, cqes, cq_entries);
2320 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2323 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2327 if (!ctx->user_bufs)
2330 for (i = 0; i < ctx->nr_user_bufs; i++) {
2331 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2333 for (j = 0; j < imu->nr_bvecs; j++)
2334 put_page(imu->bvec[j].bv_page);
2336 if (ctx->account_mem)
2337 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2342 kfree(ctx->user_bufs);
2343 ctx->user_bufs = NULL;
2344 ctx->nr_user_bufs = 0;
2348 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2349 void __user *arg, unsigned index)
2351 struct iovec __user *src;
2353 #ifdef CONFIG_COMPAT
2355 struct compat_iovec __user *ciovs;
2356 struct compat_iovec ciov;
2358 ciovs = (struct compat_iovec __user *) arg;
2359 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2362 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2363 dst->iov_len = ciov.iov_len;
2367 src = (struct iovec __user *) arg;
2368 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2373 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2376 struct vm_area_struct **vmas = NULL;
2377 struct page **pages = NULL;
2378 int i, j, got_pages = 0;
2383 if (!nr_args || nr_args > UIO_MAXIOV)
2386 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2388 if (!ctx->user_bufs)
2391 for (i = 0; i < nr_args; i++) {
2392 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2393 unsigned long off, start, end, ubuf;
2398 ret = io_copy_iov(ctx, &iov, arg, i);
2403 * Don't impose further limits on the size and buffer
2404 * constraints here, we'll -EINVAL later when IO is
2405 * submitted if they are wrong.
2408 if (!iov.iov_base || !iov.iov_len)
2411 /* arbitrary limit, but we need something */
2412 if (iov.iov_len > SZ_1G)
2415 ubuf = (unsigned long) iov.iov_base;
2416 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2417 start = ubuf >> PAGE_SHIFT;
2418 nr_pages = end - start;
2420 if (ctx->account_mem) {
2421 ret = io_account_mem(ctx->user, nr_pages);
2427 if (!pages || nr_pages > got_pages) {
2430 pages = kmalloc_array(nr_pages, sizeof(struct page *),
2432 vmas = kmalloc_array(nr_pages,
2433 sizeof(struct vm_area_struct *),
2435 if (!pages || !vmas) {
2437 if (ctx->account_mem)
2438 io_unaccount_mem(ctx->user, nr_pages);
2441 got_pages = nr_pages;
2444 imu->bvec = kmalloc_array(nr_pages, sizeof(struct bio_vec),
2448 if (ctx->account_mem)
2449 io_unaccount_mem(ctx->user, nr_pages);
2454 down_read(¤t->mm->mmap_sem);
2455 pret = get_user_pages_longterm(ubuf, nr_pages, FOLL_WRITE,
2457 if (pret == nr_pages) {
2458 /* don't support file backed memory */
2459 for (j = 0; j < nr_pages; j++) {
2460 struct vm_area_struct *vma = vmas[j];
2463 !is_file_hugepages(vma->vm_file)) {
2469 ret = pret < 0 ? pret : -EFAULT;
2471 up_read(¤t->mm->mmap_sem);
2474 * if we did partial map, or found file backed vmas,
2475 * release any pages we did get
2478 for (j = 0; j < pret; j++)
2481 if (ctx->account_mem)
2482 io_unaccount_mem(ctx->user, nr_pages);
2486 off = ubuf & ~PAGE_MASK;
2488 for (j = 0; j < nr_pages; j++) {
2491 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2492 imu->bvec[j].bv_page = pages[j];
2493 imu->bvec[j].bv_len = vec_len;
2494 imu->bvec[j].bv_offset = off;
2498 /* store original address for later verification */
2500 imu->len = iov.iov_len;
2501 imu->nr_bvecs = nr_pages;
2503 ctx->nr_user_bufs++;
2511 io_sqe_buffer_unregister(ctx);
2515 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
2517 io_finish_async(ctx);
2519 mmdrop(ctx->sqo_mm);
2521 io_iopoll_reap_events(ctx);
2522 io_sqe_buffer_unregister(ctx);
2523 io_sqe_files_unregister(ctx);
2525 #if defined(CONFIG_UNIX)
2527 sock_release(ctx->ring_sock);
2530 io_mem_free(ctx->sq_ring);
2531 io_mem_free(ctx->sq_sqes);
2532 io_mem_free(ctx->cq_ring);
2534 percpu_ref_exit(&ctx->refs);
2535 if (ctx->account_mem)
2536 io_unaccount_mem(ctx->user,
2537 ring_pages(ctx->sq_entries, ctx->cq_entries));
2538 free_uid(ctx->user);
2542 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2544 struct io_ring_ctx *ctx = file->private_data;
2547 poll_wait(file, &ctx->cq_wait, wait);
2548 /* See comment at the top of this file */
2550 if (READ_ONCE(ctx->sq_ring->r.tail) + 1 != ctx->cached_sq_head)
2551 mask |= EPOLLOUT | EPOLLWRNORM;
2552 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
2553 mask |= EPOLLIN | EPOLLRDNORM;
2558 static int io_uring_fasync(int fd, struct file *file, int on)
2560 struct io_ring_ctx *ctx = file->private_data;
2562 return fasync_helper(fd, file, on, &ctx->cq_fasync);
2565 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2567 mutex_lock(&ctx->uring_lock);
2568 percpu_ref_kill(&ctx->refs);
2569 mutex_unlock(&ctx->uring_lock);
2571 io_poll_remove_all(ctx);
2572 io_iopoll_reap_events(ctx);
2573 wait_for_completion(&ctx->ctx_done);
2574 io_ring_ctx_free(ctx);
2577 static int io_uring_release(struct inode *inode, struct file *file)
2579 struct io_ring_ctx *ctx = file->private_data;
2581 file->private_data = NULL;
2582 io_ring_ctx_wait_and_kill(ctx);
2586 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2588 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
2589 unsigned long sz = vma->vm_end - vma->vm_start;
2590 struct io_ring_ctx *ctx = file->private_data;
2596 case IORING_OFF_SQ_RING:
2599 case IORING_OFF_SQES:
2602 case IORING_OFF_CQ_RING:
2609 page = virt_to_head_page(ptr);
2610 if (sz > (PAGE_SIZE << compound_order(page)))
2613 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2614 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2617 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2618 u32, min_complete, u32, flags, const sigset_t __user *, sig,
2621 struct io_ring_ctx *ctx;
2626 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
2634 if (f.file->f_op != &io_uring_fops)
2638 ctx = f.file->private_data;
2639 if (!percpu_ref_tryget(&ctx->refs))
2643 * For SQ polling, the thread will do all submissions and completions.
2644 * Just return the requested submit count, and wake the thread if
2647 if (ctx->flags & IORING_SETUP_SQPOLL) {
2648 if (flags & IORING_ENTER_SQ_WAKEUP)
2649 wake_up(&ctx->sqo_wait);
2650 submitted = to_submit;
2656 to_submit = min(to_submit, ctx->sq_entries);
2658 mutex_lock(&ctx->uring_lock);
2659 submitted = io_ring_submit(ctx, to_submit);
2660 mutex_unlock(&ctx->uring_lock);
2665 if (flags & IORING_ENTER_GETEVENTS) {
2666 unsigned nr_events = 0;
2668 min_complete = min(min_complete, ctx->cq_entries);
2671 * The application could have included the 'to_submit' count
2672 * in how many events it wanted to wait for. If we failed to
2673 * submit the desired count, we may need to adjust the number
2674 * of events to poll/wait for.
2676 if (submitted < to_submit)
2677 min_complete = min_t(unsigned, submitted, min_complete);
2679 if (ctx->flags & IORING_SETUP_IOPOLL) {
2680 mutex_lock(&ctx->uring_lock);
2681 ret = io_iopoll_check(ctx, &nr_events, min_complete);
2682 mutex_unlock(&ctx->uring_lock);
2684 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
2689 io_ring_drop_ctx_refs(ctx, 1);
2692 return submitted ? submitted : ret;
2695 static const struct file_operations io_uring_fops = {
2696 .release = io_uring_release,
2697 .mmap = io_uring_mmap,
2698 .poll = io_uring_poll,
2699 .fasync = io_uring_fasync,
2702 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2703 struct io_uring_params *p)
2705 struct io_sq_ring *sq_ring;
2706 struct io_cq_ring *cq_ring;
2709 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
2713 ctx->sq_ring = sq_ring;
2714 sq_ring->ring_mask = p->sq_entries - 1;
2715 sq_ring->ring_entries = p->sq_entries;
2716 ctx->sq_mask = sq_ring->ring_mask;
2717 ctx->sq_entries = sq_ring->ring_entries;
2719 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
2720 if (size == SIZE_MAX)
2723 ctx->sq_sqes = io_mem_alloc(size);
2724 if (!ctx->sq_sqes) {
2725 io_mem_free(ctx->sq_ring);
2729 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
2731 io_mem_free(ctx->sq_ring);
2732 io_mem_free(ctx->sq_sqes);
2736 ctx->cq_ring = cq_ring;
2737 cq_ring->ring_mask = p->cq_entries - 1;
2738 cq_ring->ring_entries = p->cq_entries;
2739 ctx->cq_mask = cq_ring->ring_mask;
2740 ctx->cq_entries = cq_ring->ring_entries;
2745 * Allocate an anonymous fd, this is what constitutes the application
2746 * visible backing of an io_uring instance. The application mmaps this
2747 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2748 * we have to tie this fd to a socket for file garbage collection purposes.
2750 static int io_uring_get_fd(struct io_ring_ctx *ctx)
2755 #if defined(CONFIG_UNIX)
2756 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
2762 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2766 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
2767 O_RDWR | O_CLOEXEC);
2770 ret = PTR_ERR(file);
2774 #if defined(CONFIG_UNIX)
2775 ctx->ring_sock->file = file;
2776 ctx->ring_sock->sk->sk_user_data = ctx;
2778 fd_install(ret, file);
2781 #if defined(CONFIG_UNIX)
2782 sock_release(ctx->ring_sock);
2783 ctx->ring_sock = NULL;
2788 static int io_uring_create(unsigned entries, struct io_uring_params *p)
2790 struct user_struct *user = NULL;
2791 struct io_ring_ctx *ctx;
2795 if (!entries || entries > IORING_MAX_ENTRIES)
2799 * Use twice as many entries for the CQ ring. It's possible for the
2800 * application to drive a higher depth than the size of the SQ ring,
2801 * since the sqes are only used at submission time. This allows for
2802 * some flexibility in overcommitting a bit.
2804 p->sq_entries = roundup_pow_of_two(entries);
2805 p->cq_entries = 2 * p->sq_entries;
2807 user = get_uid(current_user());
2808 account_mem = !capable(CAP_IPC_LOCK);
2811 ret = io_account_mem(user,
2812 ring_pages(p->sq_entries, p->cq_entries));
2819 ctx = io_ring_ctx_alloc(p);
2822 io_unaccount_mem(user, ring_pages(p->sq_entries,
2827 ctx->compat = in_compat_syscall();
2828 ctx->account_mem = account_mem;
2831 ret = io_allocate_scq_urings(ctx, p);
2835 ret = io_sq_offload_start(ctx, p);
2839 ret = io_uring_get_fd(ctx);
2843 memset(&p->sq_off, 0, sizeof(p->sq_off));
2844 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
2845 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
2846 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
2847 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
2848 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
2849 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
2850 p->sq_off.array = offsetof(struct io_sq_ring, array);
2852 memset(&p->cq_off, 0, sizeof(p->cq_off));
2853 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
2854 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
2855 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
2856 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
2857 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
2858 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
2861 io_ring_ctx_wait_and_kill(ctx);
2866 * Sets up an aio uring context, and returns the fd. Applications asks for a
2867 * ring size, we return the actual sq/cq ring sizes (among other things) in the
2868 * params structure passed in.
2870 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
2872 struct io_uring_params p;
2876 if (copy_from_user(&p, params, sizeof(p)))
2878 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
2883 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
2884 IORING_SETUP_SQ_AFF))
2887 ret = io_uring_create(entries, &p);
2891 if (copy_to_user(params, &p, sizeof(p)))
2897 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
2898 struct io_uring_params __user *, params)
2900 return io_uring_setup(entries, params);
2903 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
2904 void __user *arg, unsigned nr_args)
2908 percpu_ref_kill(&ctx->refs);
2909 wait_for_completion(&ctx->ctx_done);
2912 case IORING_REGISTER_BUFFERS:
2913 ret = io_sqe_buffer_register(ctx, arg, nr_args);
2915 case IORING_UNREGISTER_BUFFERS:
2919 ret = io_sqe_buffer_unregister(ctx);
2921 case IORING_REGISTER_FILES:
2922 ret = io_sqe_files_register(ctx, arg, nr_args);
2924 case IORING_UNREGISTER_FILES:
2928 ret = io_sqe_files_unregister(ctx);
2935 /* bring the ctx back to life */
2936 reinit_completion(&ctx->ctx_done);
2937 percpu_ref_reinit(&ctx->refs);
2941 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
2942 void __user *, arg, unsigned int, nr_args)
2944 struct io_ring_ctx *ctx;
2953 if (f.file->f_op != &io_uring_fops)
2956 ctx = f.file->private_data;
2958 mutex_lock(&ctx->uring_lock);
2959 ret = __io_uring_register(ctx, opcode, arg, nr_args);
2960 mutex_unlock(&ctx->uring_lock);
2966 static int __init io_uring_init(void)
2968 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2971 __initcall(io_uring_init);