2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 struct hugetlbfs_fs_context {
51 struct hstate *hstate;
52 unsigned long long max_size_opt;
53 unsigned long long min_size_opt;
57 enum hugetlbfs_size_type max_val_type;
58 enum hugetlbfs_size_type min_val_type;
64 int sysctl_hugetlb_shm_group;
76 static const struct fs_parameter_spec hugetlb_param_specs[] = {
77 fsparam_u32 ("gid", Opt_gid),
78 fsparam_string("min_size", Opt_min_size),
79 fsparam_u32 ("mode", Opt_mode),
80 fsparam_string("nr_inodes", Opt_nr_inodes),
81 fsparam_string("pagesize", Opt_pagesize),
82 fsparam_string("size", Opt_size),
83 fsparam_u32 ("uid", Opt_uid),
87 static const struct fs_parameter_description hugetlb_fs_parameters = {
89 .specs = hugetlb_param_specs,
93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
94 struct inode *inode, pgoff_t index)
96 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
102 mpol_cond_put(vma->vm_policy);
105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
106 struct inode *inode, pgoff_t index)
110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
115 static void huge_pagevec_release(struct pagevec *pvec)
119 for (i = 0; i < pagevec_count(pvec); ++i)
120 put_page(pvec->pages[i]);
122 pagevec_reinit(pvec);
126 * Mask used when checking the page offset value passed in via system
127 * calls. This value will be converted to a loff_t which is signed.
128 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
129 * value. The extra bit (- 1 in the shift value) is to take the sign
132 #define PGOFF_LOFFT_MAX \
133 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
137 struct inode *inode = file_inode(file);
140 struct hstate *h = hstate_file(file);
143 * vma address alignment (but not the pgoff alignment) has
144 * already been checked by prepare_hugepage_range. If you add
145 * any error returns here, do so after setting VM_HUGETLB, so
146 * is_vm_hugetlb_page tests below unmap_region go the right
147 * way when do_mmap_pgoff unwinds (may be important on powerpc
150 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
151 vma->vm_ops = &hugetlb_vm_ops;
154 * page based offset in vm_pgoff could be sufficiently large to
155 * overflow a loff_t when converted to byte offset. This can
156 * only happen on architectures where sizeof(loff_t) ==
157 * sizeof(unsigned long). So, only check in those instances.
159 if (sizeof(unsigned long) == sizeof(loff_t)) {
160 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
164 /* must be huge page aligned */
165 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
168 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
169 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
170 /* check for overflow */
178 if (hugetlb_reserve_pages(inode,
179 vma->vm_pgoff >> huge_page_order(h),
180 len >> huge_page_shift(h), vma,
185 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
186 i_size_write(inode, len);
194 * Called under down_write(mmap_sem).
197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
200 unsigned long len, unsigned long pgoff, unsigned long flags)
202 struct mm_struct *mm = current->mm;
203 struct vm_area_struct *vma;
204 struct hstate *h = hstate_file(file);
205 struct vm_unmapped_area_info info;
207 if (len & ~huge_page_mask(h))
212 if (flags & MAP_FIXED) {
213 if (prepare_hugepage_range(file, addr, len))
219 addr = ALIGN(addr, huge_page_size(h));
220 vma = find_vma(mm, addr);
221 if (TASK_SIZE - len >= addr &&
222 (!vma || addr + len <= vm_start_gap(vma)))
228 info.low_limit = TASK_UNMAPPED_BASE;
229 info.high_limit = TASK_SIZE;
230 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
231 info.align_offset = 0;
232 return vm_unmapped_area(&info);
237 hugetlbfs_read_actor(struct page *page, unsigned long offset,
238 struct iov_iter *to, unsigned long size)
243 /* Find which 4k chunk and offset with in that chunk */
244 i = offset >> PAGE_SHIFT;
245 offset = offset & ~PAGE_MASK;
249 chunksize = PAGE_SIZE;
252 if (chunksize > size)
254 n = copy_page_to_iter(&page[i], offset, chunksize, to);
266 * Support for read() - Find the page attached to f_mapping and copy out the
267 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
268 * since it has PAGE_SIZE assumptions.
270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
272 struct file *file = iocb->ki_filp;
273 struct hstate *h = hstate_file(file);
274 struct address_space *mapping = file->f_mapping;
275 struct inode *inode = mapping->host;
276 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
277 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
278 unsigned long end_index;
282 while (iov_iter_count(to)) {
286 /* nr is the maximum number of bytes to copy from this page */
287 nr = huge_page_size(h);
288 isize = i_size_read(inode);
291 end_index = (isize - 1) >> huge_page_shift(h);
292 if (index > end_index)
294 if (index == end_index) {
295 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
302 page = find_lock_page(mapping, index);
303 if (unlikely(page == NULL)) {
305 * We have a HOLE, zero out the user-buffer for the
306 * length of the hole or request.
308 copied = iov_iter_zero(nr, to);
313 * We have the page, copy it to user space buffer.
315 copied = hugetlbfs_read_actor(page, offset, to, nr);
320 if (copied != nr && iov_iter_count(to)) {
325 index += offset >> huge_page_shift(h);
326 offset &= ~huge_page_mask(h);
328 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
332 static int hugetlbfs_write_begin(struct file *file,
333 struct address_space *mapping,
334 loff_t pos, unsigned len, unsigned flags,
335 struct page **pagep, void **fsdata)
340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
341 loff_t pos, unsigned len, unsigned copied,
342 struct page *page, void *fsdata)
348 static void remove_huge_page(struct page *page)
350 ClearPageDirty(page);
351 ClearPageUptodate(page);
352 delete_from_page_cache(page);
356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
358 struct vm_area_struct *vma;
361 * end == 0 indicates that the entire range after
362 * start should be unmapped.
364 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
365 unsigned long v_offset;
369 * Can the expression below overflow on 32-bit arches?
370 * No, because the interval tree returns us only those vmas
371 * which overlap the truncated area starting at pgoff,
372 * and no vma on a 32-bit arch can span beyond the 4GB.
374 if (vma->vm_pgoff < start)
375 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
382 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
384 if (v_end > vma->vm_end)
388 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
394 * remove_inode_hugepages handles two distinct cases: truncation and hole
395 * punch. There are subtle differences in operation for each case.
397 * truncation is indicated by end of range being LLONG_MAX
398 * In this case, we first scan the range and release found pages.
399 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
400 * maps and global counts. Page faults can not race with truncation
401 * in this routine. hugetlb_no_page() prevents page faults in the
402 * truncated range. It checks i_size before allocation, and again after
403 * with the page table lock for the page held. The same lock must be
404 * acquired to unmap a page.
405 * hole punch is indicated if end is not LLONG_MAX
406 * In the hole punch case we scan the range and release found pages.
407 * Only when releasing a page is the associated region/reserv map
408 * deleted. The region/reserv map for ranges without associated
409 * pages are not modified. Page faults can race with hole punch.
410 * This is indicated if we find a mapped page.
411 * Note: If the passed end of range value is beyond the end of file, but
412 * not LLONG_MAX this routine still performs a hole punch operation.
414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
417 struct hstate *h = hstate_inode(inode);
418 struct address_space *mapping = &inode->i_data;
419 const pgoff_t start = lstart >> huge_page_shift(h);
420 const pgoff_t end = lend >> huge_page_shift(h);
421 struct vm_area_struct pseudo_vma;
425 bool truncate_op = (lend == LLONG_MAX);
427 vma_init(&pseudo_vma, current->mm);
428 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
433 * When no more pages are found, we are done.
435 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
438 for (i = 0; i < pagevec_count(&pvec); ++i) {
439 struct page *page = pvec.pages[i];
443 hash = hugetlb_fault_mutex_hash(h, current->mm,
446 mutex_lock(&hugetlb_fault_mutex_table[hash]);
449 * If page is mapped, it was faulted in after being
450 * unmapped in caller. Unmap (again) now after taking
451 * the fault mutex. The mutex will prevent faults
452 * until we finish removing the page.
454 * This race can only happen in the hole punch case.
455 * Getting here in a truncate operation is a bug.
457 if (unlikely(page_mapped(page))) {
460 i_mmap_lock_write(mapping);
461 hugetlb_vmdelete_list(&mapping->i_mmap,
462 index * pages_per_huge_page(h),
463 (index + 1) * pages_per_huge_page(h));
464 i_mmap_unlock_write(mapping);
469 * We must free the huge page and remove from page
470 * cache (remove_huge_page) BEFORE removing the
471 * region/reserve map (hugetlb_unreserve_pages). In
472 * rare out of memory conditions, removal of the
473 * region/reserve map could fail. Correspondingly,
474 * the subpool and global reserve usage count can need
477 VM_BUG_ON(PagePrivate(page));
478 remove_huge_page(page);
481 if (unlikely(hugetlb_unreserve_pages(inode,
482 index, index + 1, 1)))
483 hugetlb_fix_reserve_counts(inode);
487 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
489 huge_pagevec_release(&pvec);
494 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
497 static void hugetlbfs_evict_inode(struct inode *inode)
499 struct resv_map *resv_map;
501 remove_inode_hugepages(inode, 0, LLONG_MAX);
502 resv_map = (struct resv_map *)inode->i_mapping->private_data;
503 /* root inode doesn't have the resv_map, so we should check it */
505 resv_map_release(&resv_map->refs);
509 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
512 struct address_space *mapping = inode->i_mapping;
513 struct hstate *h = hstate_inode(inode);
515 BUG_ON(offset & ~huge_page_mask(h));
516 pgoff = offset >> PAGE_SHIFT;
518 i_size_write(inode, offset);
519 i_mmap_lock_write(mapping);
520 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
521 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
522 i_mmap_unlock_write(mapping);
523 remove_inode_hugepages(inode, offset, LLONG_MAX);
527 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
529 struct hstate *h = hstate_inode(inode);
530 loff_t hpage_size = huge_page_size(h);
531 loff_t hole_start, hole_end;
534 * For hole punch round up the beginning offset of the hole and
535 * round down the end.
537 hole_start = round_up(offset, hpage_size);
538 hole_end = round_down(offset + len, hpage_size);
540 if (hole_end > hole_start) {
541 struct address_space *mapping = inode->i_mapping;
542 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
546 /* protected by i_mutex */
547 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
552 i_mmap_lock_write(mapping);
553 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
554 hugetlb_vmdelete_list(&mapping->i_mmap,
555 hole_start >> PAGE_SHIFT,
556 hole_end >> PAGE_SHIFT);
557 i_mmap_unlock_write(mapping);
558 remove_inode_hugepages(inode, hole_start, hole_end);
565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
568 struct inode *inode = file_inode(file);
569 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
570 struct address_space *mapping = inode->i_mapping;
571 struct hstate *h = hstate_inode(inode);
572 struct vm_area_struct pseudo_vma;
573 struct mm_struct *mm = current->mm;
574 loff_t hpage_size = huge_page_size(h);
575 unsigned long hpage_shift = huge_page_shift(h);
576 pgoff_t start, index, end;
580 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
583 if (mode & FALLOC_FL_PUNCH_HOLE)
584 return hugetlbfs_punch_hole(inode, offset, len);
587 * Default preallocate case.
588 * For this range, start is rounded down and end is rounded up
589 * as well as being converted to page offsets.
591 start = offset >> hpage_shift;
592 end = (offset + len + hpage_size - 1) >> hpage_shift;
596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
597 error = inode_newsize_ok(inode, offset + len);
601 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
607 * Initialize a pseudo vma as this is required by the huge page
608 * allocation routines. If NUMA is configured, use page index
609 * as input to create an allocation policy.
611 vma_init(&pseudo_vma, mm);
612 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
613 pseudo_vma.vm_file = file;
615 for (index = start; index < end; index++) {
617 * This is supposed to be the vaddr where the page is being
618 * faulted in, but we have no vaddr here.
622 int avoid_reserve = 0;
627 * fallocate(2) manpage permits EINTR; we may have been
628 * interrupted because we are using up too much memory.
630 if (signal_pending(current)) {
635 /* Set numa allocation policy based on index */
636 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
638 /* addr is the offset within the file (zero based) */
639 addr = index * hpage_size;
641 /* mutex taken here, fault path and hole punch */
642 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
644 mutex_lock(&hugetlb_fault_mutex_table[hash]);
646 /* See if already present in mapping to avoid alloc/free */
647 page = find_get_page(mapping, index);
650 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
651 hugetlb_drop_vma_policy(&pseudo_vma);
655 /* Allocate page and add to page cache */
656 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
657 hugetlb_drop_vma_policy(&pseudo_vma);
659 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
660 error = PTR_ERR(page);
663 clear_huge_page(page, addr, pages_per_huge_page(h));
664 __SetPageUptodate(page);
665 error = huge_add_to_page_cache(page, mapping, index);
666 if (unlikely(error)) {
668 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
672 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
675 * unlock_page because locked by add_to_page_cache()
676 * page_put due to reference from alloc_huge_page()
682 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
683 i_size_write(inode, offset + len);
684 inode->i_ctime = current_time(inode);
690 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
692 struct inode *inode = d_inode(dentry);
693 struct hstate *h = hstate_inode(inode);
695 unsigned int ia_valid = attr->ia_valid;
696 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
700 error = setattr_prepare(dentry, attr);
704 if (ia_valid & ATTR_SIZE) {
705 loff_t oldsize = inode->i_size;
706 loff_t newsize = attr->ia_size;
708 if (newsize & ~huge_page_mask(h))
710 /* protected by i_mutex */
711 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
712 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
714 error = hugetlb_vmtruncate(inode, newsize);
719 setattr_copy(inode, attr);
720 mark_inode_dirty(inode);
724 static struct inode *hugetlbfs_get_root(struct super_block *sb,
725 struct hugetlbfs_fs_context *ctx)
729 inode = new_inode(sb);
731 inode->i_ino = get_next_ino();
732 inode->i_mode = S_IFDIR | ctx->mode;
733 inode->i_uid = ctx->uid;
734 inode->i_gid = ctx->gid;
735 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
736 inode->i_op = &hugetlbfs_dir_inode_operations;
737 inode->i_fop = &simple_dir_operations;
738 /* directory inodes start off with i_nlink == 2 (for "." entry) */
740 lockdep_annotate_inode_mutex_key(inode);
746 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
747 * be taken from reclaim -- unlike regular filesystems. This needs an
748 * annotation because huge_pmd_share() does an allocation under hugetlb's
751 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
753 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
755 umode_t mode, dev_t dev)
758 struct resv_map *resv_map;
760 resv_map = resv_map_alloc();
764 inode = new_inode(sb);
766 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
768 inode->i_ino = get_next_ino();
769 inode_init_owner(inode, dir, mode);
770 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
771 &hugetlbfs_i_mmap_rwsem_key);
772 inode->i_mapping->a_ops = &hugetlbfs_aops;
773 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
774 inode->i_mapping->private_data = resv_map;
775 info->seals = F_SEAL_SEAL;
776 switch (mode & S_IFMT) {
778 init_special_inode(inode, mode, dev);
781 inode->i_op = &hugetlbfs_inode_operations;
782 inode->i_fop = &hugetlbfs_file_operations;
785 inode->i_op = &hugetlbfs_dir_inode_operations;
786 inode->i_fop = &simple_dir_operations;
788 /* directory inodes start off with i_nlink == 2 (for "." entry) */
792 inode->i_op = &page_symlink_inode_operations;
793 inode_nohighmem(inode);
796 lockdep_annotate_inode_mutex_key(inode);
798 kref_put(&resv_map->refs, resv_map_release);
804 * File creation. Allocate an inode, and we're done..
806 static int hugetlbfs_mknod(struct inode *dir,
807 struct dentry *dentry, umode_t mode, dev_t dev)
812 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
814 dir->i_ctime = dir->i_mtime = current_time(dir);
815 d_instantiate(dentry, inode);
816 dget(dentry); /* Extra count - pin the dentry in core */
822 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
824 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
830 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
832 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
835 static int hugetlbfs_symlink(struct inode *dir,
836 struct dentry *dentry, const char *symname)
841 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
843 int l = strlen(symname)+1;
844 error = page_symlink(inode, symname, l);
846 d_instantiate(dentry, inode);
851 dir->i_ctime = dir->i_mtime = current_time(dir);
857 * mark the head page dirty
859 static int hugetlbfs_set_page_dirty(struct page *page)
861 struct page *head = compound_head(page);
867 static int hugetlbfs_migrate_page(struct address_space *mapping,
868 struct page *newpage, struct page *page,
869 enum migrate_mode mode)
873 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
874 if (rc != MIGRATEPAGE_SUCCESS)
878 * page_private is subpool pointer in hugetlb pages. Transfer to
879 * new page. PagePrivate is not associated with page_private for
880 * hugetlb pages and can not be set here as only page_huge_active
881 * pages can be migrated.
883 if (page_private(page)) {
884 set_page_private(newpage, page_private(page));
885 set_page_private(page, 0);
888 if (mode != MIGRATE_SYNC_NO_COPY)
889 migrate_page_copy(newpage, page);
891 migrate_page_states(newpage, page);
893 return MIGRATEPAGE_SUCCESS;
896 static int hugetlbfs_error_remove_page(struct address_space *mapping,
899 struct inode *inode = mapping->host;
900 pgoff_t index = page->index;
902 remove_huge_page(page);
903 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
904 hugetlb_fix_reserve_counts(inode);
910 * Display the mount options in /proc/mounts.
912 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
914 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
915 struct hugepage_subpool *spool = sbinfo->spool;
916 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
917 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
920 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
921 seq_printf(m, ",uid=%u",
922 from_kuid_munged(&init_user_ns, sbinfo->uid));
923 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
924 seq_printf(m, ",gid=%u",
925 from_kgid_munged(&init_user_ns, sbinfo->gid));
926 if (sbinfo->mode != 0755)
927 seq_printf(m, ",mode=%o", sbinfo->mode);
928 if (sbinfo->max_inodes != -1)
929 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
933 if (hpage_size >= 1024) {
937 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
939 if (spool->max_hpages != -1)
940 seq_printf(m, ",size=%llu",
941 (unsigned long long)spool->max_hpages << hpage_shift);
942 if (spool->min_hpages != -1)
943 seq_printf(m, ",min_size=%llu",
944 (unsigned long long)spool->min_hpages << hpage_shift);
949 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
951 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
952 struct hstate *h = hstate_inode(d_inode(dentry));
954 buf->f_type = HUGETLBFS_MAGIC;
955 buf->f_bsize = huge_page_size(h);
957 spin_lock(&sbinfo->stat_lock);
958 /* If no limits set, just report 0 for max/free/used
959 * blocks, like simple_statfs() */
963 spin_lock(&sbinfo->spool->lock);
964 buf->f_blocks = sbinfo->spool->max_hpages;
965 free_pages = sbinfo->spool->max_hpages
966 - sbinfo->spool->used_hpages;
967 buf->f_bavail = buf->f_bfree = free_pages;
968 spin_unlock(&sbinfo->spool->lock);
969 buf->f_files = sbinfo->max_inodes;
970 buf->f_ffree = sbinfo->free_inodes;
972 spin_unlock(&sbinfo->stat_lock);
974 buf->f_namelen = NAME_MAX;
978 static void hugetlbfs_put_super(struct super_block *sb)
980 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
983 sb->s_fs_info = NULL;
986 hugepage_put_subpool(sbi->spool);
992 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
994 if (sbinfo->free_inodes >= 0) {
995 spin_lock(&sbinfo->stat_lock);
996 if (unlikely(!sbinfo->free_inodes)) {
997 spin_unlock(&sbinfo->stat_lock);
1000 sbinfo->free_inodes--;
1001 spin_unlock(&sbinfo->stat_lock);
1007 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1009 if (sbinfo->free_inodes >= 0) {
1010 spin_lock(&sbinfo->stat_lock);
1011 sbinfo->free_inodes++;
1012 spin_unlock(&sbinfo->stat_lock);
1017 static struct kmem_cache *hugetlbfs_inode_cachep;
1019 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1021 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1022 struct hugetlbfs_inode_info *p;
1024 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1026 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1028 hugetlbfs_inc_free_inodes(sbinfo);
1033 * Any time after allocation, hugetlbfs_destroy_inode can be called
1034 * for the inode. mpol_free_shared_policy is unconditionally called
1035 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1036 * in case of a quick call to destroy.
1038 * Note that the policy is initialized even if we are creating a
1039 * private inode. This simplifies hugetlbfs_destroy_inode.
1041 mpol_shared_policy_init(&p->policy, NULL);
1043 return &p->vfs_inode;
1046 static void hugetlbfs_i_callback(struct rcu_head *head)
1048 struct inode *inode = container_of(head, struct inode, i_rcu);
1049 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1052 static void hugetlbfs_destroy_inode(struct inode *inode)
1054 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1055 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1056 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1059 static const struct address_space_operations hugetlbfs_aops = {
1060 .write_begin = hugetlbfs_write_begin,
1061 .write_end = hugetlbfs_write_end,
1062 .set_page_dirty = hugetlbfs_set_page_dirty,
1063 .migratepage = hugetlbfs_migrate_page,
1064 .error_remove_page = hugetlbfs_error_remove_page,
1068 static void init_once(void *foo)
1070 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1072 inode_init_once(&ei->vfs_inode);
1075 const struct file_operations hugetlbfs_file_operations = {
1076 .read_iter = hugetlbfs_read_iter,
1077 .mmap = hugetlbfs_file_mmap,
1078 .fsync = noop_fsync,
1079 .get_unmapped_area = hugetlb_get_unmapped_area,
1080 .llseek = default_llseek,
1081 .fallocate = hugetlbfs_fallocate,
1084 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1085 .create = hugetlbfs_create,
1086 .lookup = simple_lookup,
1087 .link = simple_link,
1088 .unlink = simple_unlink,
1089 .symlink = hugetlbfs_symlink,
1090 .mkdir = hugetlbfs_mkdir,
1091 .rmdir = simple_rmdir,
1092 .mknod = hugetlbfs_mknod,
1093 .rename = simple_rename,
1094 .setattr = hugetlbfs_setattr,
1097 static const struct inode_operations hugetlbfs_inode_operations = {
1098 .setattr = hugetlbfs_setattr,
1101 static const struct super_operations hugetlbfs_ops = {
1102 .alloc_inode = hugetlbfs_alloc_inode,
1103 .destroy_inode = hugetlbfs_destroy_inode,
1104 .evict_inode = hugetlbfs_evict_inode,
1105 .statfs = hugetlbfs_statfs,
1106 .put_super = hugetlbfs_put_super,
1107 .show_options = hugetlbfs_show_options,
1111 * Convert size option passed from command line to number of huge pages
1112 * in the pool specified by hstate. Size option could be in bytes
1113 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1116 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1117 enum hugetlbfs_size_type val_type)
1119 if (val_type == NO_SIZE)
1122 if (val_type == SIZE_PERCENT) {
1123 size_opt <<= huge_page_shift(h);
1124 size_opt *= h->max_huge_pages;
1125 do_div(size_opt, 100);
1128 size_opt >>= huge_page_shift(h);
1133 * Parse one mount parameter.
1135 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1137 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1138 struct fs_parse_result result;
1143 opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1149 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1150 if (!uid_valid(ctx->uid))
1155 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1156 if (!gid_valid(ctx->gid))
1161 ctx->mode = result.uint_32 & 01777U;
1165 /* memparse() will accept a K/M/G without a digit */
1166 if (!isdigit(param->string[0]))
1168 ctx->max_size_opt = memparse(param->string, &rest);
1169 ctx->max_val_type = SIZE_STD;
1171 ctx->max_val_type = SIZE_PERCENT;
1175 /* memparse() will accept a K/M/G without a digit */
1176 if (!isdigit(param->string[0]))
1178 ctx->nr_inodes = memparse(param->string, &rest);
1182 ps = memparse(param->string, &rest);
1183 ctx->hstate = size_to_hstate(ps);
1185 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1191 /* memparse() will accept a K/M/G without a digit */
1192 if (!isdigit(param->string[0]))
1194 ctx->min_size_opt = memparse(param->string, &rest);
1195 ctx->min_val_type = SIZE_STD;
1197 ctx->min_val_type = SIZE_PERCENT;
1205 return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1206 param->string, param->key);
1210 * Validate the parsed options.
1212 static int hugetlbfs_validate(struct fs_context *fc)
1214 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1217 * Use huge page pool size (in hstate) to convert the size
1218 * options to number of huge pages. If NO_SIZE, -1 is returned.
1220 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1223 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1228 * If max_size was specified, then min_size must be smaller
1230 if (ctx->max_val_type > NO_SIZE &&
1231 ctx->min_hpages > ctx->max_hpages) {
1232 pr_err("Minimum size can not be greater than maximum size\n");
1240 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1242 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1243 struct hugetlbfs_sb_info *sbinfo;
1245 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1248 sb->s_fs_info = sbinfo;
1249 spin_lock_init(&sbinfo->stat_lock);
1250 sbinfo->hstate = ctx->hstate;
1251 sbinfo->max_inodes = ctx->nr_inodes;
1252 sbinfo->free_inodes = ctx->nr_inodes;
1253 sbinfo->spool = NULL;
1254 sbinfo->uid = ctx->uid;
1255 sbinfo->gid = ctx->gid;
1256 sbinfo->mode = ctx->mode;
1259 * Allocate and initialize subpool if maximum or minimum size is
1260 * specified. Any needed reservations (for minimim size) are taken
1261 * taken when the subpool is created.
1263 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1264 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1270 sb->s_maxbytes = MAX_LFS_FILESIZE;
1271 sb->s_blocksize = huge_page_size(ctx->hstate);
1272 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1273 sb->s_magic = HUGETLBFS_MAGIC;
1274 sb->s_op = &hugetlbfs_ops;
1275 sb->s_time_gran = 1;
1276 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1281 kfree(sbinfo->spool);
1286 static int hugetlbfs_get_tree(struct fs_context *fc)
1288 int err = hugetlbfs_validate(fc);
1291 return vfs_get_super(fc, vfs_get_independent_super, hugetlbfs_fill_super);
1294 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1296 kfree(fc->fs_private);
1299 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1300 .free = hugetlbfs_fs_context_free,
1301 .parse_param = hugetlbfs_parse_param,
1302 .get_tree = hugetlbfs_get_tree,
1305 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1307 struct hugetlbfs_fs_context *ctx;
1309 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1313 ctx->max_hpages = -1; /* No limit on size by default */
1314 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1315 ctx->uid = current_fsuid();
1316 ctx->gid = current_fsgid();
1318 ctx->hstate = &default_hstate;
1319 ctx->min_hpages = -1; /* No default minimum size */
1320 ctx->max_val_type = NO_SIZE;
1321 ctx->min_val_type = NO_SIZE;
1322 fc->fs_private = ctx;
1323 fc->ops = &hugetlbfs_fs_context_ops;
1327 static struct file_system_type hugetlbfs_fs_type = {
1328 .name = "hugetlbfs",
1329 .init_fs_context = hugetlbfs_init_fs_context,
1330 .parameters = &hugetlb_fs_parameters,
1331 .kill_sb = kill_litter_super,
1334 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1336 static int can_do_hugetlb_shm(void)
1339 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1340 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1343 static int get_hstate_idx(int page_size_log)
1345 struct hstate *h = hstate_sizelog(page_size_log);
1353 * Note that size should be aligned to proper hugepage size in caller side,
1354 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1356 struct file *hugetlb_file_setup(const char *name, size_t size,
1357 vm_flags_t acctflag, struct user_struct **user,
1358 int creat_flags, int page_size_log)
1360 struct inode *inode;
1361 struct vfsmount *mnt;
1365 hstate_idx = get_hstate_idx(page_size_log);
1367 return ERR_PTR(-ENODEV);
1370 mnt = hugetlbfs_vfsmount[hstate_idx];
1372 return ERR_PTR(-ENOENT);
1374 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1375 *user = current_user();
1376 if (user_shm_lock(size, *user)) {
1378 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1379 current->comm, current->pid);
1380 task_unlock(current);
1383 return ERR_PTR(-EPERM);
1387 file = ERR_PTR(-ENOSPC);
1388 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1391 if (creat_flags == HUGETLB_SHMFS_INODE)
1392 inode->i_flags |= S_PRIVATE;
1394 inode->i_size = size;
1397 if (hugetlb_reserve_pages(inode, 0,
1398 size >> huge_page_shift(hstate_inode(inode)), NULL,
1400 file = ERR_PTR(-ENOMEM);
1402 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1403 &hugetlbfs_file_operations);
1410 user_shm_unlock(size, *user);
1416 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1418 struct fs_context *fc;
1419 struct vfsmount *mnt;
1421 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1425 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1431 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1432 1U << (h->order + PAGE_SHIFT - 10));
1436 static int __init init_hugetlbfs_fs(void)
1438 struct vfsmount *mnt;
1443 if (!hugepages_supported()) {
1444 pr_info("disabling because there are no supported hugepage sizes\n");
1449 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1450 sizeof(struct hugetlbfs_inode_info),
1451 0, SLAB_ACCOUNT, init_once);
1452 if (hugetlbfs_inode_cachep == NULL)
1455 error = register_filesystem(&hugetlbfs_fs_type);
1460 for_each_hstate(h) {
1461 mnt = mount_one_hugetlbfs(h);
1462 if (IS_ERR(mnt) && i == 0) {
1463 error = PTR_ERR(mnt);
1466 hugetlbfs_vfsmount[i] = mnt;
1473 kmem_cache_destroy(hugetlbfs_inode_cachep);
1477 fs_initcall(init_hugetlbfs_fs)