4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/init.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
40 struct block_device bdev;
41 struct inode vfs_inode;
44 static const struct address_space_operations def_blk_aops;
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
48 return container_of(inode, struct bdev_inode, vfs_inode);
51 struct block_device *I_BDEV(struct inode *inode)
53 return &BDEV_I(inode)->bdev;
55 EXPORT_SYMBOL(I_BDEV);
57 static void bdev_write_inode(struct block_device *bdev)
59 struct inode *inode = bdev->bd_inode;
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
72 spin_lock(&inode->i_lock);
74 spin_unlock(&inode->i_lock);
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
86 truncate_inode_pages(mapping, 0);
88 EXPORT_SYMBOL(kill_bdev);
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
95 if (mapping->nrpages) {
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
103 cleancache_invalidate_inode(mapping);
105 EXPORT_SYMBOL(invalidate_bdev);
107 static void set_init_blocksize(struct block_device *bdev)
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
112 while (bsize < PAGE_SIZE) {
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
121 int set_blocksize(struct block_device *bdev, int size)
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
141 EXPORT_SYMBOL(set_blocksize);
143 int sb_set_blocksize(struct super_block *sb, int size)
145 if (set_blocksize(sb->s_bdev, size))
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
154 EXPORT_SYMBOL(sb_set_blocksize);
156 int sb_min_blocksize(struct super_block *sb, int size)
158 int minsize = bdev_logical_block_size(sb->s_bdev);
161 return sb_set_blocksize(sb, size);
164 EXPORT_SYMBOL(sb_min_blocksize);
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
176 static struct inode *bdev_file_inode(struct file *file)
178 return file->f_mapping->host;
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
191 #define DIO_INLINE_BIO_VECS 4
193 static void blkdev_bio_end_io_simple(struct bio *bio)
195 struct task_struct *waiter = bio->bi_private;
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
214 struct bvec_iter_all iter_all;
216 if ((pos | iov_iter_alignment(iter)) &
217 (bdev_logical_block_size(bdev) - 1))
220 if (nr_pages <= DIO_INLINE_BIO_VECS)
223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
229 bio_init(&bio, vecs, nr_pages);
230 bio_set_dev(&bio, bdev);
231 bio.bi_iter.bi_sector = pos >> 9;
232 bio.bi_write_hint = iocb->ki_hint;
233 bio.bi_private = current;
234 bio.bi_end_io = blkdev_bio_end_io_simple;
235 bio.bi_ioprio = iocb->ki_ioprio;
237 ret = bio_iov_iter_get_pages(&bio, iter);
240 ret = bio.bi_iter.bi_size;
242 if (iov_iter_rw(iter) == READ) {
243 bio.bi_opf = REQ_OP_READ;
244 if (iter_is_iovec(iter))
247 bio.bi_opf = dio_bio_write_op(iocb);
248 task_io_account_write(ret);
250 if (iocb->ki_flags & IOCB_HIPRI)
251 bio_set_polled(&bio, iocb);
253 qc = submit_bio(&bio);
255 set_current_state(TASK_UNINTERRUPTIBLE);
256 if (!READ_ONCE(bio.bi_private))
258 if (!(iocb->ki_flags & IOCB_HIPRI) ||
259 !blk_poll(bdev_get_queue(bdev), qc, true))
262 __set_current_state(TASK_RUNNING);
264 bio_for_each_segment_all(bvec, &bio, i, iter_all) {
265 if (should_dirty && !PageCompound(bvec->bv_page))
266 set_page_dirty_lock(bvec->bv_page);
267 put_page(bvec->bv_page);
270 if (unlikely(bio.bi_status))
271 ret = blk_status_to_errno(bio.bi_status);
274 if (vecs != inline_vecs)
285 struct task_struct *waiter;
290 bool should_dirty : 1;
295 static struct bio_set blkdev_dio_pool;
297 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
299 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
300 struct request_queue *q = bdev_get_queue(bdev);
302 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
305 static void blkdev_bio_end_io(struct bio *bio)
307 struct blkdev_dio *dio = bio->bi_private;
308 bool should_dirty = dio->should_dirty;
310 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
311 if (bio->bi_status && !dio->bio.bi_status)
312 dio->bio.bi_status = bio->bi_status;
315 struct kiocb *iocb = dio->iocb;
318 if (likely(!dio->bio.bi_status)) {
322 ret = blk_status_to_errno(dio->bio.bi_status);
325 dio->iocb->ki_complete(iocb, ret, 0);
329 struct task_struct *waiter = dio->waiter;
331 WRITE_ONCE(dio->waiter, NULL);
332 blk_wake_io_task(waiter);
337 bio_check_pages_dirty(bio);
339 struct bio_vec *bvec;
341 struct bvec_iter_all iter_all;
343 bio_for_each_segment_all(bvec, bio, i, iter_all)
344 put_page(bvec->bv_page);
350 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
352 struct file *file = iocb->ki_filp;
353 struct inode *inode = bdev_file_inode(file);
354 struct block_device *bdev = I_BDEV(inode);
355 struct blk_plug plug;
356 struct blkdev_dio *dio;
358 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
359 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
360 loff_t pos = iocb->ki_pos;
361 blk_qc_t qc = BLK_QC_T_NONE;
364 if ((pos | iov_iter_alignment(iter)) &
365 (bdev_logical_block_size(bdev) - 1))
368 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
370 dio = container_of(bio, struct blkdev_dio, bio);
371 dio->is_sync = is_sync = is_sync_kiocb(iocb);
373 dio->waiter = current;
380 dio->multi_bio = false;
381 dio->should_dirty = is_read && iter_is_iovec(iter);
384 * Don't plug for HIPRI/polled IO, as those should go straight
388 blk_start_plug(&plug);
391 bio_set_dev(bio, bdev);
392 bio->bi_iter.bi_sector = pos >> 9;
393 bio->bi_write_hint = iocb->ki_hint;
394 bio->bi_private = dio;
395 bio->bi_end_io = blkdev_bio_end_io;
396 bio->bi_ioprio = iocb->ki_ioprio;
398 ret = bio_iov_iter_get_pages(bio, iter);
400 bio->bi_status = BLK_STS_IOERR;
406 bio->bi_opf = REQ_OP_READ;
407 if (dio->should_dirty)
408 bio_set_pages_dirty(bio);
410 bio->bi_opf = dio_bio_write_op(iocb);
411 task_io_account_write(bio->bi_iter.bi_size);
414 dio->size += bio->bi_iter.bi_size;
415 pos += bio->bi_iter.bi_size;
417 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
421 if (iocb->ki_flags & IOCB_HIPRI) {
422 bio_set_polled(bio, iocb);
426 qc = submit_bio(bio);
429 WRITE_ONCE(iocb->ki_cookie, qc);
433 if (!dio->multi_bio) {
435 * AIO needs an extra reference to ensure the dio
436 * structure which is embedded into the first bio
441 dio->multi_bio = true;
442 atomic_set(&dio->ref, 2);
444 atomic_inc(&dio->ref);
448 bio = bio_alloc(GFP_KERNEL, nr_pages);
452 blk_finish_plug(&plug);
458 set_current_state(TASK_UNINTERRUPTIBLE);
459 if (!READ_ONCE(dio->waiter))
462 if (!(iocb->ki_flags & IOCB_HIPRI) ||
463 !blk_poll(bdev_get_queue(bdev), qc, true))
466 __set_current_state(TASK_RUNNING);
469 ret = blk_status_to_errno(dio->bio.bi_status);
478 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
482 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
485 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
486 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
488 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
491 static __init int blkdev_init(void)
493 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
495 module_init(blkdev_init);
497 int __sync_blockdev(struct block_device *bdev, int wait)
502 return filemap_flush(bdev->bd_inode->i_mapping);
503 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
507 * Write out and wait upon all the dirty data associated with a block
508 * device via its mapping. Does not take the superblock lock.
510 int sync_blockdev(struct block_device *bdev)
512 return __sync_blockdev(bdev, 1);
514 EXPORT_SYMBOL(sync_blockdev);
517 * Write out and wait upon all dirty data associated with this
518 * device. Filesystem data as well as the underlying block
519 * device. Takes the superblock lock.
521 int fsync_bdev(struct block_device *bdev)
523 struct super_block *sb = get_super(bdev);
525 int res = sync_filesystem(sb);
529 return sync_blockdev(bdev);
531 EXPORT_SYMBOL(fsync_bdev);
534 * freeze_bdev -- lock a filesystem and force it into a consistent state
535 * @bdev: blockdevice to lock
537 * If a superblock is found on this device, we take the s_umount semaphore
538 * on it to make sure nobody unmounts until the snapshot creation is done.
539 * The reference counter (bd_fsfreeze_count) guarantees that only the last
540 * unfreeze process can unfreeze the frozen filesystem actually when multiple
541 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
542 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
545 struct super_block *freeze_bdev(struct block_device *bdev)
547 struct super_block *sb;
550 mutex_lock(&bdev->bd_fsfreeze_mutex);
551 if (++bdev->bd_fsfreeze_count > 1) {
553 * We don't even need to grab a reference - the first call
554 * to freeze_bdev grab an active reference and only the last
555 * thaw_bdev drops it.
557 sb = get_super(bdev);
560 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 sb = get_active_super(bdev);
567 if (sb->s_op->freeze_super)
568 error = sb->s_op->freeze_super(sb);
570 error = freeze_super(sb);
572 deactivate_super(sb);
573 bdev->bd_fsfreeze_count--;
574 mutex_unlock(&bdev->bd_fsfreeze_mutex);
575 return ERR_PTR(error);
577 deactivate_super(sb);
580 mutex_unlock(&bdev->bd_fsfreeze_mutex);
581 return sb; /* thaw_bdev releases s->s_umount */
583 EXPORT_SYMBOL(freeze_bdev);
586 * thaw_bdev -- unlock filesystem
587 * @bdev: blockdevice to unlock
588 * @sb: associated superblock
590 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
592 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
596 mutex_lock(&bdev->bd_fsfreeze_mutex);
597 if (!bdev->bd_fsfreeze_count)
601 if (--bdev->bd_fsfreeze_count > 0)
607 if (sb->s_op->thaw_super)
608 error = sb->s_op->thaw_super(sb);
610 error = thaw_super(sb);
612 bdev->bd_fsfreeze_count++;
614 mutex_unlock(&bdev->bd_fsfreeze_mutex);
617 EXPORT_SYMBOL(thaw_bdev);
619 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
621 return block_write_full_page(page, blkdev_get_block, wbc);
624 static int blkdev_readpage(struct file * file, struct page * page)
626 return block_read_full_page(page, blkdev_get_block);
629 static int blkdev_readpages(struct file *file, struct address_space *mapping,
630 struct list_head *pages, unsigned nr_pages)
632 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
635 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
636 loff_t pos, unsigned len, unsigned flags,
637 struct page **pagep, void **fsdata)
639 return block_write_begin(mapping, pos, len, flags, pagep,
643 static int blkdev_write_end(struct file *file, struct address_space *mapping,
644 loff_t pos, unsigned len, unsigned copied,
645 struct page *page, void *fsdata)
648 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
658 * for a block special file file_inode(file)->i_size is zero
659 * so we compute the size by hand (just as in block_read/write above)
661 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
663 struct inode *bd_inode = bdev_file_inode(file);
666 inode_lock(bd_inode);
667 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
668 inode_unlock(bd_inode);
672 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
674 struct inode *bd_inode = bdev_file_inode(filp);
675 struct block_device *bdev = I_BDEV(bd_inode);
678 error = file_write_and_wait_range(filp, start, end);
683 * There is no need to serialise calls to blkdev_issue_flush with
684 * i_mutex and doing so causes performance issues with concurrent
685 * O_SYNC writers to a block device.
687 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
688 if (error == -EOPNOTSUPP)
693 EXPORT_SYMBOL(blkdev_fsync);
696 * bdev_read_page() - Start reading a page from a block device
697 * @bdev: The device to read the page from
698 * @sector: The offset on the device to read the page to (need not be aligned)
699 * @page: The page to read
701 * On entry, the page should be locked. It will be unlocked when the page
702 * has been read. If the block driver implements rw_page synchronously,
703 * that will be true on exit from this function, but it need not be.
705 * Errors returned by this function are usually "soft", eg out of memory, or
706 * queue full; callers should try a different route to read this page rather
707 * than propagate an error back up the stack.
709 * Return: negative errno if an error occurs, 0 if submission was successful.
711 int bdev_read_page(struct block_device *bdev, sector_t sector,
714 const struct block_device_operations *ops = bdev->bd_disk->fops;
715 int result = -EOPNOTSUPP;
717 if (!ops->rw_page || bdev_get_integrity(bdev))
720 result = blk_queue_enter(bdev->bd_queue, 0);
723 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
725 blk_queue_exit(bdev->bd_queue);
728 EXPORT_SYMBOL_GPL(bdev_read_page);
731 * bdev_write_page() - Start writing a page to a block device
732 * @bdev: The device to write the page to
733 * @sector: The offset on the device to write the page to (need not be aligned)
734 * @page: The page to write
735 * @wbc: The writeback_control for the write
737 * On entry, the page should be locked and not currently under writeback.
738 * On exit, if the write started successfully, the page will be unlocked and
739 * under writeback. If the write failed already (eg the driver failed to
740 * queue the page to the device), the page will still be locked. If the
741 * caller is a ->writepage implementation, it will need to unlock the page.
743 * Errors returned by this function are usually "soft", eg out of memory, or
744 * queue full; callers should try a different route to write this page rather
745 * than propagate an error back up the stack.
747 * Return: negative errno if an error occurs, 0 if submission was successful.
749 int bdev_write_page(struct block_device *bdev, sector_t sector,
750 struct page *page, struct writeback_control *wbc)
753 const struct block_device_operations *ops = bdev->bd_disk->fops;
755 if (!ops->rw_page || bdev_get_integrity(bdev))
757 result = blk_queue_enter(bdev->bd_queue, 0);
761 set_page_writeback(page);
762 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
765 end_page_writeback(page);
767 clean_page_buffers(page);
770 blk_queue_exit(bdev->bd_queue);
773 EXPORT_SYMBOL_GPL(bdev_write_page);
779 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
780 static struct kmem_cache * bdev_cachep __read_mostly;
782 static struct inode *bdev_alloc_inode(struct super_block *sb)
784 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
787 return &ei->vfs_inode;
790 static void bdev_i_callback(struct rcu_head *head)
792 struct inode *inode = container_of(head, struct inode, i_rcu);
793 struct bdev_inode *bdi = BDEV_I(inode);
795 kmem_cache_free(bdev_cachep, bdi);
798 static void bdev_destroy_inode(struct inode *inode)
800 call_rcu(&inode->i_rcu, bdev_i_callback);
803 static void init_once(void *foo)
805 struct bdev_inode *ei = (struct bdev_inode *) foo;
806 struct block_device *bdev = &ei->bdev;
808 memset(bdev, 0, sizeof(*bdev));
809 mutex_init(&bdev->bd_mutex);
810 INIT_LIST_HEAD(&bdev->bd_list);
812 INIT_LIST_HEAD(&bdev->bd_holder_disks);
814 bdev->bd_bdi = &noop_backing_dev_info;
815 inode_init_once(&ei->vfs_inode);
816 /* Initialize mutex for freeze. */
817 mutex_init(&bdev->bd_fsfreeze_mutex);
820 static void bdev_evict_inode(struct inode *inode)
822 struct block_device *bdev = &BDEV_I(inode)->bdev;
823 truncate_inode_pages_final(&inode->i_data);
824 invalidate_inode_buffers(inode); /* is it needed here? */
826 spin_lock(&bdev_lock);
827 list_del_init(&bdev->bd_list);
828 spin_unlock(&bdev_lock);
829 /* Detach inode from wb early as bdi_put() may free bdi->wb */
830 inode_detach_wb(inode);
831 if (bdev->bd_bdi != &noop_backing_dev_info) {
832 bdi_put(bdev->bd_bdi);
833 bdev->bd_bdi = &noop_backing_dev_info;
837 static const struct super_operations bdev_sops = {
838 .statfs = simple_statfs,
839 .alloc_inode = bdev_alloc_inode,
840 .destroy_inode = bdev_destroy_inode,
841 .drop_inode = generic_delete_inode,
842 .evict_inode = bdev_evict_inode,
845 static struct dentry *bd_mount(struct file_system_type *fs_type,
846 int flags, const char *dev_name, void *data)
849 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
851 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
855 static struct file_system_type bd_type = {
858 .kill_sb = kill_anon_super,
861 struct super_block *blockdev_superblock __read_mostly;
862 EXPORT_SYMBOL_GPL(blockdev_superblock);
864 void __init bdev_cache_init(void)
867 static struct vfsmount *bd_mnt;
869 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
870 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
871 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
873 err = register_filesystem(&bd_type);
875 panic("Cannot register bdev pseudo-fs");
876 bd_mnt = kern_mount(&bd_type);
878 panic("Cannot create bdev pseudo-fs");
879 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
883 * Most likely _very_ bad one - but then it's hardly critical for small
884 * /dev and can be fixed when somebody will need really large one.
885 * Keep in mind that it will be fed through icache hash function too.
887 static inline unsigned long hash(dev_t dev)
889 return MAJOR(dev)+MINOR(dev);
892 static int bdev_test(struct inode *inode, void *data)
894 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
897 static int bdev_set(struct inode *inode, void *data)
899 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
903 static LIST_HEAD(all_bdevs);
906 * If there is a bdev inode for this device, unhash it so that it gets evicted
907 * as soon as last inode reference is dropped.
909 void bdev_unhash_inode(dev_t dev)
913 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
915 remove_inode_hash(inode);
920 struct block_device *bdget(dev_t dev)
922 struct block_device *bdev;
925 inode = iget5_locked(blockdev_superblock, hash(dev),
926 bdev_test, bdev_set, &dev);
931 bdev = &BDEV_I(inode)->bdev;
933 if (inode->i_state & I_NEW) {
934 bdev->bd_contains = NULL;
935 bdev->bd_super = NULL;
936 bdev->bd_inode = inode;
937 bdev->bd_block_size = i_blocksize(inode);
938 bdev->bd_part_count = 0;
939 bdev->bd_invalidated = 0;
940 inode->i_mode = S_IFBLK;
942 inode->i_bdev = bdev;
943 inode->i_data.a_ops = &def_blk_aops;
944 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
945 spin_lock(&bdev_lock);
946 list_add(&bdev->bd_list, &all_bdevs);
947 spin_unlock(&bdev_lock);
948 unlock_new_inode(inode);
953 EXPORT_SYMBOL(bdget);
956 * bdgrab -- Grab a reference to an already referenced block device
957 * @bdev: Block device to grab a reference to.
959 struct block_device *bdgrab(struct block_device *bdev)
961 ihold(bdev->bd_inode);
964 EXPORT_SYMBOL(bdgrab);
966 long nr_blockdev_pages(void)
968 struct block_device *bdev;
970 spin_lock(&bdev_lock);
971 list_for_each_entry(bdev, &all_bdevs, bd_list) {
972 ret += bdev->bd_inode->i_mapping->nrpages;
974 spin_unlock(&bdev_lock);
978 void bdput(struct block_device *bdev)
980 iput(bdev->bd_inode);
983 EXPORT_SYMBOL(bdput);
985 static struct block_device *bd_acquire(struct inode *inode)
987 struct block_device *bdev;
989 spin_lock(&bdev_lock);
990 bdev = inode->i_bdev;
991 if (bdev && !inode_unhashed(bdev->bd_inode)) {
993 spin_unlock(&bdev_lock);
996 spin_unlock(&bdev_lock);
999 * i_bdev references block device inode that was already shut down
1000 * (corresponding device got removed). Remove the reference and look
1001 * up block device inode again just in case new device got
1002 * reestablished under the same device number.
1007 bdev = bdget(inode->i_rdev);
1009 spin_lock(&bdev_lock);
1010 if (!inode->i_bdev) {
1012 * We take an additional reference to bd_inode,
1013 * and it's released in clear_inode() of inode.
1014 * So, we can access it via ->i_mapping always
1018 inode->i_bdev = bdev;
1019 inode->i_mapping = bdev->bd_inode->i_mapping;
1021 spin_unlock(&bdev_lock);
1026 /* Call when you free inode */
1028 void bd_forget(struct inode *inode)
1030 struct block_device *bdev = NULL;
1032 spin_lock(&bdev_lock);
1033 if (!sb_is_blkdev_sb(inode->i_sb))
1034 bdev = inode->i_bdev;
1035 inode->i_bdev = NULL;
1036 inode->i_mapping = &inode->i_data;
1037 spin_unlock(&bdev_lock);
1044 * bd_may_claim - test whether a block device can be claimed
1045 * @bdev: block device of interest
1046 * @whole: whole block device containing @bdev, may equal @bdev
1047 * @holder: holder trying to claim @bdev
1049 * Test whether @bdev can be claimed by @holder.
1052 * spin_lock(&bdev_lock).
1055 * %true if @bdev can be claimed, %false otherwise.
1057 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1060 if (bdev->bd_holder == holder)
1061 return true; /* already a holder */
1062 else if (bdev->bd_holder != NULL)
1063 return false; /* held by someone else */
1064 else if (whole == bdev)
1065 return true; /* is a whole device which isn't held */
1067 else if (whole->bd_holder == bd_may_claim)
1068 return true; /* is a partition of a device that is being partitioned */
1069 else if (whole->bd_holder != NULL)
1070 return false; /* is a partition of a held device */
1072 return true; /* is a partition of an un-held device */
1076 * bd_prepare_to_claim - prepare to claim a block device
1077 * @bdev: block device of interest
1078 * @whole: the whole device containing @bdev, may equal @bdev
1079 * @holder: holder trying to claim @bdev
1081 * Prepare to claim @bdev. This function fails if @bdev is already
1082 * claimed by another holder and waits if another claiming is in
1083 * progress. This function doesn't actually claim. On successful
1084 * return, the caller has ownership of bd_claiming and bd_holder[s].
1087 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1088 * it multiple times.
1091 * 0 if @bdev can be claimed, -EBUSY otherwise.
1093 static int bd_prepare_to_claim(struct block_device *bdev,
1094 struct block_device *whole, void *holder)
1097 /* if someone else claimed, fail */
1098 if (!bd_may_claim(bdev, whole, holder))
1101 /* if claiming is already in progress, wait for it to finish */
1102 if (whole->bd_claiming) {
1103 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1106 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1107 spin_unlock(&bdev_lock);
1109 finish_wait(wq, &wait);
1110 spin_lock(&bdev_lock);
1118 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1120 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1125 * Now that we hold gendisk reference we make sure bdev we looked up is
1126 * not stale. If it is, it means device got removed and created before
1127 * we looked up gendisk and we fail open in such case. Associating
1128 * unhashed bdev with newly created gendisk could lead to two bdevs
1129 * (and thus two independent caches) being associated with one device
1132 if (inode_unhashed(bdev->bd_inode)) {
1133 put_disk_and_module(disk);
1140 * bd_start_claiming - start claiming a block device
1141 * @bdev: block device of interest
1142 * @holder: holder trying to claim @bdev
1144 * @bdev is about to be opened exclusively. Check @bdev can be opened
1145 * exclusively and mark that an exclusive open is in progress. Each
1146 * successful call to this function must be matched with a call to
1147 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1150 * This function is used to gain exclusive access to the block device
1151 * without actually causing other exclusive open attempts to fail. It
1152 * should be used when the open sequence itself requires exclusive
1153 * access but may subsequently fail.
1159 * Pointer to the block device containing @bdev on success, ERR_PTR()
1162 static struct block_device *bd_start_claiming(struct block_device *bdev,
1165 struct gendisk *disk;
1166 struct block_device *whole;
1172 * @bdev might not have been initialized properly yet, look up
1173 * and grab the outer block device the hard way.
1175 disk = bdev_get_gendisk(bdev, &partno);
1177 return ERR_PTR(-ENXIO);
1180 * Normally, @bdev should equal what's returned from bdget_disk()
1181 * if partno is 0; however, some drivers (floppy) use multiple
1182 * bdev's for the same physical device and @bdev may be one of the
1183 * aliases. Keep @bdev if partno is 0. This means claimer
1184 * tracking is broken for those devices but it has always been that
1188 whole = bdget_disk(disk, 0);
1190 whole = bdgrab(bdev);
1192 put_disk_and_module(disk);
1194 return ERR_PTR(-ENOMEM);
1196 /* prepare to claim, if successful, mark claiming in progress */
1197 spin_lock(&bdev_lock);
1199 err = bd_prepare_to_claim(bdev, whole, holder);
1201 whole->bd_claiming = holder;
1202 spin_unlock(&bdev_lock);
1205 spin_unlock(&bdev_lock);
1207 return ERR_PTR(err);
1212 struct bd_holder_disk {
1213 struct list_head list;
1214 struct gendisk *disk;
1218 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1219 struct gendisk *disk)
1221 struct bd_holder_disk *holder;
1223 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1224 if (holder->disk == disk)
1229 static int add_symlink(struct kobject *from, struct kobject *to)
1231 return sysfs_create_link(from, to, kobject_name(to));
1234 static void del_symlink(struct kobject *from, struct kobject *to)
1236 sysfs_remove_link(from, kobject_name(to));
1240 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1241 * @bdev: the claimed slave bdev
1242 * @disk: the holding disk
1244 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1246 * This functions creates the following sysfs symlinks.
1248 * - from "slaves" directory of the holder @disk to the claimed @bdev
1249 * - from "holders" directory of the @bdev to the holder @disk
1251 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1252 * passed to bd_link_disk_holder(), then:
1254 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1255 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1257 * The caller must have claimed @bdev before calling this function and
1258 * ensure that both @bdev and @disk are valid during the creation and
1259 * lifetime of these symlinks.
1265 * 0 on success, -errno on failure.
1267 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1269 struct bd_holder_disk *holder;
1272 mutex_lock(&bdev->bd_mutex);
1274 WARN_ON_ONCE(!bdev->bd_holder);
1276 /* FIXME: remove the following once add_disk() handles errors */
1277 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1280 holder = bd_find_holder_disk(bdev, disk);
1286 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1292 INIT_LIST_HEAD(&holder->list);
1293 holder->disk = disk;
1296 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1300 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1304 * bdev could be deleted beneath us which would implicitly destroy
1305 * the holder directory. Hold on to it.
1307 kobject_get(bdev->bd_part->holder_dir);
1309 list_add(&holder->list, &bdev->bd_holder_disks);
1313 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1317 mutex_unlock(&bdev->bd_mutex);
1320 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1323 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1324 * @bdev: the calimed slave bdev
1325 * @disk: the holding disk
1327 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1332 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1334 struct bd_holder_disk *holder;
1336 mutex_lock(&bdev->bd_mutex);
1338 holder = bd_find_holder_disk(bdev, disk);
1340 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1341 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1342 del_symlink(bdev->bd_part->holder_dir,
1343 &disk_to_dev(disk)->kobj);
1344 kobject_put(bdev->bd_part->holder_dir);
1345 list_del_init(&holder->list);
1349 mutex_unlock(&bdev->bd_mutex);
1351 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1355 * flush_disk - invalidates all buffer-cache entries on a disk
1357 * @bdev: struct block device to be flushed
1358 * @kill_dirty: flag to guide handling of dirty inodes
1360 * Invalidates all buffer-cache entries on a disk. It should be called
1361 * when a disk has been changed -- either by a media change or online
1364 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1366 if (__invalidate_device(bdev, kill_dirty)) {
1367 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1368 "resized disk %s\n",
1369 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1374 if (disk_part_scan_enabled(bdev->bd_disk))
1375 bdev->bd_invalidated = 1;
1379 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1380 * @disk: struct gendisk to check
1381 * @bdev: struct bdev to adjust.
1382 * @verbose: if %true log a message about a size change if there is any
1384 * This routine checks to see if the bdev size does not match the disk size
1385 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1388 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1391 loff_t disk_size, bdev_size;
1393 disk_size = (loff_t)get_capacity(disk) << 9;
1394 bdev_size = i_size_read(bdev->bd_inode);
1395 if (disk_size != bdev_size) {
1398 "%s: detected capacity change from %lld to %lld\n",
1399 disk->disk_name, bdev_size, disk_size);
1401 i_size_write(bdev->bd_inode, disk_size);
1402 if (bdev_size > disk_size)
1403 flush_disk(bdev, false);
1408 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1409 * @disk: struct gendisk to be revalidated
1411 * This routine is a wrapper for lower-level driver's revalidate_disk
1412 * call-backs. It is used to do common pre and post operations needed
1413 * for all revalidate_disk operations.
1415 int revalidate_disk(struct gendisk *disk)
1417 struct block_device *bdev;
1420 if (disk->fops->revalidate_disk)
1421 ret = disk->fops->revalidate_disk(disk);
1422 bdev = bdget_disk(disk, 0);
1426 mutex_lock(&bdev->bd_mutex);
1427 check_disk_size_change(disk, bdev, ret == 0);
1428 bdev->bd_invalidated = 0;
1429 mutex_unlock(&bdev->bd_mutex);
1433 EXPORT_SYMBOL(revalidate_disk);
1436 * This routine checks whether a removable media has been changed,
1437 * and invalidates all buffer-cache-entries in that case. This
1438 * is a relatively slow routine, so we have to try to minimize using
1439 * it. Thus it is called only upon a 'mount' or 'open'. This
1440 * is the best way of combining speed and utility, I think.
1441 * People changing diskettes in the middle of an operation deserve
1444 int check_disk_change(struct block_device *bdev)
1446 struct gendisk *disk = bdev->bd_disk;
1447 const struct block_device_operations *bdops = disk->fops;
1448 unsigned int events;
1450 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1451 DISK_EVENT_EJECT_REQUEST);
1452 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1455 flush_disk(bdev, true);
1456 if (bdops->revalidate_disk)
1457 bdops->revalidate_disk(bdev->bd_disk);
1461 EXPORT_SYMBOL(check_disk_change);
1463 void bd_set_size(struct block_device *bdev, loff_t size)
1465 inode_lock(bdev->bd_inode);
1466 i_size_write(bdev->bd_inode, size);
1467 inode_unlock(bdev->bd_inode);
1469 EXPORT_SYMBOL(bd_set_size);
1471 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1476 * mutex_lock(part->bd_mutex)
1477 * mutex_lock_nested(whole->bd_mutex, 1)
1480 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1482 struct gendisk *disk;
1486 bool first_open = false;
1488 if (mode & FMODE_READ)
1490 if (mode & FMODE_WRITE)
1493 * hooks: /n/, see "layering violations".
1496 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1506 disk = bdev_get_gendisk(bdev, &partno);
1510 disk_block_events(disk);
1511 mutex_lock_nested(&bdev->bd_mutex, for_part);
1512 if (!bdev->bd_openers) {
1514 bdev->bd_disk = disk;
1515 bdev->bd_queue = disk->queue;
1516 bdev->bd_contains = bdev;
1517 bdev->bd_partno = partno;
1521 bdev->bd_part = disk_get_part(disk, partno);
1526 if (disk->fops->open) {
1527 ret = disk->fops->open(bdev, mode);
1528 if (ret == -ERESTARTSYS) {
1529 /* Lost a race with 'disk' being
1530 * deleted, try again.
1533 disk_put_part(bdev->bd_part);
1534 bdev->bd_part = NULL;
1535 bdev->bd_disk = NULL;
1536 bdev->bd_queue = NULL;
1537 mutex_unlock(&bdev->bd_mutex);
1538 disk_unblock_events(disk);
1539 put_disk_and_module(disk);
1545 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1546 set_init_blocksize(bdev);
1550 * If the device is invalidated, rescan partition
1551 * if open succeeded or failed with -ENOMEDIUM.
1552 * The latter is necessary to prevent ghost
1553 * partitions on a removed medium.
1555 if (bdev->bd_invalidated) {
1557 rescan_partitions(disk, bdev);
1558 else if (ret == -ENOMEDIUM)
1559 invalidate_partitions(disk, bdev);
1565 struct block_device *whole;
1566 whole = bdget_disk(disk, 0);
1571 ret = __blkdev_get(whole, mode, 1);
1574 bdev->bd_contains = whole;
1575 bdev->bd_part = disk_get_part(disk, partno);
1576 if (!(disk->flags & GENHD_FL_UP) ||
1577 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1581 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1582 set_init_blocksize(bdev);
1585 if (bdev->bd_bdi == &noop_backing_dev_info)
1586 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1588 if (bdev->bd_contains == bdev) {
1590 if (bdev->bd_disk->fops->open)
1591 ret = bdev->bd_disk->fops->open(bdev, mode);
1592 /* the same as first opener case, read comment there */
1593 if (bdev->bd_invalidated) {
1595 rescan_partitions(bdev->bd_disk, bdev);
1596 else if (ret == -ENOMEDIUM)
1597 invalidate_partitions(bdev->bd_disk, bdev);
1600 goto out_unlock_bdev;
1605 bdev->bd_part_count++;
1606 mutex_unlock(&bdev->bd_mutex);
1607 disk_unblock_events(disk);
1608 /* only one opener holds refs to the module and disk */
1610 put_disk_and_module(disk);
1614 disk_put_part(bdev->bd_part);
1615 bdev->bd_disk = NULL;
1616 bdev->bd_part = NULL;
1617 bdev->bd_queue = NULL;
1618 if (bdev != bdev->bd_contains)
1619 __blkdev_put(bdev->bd_contains, mode, 1);
1620 bdev->bd_contains = NULL;
1622 mutex_unlock(&bdev->bd_mutex);
1623 disk_unblock_events(disk);
1624 put_disk_and_module(disk);
1632 * blkdev_get - open a block device
1633 * @bdev: block_device to open
1634 * @mode: FMODE_* mask
1635 * @holder: exclusive holder identifier
1637 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1638 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1639 * @holder is invalid. Exclusive opens may nest for the same @holder.
1641 * On success, the reference count of @bdev is unchanged. On failure,
1648 * 0 on success, -errno on failure.
1650 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1652 struct block_device *whole = NULL;
1655 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1657 if ((mode & FMODE_EXCL) && holder) {
1658 whole = bd_start_claiming(bdev, holder);
1659 if (IS_ERR(whole)) {
1661 return PTR_ERR(whole);
1665 res = __blkdev_get(bdev, mode, 0);
1668 struct gendisk *disk = whole->bd_disk;
1670 /* finish claiming */
1671 mutex_lock(&bdev->bd_mutex);
1672 spin_lock(&bdev_lock);
1675 BUG_ON(!bd_may_claim(bdev, whole, holder));
1677 * Note that for a whole device bd_holders
1678 * will be incremented twice, and bd_holder
1679 * will be set to bd_may_claim before being
1682 whole->bd_holders++;
1683 whole->bd_holder = bd_may_claim;
1685 bdev->bd_holder = holder;
1688 /* tell others that we're done */
1689 BUG_ON(whole->bd_claiming != holder);
1690 whole->bd_claiming = NULL;
1691 wake_up_bit(&whole->bd_claiming, 0);
1693 spin_unlock(&bdev_lock);
1696 * Block event polling for write claims if requested. Any
1697 * write holder makes the write_holder state stick until
1698 * all are released. This is good enough and tracking
1699 * individual writeable reference is too fragile given the
1700 * way @mode is used in blkdev_get/put().
1702 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1703 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1704 bdev->bd_write_holder = true;
1705 disk_block_events(disk);
1708 mutex_unlock(&bdev->bd_mutex);
1714 EXPORT_SYMBOL(blkdev_get);
1717 * blkdev_get_by_path - open a block device by name
1718 * @path: path to the block device to open
1719 * @mode: FMODE_* mask
1720 * @holder: exclusive holder identifier
1722 * Open the blockdevice described by the device file at @path. @mode
1723 * and @holder are identical to blkdev_get().
1725 * On success, the returned block_device has reference count of one.
1731 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1733 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1736 struct block_device *bdev;
1739 bdev = lookup_bdev(path);
1743 err = blkdev_get(bdev, mode, holder);
1745 return ERR_PTR(err);
1747 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1748 blkdev_put(bdev, mode);
1749 return ERR_PTR(-EACCES);
1754 EXPORT_SYMBOL(blkdev_get_by_path);
1757 * blkdev_get_by_dev - open a block device by device number
1758 * @dev: device number of block device to open
1759 * @mode: FMODE_* mask
1760 * @holder: exclusive holder identifier
1762 * Open the blockdevice described by device number @dev. @mode and
1763 * @holder are identical to blkdev_get().
1765 * Use it ONLY if you really do not have anything better - i.e. when
1766 * you are behind a truly sucky interface and all you are given is a
1767 * device number. _Never_ to be used for internal purposes. If you
1768 * ever need it - reconsider your API.
1770 * On success, the returned block_device has reference count of one.
1776 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1778 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1780 struct block_device *bdev;
1785 return ERR_PTR(-ENOMEM);
1787 err = blkdev_get(bdev, mode, holder);
1789 return ERR_PTR(err);
1793 EXPORT_SYMBOL(blkdev_get_by_dev);
1795 static int blkdev_open(struct inode * inode, struct file * filp)
1797 struct block_device *bdev;
1800 * Preserve backwards compatibility and allow large file access
1801 * even if userspace doesn't ask for it explicitly. Some mkfs
1802 * binary needs it. We might want to drop this workaround
1803 * during an unstable branch.
1805 filp->f_flags |= O_LARGEFILE;
1807 filp->f_mode |= FMODE_NOWAIT;
1809 if (filp->f_flags & O_NDELAY)
1810 filp->f_mode |= FMODE_NDELAY;
1811 if (filp->f_flags & O_EXCL)
1812 filp->f_mode |= FMODE_EXCL;
1813 if ((filp->f_flags & O_ACCMODE) == 3)
1814 filp->f_mode |= FMODE_WRITE_IOCTL;
1816 bdev = bd_acquire(inode);
1820 filp->f_mapping = bdev->bd_inode->i_mapping;
1821 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1823 return blkdev_get(bdev, filp->f_mode, filp);
1826 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1828 struct gendisk *disk = bdev->bd_disk;
1829 struct block_device *victim = NULL;
1831 mutex_lock_nested(&bdev->bd_mutex, for_part);
1833 bdev->bd_part_count--;
1835 if (!--bdev->bd_openers) {
1836 WARN_ON_ONCE(bdev->bd_holders);
1837 sync_blockdev(bdev);
1840 bdev_write_inode(bdev);
1842 if (bdev->bd_contains == bdev) {
1843 if (disk->fops->release)
1844 disk->fops->release(disk, mode);
1846 if (!bdev->bd_openers) {
1847 disk_put_part(bdev->bd_part);
1848 bdev->bd_part = NULL;
1849 bdev->bd_disk = NULL;
1850 if (bdev != bdev->bd_contains)
1851 victim = bdev->bd_contains;
1852 bdev->bd_contains = NULL;
1854 put_disk_and_module(disk);
1856 mutex_unlock(&bdev->bd_mutex);
1859 __blkdev_put(victim, mode, 1);
1862 void blkdev_put(struct block_device *bdev, fmode_t mode)
1864 mutex_lock(&bdev->bd_mutex);
1866 if (mode & FMODE_EXCL) {
1870 * Release a claim on the device. The holder fields
1871 * are protected with bdev_lock. bd_mutex is to
1872 * synchronize disk_holder unlinking.
1874 spin_lock(&bdev_lock);
1876 WARN_ON_ONCE(--bdev->bd_holders < 0);
1877 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1879 /* bd_contains might point to self, check in a separate step */
1880 if ((bdev_free = !bdev->bd_holders))
1881 bdev->bd_holder = NULL;
1882 if (!bdev->bd_contains->bd_holders)
1883 bdev->bd_contains->bd_holder = NULL;
1885 spin_unlock(&bdev_lock);
1888 * If this was the last claim, remove holder link and
1889 * unblock evpoll if it was a write holder.
1891 if (bdev_free && bdev->bd_write_holder) {
1892 disk_unblock_events(bdev->bd_disk);
1893 bdev->bd_write_holder = false;
1898 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1899 * event. This is to ensure detection of media removal commanded
1900 * from userland - e.g. eject(1).
1902 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1904 mutex_unlock(&bdev->bd_mutex);
1906 __blkdev_put(bdev, mode, 0);
1908 EXPORT_SYMBOL(blkdev_put);
1910 static int blkdev_close(struct inode * inode, struct file * filp)
1912 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1913 blkdev_put(bdev, filp->f_mode);
1917 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1919 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1920 fmode_t mode = file->f_mode;
1923 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1924 * to updated it before every ioctl.
1926 if (file->f_flags & O_NDELAY)
1927 mode |= FMODE_NDELAY;
1929 mode &= ~FMODE_NDELAY;
1931 return blkdev_ioctl(bdev, mode, cmd, arg);
1935 * Write data to the block device. Only intended for the block device itself
1936 * and the raw driver which basically is a fake block device.
1938 * Does not take i_mutex for the write and thus is not for general purpose
1941 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1943 struct file *file = iocb->ki_filp;
1944 struct inode *bd_inode = bdev_file_inode(file);
1945 loff_t size = i_size_read(bd_inode);
1946 struct blk_plug plug;
1949 if (bdev_read_only(I_BDEV(bd_inode)))
1952 if (!iov_iter_count(from))
1955 if (iocb->ki_pos >= size)
1958 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1961 iov_iter_truncate(from, size - iocb->ki_pos);
1963 blk_start_plug(&plug);
1964 ret = __generic_file_write_iter(iocb, from);
1966 ret = generic_write_sync(iocb, ret);
1967 blk_finish_plug(&plug);
1970 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1972 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1974 struct file *file = iocb->ki_filp;
1975 struct inode *bd_inode = bdev_file_inode(file);
1976 loff_t size = i_size_read(bd_inode);
1977 loff_t pos = iocb->ki_pos;
1983 iov_iter_truncate(to, size);
1984 return generic_file_read_iter(iocb, to);
1986 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1989 * Try to release a page associated with block device when the system
1990 * is under memory pressure.
1992 static int blkdev_releasepage(struct page *page, gfp_t wait)
1994 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1996 if (super && super->s_op->bdev_try_to_free_page)
1997 return super->s_op->bdev_try_to_free_page(super, page, wait);
1999 return try_to_free_buffers(page);
2002 static int blkdev_writepages(struct address_space *mapping,
2003 struct writeback_control *wbc)
2005 return generic_writepages(mapping, wbc);
2008 static const struct address_space_operations def_blk_aops = {
2009 .readpage = blkdev_readpage,
2010 .readpages = blkdev_readpages,
2011 .writepage = blkdev_writepage,
2012 .write_begin = blkdev_write_begin,
2013 .write_end = blkdev_write_end,
2014 .writepages = blkdev_writepages,
2015 .releasepage = blkdev_releasepage,
2016 .direct_IO = blkdev_direct_IO,
2017 .migratepage = buffer_migrate_page_norefs,
2018 .is_dirty_writeback = buffer_check_dirty_writeback,
2021 #define BLKDEV_FALLOC_FL_SUPPORTED \
2022 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2023 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2025 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2028 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2029 struct address_space *mapping;
2030 loff_t end = start + len - 1;
2034 /* Fail if we don't recognize the flags. */
2035 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2038 /* Don't go off the end of the device. */
2039 isize = i_size_read(bdev->bd_inode);
2043 if (mode & FALLOC_FL_KEEP_SIZE) {
2044 len = isize - start;
2045 end = start + len - 1;
2051 * Don't allow IO that isn't aligned to logical block size.
2053 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2056 /* Invalidate the page cache, including dirty pages. */
2057 mapping = bdev->bd_inode->i_mapping;
2058 truncate_inode_pages_range(mapping, start, end);
2061 case FALLOC_FL_ZERO_RANGE:
2062 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2063 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2064 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2066 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2067 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2068 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2070 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2071 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2081 * Invalidate again; if someone wandered in and dirtied a page,
2082 * the caller will be given -EBUSY. The third argument is
2083 * inclusive, so the rounding here is safe.
2085 return invalidate_inode_pages2_range(mapping,
2086 start >> PAGE_SHIFT,
2090 const struct file_operations def_blk_fops = {
2091 .open = blkdev_open,
2092 .release = blkdev_close,
2093 .llseek = block_llseek,
2094 .read_iter = blkdev_read_iter,
2095 .write_iter = blkdev_write_iter,
2096 .iopoll = blkdev_iopoll,
2097 .mmap = generic_file_mmap,
2098 .fsync = blkdev_fsync,
2099 .unlocked_ioctl = block_ioctl,
2100 #ifdef CONFIG_COMPAT
2101 .compat_ioctl = compat_blkdev_ioctl,
2103 .splice_read = generic_file_splice_read,
2104 .splice_write = iter_file_splice_write,
2105 .fallocate = blkdev_fallocate,
2108 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2111 mm_segment_t old_fs = get_fs();
2113 res = blkdev_ioctl(bdev, 0, cmd, arg);
2118 EXPORT_SYMBOL(ioctl_by_bdev);
2121 * lookup_bdev - lookup a struct block_device by name
2122 * @pathname: special file representing the block device
2124 * Get a reference to the blockdevice at @pathname in the current
2125 * namespace if possible and return it. Return ERR_PTR(error)
2128 struct block_device *lookup_bdev(const char *pathname)
2130 struct block_device *bdev;
2131 struct inode *inode;
2135 if (!pathname || !*pathname)
2136 return ERR_PTR(-EINVAL);
2138 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2140 return ERR_PTR(error);
2142 inode = d_backing_inode(path.dentry);
2144 if (!S_ISBLK(inode->i_mode))
2147 if (!may_open_dev(&path))
2150 bdev = bd_acquire(inode);
2157 bdev = ERR_PTR(error);
2160 EXPORT_SYMBOL(lookup_bdev);
2162 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2164 struct super_block *sb = get_super(bdev);
2169 * no need to lock the super, get_super holds the
2170 * read mutex so the filesystem cannot go away
2171 * under us (->put_super runs with the write lock
2174 shrink_dcache_sb(sb);
2175 res = invalidate_inodes(sb, kill_dirty);
2178 invalidate_bdev(bdev);
2181 EXPORT_SYMBOL(__invalidate_device);
2183 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2185 struct inode *inode, *old_inode = NULL;
2187 spin_lock(&blockdev_superblock->s_inode_list_lock);
2188 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2189 struct address_space *mapping = inode->i_mapping;
2190 struct block_device *bdev;
2192 spin_lock(&inode->i_lock);
2193 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2194 mapping->nrpages == 0) {
2195 spin_unlock(&inode->i_lock);
2199 spin_unlock(&inode->i_lock);
2200 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2202 * We hold a reference to 'inode' so it couldn't have been
2203 * removed from s_inodes list while we dropped the
2204 * s_inode_list_lock We cannot iput the inode now as we can
2205 * be holding the last reference and we cannot iput it under
2206 * s_inode_list_lock. So we keep the reference and iput it
2211 bdev = I_BDEV(inode);
2213 mutex_lock(&bdev->bd_mutex);
2214 if (bdev->bd_openers)
2216 mutex_unlock(&bdev->bd_mutex);
2218 spin_lock(&blockdev_superblock->s_inode_list_lock);
2220 spin_unlock(&blockdev_superblock->s_inode_list_lock);