1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/signal.h>
21 #include <linux/utsname.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/module.h>
24 #include <linux/namei.h>
25 #include <linux/mount.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/tsacct_kern.h>
29 #include <linux/cn_proc.h>
30 #include <linux/audit.h>
31 #include <linux/tracehook.h>
32 #include <linux/kmod.h>
33 #include <linux/fsnotify.h>
34 #include <linux/fs_struct.h>
35 #include <linux/pipe_fs_i.h>
36 #include <linux/oom.h>
37 #include <linux/compat.h>
39 #include <linux/path.h>
40 #include <linux/timekeeping.h>
42 #include <linux/uaccess.h>
43 #include <asm/mmu_context.h>
47 #include <trace/events/task.h>
50 #include <trace/events/sched.h>
53 unsigned int core_pipe_limit;
54 char core_pattern[CORENAME_MAX_SIZE] = "core";
55 static int core_name_size = CORENAME_MAX_SIZE;
62 /* The maximal length of core_pattern is also specified in sysctl.c */
64 static int expand_corename(struct core_name *cn, int size)
66 char *corename = krealloc(cn->corename, size, GFP_KERNEL);
71 if (size > core_name_size) /* racy but harmless */
72 core_name_size = size;
74 cn->size = ksize(corename);
75 cn->corename = corename;
79 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
86 free = cn->size - cn->used;
88 va_copy(arg_copy, arg);
89 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
97 if (!expand_corename(cn, cn->size + need - free + 1))
103 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
109 ret = cn_vprintf(cn, fmt, arg);
115 static __printf(2, 3)
116 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
123 ret = cn_vprintf(cn, fmt, arg);
128 * Ensure that this coredump name component can't cause the
129 * resulting corefile path to consist of a ".." or ".".
131 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
132 (cn->used - cur == 2 && cn->corename[cur] == '.'
133 && cn->corename[cur+1] == '.'))
134 cn->corename[cur] = '!';
137 * Empty names are fishy and could be used to create a "//" in a
138 * corefile name, causing the coredump to happen one directory
139 * level too high. Enforce that all components of the core
140 * pattern are at least one character long.
143 ret = cn_printf(cn, "!");
146 for (; cur < cn->used; ++cur) {
147 if (cn->corename[cur] == '/')
148 cn->corename[cur] = '!';
153 static int cn_print_exe_file(struct core_name *cn)
155 struct file *exe_file;
156 char *pathbuf, *path;
159 exe_file = get_mm_exe_file(current->mm);
161 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
163 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
169 path = file_path(exe_file, pathbuf, PATH_MAX);
175 ret = cn_esc_printf(cn, "%s", path);
184 /* format_corename will inspect the pattern parameter, and output a
185 * name into corename, which must have space for at least
186 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
188 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
190 const struct cred *cred = current_cred();
191 const char *pat_ptr = core_pattern;
192 int ispipe = (*pat_ptr == '|');
193 int pid_in_pattern = 0;
198 if (expand_corename(cn, core_name_size))
200 cn->corename[0] = '\0';
205 /* Repeat as long as we have more pattern to process and more output
208 if (*pat_ptr != '%') {
209 err = cn_printf(cn, "%c", *pat_ptr++);
211 switch (*++pat_ptr) {
212 /* single % at the end, drop that */
215 /* Double percent, output one percent */
217 err = cn_printf(cn, "%c", '%');
222 err = cn_printf(cn, "%d",
223 task_tgid_vnr(current));
227 err = cn_printf(cn, "%d",
228 task_tgid_nr(current));
231 err = cn_printf(cn, "%d",
232 task_pid_vnr(current));
235 err = cn_printf(cn, "%d",
236 task_pid_nr(current));
240 err = cn_printf(cn, "%u",
241 from_kuid(&init_user_ns,
246 err = cn_printf(cn, "%u",
247 from_kgid(&init_user_ns,
251 err = cn_printf(cn, "%d",
252 __get_dumpable(cprm->mm_flags));
254 /* signal that caused the coredump */
256 err = cn_printf(cn, "%d",
257 cprm->siginfo->si_signo);
259 /* UNIX time of coredump */
263 time = ktime_get_real_seconds();
264 err = cn_printf(cn, "%lld", time);
270 err = cn_esc_printf(cn, "%s",
271 utsname()->nodename);
276 err = cn_esc_printf(cn, "%s", current->comm);
279 err = cn_print_exe_file(cn);
281 /* core limit size */
283 err = cn_printf(cn, "%lu",
284 rlimit(RLIMIT_CORE));
297 /* Backward compatibility with core_uses_pid:
299 * If core_pattern does not include a %p (as is the default)
300 * and core_uses_pid is set, then .%pid will be appended to
301 * the filename. Do not do this for piped commands. */
302 if (!ispipe && !pid_in_pattern && core_uses_pid) {
303 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
310 static int zap_process(struct task_struct *start, int exit_code, int flags)
312 struct task_struct *t;
315 /* ignore all signals except SIGKILL, see prepare_signal() */
316 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
317 start->signal->group_exit_code = exit_code;
318 start->signal->group_stop_count = 0;
320 for_each_thread(start, t) {
321 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
322 if (t != current && t->mm) {
323 sigaddset(&t->pending.signal, SIGKILL);
324 signal_wake_up(t, 1);
332 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
333 struct core_state *core_state, int exit_code)
335 struct task_struct *g, *p;
339 spin_lock_irq(&tsk->sighand->siglock);
340 if (!signal_group_exit(tsk->signal)) {
341 mm->core_state = core_state;
342 tsk->signal->group_exit_task = tsk;
343 nr = zap_process(tsk, exit_code, 0);
344 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
346 spin_unlock_irq(&tsk->sighand->siglock);
347 if (unlikely(nr < 0))
350 tsk->flags |= PF_DUMPCORE;
351 if (atomic_read(&mm->mm_users) == nr + 1)
354 * We should find and kill all tasks which use this mm, and we should
355 * count them correctly into ->nr_threads. We don't take tasklist
356 * lock, but this is safe wrt:
359 * None of sub-threads can fork after zap_process(leader). All
360 * processes which were created before this point should be
361 * visible to zap_threads() because copy_process() adds the new
362 * process to the tail of init_task.tasks list, and lock/unlock
363 * of ->siglock provides a memory barrier.
366 * The caller holds mm->mmap_sem. This means that the task which
367 * uses this mm can't pass exit_mm(), so it can't exit or clear
371 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
372 * we must see either old or new leader, this does not matter.
373 * However, it can change p->sighand, so lock_task_sighand(p)
374 * must be used. Since p->mm != NULL and we hold ->mmap_sem
377 * Note also that "g" can be the old leader with ->mm == NULL
378 * and already unhashed and thus removed from ->thread_group.
379 * This is OK, __unhash_process()->list_del_rcu() does not
380 * clear the ->next pointer, we will find the new leader via
384 for_each_process(g) {
385 if (g == tsk->group_leader)
387 if (g->flags & PF_KTHREAD)
390 for_each_thread(g, p) {
391 if (unlikely(!p->mm))
393 if (unlikely(p->mm == mm)) {
394 lock_task_sighand(p, &flags);
395 nr += zap_process(p, exit_code,
397 unlock_task_sighand(p, &flags);
404 atomic_set(&core_state->nr_threads, nr);
408 static int coredump_wait(int exit_code, struct core_state *core_state)
410 struct task_struct *tsk = current;
411 struct mm_struct *mm = tsk->mm;
412 int core_waiters = -EBUSY;
414 init_completion(&core_state->startup);
415 core_state->dumper.task = tsk;
416 core_state->dumper.next = NULL;
418 if (down_write_killable(&mm->mmap_sem))
422 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
423 up_write(&mm->mmap_sem);
425 if (core_waiters > 0) {
426 struct core_thread *ptr;
428 freezer_do_not_count();
429 wait_for_completion(&core_state->startup);
432 * Wait for all the threads to become inactive, so that
433 * all the thread context (extended register state, like
434 * fpu etc) gets copied to the memory.
436 ptr = core_state->dumper.next;
437 while (ptr != NULL) {
438 wait_task_inactive(ptr->task, 0);
446 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
448 struct core_thread *curr, *next;
449 struct task_struct *task;
451 spin_lock_irq(¤t->sighand->siglock);
452 if (core_dumped && !__fatal_signal_pending(current))
453 current->signal->group_exit_code |= 0x80;
454 current->signal->group_exit_task = NULL;
455 current->signal->flags = SIGNAL_GROUP_EXIT;
456 spin_unlock_irq(¤t->sighand->siglock);
458 next = mm->core_state->dumper.next;
459 while ((curr = next) != NULL) {
463 * see exit_mm(), curr->task must not see
464 * ->task == NULL before we read ->next.
468 wake_up_process(task);
471 mm->core_state = NULL;
474 static bool dump_interrupted(void)
477 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
478 * can do try_to_freeze() and check __fatal_signal_pending(),
479 * but then we need to teach dump_write() to restart and clear
482 return signal_pending(current);
485 static void wait_for_dump_helpers(struct file *file)
487 struct pipe_inode_info *pipe = file->private_data;
492 wake_up_interruptible_sync(&pipe->wait);
493 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
497 * We actually want wait_event_freezable() but then we need
498 * to clear TIF_SIGPENDING and improve dump_interrupted().
500 wait_event_interruptible(pipe->wait, pipe->readers == 1);
510 * helper function to customize the process used
511 * to collect the core in userspace. Specifically
512 * it sets up a pipe and installs it as fd 0 (stdin)
513 * for the process. Returns 0 on success, or
514 * PTR_ERR on failure.
515 * Note that it also sets the core limit to 1. This
516 * is a special value that we use to trap recursive
519 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
521 struct file *files[2];
522 struct coredump_params *cp = (struct coredump_params *)info->data;
523 int err = create_pipe_files(files, 0);
529 err = replace_fd(0, files[0], 0);
531 /* and disallow core files too */
532 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
537 void do_coredump(const siginfo_t *siginfo)
539 struct core_state core_state;
541 struct mm_struct *mm = current->mm;
542 struct linux_binfmt * binfmt;
543 const struct cred *old_cred;
547 struct files_struct *displaced;
548 /* require nonrelative corefile path and be extra careful */
549 bool need_suid_safe = false;
550 bool core_dumped = false;
551 static atomic_t core_dump_count = ATOMIC_INIT(0);
552 struct coredump_params cprm = {
554 .regs = signal_pt_regs(),
555 .limit = rlimit(RLIMIT_CORE),
557 * We must use the same mm->flags while dumping core to avoid
558 * inconsistency of bit flags, since this flag is not protected
561 .mm_flags = mm->flags,
564 audit_core_dumps(siginfo->si_signo);
567 if (!binfmt || !binfmt->core_dump)
569 if (!__get_dumpable(cprm.mm_flags))
572 cred = prepare_creds();
576 * We cannot trust fsuid as being the "true" uid of the process
577 * nor do we know its entire history. We only know it was tainted
578 * so we dump it as root in mode 2, and only into a controlled
579 * environment (pipe handler or fully qualified path).
581 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
582 /* Setuid core dump mode */
583 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
584 need_suid_safe = true;
587 retval = coredump_wait(siginfo->si_signo, &core_state);
591 old_cred = override_creds(cred);
593 ispipe = format_corename(&cn, &cprm);
598 struct subprocess_info *sub_info;
601 printk(KERN_WARNING "format_corename failed\n");
602 printk(KERN_WARNING "Aborting core\n");
606 if (cprm.limit == 1) {
607 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
609 * Normally core limits are irrelevant to pipes, since
610 * we're not writing to the file system, but we use
611 * cprm.limit of 1 here as a special value, this is a
612 * consistent way to catch recursive crashes.
613 * We can still crash if the core_pattern binary sets
614 * RLIM_CORE = !1, but it runs as root, and can do
615 * lots of stupid things.
617 * Note that we use task_tgid_vnr here to grab the pid
618 * of the process group leader. That way we get the
619 * right pid if a thread in a multi-threaded
620 * core_pattern process dies.
623 "Process %d(%s) has RLIMIT_CORE set to 1\n",
624 task_tgid_vnr(current), current->comm);
625 printk(KERN_WARNING "Aborting core\n");
628 cprm.limit = RLIM_INFINITY;
630 dump_count = atomic_inc_return(&core_dump_count);
631 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
632 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
633 task_tgid_vnr(current), current->comm);
634 printk(KERN_WARNING "Skipping core dump\n");
638 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
640 printk(KERN_WARNING "%s failed to allocate memory\n",
646 sub_info = call_usermodehelper_setup(helper_argv[0],
647 helper_argv, NULL, GFP_KERNEL,
648 umh_pipe_setup, NULL, &cprm);
650 retval = call_usermodehelper_exec(sub_info,
653 argv_free(helper_argv);
655 printk(KERN_INFO "Core dump to |%s pipe failed\n",
661 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
662 O_LARGEFILE | O_EXCL;
664 if (cprm.limit < binfmt->min_coredump)
667 if (need_suid_safe && cn.corename[0] != '/') {
668 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
669 "to fully qualified path!\n",
670 task_tgid_vnr(current), current->comm);
671 printk(KERN_WARNING "Skipping core dump\n");
676 * Unlink the file if it exists unless this is a SUID
677 * binary - in that case, we're running around with root
678 * privs and don't want to unlink another user's coredump.
680 if (!need_suid_safe) {
686 * If it doesn't exist, that's fine. If there's some
687 * other problem, we'll catch it at the filp_open().
689 (void) sys_unlink((const char __user *)cn.corename);
694 * There is a race between unlinking and creating the
695 * file, but if that causes an EEXIST here, that's
696 * fine - another process raced with us while creating
697 * the corefile, and the other process won. To userspace,
698 * what matters is that at least one of the two processes
699 * writes its coredump successfully, not which one.
701 if (need_suid_safe) {
703 * Using user namespaces, normal user tasks can change
704 * their current->fs->root to point to arbitrary
705 * directories. Since the intention of the "only dump
706 * with a fully qualified path" rule is to control where
707 * coredumps may be placed using root privileges,
708 * current->fs->root must not be used. Instead, use the
709 * root directory of init_task.
713 task_lock(&init_task);
714 get_fs_root(init_task.fs, &root);
715 task_unlock(&init_task);
716 cprm.file = file_open_root(root.dentry, root.mnt,
717 cn.corename, open_flags, 0600);
720 cprm.file = filp_open(cn.corename, open_flags, 0600);
722 if (IS_ERR(cprm.file))
725 inode = file_inode(cprm.file);
726 if (inode->i_nlink > 1)
728 if (d_unhashed(cprm.file->f_path.dentry))
731 * AK: actually i see no reason to not allow this for named
732 * pipes etc, but keep the previous behaviour for now.
734 if (!S_ISREG(inode->i_mode))
737 * Don't dump core if the filesystem changed owner or mode
738 * of the file during file creation. This is an issue when
739 * a process dumps core while its cwd is e.g. on a vfat
742 if (!uid_eq(inode->i_uid, current_fsuid()))
744 if ((inode->i_mode & 0677) != 0600)
746 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
748 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
752 /* get us an unshared descriptor table; almost always a no-op */
753 retval = unshare_files(&displaced);
757 put_files_struct(displaced);
758 if (!dump_interrupted()) {
759 file_start_write(cprm.file);
760 core_dumped = binfmt->core_dump(&cprm);
761 file_end_write(cprm.file);
763 if (ispipe && core_pipe_limit)
764 wait_for_dump_helpers(cprm.file);
767 filp_close(cprm.file, NULL);
770 atomic_dec(&core_dump_count);
773 coredump_finish(mm, core_dumped);
774 revert_creds(old_cred);
782 * Core dumping helper functions. These are the only things you should
783 * do on a core-file: use only these functions to write out all the
786 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
788 struct file *file = cprm->file;
789 loff_t pos = file->f_pos;
791 if (cprm->written + nr > cprm->limit)
794 if (dump_interrupted())
796 n = __kernel_write(file, addr, nr, &pos);
806 EXPORT_SYMBOL(dump_emit);
808 int dump_skip(struct coredump_params *cprm, size_t nr)
810 static char zeroes[PAGE_SIZE];
811 struct file *file = cprm->file;
812 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
813 if (dump_interrupted() ||
814 file->f_op->llseek(file, nr, SEEK_CUR) < 0)
819 while (nr > PAGE_SIZE) {
820 if (!dump_emit(cprm, zeroes, PAGE_SIZE))
824 return dump_emit(cprm, zeroes, nr);
827 EXPORT_SYMBOL(dump_skip);
829 int dump_align(struct coredump_params *cprm, int align)
831 unsigned mod = cprm->pos & (align - 1);
832 if (align & (align - 1))
834 return mod ? dump_skip(cprm, align - mod) : 1;
836 EXPORT_SYMBOL(dump_align);
839 * Ensures that file size is big enough to contain the current file
840 * postion. This prevents gdb from complaining about a truncated file
841 * if the last "write" to the file was dump_skip.
843 void dump_truncate(struct coredump_params *cprm)
845 struct file *file = cprm->file;
848 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
849 offset = file->f_op->llseek(file, 0, SEEK_CUR);
850 if (i_size_read(file->f_mapping->host) < offset)
851 do_truncate(file->f_path.dentry, offset, 0, file);
854 EXPORT_SYMBOL(dump_truncate);