2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
21 #include <asm/processor.h>
23 #include <asm/fpu/xstate.h>
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
33 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
35 xstate_bv &= XFEATURE_MASK_EXTEND;
37 if (xstate_bv & 0x1) {
38 u32 eax, ebx, ecx, edx, offset;
39 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 offset = compacted ? ret : ebx;
41 ret = max(ret, offset + eax);
51 bool kvm_mpx_supported(void)
53 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 && kvm_x86_ops->mpx_supported());
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
58 u64 kvm_supported_xcr0(void)
60 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
62 if (!kvm_mpx_supported())
63 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
68 #define F(x) bit(X86_FEATURE_##x)
70 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
72 struct kvm_cpuid_entry2 *best;
73 struct kvm_lapic *apic = vcpu->arch.apic;
75 best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 /* Update OSXSAVE bit */
80 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
81 best->ecx &= ~F(OSXSAVE);
82 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
83 best->ecx |= F(OSXSAVE);
86 best->edx &= ~F(APIC);
87 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 if (best->ecx & F(TSC_DEADLINE_TIMER))
92 apic->lapic_timer.timer_mode_mask = 3 << 17;
94 apic->lapic_timer.timer_mode_mask = 1 << 17;
97 best = kvm_find_cpuid_entry(vcpu, 7, 0);
99 /* Update OSPKE bit */
100 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
101 best->ecx &= ~F(OSPKE);
102 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
103 best->ecx |= F(OSPKE);
107 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
109 vcpu->arch.guest_supported_xcr0 = 0;
110 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
112 vcpu->arch.guest_supported_xcr0 =
113 (best->eax | ((u64)best->edx << 32)) &
114 kvm_supported_xcr0();
115 vcpu->arch.guest_xstate_size = best->ebx =
116 xstate_required_size(vcpu->arch.xcr0, false);
119 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
120 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
121 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
124 * The existing code assumes virtual address is 48-bit or 57-bit in the
125 * canonical address checks; exit if it is ever changed.
127 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
129 int vaddr_bits = (best->eax & 0xff00) >> 8;
131 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
136 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
137 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
138 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
140 /* Update physical-address width */
141 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
142 kvm_mmu_reset_context(vcpu);
144 kvm_pmu_refresh(vcpu);
148 static int is_efer_nx(void)
150 unsigned long long efer = 0;
152 rdmsrl_safe(MSR_EFER, &efer);
153 return efer & EFER_NX;
156 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
159 struct kvm_cpuid_entry2 *e, *entry;
162 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
163 e = &vcpu->arch.cpuid_entries[i];
164 if (e->function == 0x80000001) {
169 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
170 entry->edx &= ~F(NX);
171 printk(KERN_INFO "kvm: guest NX capability removed\n");
175 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
177 struct kvm_cpuid_entry2 *best;
179 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
180 if (!best || best->eax < 0x80000008)
182 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
184 return best->eax & 0xff;
188 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
190 /* when an old userspace process fills a new kernel module */
191 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
192 struct kvm_cpuid *cpuid,
193 struct kvm_cpuid_entry __user *entries)
196 struct kvm_cpuid_entry *cpuid_entries = NULL;
199 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
204 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
209 if (copy_from_user(cpuid_entries, entries,
210 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
213 for (i = 0; i < cpuid->nent; i++) {
214 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
215 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
216 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
217 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
218 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
219 vcpu->arch.cpuid_entries[i].index = 0;
220 vcpu->arch.cpuid_entries[i].flags = 0;
221 vcpu->arch.cpuid_entries[i].padding[0] = 0;
222 vcpu->arch.cpuid_entries[i].padding[1] = 0;
223 vcpu->arch.cpuid_entries[i].padding[2] = 0;
225 vcpu->arch.cpuid_nent = cpuid->nent;
226 cpuid_fix_nx_cap(vcpu);
227 kvm_apic_set_version(vcpu);
228 kvm_x86_ops->cpuid_update(vcpu);
229 r = kvm_update_cpuid(vcpu);
232 vfree(cpuid_entries);
236 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
237 struct kvm_cpuid2 *cpuid,
238 struct kvm_cpuid_entry2 __user *entries)
243 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
246 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
247 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
249 vcpu->arch.cpuid_nent = cpuid->nent;
250 kvm_apic_set_version(vcpu);
251 kvm_x86_ops->cpuid_update(vcpu);
252 r = kvm_update_cpuid(vcpu);
257 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
258 struct kvm_cpuid2 *cpuid,
259 struct kvm_cpuid_entry2 __user *entries)
264 if (cpuid->nent < vcpu->arch.cpuid_nent)
267 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
268 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
273 cpuid->nent = vcpu->arch.cpuid_nent;
277 static void cpuid_mask(u32 *word, int wordnum)
279 *word &= boot_cpu_data.x86_capability[wordnum];
282 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
285 entry->function = function;
286 entry->index = index;
287 cpuid_count(entry->function, entry->index,
288 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
292 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
293 u32 func, u32 index, int *nent, int maxnent)
301 entry->ecx = F(MOVBE);
305 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
307 entry->ecx = F(RDPID);
313 entry->function = func;
314 entry->index = index;
319 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
320 u32 index, int *nent, int maxnent)
323 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
325 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
327 unsigned f_lm = F(LM);
329 unsigned f_gbpages = 0;
332 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
333 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
334 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
335 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
336 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
337 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
341 const u32 kvm_cpuid_1_edx_x86_features =
342 F(FPU) | F(VME) | F(DE) | F(PSE) |
343 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
344 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
345 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
346 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
347 0 /* Reserved, DS, ACPI */ | F(MMX) |
348 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
349 0 /* HTT, TM, Reserved, PBE */;
350 /* cpuid 0x80000001.edx */
351 const u32 kvm_cpuid_8000_0001_edx_x86_features =
352 F(FPU) | F(VME) | F(DE) | F(PSE) |
353 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
354 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
355 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
356 F(PAT) | F(PSE36) | 0 /* Reserved */ |
357 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
358 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
359 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
361 const u32 kvm_cpuid_1_ecx_x86_features =
362 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
363 * but *not* advertised to guests via CPUID ! */
364 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
365 0 /* DS-CPL, VMX, SMX, EST */ |
366 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
367 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
368 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
369 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
370 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
372 /* cpuid 0x80000001.ecx */
373 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
374 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
375 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
376 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
377 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
378 F(TOPOEXT) | F(PERFCTR_CORE);
380 /* cpuid 0x80000008.ebx */
381 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
382 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
383 F(AMD_SSB_NO) | F(AMD_STIBP);
385 /* cpuid 0xC0000001.edx */
386 const u32 kvm_cpuid_C000_0001_edx_x86_features =
387 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
388 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
392 const u32 kvm_cpuid_7_0_ebx_x86_features =
393 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
394 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
395 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
396 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
397 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
399 /* cpuid 0xD.1.eax */
400 const u32 kvm_cpuid_D_1_eax_x86_features =
401 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
404 const u32 kvm_cpuid_7_0_ecx_x86_features =
405 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
406 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
407 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
408 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B);
411 const u32 kvm_cpuid_7_0_edx_x86_features =
412 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
413 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
416 /* all calls to cpuid_count() should be made on the same cpu */
421 if (*nent >= maxnent)
424 do_cpuid_1_ent(entry, function, index);
429 entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
432 entry->edx &= kvm_cpuid_1_edx_x86_features;
433 cpuid_mask(&entry->edx, CPUID_1_EDX);
434 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
435 cpuid_mask(&entry->ecx, CPUID_1_ECX);
436 /* we support x2apic emulation even if host does not support
437 * it since we emulate x2apic in software */
438 entry->ecx |= F(X2APIC);
440 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
441 * may return different values. This forces us to get_cpu() before
442 * issuing the first command, and also to emulate this annoying behavior
443 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
445 int t, times = entry->eax & 0xff;
447 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
448 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
449 for (t = 1; t < times; ++t) {
450 if (*nent >= maxnent)
453 do_cpuid_1_ent(&entry[t], function, 0);
454 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
459 /* functions 4 and 0x8000001d have additional index. */
464 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
465 /* read more entries until cache_type is zero */
467 if (*nent >= maxnent)
470 cache_type = entry[i - 1].eax & 0x1f;
473 do_cpuid_1_ent(&entry[i], function, i);
475 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
480 case 6: /* Thermal management */
481 entry->eax = 0x4; /* allow ARAT */
487 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
488 /* Mask ebx against host capability word 9 */
490 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
491 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
492 // TSC_ADJUST is emulated
493 entry->ebx |= F(TSC_ADJUST);
494 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
495 f_la57 = entry->ecx & F(LA57);
496 cpuid_mask(&entry->ecx, CPUID_7_ECX);
497 /* Set LA57 based on hardware capability. */
498 entry->ecx |= f_la57;
499 entry->ecx |= f_umip;
500 /* PKU is not yet implemented for shadow paging. */
501 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
502 entry->ecx &= ~F(PKU);
503 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
504 cpuid_mask(&entry->edx, CPUID_7_EDX);
506 * We emulate ARCH_CAPABILITIES in software even
507 * if the host doesn't support it.
509 entry->edx |= F(ARCH_CAPABILITIES);
520 case 0xa: { /* Architectural Performance Monitoring */
521 struct x86_pmu_capability cap;
522 union cpuid10_eax eax;
523 union cpuid10_edx edx;
525 perf_get_x86_pmu_capability(&cap);
528 * Only support guest architectural pmu on a host
529 * with architectural pmu.
532 memset(&cap, 0, sizeof(cap));
534 eax.split.version_id = min(cap.version, 2);
535 eax.split.num_counters = cap.num_counters_gp;
536 eax.split.bit_width = cap.bit_width_gp;
537 eax.split.mask_length = cap.events_mask_len;
539 edx.split.num_counters_fixed = cap.num_counters_fixed;
540 edx.split.bit_width_fixed = cap.bit_width_fixed;
541 edx.split.reserved = 0;
543 entry->eax = eax.full;
544 entry->ebx = cap.events_mask;
546 entry->edx = edx.full;
549 /* function 0xb has additional index. */
553 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
554 /* read more entries until level_type is zero */
556 if (*nent >= maxnent)
559 level_type = entry[i - 1].ecx & 0xff00;
562 do_cpuid_1_ent(&entry[i], function, i);
564 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
571 u64 supported = kvm_supported_xcr0();
573 entry->eax &= supported;
574 entry->ebx = xstate_required_size(supported, false);
575 entry->ecx = entry->ebx;
576 entry->edx &= supported >> 32;
577 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
581 for (idx = 1, i = 1; idx < 64; ++idx) {
582 u64 mask = ((u64)1 << idx);
583 if (*nent >= maxnent)
586 do_cpuid_1_ent(&entry[i], function, idx);
588 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
589 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
591 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
593 xstate_required_size(supported,
596 if (entry[i].eax == 0 || !(supported & mask))
598 if (WARN_ON_ONCE(entry[i].ecx & 1))
604 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
612 int t, times = entry->eax;
617 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
618 for (t = 1; t <= times; ++t) {
619 if (*nent >= maxnent)
621 do_cpuid_1_ent(&entry[t], function, t);
622 entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
627 case KVM_CPUID_SIGNATURE: {
628 static const char signature[12] = "KVMKVMKVM\0\0";
629 const u32 *sigptr = (const u32 *)signature;
630 entry->eax = KVM_CPUID_FEATURES;
631 entry->ebx = sigptr[0];
632 entry->ecx = sigptr[1];
633 entry->edx = sigptr[2];
636 case KVM_CPUID_FEATURES:
637 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
638 (1 << KVM_FEATURE_NOP_IO_DELAY) |
639 (1 << KVM_FEATURE_CLOCKSOURCE2) |
640 (1 << KVM_FEATURE_ASYNC_PF) |
641 (1 << KVM_FEATURE_PV_EOI) |
642 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
643 (1 << KVM_FEATURE_PV_UNHALT) |
644 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
645 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
646 (1 << KVM_FEATURE_PV_SEND_IPI);
649 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
656 entry->eax = min(entry->eax, 0x8000001f);
659 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
660 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
661 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
662 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
664 case 0x80000007: /* Advanced power management */
665 /* invariant TSC is CPUID.80000007H:EDX[8] */
666 entry->edx &= (1 << 8);
667 /* mask against host */
668 entry->edx &= boot_cpu_data.x86_power;
669 entry->eax = entry->ebx = entry->ecx = 0;
672 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
673 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
674 unsigned phys_as = entry->eax & 0xff;
678 entry->eax = g_phys_as | (virt_as << 8);
681 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
684 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
685 entry->ebx |= F(AMD_IBPB);
686 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
687 entry->ebx |= F(AMD_IBRS);
688 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
689 entry->ebx |= F(VIRT_SSBD);
690 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
691 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
693 * The preference is to use SPEC CTRL MSR instead of the
696 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
697 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
698 entry->ebx |= F(VIRT_SSBD);
702 entry->ecx = entry->edx = 0;
707 /*Add support for Centaur's CPUID instruction*/
709 /*Just support up to 0xC0000004 now*/
710 entry->eax = min(entry->eax, 0xC0000004);
713 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
714 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
716 case 3: /* Processor serial number */
717 case 5: /* MONITOR/MWAIT */
722 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
726 kvm_x86_ops->set_supported_cpuid(function, entry);
736 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
737 u32 idx, int *nent, int maxnent, unsigned int type)
739 if (type == KVM_GET_EMULATED_CPUID)
740 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
742 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
747 struct kvm_cpuid_param {
751 bool (*qualifier)(const struct kvm_cpuid_param *param);
754 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
756 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
759 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
760 __u32 num_entries, unsigned int ioctl_type)
765 if (ioctl_type != KVM_GET_EMULATED_CPUID)
769 * We want to make sure that ->padding is being passed clean from
770 * userspace in case we want to use it for something in the future.
772 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
773 * have to give ourselves satisfied only with the emulated side. /me
776 for (i = 0; i < num_entries; i++) {
777 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
780 if (pad[0] || pad[1] || pad[2])
786 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
787 struct kvm_cpuid_entry2 __user *entries,
790 struct kvm_cpuid_entry2 *cpuid_entries;
791 int limit, nent = 0, r = -E2BIG, i;
793 static const struct kvm_cpuid_param param[] = {
794 { .func = 0, .has_leaf_count = true },
795 { .func = 0x80000000, .has_leaf_count = true },
796 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
797 { .func = KVM_CPUID_SIGNATURE },
798 { .func = KVM_CPUID_FEATURES },
803 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
804 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
806 if (sanity_check_entries(entries, cpuid->nent, type))
810 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
816 for (i = 0; i < ARRAY_SIZE(param); i++) {
817 const struct kvm_cpuid_param *ent = ¶m[i];
819 if (ent->qualifier && !ent->qualifier(ent))
822 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
823 &nent, cpuid->nent, type);
828 if (!ent->has_leaf_count)
831 limit = cpuid_entries[nent - 1].eax;
832 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
833 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
834 &nent, cpuid->nent, type);
841 if (copy_to_user(entries, cpuid_entries,
842 nent * sizeof(struct kvm_cpuid_entry2)))
848 vfree(cpuid_entries);
853 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
855 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
856 struct kvm_cpuid_entry2 *ej;
858 int nent = vcpu->arch.cpuid_nent;
860 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
861 /* when no next entry is found, the current entry[i] is reselected */
864 ej = &vcpu->arch.cpuid_entries[j];
865 } while (ej->function != e->function);
867 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
872 /* find an entry with matching function, matching index (if needed), and that
873 * should be read next (if it's stateful) */
874 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
875 u32 function, u32 index)
877 if (e->function != function)
879 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
881 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
882 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
887 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
888 u32 function, u32 index)
891 struct kvm_cpuid_entry2 *best = NULL;
893 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
894 struct kvm_cpuid_entry2 *e;
896 e = &vcpu->arch.cpuid_entries[i];
897 if (is_matching_cpuid_entry(e, function, index)) {
898 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
899 move_to_next_stateful_cpuid_entry(vcpu, i);
906 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
909 * If no match is found, check whether we exceed the vCPU's limit
910 * and return the content of the highest valid _standard_ leaf instead.
911 * This is to satisfy the CPUID specification.
913 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
914 u32 function, u32 index)
916 struct kvm_cpuid_entry2 *maxlevel;
918 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
919 if (!maxlevel || maxlevel->eax >= function)
921 if (function & 0x80000000) {
922 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
926 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
929 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
930 u32 *ecx, u32 *edx, bool check_limit)
932 u32 function = *eax, index = *ecx;
933 struct kvm_cpuid_entry2 *best;
934 bool entry_found = true;
936 best = kvm_find_cpuid_entry(vcpu, function, index);
943 best = check_cpuid_limit(vcpu, function, index);
953 *eax = *ebx = *ecx = *edx = 0;
954 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
957 EXPORT_SYMBOL_GPL(kvm_cpuid);
959 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
961 u32 eax, ebx, ecx, edx;
963 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
966 eax = kvm_rax_read(vcpu);
967 ecx = kvm_rcx_read(vcpu);
968 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
969 kvm_rax_write(vcpu, eax);
970 kvm_rbx_write(vcpu, ebx);
971 kvm_rcx_write(vcpu, ecx);
972 kvm_rdx_write(vcpu, edx);
973 return kvm_skip_emulated_instruction(vcpu);
975 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);