]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/selftest_engine_pm.c
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux.git] / drivers / gpu / drm / i915 / gt / selftest_engine_pm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2018 Intel Corporation
4  */
5
6 #include <linux/sort.h>
7
8 #include "i915_selftest.h"
9 #include "intel_engine_regs.h"
10 #include "intel_gpu_commands.h"
11 #include "intel_gt_clock_utils.h"
12 #include "selftest_engine.h"
13 #include "selftest_engine_heartbeat.h"
14 #include "selftests/igt_atomic.h"
15 #include "selftests/igt_flush_test.h"
16 #include "selftests/igt_spinner.h"
17
18 #define COUNT 5
19
20 static int cmp_u64(const void *A, const void *B)
21 {
22         const u64 *a = A, *b = B;
23
24         return *a - *b;
25 }
26
27 static u64 trifilter(u64 *a)
28 {
29         sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
30         return (a[1] + 2 * a[2] + a[3]) >> 2;
31 }
32
33 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
34 {
35         *cs++ = MI_SEMAPHORE_WAIT |
36                 MI_SEMAPHORE_GLOBAL_GTT |
37                 MI_SEMAPHORE_POLL |
38                 op;
39         *cs++ = value;
40         *cs++ = offset;
41         *cs++ = 0;
42
43         return cs;
44 }
45
46 static u32 *emit_store(u32 *cs, u32 offset, u32 value)
47 {
48         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
49         *cs++ = offset;
50         *cs++ = 0;
51         *cs++ = value;
52
53         return cs;
54 }
55
56 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
57 {
58         *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
59         *cs++ = i915_mmio_reg_offset(reg);
60         *cs++ = offset;
61         *cs++ = 0;
62
63         return cs;
64 }
65
66 static void write_semaphore(u32 *x, u32 value)
67 {
68         WRITE_ONCE(*x, value);
69         wmb();
70 }
71
72 static int __measure_timestamps(struct intel_context *ce,
73                                 u64 *dt, u64 *d_ring, u64 *d_ctx)
74 {
75         struct intel_engine_cs *engine = ce->engine;
76         u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
77         u32 offset = i915_ggtt_offset(engine->status_page.vma);
78         struct i915_request *rq;
79         u32 *cs;
80
81         rq = intel_context_create_request(ce);
82         if (IS_ERR(rq))
83                 return PTR_ERR(rq);
84
85         cs = intel_ring_begin(rq, 28);
86         if (IS_ERR(cs)) {
87                 i915_request_add(rq);
88                 return PTR_ERR(cs);
89         }
90
91         /* Signal & wait for start */
92         cs = emit_store(cs, offset + 4008, 1);
93         cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
94
95         cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
96         cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
97
98         /* Busy wait */
99         cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
100
101         cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
102         cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
103
104         intel_ring_advance(rq, cs);
105         i915_request_get(rq);
106         i915_request_add(rq);
107         intel_engine_flush_submission(engine);
108
109         /* Wait for the request to start executing, that then waits for us */
110         while (READ_ONCE(sema[2]) == 0)
111                 cpu_relax();
112
113         /* Run the request for a 100us, sampling timestamps before/after */
114         local_irq_disable();
115         write_semaphore(&sema[2], 0);
116         while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
117                 cpu_relax();
118         *dt = local_clock();
119         udelay(100);
120         *dt = local_clock() - *dt;
121         write_semaphore(&sema[2], 1);
122         local_irq_enable();
123
124         if (i915_request_wait(rq, 0, HZ / 2) < 0) {
125                 i915_request_put(rq);
126                 return -ETIME;
127         }
128         i915_request_put(rq);
129
130         pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
131                  engine->name, sema[1], sema[3], sema[0], sema[4]);
132
133         *d_ctx = sema[3] - sema[1];
134         *d_ring = sema[4] - sema[0];
135         return 0;
136 }
137
138 static int __live_engine_timestamps(struct intel_engine_cs *engine)
139 {
140         u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
141         struct intel_context *ce;
142         int i, err = 0;
143
144         ce = intel_context_create(engine);
145         if (IS_ERR(ce))
146                 return PTR_ERR(ce);
147
148         for (i = 0; i < COUNT; i++) {
149                 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
150                 if (err)
151                         break;
152         }
153         intel_context_put(ce);
154         if (err)
155                 return err;
156
157         dt = trifilter(st);
158         d_ring = trifilter(s_ring);
159         d_ctx = trifilter(s_ctx);
160
161         pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
162                 engine->name, dt,
163                 intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
164                 intel_gt_clock_interval_to_ns(engine->gt, d_ring));
165
166         d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
167         if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
168                 pr_err("%s Mismatch between ring timestamp and walltime!\n",
169                        engine->name);
170                 return -EINVAL;
171         }
172
173         d_ring = trifilter(s_ring);
174         d_ctx = trifilter(s_ctx);
175
176         d_ctx *= engine->gt->clock_frequency;
177         if (GRAPHICS_VER(engine->i915) == 11)
178                 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
179         else
180                 d_ring *= engine->gt->clock_frequency;
181
182         if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
183                 pr_err("%s Mismatch between ring and context timestamps!\n",
184                        engine->name);
185                 return -EINVAL;
186         }
187
188         return 0;
189 }
190
191 static int live_engine_timestamps(void *arg)
192 {
193         struct intel_gt *gt = arg;
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196
197         /*
198          * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
199          * the same CS clock.
200          */
201
202         if (GRAPHICS_VER(gt->i915) < 8)
203                 return 0;
204
205         for_each_engine(engine, gt, id) {
206                 int err;
207
208                 st_engine_heartbeat_disable(engine);
209                 err = __live_engine_timestamps(engine);
210                 st_engine_heartbeat_enable(engine);
211                 if (err)
212                         return err;
213         }
214
215         return 0;
216 }
217
218 static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness)
219 {
220         ktime_t start, unused, dt;
221
222         if (!intel_engine_uses_guc(engine))
223                 return 0;
224
225         /*
226          * In GuC mode of submission, the busyness stats may get updated after
227          * the batch starts running. Poll for a change in busyness and timeout
228          * after 500 us.
229          */
230         start = ktime_get();
231         while (intel_engine_get_busy_time(engine, &unused) == busyness) {
232                 dt = ktime_get() - start;
233                 if (dt > 10000000) {
234                         pr_err("active wait timed out %lld\n", dt);
235                         ENGINE_TRACE(engine, "active wait time out %lld\n", dt);
236                         return -ETIME;
237                 }
238         }
239
240         return 0;
241 }
242
243 static int live_engine_busy_stats(void *arg)
244 {
245         struct intel_gt *gt = arg;
246         struct intel_engine_cs *engine;
247         enum intel_engine_id id;
248         struct igt_spinner spin;
249         int err = 0;
250
251         /*
252          * Check that if an engine supports busy-stats, they tell the truth.
253          */
254
255         if (igt_spinner_init(&spin, gt))
256                 return -ENOMEM;
257
258         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
259         for_each_engine(engine, gt, id) {
260                 struct i915_request *rq;
261                 ktime_t busyness, dummy;
262                 ktime_t de, dt;
263                 ktime_t t[2];
264
265                 if (!intel_engine_supports_stats(engine))
266                         continue;
267
268                 if (!intel_engine_can_store_dword(engine))
269                         continue;
270
271                 if (intel_gt_pm_wait_for_idle(gt)) {
272                         err = -EBUSY;
273                         break;
274                 }
275
276                 st_engine_heartbeat_disable(engine);
277
278                 ENGINE_TRACE(engine, "measuring idle time\n");
279                 preempt_disable();
280                 de = intel_engine_get_busy_time(engine, &t[0]);
281                 udelay(100);
282                 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
283                 preempt_enable();
284                 dt = ktime_sub(t[1], t[0]);
285                 if (de < 0 || de > 10) {
286                         pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
287                                engine->name,
288                                de, (int)div64_u64(100 * de, dt), dt);
289                         GEM_TRACE_DUMP();
290                         err = -EINVAL;
291                         goto end;
292                 }
293
294                 /* 100% busy */
295                 rq = igt_spinner_create_request(&spin,
296                                                 engine->kernel_context,
297                                                 MI_NOOP);
298                 if (IS_ERR(rq)) {
299                         err = PTR_ERR(rq);
300                         goto end;
301                 }
302                 i915_request_add(rq);
303
304                 busyness = intel_engine_get_busy_time(engine, &dummy);
305                 if (!igt_wait_for_spinner(&spin, rq)) {
306                         intel_gt_set_wedged(engine->gt);
307                         err = -ETIME;
308                         goto end;
309                 }
310
311                 err = __spin_until_busier(engine, busyness);
312                 if (err) {
313                         GEM_TRACE_DUMP();
314                         goto end;
315                 }
316
317                 ENGINE_TRACE(engine, "measuring busy time\n");
318                 preempt_disable();
319                 de = intel_engine_get_busy_time(engine, &t[0]);
320                 mdelay(10);
321                 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
322                 preempt_enable();
323                 dt = ktime_sub(t[1], t[0]);
324                 if (100 * de < 95 * dt || 95 * de > 100 * dt) {
325                         pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
326                                engine->name,
327                                de, (int)div64_u64(100 * de, dt), dt);
328                         GEM_TRACE_DUMP();
329                         err = -EINVAL;
330                         goto end;
331                 }
332
333 end:
334                 st_engine_heartbeat_enable(engine);
335                 igt_spinner_end(&spin);
336                 if (igt_flush_test(gt->i915))
337                         err = -EIO;
338                 if (err)
339                         break;
340         }
341
342         igt_spinner_fini(&spin);
343         if (igt_flush_test(gt->i915))
344                 err = -EIO;
345         return err;
346 }
347
348 static int live_engine_pm(void *arg)
349 {
350         struct intel_gt *gt = arg;
351         struct intel_engine_cs *engine;
352         enum intel_engine_id id;
353
354         /*
355          * Check we can call intel_engine_pm_put from any context. No
356          * failures are reported directly, but if we mess up lockdep should
357          * tell us.
358          */
359         if (intel_gt_pm_wait_for_idle(gt)) {
360                 pr_err("Unable to flush GT pm before test\n");
361                 return -EBUSY;
362         }
363
364         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
365         for_each_engine(engine, gt, id) {
366                 const typeof(*igt_atomic_phases) *p;
367
368                 for (p = igt_atomic_phases; p->name; p++) {
369                         /*
370                          * Acquisition is always synchronous, except if we
371                          * know that the engine is already awake, in which
372                          * case we should use intel_engine_pm_get_if_awake()
373                          * to atomically grab the wakeref.
374                          *
375                          * In practice,
376                          *    intel_engine_pm_get();
377                          *    intel_engine_pm_put();
378                          * occurs in one thread, while simultaneously
379                          *    intel_engine_pm_get_if_awake();
380                          *    intel_engine_pm_put();
381                          * occurs from atomic context in another.
382                          */
383                         GEM_BUG_ON(intel_engine_pm_is_awake(engine));
384                         intel_engine_pm_get(engine);
385
386                         p->critical_section_begin();
387                         if (!intel_engine_pm_get_if_awake(engine))
388                                 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
389                                        engine->name, p->name);
390                         else
391                                 intel_engine_pm_put_async(engine);
392                         intel_engine_pm_put_async(engine);
393                         p->critical_section_end();
394
395                         intel_engine_pm_flush(engine);
396
397                         if (intel_engine_pm_is_awake(engine)) {
398                                 pr_err("%s is still awake after flushing pm\n",
399                                        engine->name);
400                                 return -EINVAL;
401                         }
402
403                         /* gt wakeref is async (deferred to workqueue) */
404                         if (intel_gt_pm_wait_for_idle(gt)) {
405                                 pr_err("GT failed to idle\n");
406                                 return -EINVAL;
407                         }
408                 }
409         }
410
411         return 0;
412 }
413
414 int live_engine_pm_selftests(struct intel_gt *gt)
415 {
416         static const struct i915_subtest tests[] = {
417                 SUBTEST(live_engine_timestamps),
418                 SUBTEST(live_engine_busy_stats),
419                 SUBTEST(live_engine_pm),
420         };
421
422         return intel_gt_live_subtests(tests, gt);
423 }
This page took 0.056341 seconds and 4 git commands to generate.