net: avoid potential underflow in qdisc_pkt_len_init() with UFO
[linux.git] / mm / numa_memblks.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/array_size.h>
4 #include <linux/sort.h>
5 #include <linux/printk.h>
6 #include <linux/memblock.h>
7 #include <linux/numa.h>
8 #include <linux/numa_memblks.h>
9
10 static int numa_distance_cnt;
11 static u8 *numa_distance;
12
13 nodemask_t numa_nodes_parsed __initdata;
14
15 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
16 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
17
18 /*
19  * Set nodes, which have memory in @mi, in *@nodemask.
20  */
21 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
22                                               const struct numa_meminfo *mi)
23 {
24         int i;
25
26         for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
27                 if (mi->blk[i].start != mi->blk[i].end &&
28                     mi->blk[i].nid != NUMA_NO_NODE)
29                         node_set(mi->blk[i].nid, *nodemask);
30 }
31
32 /**
33  * numa_reset_distance - Reset NUMA distance table
34  *
35  * The current table is freed.  The next numa_set_distance() call will
36  * create a new one.
37  */
38 void __init numa_reset_distance(void)
39 {
40         size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
41
42         /* numa_distance could be 1LU marking allocation failure, test cnt */
43         if (numa_distance_cnt)
44                 memblock_free(numa_distance, size);
45         numa_distance_cnt = 0;
46         numa_distance = NULL;   /* enable table creation */
47 }
48
49 static int __init numa_alloc_distance(void)
50 {
51         nodemask_t nodes_parsed;
52         size_t size;
53         int i, j, cnt = 0;
54
55         /* size the new table and allocate it */
56         nodes_parsed = numa_nodes_parsed;
57         numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
58
59         for_each_node_mask(i, nodes_parsed)
60                 cnt = i;
61         cnt++;
62         size = cnt * cnt * sizeof(numa_distance[0]);
63
64         numa_distance = memblock_alloc(size, PAGE_SIZE);
65         if (!numa_distance) {
66                 pr_warn("Warning: can't allocate distance table!\n");
67                 /* don't retry until explicitly reset */
68                 numa_distance = (void *)1LU;
69                 return -ENOMEM;
70         }
71
72         numa_distance_cnt = cnt;
73
74         /* fill with the default distances */
75         for (i = 0; i < cnt; i++)
76                 for (j = 0; j < cnt; j++)
77                         numa_distance[i * cnt + j] = i == j ?
78                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
79         printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
80
81         return 0;
82 }
83
84 /**
85  * numa_set_distance - Set NUMA distance from one NUMA to another
86  * @from: the 'from' node to set distance
87  * @to: the 'to'  node to set distance
88  * @distance: NUMA distance
89  *
90  * Set the distance from node @from to @to to @distance.  If distance table
91  * doesn't exist, one which is large enough to accommodate all the currently
92  * known nodes will be created.
93  *
94  * If such table cannot be allocated, a warning is printed and further
95  * calls are ignored until the distance table is reset with
96  * numa_reset_distance().
97  *
98  * If @from or @to is higher than the highest known node or lower than zero
99  * at the time of table creation or @distance doesn't make sense, the call
100  * is ignored.
101  * This is to allow simplification of specific NUMA config implementations.
102  */
103 void __init numa_set_distance(int from, int to, int distance)
104 {
105         if (!numa_distance && numa_alloc_distance() < 0)
106                 return;
107
108         if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
109                         from < 0 || to < 0) {
110                 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
111                              from, to, distance);
112                 return;
113         }
114
115         if ((u8)distance != distance ||
116             (from == to && distance != LOCAL_DISTANCE)) {
117                 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
118                              from, to, distance);
119                 return;
120         }
121
122         numa_distance[from * numa_distance_cnt + to] = distance;
123 }
124
125 int __node_distance(int from, int to)
126 {
127         if (from >= numa_distance_cnt || to >= numa_distance_cnt)
128                 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
129         return numa_distance[from * numa_distance_cnt + to];
130 }
131 EXPORT_SYMBOL(__node_distance);
132
133 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
134                                      struct numa_meminfo *mi)
135 {
136         /* ignore zero length blks */
137         if (start == end)
138                 return 0;
139
140         /* whine about and ignore invalid blks */
141         if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
142                 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
143                         nid, start, end - 1);
144                 return 0;
145         }
146
147         if (mi->nr_blks >= NR_NODE_MEMBLKS) {
148                 pr_err("too many memblk ranges\n");
149                 return -EINVAL;
150         }
151
152         mi->blk[mi->nr_blks].start = start;
153         mi->blk[mi->nr_blks].end = end;
154         mi->blk[mi->nr_blks].nid = nid;
155         mi->nr_blks++;
156         return 0;
157 }
158
159 /**
160  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
161  * @idx: Index of memblk to remove
162  * @mi: numa_meminfo to remove memblk from
163  *
164  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
165  * decrementing @mi->nr_blks.
166  */
167 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
168 {
169         mi->nr_blks--;
170         memmove(&mi->blk[idx], &mi->blk[idx + 1],
171                 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
172 }
173
174 /**
175  * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
176  * @dst: numa_meminfo to append block to
177  * @idx: Index of memblk to remove
178  * @src: numa_meminfo to remove memblk from
179  */
180 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
181                                          struct numa_meminfo *src)
182 {
183         dst->blk[dst->nr_blks++] = src->blk[idx];
184         numa_remove_memblk_from(idx, src);
185 }
186
187 /**
188  * numa_add_memblk - Add one numa_memblk to numa_meminfo
189  * @nid: NUMA node ID of the new memblk
190  * @start: Start address of the new memblk
191  * @end: End address of the new memblk
192  *
193  * Add a new memblk to the default numa_meminfo.
194  *
195  * RETURNS:
196  * 0 on success, -errno on failure.
197  */
198 int __init numa_add_memblk(int nid, u64 start, u64 end)
199 {
200         return numa_add_memblk_to(nid, start, end, &numa_meminfo);
201 }
202
203 /**
204  * numa_cleanup_meminfo - Cleanup a numa_meminfo
205  * @mi: numa_meminfo to clean up
206  *
207  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
208  * conflicts and clear unused memblks.
209  *
210  * RETURNS:
211  * 0 on success, -errno on failure.
212  */
213 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
214 {
215         const u64 low = memblock_start_of_DRAM();
216         const u64 high = memblock_end_of_DRAM();
217         int i, j, k;
218
219         /* first, trim all entries */
220         for (i = 0; i < mi->nr_blks; i++) {
221                 struct numa_memblk *bi = &mi->blk[i];
222
223                 /* move / save reserved memory ranges */
224                 if (!memblock_overlaps_region(&memblock.memory,
225                                         bi->start, bi->end - bi->start)) {
226                         numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
227                         continue;
228                 }
229
230                 /* make sure all non-reserved blocks are inside the limits */
231                 bi->start = max(bi->start, low);
232
233                 /* preserve info for non-RAM areas above 'max_pfn': */
234                 if (bi->end > high) {
235                         numa_add_memblk_to(bi->nid, high, bi->end,
236                                            &numa_reserved_meminfo);
237                         bi->end = high;
238                 }
239
240                 /* and there's no empty block */
241                 if (bi->start >= bi->end)
242                         numa_remove_memblk_from(i--, mi);
243         }
244
245         /* merge neighboring / overlapping entries */
246         for (i = 0; i < mi->nr_blks; i++) {
247                 struct numa_memblk *bi = &mi->blk[i];
248
249                 for (j = i + 1; j < mi->nr_blks; j++) {
250                         struct numa_memblk *bj = &mi->blk[j];
251                         u64 start, end;
252
253                         /*
254                          * See whether there are overlapping blocks.  Whine
255                          * about but allow overlaps of the same nid.  They
256                          * will be merged below.
257                          */
258                         if (bi->end > bj->start && bi->start < bj->end) {
259                                 if (bi->nid != bj->nid) {
260                                         pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
261                                                bi->nid, bi->start, bi->end - 1,
262                                                bj->nid, bj->start, bj->end - 1);
263                                         return -EINVAL;
264                                 }
265                                 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
266                                         bi->nid, bi->start, bi->end - 1,
267                                         bj->start, bj->end - 1);
268                         }
269
270                         /*
271                          * Join together blocks on the same node, holes
272                          * between which don't overlap with memory on other
273                          * nodes.
274                          */
275                         if (bi->nid != bj->nid)
276                                 continue;
277                         start = min(bi->start, bj->start);
278                         end = max(bi->end, bj->end);
279                         for (k = 0; k < mi->nr_blks; k++) {
280                                 struct numa_memblk *bk = &mi->blk[k];
281
282                                 if (bi->nid == bk->nid)
283                                         continue;
284                                 if (start < bk->end && end > bk->start)
285                                         break;
286                         }
287                         if (k < mi->nr_blks)
288                                 continue;
289                         pr_info("NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
290                                bi->nid, bi->start, bi->end - 1, bj->start,
291                                bj->end - 1, start, end - 1);
292                         bi->start = start;
293                         bi->end = end;
294                         numa_remove_memblk_from(j--, mi);
295                 }
296         }
297
298         /* clear unused ones */
299         for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
300                 mi->blk[i].start = mi->blk[i].end = 0;
301                 mi->blk[i].nid = NUMA_NO_NODE;
302         }
303
304         return 0;
305 }
306
307 /*
308  * Mark all currently memblock-reserved physical memory (which covers the
309  * kernel's own memory ranges) as hot-unswappable.
310  */
311 static void __init numa_clear_kernel_node_hotplug(void)
312 {
313         nodemask_t reserved_nodemask = NODE_MASK_NONE;
314         struct memblock_region *mb_region;
315         int i;
316
317         /*
318          * We have to do some preprocessing of memblock regions, to
319          * make them suitable for reservation.
320          *
321          * At this time, all memory regions reserved by memblock are
322          * used by the kernel, but those regions are not split up
323          * along node boundaries yet, and don't necessarily have their
324          * node ID set yet either.
325          *
326          * So iterate over all parsed memory blocks and use those ranges to
327          * set the nid in memblock.reserved.  This will split up the
328          * memblock regions along node boundaries and will set the node IDs
329          * as well.
330          */
331         for (i = 0; i < numa_meminfo.nr_blks; i++) {
332                 struct numa_memblk *mb = numa_meminfo.blk + i;
333                 int ret;
334
335                 ret = memblock_set_node(mb->start, mb->end - mb->start,
336                                         &memblock.reserved, mb->nid);
337                 WARN_ON_ONCE(ret);
338         }
339
340         /*
341          * Now go over all reserved memblock regions, to construct a
342          * node mask of all kernel reserved memory areas.
343          *
344          * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
345          *   numa_meminfo might not include all memblock.reserved
346          *   memory ranges, because quirks such as trim_snb_memory()
347          *   reserve specific pages for Sandy Bridge graphics. ]
348          */
349         for_each_reserved_mem_region(mb_region) {
350                 int nid = memblock_get_region_node(mb_region);
351
352                 if (nid != MAX_NUMNODES)
353                         node_set(nid, reserved_nodemask);
354         }
355
356         /*
357          * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
358          * belonging to the reserved node mask.
359          *
360          * Note that this will include memory regions that reside
361          * on nodes that contain kernel memory - entire nodes
362          * become hot-unpluggable:
363          */
364         for (i = 0; i < numa_meminfo.nr_blks; i++) {
365                 struct numa_memblk *mb = numa_meminfo.blk + i;
366
367                 if (!node_isset(mb->nid, reserved_nodemask))
368                         continue;
369
370                 memblock_clear_hotplug(mb->start, mb->end - mb->start);
371         }
372 }
373
374 static int __init numa_register_meminfo(struct numa_meminfo *mi)
375 {
376         int i;
377
378         /* Account for nodes with cpus and no memory */
379         node_possible_map = numa_nodes_parsed;
380         numa_nodemask_from_meminfo(&node_possible_map, mi);
381         if (WARN_ON(nodes_empty(node_possible_map)))
382                 return -EINVAL;
383
384         for (i = 0; i < mi->nr_blks; i++) {
385                 struct numa_memblk *mb = &mi->blk[i];
386
387                 memblock_set_node(mb->start, mb->end - mb->start,
388                                   &memblock.memory, mb->nid);
389         }
390
391         /*
392          * At very early time, the kernel have to use some memory such as
393          * loading the kernel image. We cannot prevent this anyway. So any
394          * node the kernel resides in should be un-hotpluggable.
395          *
396          * And when we come here, alloc node data won't fail.
397          */
398         numa_clear_kernel_node_hotplug();
399
400         /*
401          * If sections array is gonna be used for pfn -> nid mapping, check
402          * whether its granularity is fine enough.
403          */
404         if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
405                 unsigned long pfn_align = node_map_pfn_alignment();
406
407                 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
408                         unsigned long node_align_mb = PFN_PHYS(pfn_align) >> 20;
409
410                         unsigned long sect_align_mb = PFN_PHYS(PAGES_PER_SECTION) >> 20;
411
412                         pr_warn("Node alignment %luMB < min %luMB, rejecting NUMA config\n",
413                                 node_align_mb, sect_align_mb);
414                         return -EINVAL;
415                 }
416         }
417
418         return 0;
419 }
420
421 int __init numa_memblks_init(int (*init_func)(void),
422                              bool memblock_force_top_down)
423 {
424         phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
425         int ret;
426
427         nodes_clear(numa_nodes_parsed);
428         nodes_clear(node_possible_map);
429         nodes_clear(node_online_map);
430         memset(&numa_meminfo, 0, sizeof(numa_meminfo));
431         WARN_ON(memblock_set_node(0, max_addr, &memblock.memory, NUMA_NO_NODE));
432         WARN_ON(memblock_set_node(0, max_addr, &memblock.reserved,
433                                   NUMA_NO_NODE));
434         /* In case that parsing SRAT failed. */
435         WARN_ON(memblock_clear_hotplug(0, max_addr));
436         numa_reset_distance();
437
438         ret = init_func();
439         if (ret < 0)
440                 return ret;
441
442         /*
443          * We reset memblock back to the top-down direction
444          * here because if we configured ACPI_NUMA, we have
445          * parsed SRAT in init_func(). It is ok to have the
446          * reset here even if we did't configure ACPI_NUMA
447          * or acpi numa init fails and fallbacks to dummy
448          * numa init.
449          */
450         if (memblock_force_top_down)
451                 memblock_set_bottom_up(false);
452
453         ret = numa_cleanup_meminfo(&numa_meminfo);
454         if (ret < 0)
455                 return ret;
456
457         numa_emulation(&numa_meminfo, numa_distance_cnt);
458
459         return numa_register_meminfo(&numa_meminfo);
460 }
461
462 static int __init cmp_memblk(const void *a, const void *b)
463 {
464         const struct numa_memblk *ma = *(const struct numa_memblk **)a;
465         const struct numa_memblk *mb = *(const struct numa_memblk **)b;
466
467         return (ma->start > mb->start) - (ma->start < mb->start);
468 }
469
470 static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
471
472 /**
473  * numa_fill_memblks - Fill gaps in numa_meminfo memblks
474  * @start: address to begin fill
475  * @end: address to end fill
476  *
477  * Find and extend numa_meminfo memblks to cover the physical
478  * address range @start-@end
479  *
480  * RETURNS:
481  * 0              : Success
482  * NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
483  */
484
485 int __init numa_fill_memblks(u64 start, u64 end)
486 {
487         struct numa_memblk **blk = &numa_memblk_list[0];
488         struct numa_meminfo *mi = &numa_meminfo;
489         int count = 0;
490         u64 prev_end;
491
492         /*
493          * Create a list of pointers to numa_meminfo memblks that
494          * overlap start, end. The list is used to make in-place
495          * changes that fill out the numa_meminfo memblks.
496          */
497         for (int i = 0; i < mi->nr_blks; i++) {
498                 struct numa_memblk *bi = &mi->blk[i];
499
500                 if (memblock_addrs_overlap(start, end - start, bi->start,
501                                            bi->end - bi->start)) {
502                         blk[count] = &mi->blk[i];
503                         count++;
504                 }
505         }
506         if (!count)
507                 return NUMA_NO_MEMBLK;
508
509         /* Sort the list of pointers in memblk->start order */
510         sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
511
512         /* Make sure the first/last memblks include start/end */
513         blk[0]->start = min(blk[0]->start, start);
514         blk[count - 1]->end = max(blk[count - 1]->end, end);
515
516         /*
517          * Fill any gaps by tracking the previous memblks
518          * end address and backfilling to it if needed.
519          */
520         prev_end = blk[0]->end;
521         for (int i = 1; i < count; i++) {
522                 struct numa_memblk *curr = blk[i];
523
524                 if (prev_end >= curr->start) {
525                         if (prev_end < curr->end)
526                                 prev_end = curr->end;
527                 } else {
528                         curr->start = prev_end;
529                         prev_end = curr->end;
530                 }
531         }
532         return 0;
533 }
534
535 #ifdef CONFIG_NUMA_KEEP_MEMINFO
536 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
537 {
538         int i;
539
540         for (i = 0; i < mi->nr_blks; i++)
541                 if (mi->blk[i].start <= start && mi->blk[i].end > start)
542                         return mi->blk[i].nid;
543         return NUMA_NO_NODE;
544 }
545
546 int phys_to_target_node(u64 start)
547 {
548         int nid = meminfo_to_nid(&numa_meminfo, start);
549
550         /*
551          * Prefer online nodes, but if reserved memory might be
552          * hot-added continue the search with reserved ranges.
553          */
554         if (nid != NUMA_NO_NODE)
555                 return nid;
556
557         return meminfo_to_nid(&numa_reserved_meminfo, start);
558 }
559 EXPORT_SYMBOL_GPL(phys_to_target_node);
560
561 int memory_add_physaddr_to_nid(u64 start)
562 {
563         int nid = meminfo_to_nid(&numa_meminfo, start);
564
565         if (nid == NUMA_NO_NODE)
566                 nid = numa_meminfo.blk[0].nid;
567         return nid;
568 }
569 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
570
571 #endif /* CONFIG_NUMA_KEEP_MEMINFO */
This page took 0.067013 seconds and 4 git commands to generate.