mm/vmalloc: be more explicit about supported gfp flags
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475
476 bool shmem_is_huge(struct vm_area_struct *vma,
477                    struct inode *inode, pgoff_t index)
478 {
479         loff_t i_size;
480
481         if (shmem_huge == SHMEM_HUGE_DENY)
482                 return false;
483         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488
489         switch (SHMEM_SB(inode->i_sb)->huge) {
490         case SHMEM_HUGE_ALWAYS:
491                 return true;
492         case SHMEM_HUGE_WITHIN_SIZE:
493                 index = round_up(index + 1, HPAGE_PMD_NR);
494                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495                 if (i_size >> PAGE_SHIFT >= index)
496                         return true;
497                 fallthrough;
498         case SHMEM_HUGE_ADVISE:
499                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500                         return true;
501                 fallthrough;
502         default:
503                 return false;
504         }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510         if (!strcmp(str, "never"))
511                 return SHMEM_HUGE_NEVER;
512         if (!strcmp(str, "always"))
513                 return SHMEM_HUGE_ALWAYS;
514         if (!strcmp(str, "within_size"))
515                 return SHMEM_HUGE_WITHIN_SIZE;
516         if (!strcmp(str, "advise"))
517                 return SHMEM_HUGE_ADVISE;
518         if (!strcmp(str, "deny"))
519                 return SHMEM_HUGE_DENY;
520         if (!strcmp(str, "force"))
521                 return SHMEM_HUGE_FORCE;
522         return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529         switch (huge) {
530         case SHMEM_HUGE_NEVER:
531                 return "never";
532         case SHMEM_HUGE_ALWAYS:
533                 return "always";
534         case SHMEM_HUGE_WITHIN_SIZE:
535                 return "within_size";
536         case SHMEM_HUGE_ADVISE:
537                 return "advise";
538         case SHMEM_HUGE_DENY:
539                 return "deny";
540         case SHMEM_HUGE_FORCE:
541                 return "force";
542         default:
543                 VM_BUG_ON(1);
544                 return "bad_val";
545         }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550                 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552         LIST_HEAD(list), *pos, *next;
553         LIST_HEAD(to_remove);
554         struct inode *inode;
555         struct shmem_inode_info *info;
556         struct page *page;
557         unsigned long batch = sc ? sc->nr_to_scan : 128;
558         int removed = 0, split = 0;
559
560         if (list_empty(&sbinfo->shrinklist))
561                 return SHRINK_STOP;
562
563         spin_lock(&sbinfo->shrinklist_lock);
564         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567                 /* pin the inode */
568                 inode = igrab(&info->vfs_inode);
569
570                 /* inode is about to be evicted */
571                 if (!inode) {
572                         list_del_init(&info->shrinklist);
573                         removed++;
574                         goto next;
575                 }
576
577                 /* Check if there's anything to gain */
578                 if (round_up(inode->i_size, PAGE_SIZE) ==
579                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580                         list_move(&info->shrinklist, &to_remove);
581                         removed++;
582                         goto next;
583                 }
584
585                 list_move(&info->shrinklist, &list);
586 next:
587                 if (!--batch)
588                         break;
589         }
590         spin_unlock(&sbinfo->shrinklist_lock);
591
592         list_for_each_safe(pos, next, &to_remove) {
593                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594                 inode = &info->vfs_inode;
595                 list_del_init(&info->shrinklist);
596                 iput(inode);
597         }
598
599         list_for_each_safe(pos, next, &list) {
600                 int ret;
601
602                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603                 inode = &info->vfs_inode;
604
605                 if (nr_to_split && split >= nr_to_split)
606                         goto leave;
607
608                 page = find_get_page(inode->i_mapping,
609                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610                 if (!page)
611                         goto drop;
612
613                 /* No huge page at the end of the file: nothing to split */
614                 if (!PageTransHuge(page)) {
615                         put_page(page);
616                         goto drop;
617                 }
618
619                 /*
620                  * Leave the inode on the list if we failed to lock
621                  * the page at this time.
622                  *
623                  * Waiting for the lock may lead to deadlock in the
624                  * reclaim path.
625                  */
626                 if (!trylock_page(page)) {
627                         put_page(page);
628                         goto leave;
629                 }
630
631                 ret = split_huge_page(page);
632                 unlock_page(page);
633                 put_page(page);
634
635                 /* If split failed leave the inode on the list */
636                 if (ret)
637                         goto leave;
638
639                 split++;
640 drop:
641                 list_del_init(&info->shrinklist);
642                 removed++;
643 leave:
644                 iput(inode);
645         }
646
647         spin_lock(&sbinfo->shrinklist_lock);
648         list_splice_tail(&list, &sbinfo->shrinklist);
649         sbinfo->shrinklist_len -= removed;
650         spin_unlock(&sbinfo->shrinklist_lock);
651
652         return split;
653 }
654
655 static long shmem_unused_huge_scan(struct super_block *sb,
656                 struct shrink_control *sc)
657 {
658         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
659
660         if (!READ_ONCE(sbinfo->shrinklist_len))
661                 return SHRINK_STOP;
662
663         return shmem_unused_huge_shrink(sbinfo, sc, 0);
664 }
665
666 static long shmem_unused_huge_count(struct super_block *sb,
667                 struct shrink_control *sc)
668 {
669         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
670         return READ_ONCE(sbinfo->shrinklist_len);
671 }
672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
673
674 #define shmem_huge SHMEM_HUGE_DENY
675
676 bool shmem_is_huge(struct vm_area_struct *vma,
677                    struct inode *inode, pgoff_t index)
678 {
679         return false;
680 }
681
682 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
683                 struct shrink_control *sc, unsigned long nr_to_split)
684 {
685         return 0;
686 }
687 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
688
689 /*
690  * Like add_to_page_cache_locked, but error if expected item has gone.
691  */
692 static int shmem_add_to_page_cache(struct page *page,
693                                    struct address_space *mapping,
694                                    pgoff_t index, void *expected, gfp_t gfp,
695                                    struct mm_struct *charge_mm)
696 {
697         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
698         unsigned long i = 0;
699         unsigned long nr = compound_nr(page);
700         int error;
701
702         VM_BUG_ON_PAGE(PageTail(page), page);
703         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
704         VM_BUG_ON_PAGE(!PageLocked(page), page);
705         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
706         VM_BUG_ON(expected && PageTransHuge(page));
707
708         page_ref_add(page, nr);
709         page->mapping = mapping;
710         page->index = index;
711
712         if (!PageSwapCache(page)) {
713                 error = mem_cgroup_charge(page, charge_mm, gfp);
714                 if (error) {
715                         if (PageTransHuge(page)) {
716                                 count_vm_event(THP_FILE_FALLBACK);
717                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
718                         }
719                         goto error;
720                 }
721         }
722         cgroup_throttle_swaprate(page, gfp);
723
724         do {
725                 void *entry;
726                 xas_lock_irq(&xas);
727                 entry = xas_find_conflict(&xas);
728                 if (entry != expected)
729                         xas_set_err(&xas, -EEXIST);
730                 xas_create_range(&xas);
731                 if (xas_error(&xas))
732                         goto unlock;
733 next:
734                 xas_store(&xas, page);
735                 if (++i < nr) {
736                         xas_next(&xas);
737                         goto next;
738                 }
739                 if (PageTransHuge(page)) {
740                         count_vm_event(THP_FILE_ALLOC);
741                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
742                 }
743                 mapping->nrpages += nr;
744                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
746 unlock:
747                 xas_unlock_irq(&xas);
748         } while (xas_nomem(&xas, gfp));
749
750         if (xas_error(&xas)) {
751                 error = xas_error(&xas);
752                 goto error;
753         }
754
755         return 0;
756 error:
757         page->mapping = NULL;
758         page_ref_sub(page, nr);
759         return error;
760 }
761
762 /*
763  * Like delete_from_page_cache, but substitutes swap for page.
764  */
765 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766 {
767         struct address_space *mapping = page->mapping;
768         int error;
769
770         VM_BUG_ON_PAGE(PageCompound(page), page);
771
772         xa_lock_irq(&mapping->i_pages);
773         error = shmem_replace_entry(mapping, page->index, page, radswap);
774         page->mapping = NULL;
775         mapping->nrpages--;
776         __dec_lruvec_page_state(page, NR_FILE_PAGES);
777         __dec_lruvec_page_state(page, NR_SHMEM);
778         xa_unlock_irq(&mapping->i_pages);
779         put_page(page);
780         BUG_ON(error);
781 }
782
783 /*
784  * Remove swap entry from page cache, free the swap and its page cache.
785  */
786 static int shmem_free_swap(struct address_space *mapping,
787                            pgoff_t index, void *radswap)
788 {
789         void *old;
790
791         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792         if (old != radswap)
793                 return -ENOENT;
794         free_swap_and_cache(radix_to_swp_entry(radswap));
795         return 0;
796 }
797
798 /*
799  * Determine (in bytes) how many of the shmem object's pages mapped by the
800  * given offsets are swapped out.
801  *
802  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803  * as long as the inode doesn't go away and racy results are not a problem.
804  */
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806                                                 pgoff_t start, pgoff_t end)
807 {
808         XA_STATE(xas, &mapping->i_pages, start);
809         struct page *page;
810         unsigned long swapped = 0;
811
812         rcu_read_lock();
813         xas_for_each(&xas, page, end - 1) {
814                 if (xas_retry(&xas, page))
815                         continue;
816                 if (xa_is_value(page))
817                         swapped++;
818
819                 if (need_resched()) {
820                         xas_pause(&xas);
821                         cond_resched_rcu();
822                 }
823         }
824
825         rcu_read_unlock();
826
827         return swapped << PAGE_SHIFT;
828 }
829
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839         struct inode *inode = file_inode(vma->vm_file);
840         struct shmem_inode_info *info = SHMEM_I(inode);
841         struct address_space *mapping = inode->i_mapping;
842         unsigned long swapped;
843
844         /* Be careful as we don't hold info->lock */
845         swapped = READ_ONCE(info->swapped);
846
847         /*
848          * The easier cases are when the shmem object has nothing in swap, or
849          * the vma maps it whole. Then we can simply use the stats that we
850          * already track.
851          */
852         if (!swapped)
853                 return 0;
854
855         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856                 return swapped << PAGE_SHIFT;
857
858         /* Here comes the more involved part */
859         return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860                                         vma->vm_pgoff + vma_pages(vma));
861 }
862
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868         struct pagevec pvec;
869         pgoff_t index = 0;
870
871         pagevec_init(&pvec);
872         /*
873          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874          */
875         while (!mapping_unevictable(mapping)) {
876                 if (!pagevec_lookup(&pvec, mapping, &index))
877                         break;
878                 check_move_unevictable_pages(&pvec);
879                 pagevec_release(&pvec);
880                 cond_resched();
881         }
882 }
883
884 /*
885  * Check whether a hole-punch or truncation needs to split a huge page,
886  * returning true if no split was required, or the split has been successful.
887  *
888  * Eviction (or truncation to 0 size) should never need to split a huge page;
889  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890  * head, and then succeeded to trylock on tail.
891  *
892  * A split can only succeed when there are no additional references on the
893  * huge page: so the split below relies upon find_get_entries() having stopped
894  * when it found a subpage of the huge page, without getting further references.
895  */
896 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 {
898         if (!PageTransCompound(page))
899                 return true;
900
901         /* Just proceed to delete a huge page wholly within the range punched */
902         if (PageHead(page) &&
903             page->index >= start && page->index + HPAGE_PMD_NR <= end)
904                 return true;
905
906         /* Try to split huge page, so we can truly punch the hole or truncate */
907         return split_huge_page(page) >= 0;
908 }
909
910 /*
911  * Remove range of pages and swap entries from page cache, and free them.
912  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913  */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915                                                                  bool unfalloc)
916 {
917         struct address_space *mapping = inode->i_mapping;
918         struct shmem_inode_info *info = SHMEM_I(inode);
919         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923         struct pagevec pvec;
924         pgoff_t indices[PAGEVEC_SIZE];
925         long nr_swaps_freed = 0;
926         pgoff_t index;
927         int i;
928
929         if (lend == -1)
930                 end = -1;       /* unsigned, so actually very big */
931
932         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933                 info->fallocend = start;
934
935         pagevec_init(&pvec);
936         index = start;
937         while (index < end && find_lock_entries(mapping, index, end - 1,
938                         &pvec, indices)) {
939                 for (i = 0; i < pagevec_count(&pvec); i++) {
940                         struct page *page = pvec.pages[i];
941
942                         index = indices[i];
943
944                         if (xa_is_value(page)) {
945                                 if (unfalloc)
946                                         continue;
947                                 nr_swaps_freed += !shmem_free_swap(mapping,
948                                                                 index, page);
949                                 continue;
950                         }
951                         index += thp_nr_pages(page) - 1;
952
953                         if (!unfalloc || !PageUptodate(page))
954                                 truncate_inode_page(mapping, page);
955                         unlock_page(page);
956                 }
957                 pagevec_remove_exceptionals(&pvec);
958                 pagevec_release(&pvec);
959                 cond_resched();
960                 index++;
961         }
962
963         if (partial_start) {
964                 struct page *page = NULL;
965                 shmem_getpage(inode, start - 1, &page, SGP_READ);
966                 if (page) {
967                         unsigned int top = PAGE_SIZE;
968                         if (start > end) {
969                                 top = partial_end;
970                                 partial_end = 0;
971                         }
972                         zero_user_segment(page, partial_start, top);
973                         set_page_dirty(page);
974                         unlock_page(page);
975                         put_page(page);
976                 }
977         }
978         if (partial_end) {
979                 struct page *page = NULL;
980                 shmem_getpage(inode, end, &page, SGP_READ);
981                 if (page) {
982                         zero_user_segment(page, 0, partial_end);
983                         set_page_dirty(page);
984                         unlock_page(page);
985                         put_page(page);
986                 }
987         }
988         if (start >= end)
989                 return;
990
991         index = start;
992         while (index < end) {
993                 cond_resched();
994
995                 if (!find_get_entries(mapping, index, end - 1, &pvec,
996                                 indices)) {
997                         /* If all gone or hole-punch or unfalloc, we're done */
998                         if (index == start || end != -1)
999                                 break;
1000                         /* But if truncating, restart to make sure all gone */
1001                         index = start;
1002                         continue;
1003                 }
1004                 for (i = 0; i < pagevec_count(&pvec); i++) {
1005                         struct page *page = pvec.pages[i];
1006
1007                         index = indices[i];
1008                         if (xa_is_value(page)) {
1009                                 if (unfalloc)
1010                                         continue;
1011                                 if (shmem_free_swap(mapping, index, page)) {
1012                                         /* Swap was replaced by page: retry */
1013                                         index--;
1014                                         break;
1015                                 }
1016                                 nr_swaps_freed++;
1017                                 continue;
1018                         }
1019
1020                         lock_page(page);
1021
1022                         if (!unfalloc || !PageUptodate(page)) {
1023                                 if (page_mapping(page) != mapping) {
1024                                         /* Page was replaced by swap: retry */
1025                                         unlock_page(page);
1026                                         index--;
1027                                         break;
1028                                 }
1029                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1030                                 if (shmem_punch_compound(page, start, end))
1031                                         truncate_inode_page(mapping, page);
1032                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1033                                         /* Wipe the page and don't get stuck */
1034                                         clear_highpage(page);
1035                                         flush_dcache_page(page);
1036                                         set_page_dirty(page);
1037                                         if (index <
1038                                             round_up(start, HPAGE_PMD_NR))
1039                                                 start = index + 1;
1040                                 }
1041                         }
1042                         unlock_page(page);
1043                 }
1044                 pagevec_remove_exceptionals(&pvec);
1045                 pagevec_release(&pvec);
1046                 index++;
1047         }
1048
1049         spin_lock_irq(&info->lock);
1050         info->swapped -= nr_swaps_freed;
1051         shmem_recalc_inode(inode);
1052         spin_unlock_irq(&info->lock);
1053 }
1054
1055 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 {
1057         shmem_undo_range(inode, lstart, lend, false);
1058         inode->i_ctime = inode->i_mtime = current_time(inode);
1059 }
1060 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061
1062 static int shmem_getattr(struct user_namespace *mnt_userns,
1063                          const struct path *path, struct kstat *stat,
1064                          u32 request_mask, unsigned int query_flags)
1065 {
1066         struct inode *inode = path->dentry->d_inode;
1067         struct shmem_inode_info *info = SHMEM_I(inode);
1068
1069         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1070                 spin_lock_irq(&info->lock);
1071                 shmem_recalc_inode(inode);
1072                 spin_unlock_irq(&info->lock);
1073         }
1074         generic_fillattr(&init_user_ns, inode, stat);
1075
1076         if (shmem_is_huge(NULL, inode, 0))
1077                 stat->blksize = HPAGE_PMD_SIZE;
1078
1079         return 0;
1080 }
1081
1082 static int shmem_setattr(struct user_namespace *mnt_userns,
1083                          struct dentry *dentry, struct iattr *attr)
1084 {
1085         struct inode *inode = d_inode(dentry);
1086         struct shmem_inode_info *info = SHMEM_I(inode);
1087         int error;
1088
1089         error = setattr_prepare(&init_user_ns, dentry, attr);
1090         if (error)
1091                 return error;
1092
1093         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094                 loff_t oldsize = inode->i_size;
1095                 loff_t newsize = attr->ia_size;
1096
1097                 /* protected by i_rwsem */
1098                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100                         return -EPERM;
1101
1102                 if (newsize != oldsize) {
1103                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104                                         oldsize, newsize);
1105                         if (error)
1106                                 return error;
1107                         i_size_write(inode, newsize);
1108                         inode->i_ctime = inode->i_mtime = current_time(inode);
1109                 }
1110                 if (newsize <= oldsize) {
1111                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1112                         if (oldsize > holebegin)
1113                                 unmap_mapping_range(inode->i_mapping,
1114                                                         holebegin, 0, 1);
1115                         if (info->alloced)
1116                                 shmem_truncate_range(inode,
1117                                                         newsize, (loff_t)-1);
1118                         /* unmap again to remove racily COWed private pages */
1119                         if (oldsize > holebegin)
1120                                 unmap_mapping_range(inode->i_mapping,
1121                                                         holebegin, 0, 1);
1122                 }
1123         }
1124
1125         setattr_copy(&init_user_ns, inode, attr);
1126         if (attr->ia_valid & ATTR_MODE)
1127                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128         return error;
1129 }
1130
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133         struct shmem_inode_info *info = SHMEM_I(inode);
1134         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135
1136         if (shmem_mapping(inode->i_mapping)) {
1137                 shmem_unacct_size(info->flags, inode->i_size);
1138                 inode->i_size = 0;
1139                 shmem_truncate_range(inode, 0, (loff_t)-1);
1140                 if (!list_empty(&info->shrinklist)) {
1141                         spin_lock(&sbinfo->shrinklist_lock);
1142                         if (!list_empty(&info->shrinklist)) {
1143                                 list_del_init(&info->shrinklist);
1144                                 sbinfo->shrinklist_len--;
1145                         }
1146                         spin_unlock(&sbinfo->shrinklist_lock);
1147                 }
1148                 while (!list_empty(&info->swaplist)) {
1149                         /* Wait while shmem_unuse() is scanning this inode... */
1150                         wait_var_event(&info->stop_eviction,
1151                                        !atomic_read(&info->stop_eviction));
1152                         mutex_lock(&shmem_swaplist_mutex);
1153                         /* ...but beware of the race if we peeked too early */
1154                         if (!atomic_read(&info->stop_eviction))
1155                                 list_del_init(&info->swaplist);
1156                         mutex_unlock(&shmem_swaplist_mutex);
1157                 }
1158         }
1159
1160         simple_xattrs_free(&info->xattrs);
1161         WARN_ON(inode->i_blocks);
1162         shmem_free_inode(inode->i_sb);
1163         clear_inode(inode);
1164 }
1165
1166 static int shmem_find_swap_entries(struct address_space *mapping,
1167                                    pgoff_t start, unsigned int nr_entries,
1168                                    struct page **entries, pgoff_t *indices,
1169                                    unsigned int type, bool frontswap)
1170 {
1171         XA_STATE(xas, &mapping->i_pages, start);
1172         struct page *page;
1173         swp_entry_t entry;
1174         unsigned int ret = 0;
1175
1176         if (!nr_entries)
1177                 return 0;
1178
1179         rcu_read_lock();
1180         xas_for_each(&xas, page, ULONG_MAX) {
1181                 if (xas_retry(&xas, page))
1182                         continue;
1183
1184                 if (!xa_is_value(page))
1185                         continue;
1186
1187                 entry = radix_to_swp_entry(page);
1188                 if (swp_type(entry) != type)
1189                         continue;
1190                 if (frontswap &&
1191                     !frontswap_test(swap_info[type], swp_offset(entry)))
1192                         continue;
1193
1194                 indices[ret] = xas.xa_index;
1195                 entries[ret] = page;
1196
1197                 if (need_resched()) {
1198                         xas_pause(&xas);
1199                         cond_resched_rcu();
1200                 }
1201                 if (++ret == nr_entries)
1202                         break;
1203         }
1204         rcu_read_unlock();
1205
1206         return ret;
1207 }
1208
1209 /*
1210  * Move the swapped pages for an inode to page cache. Returns the count
1211  * of pages swapped in, or the error in case of failure.
1212  */
1213 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214                                     pgoff_t *indices)
1215 {
1216         int i = 0;
1217         int ret = 0;
1218         int error = 0;
1219         struct address_space *mapping = inode->i_mapping;
1220
1221         for (i = 0; i < pvec.nr; i++) {
1222                 struct page *page = pvec.pages[i];
1223
1224                 if (!xa_is_value(page))
1225                         continue;
1226                 error = shmem_swapin_page(inode, indices[i],
1227                                           &page, SGP_CACHE,
1228                                           mapping_gfp_mask(mapping),
1229                                           NULL, NULL);
1230                 if (error == 0) {
1231                         unlock_page(page);
1232                         put_page(page);
1233                         ret++;
1234                 }
1235                 if (error == -ENOMEM)
1236                         break;
1237                 error = 0;
1238         }
1239         return error ? error : ret;
1240 }
1241
1242 /*
1243  * If swap found in inode, free it and move page from swapcache to filecache.
1244  */
1245 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246                              bool frontswap, unsigned long *fs_pages_to_unuse)
1247 {
1248         struct address_space *mapping = inode->i_mapping;
1249         pgoff_t start = 0;
1250         struct pagevec pvec;
1251         pgoff_t indices[PAGEVEC_SIZE];
1252         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253         int ret = 0;
1254
1255         pagevec_init(&pvec);
1256         do {
1257                 unsigned int nr_entries = PAGEVEC_SIZE;
1258
1259                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260                         nr_entries = *fs_pages_to_unuse;
1261
1262                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263                                                   pvec.pages, indices,
1264                                                   type, frontswap);
1265                 if (pvec.nr == 0) {
1266                         ret = 0;
1267                         break;
1268                 }
1269
1270                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271                 if (ret < 0)
1272                         break;
1273
1274                 if (frontswap_partial) {
1275                         *fs_pages_to_unuse -= ret;
1276                         if (*fs_pages_to_unuse == 0) {
1277                                 ret = FRONTSWAP_PAGES_UNUSED;
1278                                 break;
1279                         }
1280                 }
1281
1282                 start = indices[pvec.nr - 1];
1283         } while (true);
1284
1285         return ret;
1286 }
1287
1288 /*
1289  * Read all the shared memory data that resides in the swap
1290  * device 'type' back into memory, so the swap device can be
1291  * unused.
1292  */
1293 int shmem_unuse(unsigned int type, bool frontswap,
1294                 unsigned long *fs_pages_to_unuse)
1295 {
1296         struct shmem_inode_info *info, *next;
1297         int error = 0;
1298
1299         if (list_empty(&shmem_swaplist))
1300                 return 0;
1301
1302         mutex_lock(&shmem_swaplist_mutex);
1303         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304                 if (!info->swapped) {
1305                         list_del_init(&info->swaplist);
1306                         continue;
1307                 }
1308                 /*
1309                  * Drop the swaplist mutex while searching the inode for swap;
1310                  * but before doing so, make sure shmem_evict_inode() will not
1311                  * remove placeholder inode from swaplist, nor let it be freed
1312                  * (igrab() would protect from unlink, but not from unmount).
1313                  */
1314                 atomic_inc(&info->stop_eviction);
1315                 mutex_unlock(&shmem_swaplist_mutex);
1316
1317                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1318                                           fs_pages_to_unuse);
1319                 cond_resched();
1320
1321                 mutex_lock(&shmem_swaplist_mutex);
1322                 next = list_next_entry(info, swaplist);
1323                 if (!info->swapped)
1324                         list_del_init(&info->swaplist);
1325                 if (atomic_dec_and_test(&info->stop_eviction))
1326                         wake_up_var(&info->stop_eviction);
1327                 if (error)
1328                         break;
1329         }
1330         mutex_unlock(&shmem_swaplist_mutex);
1331
1332         return error;
1333 }
1334
1335 /*
1336  * Move the page from the page cache to the swap cache.
1337  */
1338 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340         struct shmem_inode_info *info;
1341         struct address_space *mapping;
1342         struct inode *inode;
1343         swp_entry_t swap;
1344         pgoff_t index;
1345
1346         /*
1347          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349          * and its shmem_writeback() needs them to be split when swapping.
1350          */
1351         if (PageTransCompound(page)) {
1352                 /* Ensure the subpages are still dirty */
1353                 SetPageDirty(page);
1354                 if (split_huge_page(page) < 0)
1355                         goto redirty;
1356                 ClearPageDirty(page);
1357         }
1358
1359         BUG_ON(!PageLocked(page));
1360         mapping = page->mapping;
1361         index = page->index;
1362         inode = mapping->host;
1363         info = SHMEM_I(inode);
1364         if (info->flags & VM_LOCKED)
1365                 goto redirty;
1366         if (!total_swap_pages)
1367                 goto redirty;
1368
1369         /*
1370          * Our capabilities prevent regular writeback or sync from ever calling
1371          * shmem_writepage; but a stacking filesystem might use ->writepage of
1372          * its underlying filesystem, in which case tmpfs should write out to
1373          * swap only in response to memory pressure, and not for the writeback
1374          * threads or sync.
1375          */
1376         if (!wbc->for_reclaim) {
1377                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1378                 goto redirty;
1379         }
1380
1381         /*
1382          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383          * value into swapfile.c, the only way we can correctly account for a
1384          * fallocated page arriving here is now to initialize it and write it.
1385          *
1386          * That's okay for a page already fallocated earlier, but if we have
1387          * not yet completed the fallocation, then (a) we want to keep track
1388          * of this page in case we have to undo it, and (b) it may not be a
1389          * good idea to continue anyway, once we're pushing into swap.  So
1390          * reactivate the page, and let shmem_fallocate() quit when too many.
1391          */
1392         if (!PageUptodate(page)) {
1393                 if (inode->i_private) {
1394                         struct shmem_falloc *shmem_falloc;
1395                         spin_lock(&inode->i_lock);
1396                         shmem_falloc = inode->i_private;
1397                         if (shmem_falloc &&
1398                             !shmem_falloc->waitq &&
1399                             index >= shmem_falloc->start &&
1400                             index < shmem_falloc->next)
1401                                 shmem_falloc->nr_unswapped++;
1402                         else
1403                                 shmem_falloc = NULL;
1404                         spin_unlock(&inode->i_lock);
1405                         if (shmem_falloc)
1406                                 goto redirty;
1407                 }
1408                 clear_highpage(page);
1409                 flush_dcache_page(page);
1410                 SetPageUptodate(page);
1411         }
1412
1413         swap = get_swap_page(page);
1414         if (!swap.val)
1415                 goto redirty;
1416
1417         /*
1418          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419          * if it's not already there.  Do it now before the page is
1420          * moved to swap cache, when its pagelock no longer protects
1421          * the inode from eviction.  But don't unlock the mutex until
1422          * we've incremented swapped, because shmem_unuse_inode() will
1423          * prune a !swapped inode from the swaplist under this mutex.
1424          */
1425         mutex_lock(&shmem_swaplist_mutex);
1426         if (list_empty(&info->swaplist))
1427                 list_add(&info->swaplist, &shmem_swaplist);
1428
1429         if (add_to_swap_cache(page, swap,
1430                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431                         NULL) == 0) {
1432                 spin_lock_irq(&info->lock);
1433                 shmem_recalc_inode(inode);
1434                 info->swapped++;
1435                 spin_unlock_irq(&info->lock);
1436
1437                 swap_shmem_alloc(swap);
1438                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439
1440                 mutex_unlock(&shmem_swaplist_mutex);
1441                 BUG_ON(page_mapped(page));
1442                 swap_writepage(page, wbc);
1443                 return 0;
1444         }
1445
1446         mutex_unlock(&shmem_swaplist_mutex);
1447         put_swap_page(page, swap);
1448 redirty:
1449         set_page_dirty(page);
1450         if (wbc->for_reclaim)
1451                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1452         unlock_page(page);
1453         return 0;
1454 }
1455
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459         char buffer[64];
1460
1461         if (!mpol || mpol->mode == MPOL_DEFAULT)
1462                 return;         /* show nothing */
1463
1464         mpol_to_str(buffer, sizeof(buffer), mpol);
1465
1466         seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471         struct mempolicy *mpol = NULL;
1472         if (sbinfo->mpol) {
1473                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1474                 mpol = sbinfo->mpol;
1475                 mpol_get(mpol);
1476                 raw_spin_unlock(&sbinfo->stat_lock);
1477         }
1478         return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486         return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494                 struct shmem_inode_info *info, pgoff_t index)
1495 {
1496         /* Create a pseudo vma that just contains the policy */
1497         vma_init(vma, NULL);
1498         /* Bias interleave by inode number to distribute better across nodes */
1499         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505         /* Drop reference taken by mpol_shared_policy_lookup() */
1506         mpol_cond_put(vma->vm_policy);
1507 }
1508
1509 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510                         struct shmem_inode_info *info, pgoff_t index)
1511 {
1512         struct vm_area_struct pvma;
1513         struct page *page;
1514         struct vm_fault vmf = {
1515                 .vma = &pvma,
1516         };
1517
1518         shmem_pseudo_vma_init(&pvma, info, index);
1519         page = swap_cluster_readahead(swap, gfp, &vmf);
1520         shmem_pseudo_vma_destroy(&pvma);
1521
1522         return page;
1523 }
1524
1525 /*
1526  * Make sure huge_gfp is always more limited than limit_gfp.
1527  * Some of the flags set permissions, while others set limitations.
1528  */
1529 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 {
1531         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1533         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535
1536         /* Allow allocations only from the originally specified zones. */
1537         result |= zoneflags;
1538
1539         /*
1540          * Minimize the result gfp by taking the union with the deny flags,
1541          * and the intersection of the allow flags.
1542          */
1543         result |= (limit_gfp & denyflags);
1544         result |= (huge_gfp & limit_gfp) & allowflags;
1545
1546         return result;
1547 }
1548
1549 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550                 struct shmem_inode_info *info, pgoff_t index)
1551 {
1552         struct vm_area_struct pvma;
1553         struct address_space *mapping = info->vfs_inode.i_mapping;
1554         pgoff_t hindex;
1555         struct page *page;
1556
1557         hindex = round_down(index, HPAGE_PMD_NR);
1558         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559                                                                 XA_PRESENT))
1560                 return NULL;
1561
1562         shmem_pseudo_vma_init(&pvma, info, hindex);
1563         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564                                true);
1565         shmem_pseudo_vma_destroy(&pvma);
1566         if (page)
1567                 prep_transhuge_page(page);
1568         else
1569                 count_vm_event(THP_FILE_FALLBACK);
1570         return page;
1571 }
1572
1573 static struct page *shmem_alloc_page(gfp_t gfp,
1574                         struct shmem_inode_info *info, pgoff_t index)
1575 {
1576         struct vm_area_struct pvma;
1577         struct page *page;
1578
1579         shmem_pseudo_vma_init(&pvma, info, index);
1580         page = alloc_page_vma(gfp, &pvma, 0);
1581         shmem_pseudo_vma_destroy(&pvma);
1582
1583         return page;
1584 }
1585
1586 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1587                 struct inode *inode,
1588                 pgoff_t index, bool huge)
1589 {
1590         struct shmem_inode_info *info = SHMEM_I(inode);
1591         struct page *page;
1592         int nr;
1593         int err = -ENOSPC;
1594
1595         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596                 huge = false;
1597         nr = huge ? HPAGE_PMD_NR : 1;
1598
1599         if (!shmem_inode_acct_block(inode, nr))
1600                 goto failed;
1601
1602         if (huge)
1603                 page = shmem_alloc_hugepage(gfp, info, index);
1604         else
1605                 page = shmem_alloc_page(gfp, info, index);
1606         if (page) {
1607                 __SetPageLocked(page);
1608                 __SetPageSwapBacked(page);
1609                 return page;
1610         }
1611
1612         err = -ENOMEM;
1613         shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615         return ERR_PTR(err);
1616 }
1617
1618 /*
1619  * When a page is moved from swapcache to shmem filecache (either by the
1620  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622  * ignorance of the mapping it belongs to.  If that mapping has special
1623  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624  * we may need to copy to a suitable page before moving to filecache.
1625  *
1626  * In a future release, this may well be extended to respect cpuset and
1627  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628  * but for now it is a simple matter of zone.
1629  */
1630 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 {
1632         return page_zonenum(page) > gfp_zone(gfp);
1633 }
1634
1635 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636                                 struct shmem_inode_info *info, pgoff_t index)
1637 {
1638         struct page *oldpage, *newpage;
1639         struct address_space *swap_mapping;
1640         swp_entry_t entry;
1641         pgoff_t swap_index;
1642         int error;
1643
1644         oldpage = *pagep;
1645         entry.val = page_private(oldpage);
1646         swap_index = swp_offset(entry);
1647         swap_mapping = page_mapping(oldpage);
1648
1649         /*
1650          * We have arrived here because our zones are constrained, so don't
1651          * limit chance of success by further cpuset and node constraints.
1652          */
1653         gfp &= ~GFP_CONSTRAINT_MASK;
1654         newpage = shmem_alloc_page(gfp, info, index);
1655         if (!newpage)
1656                 return -ENOMEM;
1657
1658         get_page(newpage);
1659         copy_highpage(newpage, oldpage);
1660         flush_dcache_page(newpage);
1661
1662         __SetPageLocked(newpage);
1663         __SetPageSwapBacked(newpage);
1664         SetPageUptodate(newpage);
1665         set_page_private(newpage, entry.val);
1666         SetPageSwapCache(newpage);
1667
1668         /*
1669          * Our caller will very soon move newpage out of swapcache, but it's
1670          * a nice clean interface for us to replace oldpage by newpage there.
1671          */
1672         xa_lock_irq(&swap_mapping->i_pages);
1673         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1674         if (!error) {
1675                 mem_cgroup_migrate(oldpage, newpage);
1676                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1677                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1678         }
1679         xa_unlock_irq(&swap_mapping->i_pages);
1680
1681         if (unlikely(error)) {
1682                 /*
1683                  * Is this possible?  I think not, now that our callers check
1684                  * both PageSwapCache and page_private after getting page lock;
1685                  * but be defensive.  Reverse old to newpage for clear and free.
1686                  */
1687                 oldpage = newpage;
1688         } else {
1689                 lru_cache_add(newpage);
1690                 *pagep = newpage;
1691         }
1692
1693         ClearPageSwapCache(oldpage);
1694         set_page_private(oldpage, 0);
1695
1696         unlock_page(oldpage);
1697         put_page(oldpage);
1698         put_page(oldpage);
1699         return error;
1700 }
1701
1702 /*
1703  * Swap in the page pointed to by *pagep.
1704  * Caller has to make sure that *pagep contains a valid swapped page.
1705  * Returns 0 and the page in pagep if success. On failure, returns the
1706  * error code and NULL in *pagep.
1707  */
1708 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1709                              struct page **pagep, enum sgp_type sgp,
1710                              gfp_t gfp, struct vm_area_struct *vma,
1711                              vm_fault_t *fault_type)
1712 {
1713         struct address_space *mapping = inode->i_mapping;
1714         struct shmem_inode_info *info = SHMEM_I(inode);
1715         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1716         struct page *page;
1717         swp_entry_t swap;
1718         int error;
1719
1720         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1721         swap = radix_to_swp_entry(*pagep);
1722         *pagep = NULL;
1723
1724         /* Look it up and read it in.. */
1725         page = lookup_swap_cache(swap, NULL, 0);
1726         if (!page) {
1727                 /* Or update major stats only when swapin succeeds?? */
1728                 if (fault_type) {
1729                         *fault_type |= VM_FAULT_MAJOR;
1730                         count_vm_event(PGMAJFAULT);
1731                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1732                 }
1733                 /* Here we actually start the io */
1734                 page = shmem_swapin(swap, gfp, info, index);
1735                 if (!page) {
1736                         error = -ENOMEM;
1737                         goto failed;
1738                 }
1739         }
1740
1741         /* We have to do this with page locked to prevent races */
1742         lock_page(page);
1743         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1744             !shmem_confirm_swap(mapping, index, swap)) {
1745                 error = -EEXIST;
1746                 goto unlock;
1747         }
1748         if (!PageUptodate(page)) {
1749                 error = -EIO;
1750                 goto failed;
1751         }
1752         wait_on_page_writeback(page);
1753
1754         /*
1755          * Some architectures may have to restore extra metadata to the
1756          * physical page after reading from swap.
1757          */
1758         arch_swap_restore(swap, page);
1759
1760         if (shmem_should_replace_page(page, gfp)) {
1761                 error = shmem_replace_page(&page, gfp, info, index);
1762                 if (error)
1763                         goto failed;
1764         }
1765
1766         error = shmem_add_to_page_cache(page, mapping, index,
1767                                         swp_to_radix_entry(swap), gfp,
1768                                         charge_mm);
1769         if (error)
1770                 goto failed;
1771
1772         spin_lock_irq(&info->lock);
1773         info->swapped--;
1774         shmem_recalc_inode(inode);
1775         spin_unlock_irq(&info->lock);
1776
1777         if (sgp == SGP_WRITE)
1778                 mark_page_accessed(page);
1779
1780         delete_from_swap_cache(page);
1781         set_page_dirty(page);
1782         swap_free(swap);
1783
1784         *pagep = page;
1785         return 0;
1786 failed:
1787         if (!shmem_confirm_swap(mapping, index, swap))
1788                 error = -EEXIST;
1789 unlock:
1790         if (page) {
1791                 unlock_page(page);
1792                 put_page(page);
1793         }
1794
1795         return error;
1796 }
1797
1798 /*
1799  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1800  *
1801  * If we allocate a new one we do not mark it dirty. That's up to the
1802  * vm. If we swap it in we mark it dirty since we also free the swap
1803  * entry since a page cannot live in both the swap and page cache.
1804  *
1805  * vma, vmf, and fault_type are only supplied by shmem_fault:
1806  * otherwise they are NULL.
1807  */
1808 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1809         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1810         struct vm_area_struct *vma, struct vm_fault *vmf,
1811                         vm_fault_t *fault_type)
1812 {
1813         struct address_space *mapping = inode->i_mapping;
1814         struct shmem_inode_info *info = SHMEM_I(inode);
1815         struct shmem_sb_info *sbinfo;
1816         struct mm_struct *charge_mm;
1817         struct page *page;
1818         pgoff_t hindex = index;
1819         gfp_t huge_gfp;
1820         int error;
1821         int once = 0;
1822         int alloced = 0;
1823
1824         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1825                 return -EFBIG;
1826 repeat:
1827         if (sgp <= SGP_CACHE &&
1828             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1829                 return -EINVAL;
1830         }
1831
1832         sbinfo = SHMEM_SB(inode->i_sb);
1833         charge_mm = vma ? vma->vm_mm : NULL;
1834
1835         page = pagecache_get_page(mapping, index,
1836                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1837
1838         if (page && vma && userfaultfd_minor(vma)) {
1839                 if (!xa_is_value(page)) {
1840                         unlock_page(page);
1841                         put_page(page);
1842                 }
1843                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1844                 return 0;
1845         }
1846
1847         if (xa_is_value(page)) {
1848                 error = shmem_swapin_page(inode, index, &page,
1849                                           sgp, gfp, vma, fault_type);
1850                 if (error == -EEXIST)
1851                         goto repeat;
1852
1853                 *pagep = page;
1854                 return error;
1855         }
1856
1857         if (page) {
1858                 hindex = page->index;
1859                 if (sgp == SGP_WRITE)
1860                         mark_page_accessed(page);
1861                 if (PageUptodate(page))
1862                         goto out;
1863                 /* fallocated page */
1864                 if (sgp != SGP_READ)
1865                         goto clear;
1866                 unlock_page(page);
1867                 put_page(page);
1868         }
1869
1870         /*
1871          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1872          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1873          */
1874         *pagep = NULL;
1875         if (sgp == SGP_READ)
1876                 return 0;
1877         if (sgp == SGP_NOALLOC)
1878                 return -ENOENT;
1879
1880         /*
1881          * Fast cache lookup and swap lookup did not find it: allocate.
1882          */
1883
1884         if (vma && userfaultfd_missing(vma)) {
1885                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1886                 return 0;
1887         }
1888
1889         /* Never use a huge page for shmem_symlink() */
1890         if (S_ISLNK(inode->i_mode))
1891                 goto alloc_nohuge;
1892         if (!shmem_is_huge(vma, inode, index))
1893                 goto alloc_nohuge;
1894
1895         huge_gfp = vma_thp_gfp_mask(vma);
1896         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1897         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1898         if (IS_ERR(page)) {
1899 alloc_nohuge:
1900                 page = shmem_alloc_and_acct_page(gfp, inode,
1901                                                  index, false);
1902         }
1903         if (IS_ERR(page)) {
1904                 int retry = 5;
1905
1906                 error = PTR_ERR(page);
1907                 page = NULL;
1908                 if (error != -ENOSPC)
1909                         goto unlock;
1910                 /*
1911                  * Try to reclaim some space by splitting a huge page
1912                  * beyond i_size on the filesystem.
1913                  */
1914                 while (retry--) {
1915                         int ret;
1916
1917                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1918                         if (ret == SHRINK_STOP)
1919                                 break;
1920                         if (ret)
1921                                 goto alloc_nohuge;
1922                 }
1923                 goto unlock;
1924         }
1925
1926         if (PageTransHuge(page))
1927                 hindex = round_down(index, HPAGE_PMD_NR);
1928         else
1929                 hindex = index;
1930
1931         if (sgp == SGP_WRITE)
1932                 __SetPageReferenced(page);
1933
1934         error = shmem_add_to_page_cache(page, mapping, hindex,
1935                                         NULL, gfp & GFP_RECLAIM_MASK,
1936                                         charge_mm);
1937         if (error)
1938                 goto unacct;
1939         lru_cache_add(page);
1940
1941         spin_lock_irq(&info->lock);
1942         info->alloced += compound_nr(page);
1943         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1944         shmem_recalc_inode(inode);
1945         spin_unlock_irq(&info->lock);
1946         alloced = true;
1947
1948         if (PageTransHuge(page) &&
1949             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1950                         hindex + HPAGE_PMD_NR - 1) {
1951                 /*
1952                  * Part of the huge page is beyond i_size: subject
1953                  * to shrink under memory pressure.
1954                  */
1955                 spin_lock(&sbinfo->shrinklist_lock);
1956                 /*
1957                  * _careful to defend against unlocked access to
1958                  * ->shrink_list in shmem_unused_huge_shrink()
1959                  */
1960                 if (list_empty_careful(&info->shrinklist)) {
1961                         list_add_tail(&info->shrinklist,
1962                                       &sbinfo->shrinklist);
1963                         sbinfo->shrinklist_len++;
1964                 }
1965                 spin_unlock(&sbinfo->shrinklist_lock);
1966         }
1967
1968         /*
1969          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1970          */
1971         if (sgp == SGP_FALLOC)
1972                 sgp = SGP_WRITE;
1973 clear:
1974         /*
1975          * Let SGP_WRITE caller clear ends if write does not fill page;
1976          * but SGP_FALLOC on a page fallocated earlier must initialize
1977          * it now, lest undo on failure cancel our earlier guarantee.
1978          */
1979         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1980                 int i;
1981
1982                 for (i = 0; i < compound_nr(page); i++) {
1983                         clear_highpage(page + i);
1984                         flush_dcache_page(page + i);
1985                 }
1986                 SetPageUptodate(page);
1987         }
1988
1989         /* Perhaps the file has been truncated since we checked */
1990         if (sgp <= SGP_CACHE &&
1991             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1992                 if (alloced) {
1993                         ClearPageDirty(page);
1994                         delete_from_page_cache(page);
1995                         spin_lock_irq(&info->lock);
1996                         shmem_recalc_inode(inode);
1997                         spin_unlock_irq(&info->lock);
1998                 }
1999                 error = -EINVAL;
2000                 goto unlock;
2001         }
2002 out:
2003         *pagep = page + index - hindex;
2004         return 0;
2005
2006         /*
2007          * Error recovery.
2008          */
2009 unacct:
2010         shmem_inode_unacct_blocks(inode, compound_nr(page));
2011
2012         if (PageTransHuge(page)) {
2013                 unlock_page(page);
2014                 put_page(page);
2015                 goto alloc_nohuge;
2016         }
2017 unlock:
2018         if (page) {
2019                 unlock_page(page);
2020                 put_page(page);
2021         }
2022         if (error == -ENOSPC && !once++) {
2023                 spin_lock_irq(&info->lock);
2024                 shmem_recalc_inode(inode);
2025                 spin_unlock_irq(&info->lock);
2026                 goto repeat;
2027         }
2028         if (error == -EEXIST)
2029                 goto repeat;
2030         return error;
2031 }
2032
2033 /*
2034  * This is like autoremove_wake_function, but it removes the wait queue
2035  * entry unconditionally - even if something else had already woken the
2036  * target.
2037  */
2038 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2039 {
2040         int ret = default_wake_function(wait, mode, sync, key);
2041         list_del_init(&wait->entry);
2042         return ret;
2043 }
2044
2045 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2046 {
2047         struct vm_area_struct *vma = vmf->vma;
2048         struct inode *inode = file_inode(vma->vm_file);
2049         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2050         int err;
2051         vm_fault_t ret = VM_FAULT_LOCKED;
2052
2053         /*
2054          * Trinity finds that probing a hole which tmpfs is punching can
2055          * prevent the hole-punch from ever completing: which in turn
2056          * locks writers out with its hold on i_rwsem.  So refrain from
2057          * faulting pages into the hole while it's being punched.  Although
2058          * shmem_undo_range() does remove the additions, it may be unable to
2059          * keep up, as each new page needs its own unmap_mapping_range() call,
2060          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2061          *
2062          * It does not matter if we sometimes reach this check just before the
2063          * hole-punch begins, so that one fault then races with the punch:
2064          * we just need to make racing faults a rare case.
2065          *
2066          * The implementation below would be much simpler if we just used a
2067          * standard mutex or completion: but we cannot take i_rwsem in fault,
2068          * and bloating every shmem inode for this unlikely case would be sad.
2069          */
2070         if (unlikely(inode->i_private)) {
2071                 struct shmem_falloc *shmem_falloc;
2072
2073                 spin_lock(&inode->i_lock);
2074                 shmem_falloc = inode->i_private;
2075                 if (shmem_falloc &&
2076                     shmem_falloc->waitq &&
2077                     vmf->pgoff >= shmem_falloc->start &&
2078                     vmf->pgoff < shmem_falloc->next) {
2079                         struct file *fpin;
2080                         wait_queue_head_t *shmem_falloc_waitq;
2081                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2082
2083                         ret = VM_FAULT_NOPAGE;
2084                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2085                         if (fpin)
2086                                 ret = VM_FAULT_RETRY;
2087
2088                         shmem_falloc_waitq = shmem_falloc->waitq;
2089                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2090                                         TASK_UNINTERRUPTIBLE);
2091                         spin_unlock(&inode->i_lock);
2092                         schedule();
2093
2094                         /*
2095                          * shmem_falloc_waitq points into the shmem_fallocate()
2096                          * stack of the hole-punching task: shmem_falloc_waitq
2097                          * is usually invalid by the time we reach here, but
2098                          * finish_wait() does not dereference it in that case;
2099                          * though i_lock needed lest racing with wake_up_all().
2100                          */
2101                         spin_lock(&inode->i_lock);
2102                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2103                         spin_unlock(&inode->i_lock);
2104
2105                         if (fpin)
2106                                 fput(fpin);
2107                         return ret;
2108                 }
2109                 spin_unlock(&inode->i_lock);
2110         }
2111
2112         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2113                                   gfp, vma, vmf, &ret);
2114         if (err)
2115                 return vmf_error(err);
2116         return ret;
2117 }
2118
2119 unsigned long shmem_get_unmapped_area(struct file *file,
2120                                       unsigned long uaddr, unsigned long len,
2121                                       unsigned long pgoff, unsigned long flags)
2122 {
2123         unsigned long (*get_area)(struct file *,
2124                 unsigned long, unsigned long, unsigned long, unsigned long);
2125         unsigned long addr;
2126         unsigned long offset;
2127         unsigned long inflated_len;
2128         unsigned long inflated_addr;
2129         unsigned long inflated_offset;
2130
2131         if (len > TASK_SIZE)
2132                 return -ENOMEM;
2133
2134         get_area = current->mm->get_unmapped_area;
2135         addr = get_area(file, uaddr, len, pgoff, flags);
2136
2137         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2138                 return addr;
2139         if (IS_ERR_VALUE(addr))
2140                 return addr;
2141         if (addr & ~PAGE_MASK)
2142                 return addr;
2143         if (addr > TASK_SIZE - len)
2144                 return addr;
2145
2146         if (shmem_huge == SHMEM_HUGE_DENY)
2147                 return addr;
2148         if (len < HPAGE_PMD_SIZE)
2149                 return addr;
2150         if (flags & MAP_FIXED)
2151                 return addr;
2152         /*
2153          * Our priority is to support MAP_SHARED mapped hugely;
2154          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2155          * But if caller specified an address hint and we allocated area there
2156          * successfully, respect that as before.
2157          */
2158         if (uaddr == addr)
2159                 return addr;
2160
2161         if (shmem_huge != SHMEM_HUGE_FORCE) {
2162                 struct super_block *sb;
2163
2164                 if (file) {
2165                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2166                         sb = file_inode(file)->i_sb;
2167                 } else {
2168                         /*
2169                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2170                          * for "/dev/zero", to create a shared anonymous object.
2171                          */
2172                         if (IS_ERR(shm_mnt))
2173                                 return addr;
2174                         sb = shm_mnt->mnt_sb;
2175                 }
2176                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2177                         return addr;
2178         }
2179
2180         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2181         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2182                 return addr;
2183         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2184                 return addr;
2185
2186         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2187         if (inflated_len > TASK_SIZE)
2188                 return addr;
2189         if (inflated_len < len)
2190                 return addr;
2191
2192         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2193         if (IS_ERR_VALUE(inflated_addr))
2194                 return addr;
2195         if (inflated_addr & ~PAGE_MASK)
2196                 return addr;
2197
2198         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2199         inflated_addr += offset - inflated_offset;
2200         if (inflated_offset > offset)
2201                 inflated_addr += HPAGE_PMD_SIZE;
2202
2203         if (inflated_addr > TASK_SIZE - len)
2204                 return addr;
2205         return inflated_addr;
2206 }
2207
2208 #ifdef CONFIG_NUMA
2209 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2210 {
2211         struct inode *inode = file_inode(vma->vm_file);
2212         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2213 }
2214
2215 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2216                                           unsigned long addr)
2217 {
2218         struct inode *inode = file_inode(vma->vm_file);
2219         pgoff_t index;
2220
2221         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2222         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2223 }
2224 #endif
2225
2226 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2227 {
2228         struct inode *inode = file_inode(file);
2229         struct shmem_inode_info *info = SHMEM_I(inode);
2230         int retval = -ENOMEM;
2231
2232         /*
2233          * What serializes the accesses to info->flags?
2234          * ipc_lock_object() when called from shmctl_do_lock(),
2235          * no serialization needed when called from shm_destroy().
2236          */
2237         if (lock && !(info->flags & VM_LOCKED)) {
2238                 if (!user_shm_lock(inode->i_size, ucounts))
2239                         goto out_nomem;
2240                 info->flags |= VM_LOCKED;
2241                 mapping_set_unevictable(file->f_mapping);
2242         }
2243         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2244                 user_shm_unlock(inode->i_size, ucounts);
2245                 info->flags &= ~VM_LOCKED;
2246                 mapping_clear_unevictable(file->f_mapping);
2247         }
2248         retval = 0;
2249
2250 out_nomem:
2251         return retval;
2252 }
2253
2254 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2255 {
2256         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2257         int ret;
2258
2259         ret = seal_check_future_write(info->seals, vma);
2260         if (ret)
2261                 return ret;
2262
2263         /* arm64 - allow memory tagging on RAM-based files */
2264         vma->vm_flags |= VM_MTE_ALLOWED;
2265
2266         file_accessed(file);
2267         vma->vm_ops = &shmem_vm_ops;
2268         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2269                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2270                         (vma->vm_end & HPAGE_PMD_MASK)) {
2271                 khugepaged_enter(vma, vma->vm_flags);
2272         }
2273         return 0;
2274 }
2275
2276 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2277                                      umode_t mode, dev_t dev, unsigned long flags)
2278 {
2279         struct inode *inode;
2280         struct shmem_inode_info *info;
2281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2282         ino_t ino;
2283
2284         if (shmem_reserve_inode(sb, &ino))
2285                 return NULL;
2286
2287         inode = new_inode(sb);
2288         if (inode) {
2289                 inode->i_ino = ino;
2290                 inode_init_owner(&init_user_ns, inode, dir, mode);
2291                 inode->i_blocks = 0;
2292                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2293                 inode->i_generation = prandom_u32();
2294                 info = SHMEM_I(inode);
2295                 memset(info, 0, (char *)inode - (char *)info);
2296                 spin_lock_init(&info->lock);
2297                 atomic_set(&info->stop_eviction, 0);
2298                 info->seals = F_SEAL_SEAL;
2299                 info->flags = flags & VM_NORESERVE;
2300                 INIT_LIST_HEAD(&info->shrinklist);
2301                 INIT_LIST_HEAD(&info->swaplist);
2302                 simple_xattrs_init(&info->xattrs);
2303                 cache_no_acl(inode);
2304
2305                 switch (mode & S_IFMT) {
2306                 default:
2307                         inode->i_op = &shmem_special_inode_operations;
2308                         init_special_inode(inode, mode, dev);
2309                         break;
2310                 case S_IFREG:
2311                         inode->i_mapping->a_ops = &shmem_aops;
2312                         inode->i_op = &shmem_inode_operations;
2313                         inode->i_fop = &shmem_file_operations;
2314                         mpol_shared_policy_init(&info->policy,
2315                                                  shmem_get_sbmpol(sbinfo));
2316                         break;
2317                 case S_IFDIR:
2318                         inc_nlink(inode);
2319                         /* Some things misbehave if size == 0 on a directory */
2320                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2321                         inode->i_op = &shmem_dir_inode_operations;
2322                         inode->i_fop = &simple_dir_operations;
2323                         break;
2324                 case S_IFLNK:
2325                         /*
2326                          * Must not load anything in the rbtree,
2327                          * mpol_free_shared_policy will not be called.
2328                          */
2329                         mpol_shared_policy_init(&info->policy, NULL);
2330                         break;
2331                 }
2332
2333                 lockdep_annotate_inode_mutex_key(inode);
2334         } else
2335                 shmem_free_inode(sb);
2336         return inode;
2337 }
2338
2339 #ifdef CONFIG_USERFAULTFD
2340 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2341                            pmd_t *dst_pmd,
2342                            struct vm_area_struct *dst_vma,
2343                            unsigned long dst_addr,
2344                            unsigned long src_addr,
2345                            bool zeropage,
2346                            struct page **pagep)
2347 {
2348         struct inode *inode = file_inode(dst_vma->vm_file);
2349         struct shmem_inode_info *info = SHMEM_I(inode);
2350         struct address_space *mapping = inode->i_mapping;
2351         gfp_t gfp = mapping_gfp_mask(mapping);
2352         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2353         void *page_kaddr;
2354         struct page *page;
2355         int ret;
2356         pgoff_t max_off;
2357
2358         if (!shmem_inode_acct_block(inode, 1)) {
2359                 /*
2360                  * We may have got a page, returned -ENOENT triggering a retry,
2361                  * and now we find ourselves with -ENOMEM. Release the page, to
2362                  * avoid a BUG_ON in our caller.
2363                  */
2364                 if (unlikely(*pagep)) {
2365                         put_page(*pagep);
2366                         *pagep = NULL;
2367                 }
2368                 return -ENOMEM;
2369         }
2370
2371         if (!*pagep) {
2372                 ret = -ENOMEM;
2373                 page = shmem_alloc_page(gfp, info, pgoff);
2374                 if (!page)
2375                         goto out_unacct_blocks;
2376
2377                 if (!zeropage) {        /* COPY */
2378                         page_kaddr = kmap_atomic(page);
2379                         ret = copy_from_user(page_kaddr,
2380                                              (const void __user *)src_addr,
2381                                              PAGE_SIZE);
2382                         kunmap_atomic(page_kaddr);
2383
2384                         /* fallback to copy_from_user outside mmap_lock */
2385                         if (unlikely(ret)) {
2386                                 *pagep = page;
2387                                 ret = -ENOENT;
2388                                 /* don't free the page */
2389                                 goto out_unacct_blocks;
2390                         }
2391                 } else {                /* ZEROPAGE */
2392                         clear_highpage(page);
2393                 }
2394         } else {
2395                 page = *pagep;
2396                 *pagep = NULL;
2397         }
2398
2399         VM_BUG_ON(PageLocked(page));
2400         VM_BUG_ON(PageSwapBacked(page));
2401         __SetPageLocked(page);
2402         __SetPageSwapBacked(page);
2403         __SetPageUptodate(page);
2404
2405         ret = -EFAULT;
2406         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407         if (unlikely(pgoff >= max_off))
2408                 goto out_release;
2409
2410         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2412         if (ret)
2413                 goto out_release;
2414
2415         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2416                                        page, true, false);
2417         if (ret)
2418                 goto out_delete_from_cache;
2419
2420         spin_lock_irq(&info->lock);
2421         info->alloced++;
2422         inode->i_blocks += BLOCKS_PER_PAGE;
2423         shmem_recalc_inode(inode);
2424         spin_unlock_irq(&info->lock);
2425
2426         unlock_page(page);
2427         return 0;
2428 out_delete_from_cache:
2429         delete_from_page_cache(page);
2430 out_release:
2431         unlock_page(page);
2432         put_page(page);
2433 out_unacct_blocks:
2434         shmem_inode_unacct_blocks(inode, 1);
2435         return ret;
2436 }
2437 #endif /* CONFIG_USERFAULTFD */
2438
2439 #ifdef CONFIG_TMPFS
2440 static const struct inode_operations shmem_symlink_inode_operations;
2441 static const struct inode_operations shmem_short_symlink_operations;
2442
2443 #ifdef CONFIG_TMPFS_XATTR
2444 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2445 #else
2446 #define shmem_initxattrs NULL
2447 #endif
2448
2449 static int
2450 shmem_write_begin(struct file *file, struct address_space *mapping,
2451                         loff_t pos, unsigned len, unsigned flags,
2452                         struct page **pagep, void **fsdata)
2453 {
2454         struct inode *inode = mapping->host;
2455         struct shmem_inode_info *info = SHMEM_I(inode);
2456         pgoff_t index = pos >> PAGE_SHIFT;
2457
2458         /* i_rwsem is held by caller */
2459         if (unlikely(info->seals & (F_SEAL_GROW |
2460                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2461                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2462                         return -EPERM;
2463                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2464                         return -EPERM;
2465         }
2466
2467         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2468 }
2469
2470 static int
2471 shmem_write_end(struct file *file, struct address_space *mapping,
2472                         loff_t pos, unsigned len, unsigned copied,
2473                         struct page *page, void *fsdata)
2474 {
2475         struct inode *inode = mapping->host;
2476
2477         if (pos + copied > inode->i_size)
2478                 i_size_write(inode, pos + copied);
2479
2480         if (!PageUptodate(page)) {
2481                 struct page *head = compound_head(page);
2482                 if (PageTransCompound(page)) {
2483                         int i;
2484
2485                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2486                                 if (head + i == page)
2487                                         continue;
2488                                 clear_highpage(head + i);
2489                                 flush_dcache_page(head + i);
2490                         }
2491                 }
2492                 if (copied < PAGE_SIZE) {
2493                         unsigned from = pos & (PAGE_SIZE - 1);
2494                         zero_user_segments(page, 0, from,
2495                                         from + copied, PAGE_SIZE);
2496                 }
2497                 SetPageUptodate(head);
2498         }
2499         set_page_dirty(page);
2500         unlock_page(page);
2501         put_page(page);
2502
2503         return copied;
2504 }
2505
2506 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2507 {
2508         struct file *file = iocb->ki_filp;
2509         struct inode *inode = file_inode(file);
2510         struct address_space *mapping = inode->i_mapping;
2511         pgoff_t index;
2512         unsigned long offset;
2513         enum sgp_type sgp = SGP_READ;
2514         int error = 0;
2515         ssize_t retval = 0;
2516         loff_t *ppos = &iocb->ki_pos;
2517
2518         /*
2519          * Might this read be for a stacking filesystem?  Then when reading
2520          * holes of a sparse file, we actually need to allocate those pages,
2521          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2522          */
2523         if (!iter_is_iovec(to))
2524                 sgp = SGP_CACHE;
2525
2526         index = *ppos >> PAGE_SHIFT;
2527         offset = *ppos & ~PAGE_MASK;
2528
2529         for (;;) {
2530                 struct page *page = NULL;
2531                 pgoff_t end_index;
2532                 unsigned long nr, ret;
2533                 loff_t i_size = i_size_read(inode);
2534
2535                 end_index = i_size >> PAGE_SHIFT;
2536                 if (index > end_index)
2537                         break;
2538                 if (index == end_index) {
2539                         nr = i_size & ~PAGE_MASK;
2540                         if (nr <= offset)
2541                                 break;
2542                 }
2543
2544                 error = shmem_getpage(inode, index, &page, sgp);
2545                 if (error) {
2546                         if (error == -EINVAL)
2547                                 error = 0;
2548                         break;
2549                 }
2550                 if (page) {
2551                         if (sgp == SGP_CACHE)
2552                                 set_page_dirty(page);
2553                         unlock_page(page);
2554                 }
2555
2556                 /*
2557                  * We must evaluate after, since reads (unlike writes)
2558                  * are called without i_rwsem protection against truncate
2559                  */
2560                 nr = PAGE_SIZE;
2561                 i_size = i_size_read(inode);
2562                 end_index = i_size >> PAGE_SHIFT;
2563                 if (index == end_index) {
2564                         nr = i_size & ~PAGE_MASK;
2565                         if (nr <= offset) {
2566                                 if (page)
2567                                         put_page(page);
2568                                 break;
2569                         }
2570                 }
2571                 nr -= offset;
2572
2573                 if (page) {
2574                         /*
2575                          * If users can be writing to this page using arbitrary
2576                          * virtual addresses, take care about potential aliasing
2577                          * before reading the page on the kernel side.
2578                          */
2579                         if (mapping_writably_mapped(mapping))
2580                                 flush_dcache_page(page);
2581                         /*
2582                          * Mark the page accessed if we read the beginning.
2583                          */
2584                         if (!offset)
2585                                 mark_page_accessed(page);
2586                 } else {
2587                         page = ZERO_PAGE(0);
2588                         get_page(page);
2589                 }
2590
2591                 /*
2592                  * Ok, we have the page, and it's up-to-date, so
2593                  * now we can copy it to user space...
2594                  */
2595                 ret = copy_page_to_iter(page, offset, nr, to);
2596                 retval += ret;
2597                 offset += ret;
2598                 index += offset >> PAGE_SHIFT;
2599                 offset &= ~PAGE_MASK;
2600
2601                 put_page(page);
2602                 if (!iov_iter_count(to))
2603                         break;
2604                 if (ret < nr) {
2605                         error = -EFAULT;
2606                         break;
2607                 }
2608                 cond_resched();
2609         }
2610
2611         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2612         file_accessed(file);
2613         return retval ? retval : error;
2614 }
2615
2616 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2617 {
2618         struct address_space *mapping = file->f_mapping;
2619         struct inode *inode = mapping->host;
2620
2621         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2622                 return generic_file_llseek_size(file, offset, whence,
2623                                         MAX_LFS_FILESIZE, i_size_read(inode));
2624         if (offset < 0)
2625                 return -ENXIO;
2626
2627         inode_lock(inode);
2628         /* We're holding i_rwsem so we can access i_size directly */
2629         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2630         if (offset >= 0)
2631                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2632         inode_unlock(inode);
2633         return offset;
2634 }
2635
2636 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2637                                                          loff_t len)
2638 {
2639         struct inode *inode = file_inode(file);
2640         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2641         struct shmem_inode_info *info = SHMEM_I(inode);
2642         struct shmem_falloc shmem_falloc;
2643         pgoff_t start, index, end, undo_fallocend;
2644         int error;
2645
2646         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2647                 return -EOPNOTSUPP;
2648
2649         inode_lock(inode);
2650
2651         if (mode & FALLOC_FL_PUNCH_HOLE) {
2652                 struct address_space *mapping = file->f_mapping;
2653                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2654                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2655                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2656
2657                 /* protected by i_rwsem */
2658                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2659                         error = -EPERM;
2660                         goto out;
2661                 }
2662
2663                 shmem_falloc.waitq = &shmem_falloc_waitq;
2664                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2665                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2666                 spin_lock(&inode->i_lock);
2667                 inode->i_private = &shmem_falloc;
2668                 spin_unlock(&inode->i_lock);
2669
2670                 if ((u64)unmap_end > (u64)unmap_start)
2671                         unmap_mapping_range(mapping, unmap_start,
2672                                             1 + unmap_end - unmap_start, 0);
2673                 shmem_truncate_range(inode, offset, offset + len - 1);
2674                 /* No need to unmap again: hole-punching leaves COWed pages */
2675
2676                 spin_lock(&inode->i_lock);
2677                 inode->i_private = NULL;
2678                 wake_up_all(&shmem_falloc_waitq);
2679                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2680                 spin_unlock(&inode->i_lock);
2681                 error = 0;
2682                 goto out;
2683         }
2684
2685         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2686         error = inode_newsize_ok(inode, offset + len);
2687         if (error)
2688                 goto out;
2689
2690         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2691                 error = -EPERM;
2692                 goto out;
2693         }
2694
2695         start = offset >> PAGE_SHIFT;
2696         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2697         /* Try to avoid a swapstorm if len is impossible to satisfy */
2698         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2699                 error = -ENOSPC;
2700                 goto out;
2701         }
2702
2703         shmem_falloc.waitq = NULL;
2704         shmem_falloc.start = start;
2705         shmem_falloc.next  = start;
2706         shmem_falloc.nr_falloced = 0;
2707         shmem_falloc.nr_unswapped = 0;
2708         spin_lock(&inode->i_lock);
2709         inode->i_private = &shmem_falloc;
2710         spin_unlock(&inode->i_lock);
2711
2712         /*
2713          * info->fallocend is only relevant when huge pages might be
2714          * involved: to prevent split_huge_page() freeing fallocated
2715          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2716          */
2717         undo_fallocend = info->fallocend;
2718         if (info->fallocend < end)
2719                 info->fallocend = end;
2720
2721         for (index = start; index < end; ) {
2722                 struct page *page;
2723
2724                 /*
2725                  * Good, the fallocate(2) manpage permits EINTR: we may have
2726                  * been interrupted because we are using up too much memory.
2727                  */
2728                 if (signal_pending(current))
2729                         error = -EINTR;
2730                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2731                         error = -ENOMEM;
2732                 else
2733                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2734                 if (error) {
2735                         info->fallocend = undo_fallocend;
2736                         /* Remove the !PageUptodate pages we added */
2737                         if (index > start) {
2738                                 shmem_undo_range(inode,
2739                                     (loff_t)start << PAGE_SHIFT,
2740                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2741                         }
2742                         goto undone;
2743                 }
2744
2745                 index++;
2746                 /*
2747                  * Here is a more important optimization than it appears:
2748                  * a second SGP_FALLOC on the same huge page will clear it,
2749                  * making it PageUptodate and un-undoable if we fail later.
2750                  */
2751                 if (PageTransCompound(page)) {
2752                         index = round_up(index, HPAGE_PMD_NR);
2753                         /* Beware 32-bit wraparound */
2754                         if (!index)
2755                                 index--;
2756                 }
2757
2758                 /*
2759                  * Inform shmem_writepage() how far we have reached.
2760                  * No need for lock or barrier: we have the page lock.
2761                  */
2762                 if (!PageUptodate(page))
2763                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2764                 shmem_falloc.next = index;
2765
2766                 /*
2767                  * If !PageUptodate, leave it that way so that freeable pages
2768                  * can be recognized if we need to rollback on error later.
2769                  * But set_page_dirty so that memory pressure will swap rather
2770                  * than free the pages we are allocating (and SGP_CACHE pages
2771                  * might still be clean: we now need to mark those dirty too).
2772                  */
2773                 set_page_dirty(page);
2774                 unlock_page(page);
2775                 put_page(page);
2776                 cond_resched();
2777         }
2778
2779         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2780                 i_size_write(inode, offset + len);
2781         inode->i_ctime = current_time(inode);
2782 undone:
2783         spin_lock(&inode->i_lock);
2784         inode->i_private = NULL;
2785         spin_unlock(&inode->i_lock);
2786 out:
2787         inode_unlock(inode);
2788         return error;
2789 }
2790
2791 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2792 {
2793         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2794
2795         buf->f_type = TMPFS_MAGIC;
2796         buf->f_bsize = PAGE_SIZE;
2797         buf->f_namelen = NAME_MAX;
2798         if (sbinfo->max_blocks) {
2799                 buf->f_blocks = sbinfo->max_blocks;
2800                 buf->f_bavail =
2801                 buf->f_bfree  = sbinfo->max_blocks -
2802                                 percpu_counter_sum(&sbinfo->used_blocks);
2803         }
2804         if (sbinfo->max_inodes) {
2805                 buf->f_files = sbinfo->max_inodes;
2806                 buf->f_ffree = sbinfo->free_inodes;
2807         }
2808         /* else leave those fields 0 like simple_statfs */
2809
2810         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2811
2812         return 0;
2813 }
2814
2815 /*
2816  * File creation. Allocate an inode, and we're done..
2817  */
2818 static int
2819 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2820             struct dentry *dentry, umode_t mode, dev_t dev)
2821 {
2822         struct inode *inode;
2823         int error = -ENOSPC;
2824
2825         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2826         if (inode) {
2827                 error = simple_acl_create(dir, inode);
2828                 if (error)
2829                         goto out_iput;
2830                 error = security_inode_init_security(inode, dir,
2831                                                      &dentry->d_name,
2832                                                      shmem_initxattrs, NULL);
2833                 if (error && error != -EOPNOTSUPP)
2834                         goto out_iput;
2835
2836                 error = 0;
2837                 dir->i_size += BOGO_DIRENT_SIZE;
2838                 dir->i_ctime = dir->i_mtime = current_time(dir);
2839                 d_instantiate(dentry, inode);
2840                 dget(dentry); /* Extra count - pin the dentry in core */
2841         }
2842         return error;
2843 out_iput:
2844         iput(inode);
2845         return error;
2846 }
2847
2848 static int
2849 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2850               struct dentry *dentry, umode_t mode)
2851 {
2852         struct inode *inode;
2853         int error = -ENOSPC;
2854
2855         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2856         if (inode) {
2857                 error = security_inode_init_security(inode, dir,
2858                                                      NULL,
2859                                                      shmem_initxattrs, NULL);
2860                 if (error && error != -EOPNOTSUPP)
2861                         goto out_iput;
2862                 error = simple_acl_create(dir, inode);
2863                 if (error)
2864                         goto out_iput;
2865                 d_tmpfile(dentry, inode);
2866         }
2867         return error;
2868 out_iput:
2869         iput(inode);
2870         return error;
2871 }
2872
2873 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2874                        struct dentry *dentry, umode_t mode)
2875 {
2876         int error;
2877
2878         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2879                                  mode | S_IFDIR, 0)))
2880                 return error;
2881         inc_nlink(dir);
2882         return 0;
2883 }
2884
2885 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2886                         struct dentry *dentry, umode_t mode, bool excl)
2887 {
2888         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2889 }
2890
2891 /*
2892  * Link a file..
2893  */
2894 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2895 {
2896         struct inode *inode = d_inode(old_dentry);
2897         int ret = 0;
2898
2899         /*
2900          * No ordinary (disk based) filesystem counts links as inodes;
2901          * but each new link needs a new dentry, pinning lowmem, and
2902          * tmpfs dentries cannot be pruned until they are unlinked.
2903          * But if an O_TMPFILE file is linked into the tmpfs, the
2904          * first link must skip that, to get the accounting right.
2905          */
2906         if (inode->i_nlink) {
2907                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2908                 if (ret)
2909                         goto out;
2910         }
2911
2912         dir->i_size += BOGO_DIRENT_SIZE;
2913         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2914         inc_nlink(inode);
2915         ihold(inode);   /* New dentry reference */
2916         dget(dentry);           /* Extra pinning count for the created dentry */
2917         d_instantiate(dentry, inode);
2918 out:
2919         return ret;
2920 }
2921
2922 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2923 {
2924         struct inode *inode = d_inode(dentry);
2925
2926         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2927                 shmem_free_inode(inode->i_sb);
2928
2929         dir->i_size -= BOGO_DIRENT_SIZE;
2930         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2931         drop_nlink(inode);
2932         dput(dentry);   /* Undo the count from "create" - this does all the work */
2933         return 0;
2934 }
2935
2936 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2937 {
2938         if (!simple_empty(dentry))
2939                 return -ENOTEMPTY;
2940
2941         drop_nlink(d_inode(dentry));
2942         drop_nlink(dir);
2943         return shmem_unlink(dir, dentry);
2944 }
2945
2946 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2947 {
2948         bool old_is_dir = d_is_dir(old_dentry);
2949         bool new_is_dir = d_is_dir(new_dentry);
2950
2951         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2952                 if (old_is_dir) {
2953                         drop_nlink(old_dir);
2954                         inc_nlink(new_dir);
2955                 } else {
2956                         drop_nlink(new_dir);
2957                         inc_nlink(old_dir);
2958                 }
2959         }
2960         old_dir->i_ctime = old_dir->i_mtime =
2961         new_dir->i_ctime = new_dir->i_mtime =
2962         d_inode(old_dentry)->i_ctime =
2963         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2964
2965         return 0;
2966 }
2967
2968 static int shmem_whiteout(struct user_namespace *mnt_userns,
2969                           struct inode *old_dir, struct dentry *old_dentry)
2970 {
2971         struct dentry *whiteout;
2972         int error;
2973
2974         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2975         if (!whiteout)
2976                 return -ENOMEM;
2977
2978         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2979                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2980         dput(whiteout);
2981         if (error)
2982                 return error;
2983
2984         /*
2985          * Cheat and hash the whiteout while the old dentry is still in
2986          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2987          *
2988          * d_lookup() will consistently find one of them at this point,
2989          * not sure which one, but that isn't even important.
2990          */
2991         d_rehash(whiteout);
2992         return 0;
2993 }
2994
2995 /*
2996  * The VFS layer already does all the dentry stuff for rename,
2997  * we just have to decrement the usage count for the target if
2998  * it exists so that the VFS layer correctly free's it when it
2999  * gets overwritten.
3000  */
3001 static int shmem_rename2(struct user_namespace *mnt_userns,
3002                          struct inode *old_dir, struct dentry *old_dentry,
3003                          struct inode *new_dir, struct dentry *new_dentry,
3004                          unsigned int flags)
3005 {
3006         struct inode *inode = d_inode(old_dentry);
3007         int they_are_dirs = S_ISDIR(inode->i_mode);
3008
3009         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3010                 return -EINVAL;
3011
3012         if (flags & RENAME_EXCHANGE)
3013                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3014
3015         if (!simple_empty(new_dentry))
3016                 return -ENOTEMPTY;
3017
3018         if (flags & RENAME_WHITEOUT) {
3019                 int error;
3020
3021                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3022                 if (error)
3023                         return error;
3024         }
3025
3026         if (d_really_is_positive(new_dentry)) {
3027                 (void) shmem_unlink(new_dir, new_dentry);
3028                 if (they_are_dirs) {
3029                         drop_nlink(d_inode(new_dentry));
3030                         drop_nlink(old_dir);
3031                 }
3032         } else if (they_are_dirs) {
3033                 drop_nlink(old_dir);
3034                 inc_nlink(new_dir);
3035         }
3036
3037         old_dir->i_size -= BOGO_DIRENT_SIZE;
3038         new_dir->i_size += BOGO_DIRENT_SIZE;
3039         old_dir->i_ctime = old_dir->i_mtime =
3040         new_dir->i_ctime = new_dir->i_mtime =
3041         inode->i_ctime = current_time(old_dir);
3042         return 0;
3043 }
3044
3045 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3046                          struct dentry *dentry, const char *symname)
3047 {
3048         int error;
3049         int len;
3050         struct inode *inode;
3051         struct page *page;
3052
3053         len = strlen(symname) + 1;
3054         if (len > PAGE_SIZE)
3055                 return -ENAMETOOLONG;
3056
3057         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3058                                 VM_NORESERVE);
3059         if (!inode)
3060                 return -ENOSPC;
3061
3062         error = security_inode_init_security(inode, dir, &dentry->d_name,
3063                                              shmem_initxattrs, NULL);
3064         if (error && error != -EOPNOTSUPP) {
3065                 iput(inode);
3066                 return error;
3067         }
3068
3069         inode->i_size = len-1;
3070         if (len <= SHORT_SYMLINK_LEN) {
3071                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3072                 if (!inode->i_link) {
3073                         iput(inode);
3074                         return -ENOMEM;
3075                 }
3076                 inode->i_op = &shmem_short_symlink_operations;
3077         } else {
3078                 inode_nohighmem(inode);
3079                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3080                 if (error) {
3081                         iput(inode);
3082                         return error;
3083                 }
3084                 inode->i_mapping->a_ops = &shmem_aops;
3085                 inode->i_op = &shmem_symlink_inode_operations;
3086                 memcpy(page_address(page), symname, len);
3087                 SetPageUptodate(page);
3088                 set_page_dirty(page);
3089                 unlock_page(page);
3090                 put_page(page);
3091         }
3092         dir->i_size += BOGO_DIRENT_SIZE;
3093         dir->i_ctime = dir->i_mtime = current_time(dir);
3094         d_instantiate(dentry, inode);
3095         dget(dentry);
3096         return 0;
3097 }
3098
3099 static void shmem_put_link(void *arg)
3100 {
3101         mark_page_accessed(arg);
3102         put_page(arg);
3103 }
3104
3105 static const char *shmem_get_link(struct dentry *dentry,
3106                                   struct inode *inode,
3107                                   struct delayed_call *done)
3108 {
3109         struct page *page = NULL;
3110         int error;
3111         if (!dentry) {
3112                 page = find_get_page(inode->i_mapping, 0);
3113                 if (!page)
3114                         return ERR_PTR(-ECHILD);
3115                 if (!PageUptodate(page)) {
3116                         put_page(page);
3117                         return ERR_PTR(-ECHILD);
3118                 }
3119         } else {
3120                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3121                 if (error)
3122                         return ERR_PTR(error);
3123                 unlock_page(page);
3124         }
3125         set_delayed_call(done, shmem_put_link, page);
3126         return page_address(page);
3127 }
3128
3129 #ifdef CONFIG_TMPFS_XATTR
3130 /*
3131  * Superblocks without xattr inode operations may get some security.* xattr
3132  * support from the LSM "for free". As soon as we have any other xattrs
3133  * like ACLs, we also need to implement the security.* handlers at
3134  * filesystem level, though.
3135  */
3136
3137 /*
3138  * Callback for security_inode_init_security() for acquiring xattrs.
3139  */
3140 static int shmem_initxattrs(struct inode *inode,
3141                             const struct xattr *xattr_array,
3142                             void *fs_info)
3143 {
3144         struct shmem_inode_info *info = SHMEM_I(inode);
3145         const struct xattr *xattr;
3146         struct simple_xattr *new_xattr;
3147         size_t len;
3148
3149         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3150                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3151                 if (!new_xattr)
3152                         return -ENOMEM;
3153
3154                 len = strlen(xattr->name) + 1;
3155                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3156                                           GFP_KERNEL);
3157                 if (!new_xattr->name) {
3158                         kvfree(new_xattr);
3159                         return -ENOMEM;
3160                 }
3161
3162                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3163                        XATTR_SECURITY_PREFIX_LEN);
3164                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3165                        xattr->name, len);
3166
3167                 simple_xattr_list_add(&info->xattrs, new_xattr);
3168         }
3169
3170         return 0;
3171 }
3172
3173 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3174                                    struct dentry *unused, struct inode *inode,
3175                                    const char *name, void *buffer, size_t size)
3176 {
3177         struct shmem_inode_info *info = SHMEM_I(inode);
3178
3179         name = xattr_full_name(handler, name);
3180         return simple_xattr_get(&info->xattrs, name, buffer, size);
3181 }
3182
3183 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3184                                    struct user_namespace *mnt_userns,
3185                                    struct dentry *unused, struct inode *inode,
3186                                    const char *name, const void *value,
3187                                    size_t size, int flags)
3188 {
3189         struct shmem_inode_info *info = SHMEM_I(inode);
3190
3191         name = xattr_full_name(handler, name);
3192         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3193 }
3194
3195 static const struct xattr_handler shmem_security_xattr_handler = {
3196         .prefix = XATTR_SECURITY_PREFIX,
3197         .get = shmem_xattr_handler_get,
3198         .set = shmem_xattr_handler_set,
3199 };
3200
3201 static const struct xattr_handler shmem_trusted_xattr_handler = {
3202         .prefix = XATTR_TRUSTED_PREFIX,
3203         .get = shmem_xattr_handler_get,
3204         .set = shmem_xattr_handler_set,
3205 };
3206
3207 static const struct xattr_handler *shmem_xattr_handlers[] = {
3208 #ifdef CONFIG_TMPFS_POSIX_ACL
3209         &posix_acl_access_xattr_handler,
3210         &posix_acl_default_xattr_handler,
3211 #endif
3212         &shmem_security_xattr_handler,
3213         &shmem_trusted_xattr_handler,
3214         NULL
3215 };
3216
3217 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3218 {
3219         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3220         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3221 }
3222 #endif /* CONFIG_TMPFS_XATTR */
3223
3224 static const struct inode_operations shmem_short_symlink_operations = {
3225         .get_link       = simple_get_link,
3226 #ifdef CONFIG_TMPFS_XATTR
3227         .listxattr      = shmem_listxattr,
3228 #endif
3229 };
3230
3231 static const struct inode_operations shmem_symlink_inode_operations = {
3232         .get_link       = shmem_get_link,
3233 #ifdef CONFIG_TMPFS_XATTR
3234         .listxattr      = shmem_listxattr,
3235 #endif
3236 };
3237
3238 static struct dentry *shmem_get_parent(struct dentry *child)
3239 {
3240         return ERR_PTR(-ESTALE);
3241 }
3242
3243 static int shmem_match(struct inode *ino, void *vfh)
3244 {
3245         __u32 *fh = vfh;
3246         __u64 inum = fh[2];
3247         inum = (inum << 32) | fh[1];
3248         return ino->i_ino == inum && fh[0] == ino->i_generation;
3249 }
3250
3251 /* Find any alias of inode, but prefer a hashed alias */
3252 static struct dentry *shmem_find_alias(struct inode *inode)
3253 {
3254         struct dentry *alias = d_find_alias(inode);
3255
3256         return alias ?: d_find_any_alias(inode);
3257 }
3258
3259
3260 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3261                 struct fid *fid, int fh_len, int fh_type)
3262 {
3263         struct inode *inode;
3264         struct dentry *dentry = NULL;
3265         u64 inum;
3266
3267         if (fh_len < 3)
3268                 return NULL;
3269
3270         inum = fid->raw[2];
3271         inum = (inum << 32) | fid->raw[1];
3272
3273         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3274                         shmem_match, fid->raw);
3275         if (inode) {
3276                 dentry = shmem_find_alias(inode);
3277                 iput(inode);
3278         }
3279
3280         return dentry;
3281 }
3282
3283 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3284                                 struct inode *parent)
3285 {
3286         if (*len < 3) {
3287                 *len = 3;
3288                 return FILEID_INVALID;
3289         }
3290
3291         if (inode_unhashed(inode)) {
3292                 /* Unfortunately insert_inode_hash is not idempotent,
3293                  * so as we hash inodes here rather than at creation
3294                  * time, we need a lock to ensure we only try
3295                  * to do it once
3296                  */
3297                 static DEFINE_SPINLOCK(lock);
3298                 spin_lock(&lock);
3299                 if (inode_unhashed(inode))
3300                         __insert_inode_hash(inode,
3301                                             inode->i_ino + inode->i_generation);
3302                 spin_unlock(&lock);
3303         }
3304
3305         fh[0] = inode->i_generation;
3306         fh[1] = inode->i_ino;
3307         fh[2] = ((__u64)inode->i_ino) >> 32;
3308
3309         *len = 3;
3310         return 1;
3311 }
3312
3313 static const struct export_operations shmem_export_ops = {
3314         .get_parent     = shmem_get_parent,
3315         .encode_fh      = shmem_encode_fh,
3316         .fh_to_dentry   = shmem_fh_to_dentry,
3317 };
3318
3319 enum shmem_param {
3320         Opt_gid,
3321         Opt_huge,
3322         Opt_mode,
3323         Opt_mpol,
3324         Opt_nr_blocks,
3325         Opt_nr_inodes,
3326         Opt_size,
3327         Opt_uid,
3328         Opt_inode32,
3329         Opt_inode64,
3330 };
3331
3332 static const struct constant_table shmem_param_enums_huge[] = {
3333         {"never",       SHMEM_HUGE_NEVER },
3334         {"always",      SHMEM_HUGE_ALWAYS },
3335         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3336         {"advise",      SHMEM_HUGE_ADVISE },
3337         {}
3338 };
3339
3340 const struct fs_parameter_spec shmem_fs_parameters[] = {
3341         fsparam_u32   ("gid",           Opt_gid),
3342         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3343         fsparam_u32oct("mode",          Opt_mode),
3344         fsparam_string("mpol",          Opt_mpol),
3345         fsparam_string("nr_blocks",     Opt_nr_blocks),
3346         fsparam_string("nr_inodes",     Opt_nr_inodes),
3347         fsparam_string("size",          Opt_size),
3348         fsparam_u32   ("uid",           Opt_uid),
3349         fsparam_flag  ("inode32",       Opt_inode32),
3350         fsparam_flag  ("inode64",       Opt_inode64),
3351         {}
3352 };
3353
3354 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3355 {
3356         struct shmem_options *ctx = fc->fs_private;
3357         struct fs_parse_result result;
3358         unsigned long long size;
3359         char *rest;
3360         int opt;
3361
3362         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3363         if (opt < 0)
3364                 return opt;
3365
3366         switch (opt) {
3367         case Opt_size:
3368                 size = memparse(param->string, &rest);
3369                 if (*rest == '%') {
3370                         size <<= PAGE_SHIFT;
3371                         size *= totalram_pages();
3372                         do_div(size, 100);
3373                         rest++;
3374                 }
3375                 if (*rest)
3376                         goto bad_value;
3377                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3378                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3379                 break;
3380         case Opt_nr_blocks:
3381                 ctx->blocks = memparse(param->string, &rest);
3382                 if (*rest)
3383                         goto bad_value;
3384                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3385                 break;
3386         case Opt_nr_inodes:
3387                 ctx->inodes = memparse(param->string, &rest);
3388                 if (*rest)
3389                         goto bad_value;
3390                 ctx->seen |= SHMEM_SEEN_INODES;
3391                 break;
3392         case Opt_mode:
3393                 ctx->mode = result.uint_32 & 07777;
3394                 break;
3395         case Opt_uid:
3396                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3397                 if (!uid_valid(ctx->uid))
3398                         goto bad_value;
3399                 break;
3400         case Opt_gid:
3401                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3402                 if (!gid_valid(ctx->gid))
3403                         goto bad_value;
3404                 break;
3405         case Opt_huge:
3406                 ctx->huge = result.uint_32;
3407                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3408                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3409                       has_transparent_hugepage()))
3410                         goto unsupported_parameter;
3411                 ctx->seen |= SHMEM_SEEN_HUGE;
3412                 break;
3413         case Opt_mpol:
3414                 if (IS_ENABLED(CONFIG_NUMA)) {
3415                         mpol_put(ctx->mpol);
3416                         ctx->mpol = NULL;
3417                         if (mpol_parse_str(param->string, &ctx->mpol))
3418                                 goto bad_value;
3419                         break;
3420                 }
3421                 goto unsupported_parameter;
3422         case Opt_inode32:
3423                 ctx->full_inums = false;
3424                 ctx->seen |= SHMEM_SEEN_INUMS;
3425                 break;
3426         case Opt_inode64:
3427                 if (sizeof(ino_t) < 8) {
3428                         return invalfc(fc,
3429                                        "Cannot use inode64 with <64bit inums in kernel\n");
3430                 }
3431                 ctx->full_inums = true;
3432                 ctx->seen |= SHMEM_SEEN_INUMS;
3433                 break;
3434         }
3435         return 0;
3436
3437 unsupported_parameter:
3438         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3439 bad_value:
3440         return invalfc(fc, "Bad value for '%s'", param->key);
3441 }
3442
3443 static int shmem_parse_options(struct fs_context *fc, void *data)
3444 {
3445         char *options = data;
3446
3447         if (options) {
3448                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3449                 if (err)
3450                         return err;
3451         }
3452
3453         while (options != NULL) {
3454                 char *this_char = options;
3455                 for (;;) {
3456                         /*
3457                          * NUL-terminate this option: unfortunately,
3458                          * mount options form a comma-separated list,
3459                          * but mpol's nodelist may also contain commas.
3460                          */
3461                         options = strchr(options, ',');
3462                         if (options == NULL)
3463                                 break;
3464                         options++;
3465                         if (!isdigit(*options)) {
3466                                 options[-1] = '\0';
3467                                 break;
3468                         }
3469                 }
3470                 if (*this_char) {
3471                         char *value = strchr(this_char, '=');
3472                         size_t len = 0;
3473                         int err;
3474
3475                         if (value) {
3476                                 *value++ = '\0';
3477                                 len = strlen(value);
3478                         }
3479                         err = vfs_parse_fs_string(fc, this_char, value, len);
3480                         if (err < 0)
3481                                 return err;
3482                 }
3483         }
3484         return 0;
3485 }
3486
3487 /*
3488  * Reconfigure a shmem filesystem.
3489  *
3490  * Note that we disallow change from limited->unlimited blocks/inodes while any
3491  * are in use; but we must separately disallow unlimited->limited, because in
3492  * that case we have no record of how much is already in use.
3493  */
3494 static int shmem_reconfigure(struct fs_context *fc)
3495 {
3496         struct shmem_options *ctx = fc->fs_private;
3497         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3498         unsigned long inodes;
3499         struct mempolicy *mpol = NULL;
3500         const char *err;
3501
3502         raw_spin_lock(&sbinfo->stat_lock);
3503         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3504         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3505                 if (!sbinfo->max_blocks) {
3506                         err = "Cannot retroactively limit size";
3507                         goto out;
3508                 }
3509                 if (percpu_counter_compare(&sbinfo->used_blocks,
3510                                            ctx->blocks) > 0) {
3511                         err = "Too small a size for current use";
3512                         goto out;
3513                 }
3514         }
3515         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3516                 if (!sbinfo->max_inodes) {
3517                         err = "Cannot retroactively limit inodes";
3518                         goto out;
3519                 }
3520                 if (ctx->inodes < inodes) {
3521                         err = "Too few inodes for current use";
3522                         goto out;
3523                 }
3524         }
3525
3526         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3527             sbinfo->next_ino > UINT_MAX) {
3528                 err = "Current inum too high to switch to 32-bit inums";
3529                 goto out;
3530         }
3531
3532         if (ctx->seen & SHMEM_SEEN_HUGE)
3533                 sbinfo->huge = ctx->huge;
3534         if (ctx->seen & SHMEM_SEEN_INUMS)
3535                 sbinfo->full_inums = ctx->full_inums;
3536         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3537                 sbinfo->max_blocks  = ctx->blocks;
3538         if (ctx->seen & SHMEM_SEEN_INODES) {
3539                 sbinfo->max_inodes  = ctx->inodes;
3540                 sbinfo->free_inodes = ctx->inodes - inodes;
3541         }
3542
3543         /*
3544          * Preserve previous mempolicy unless mpol remount option was specified.
3545          */
3546         if (ctx->mpol) {
3547                 mpol = sbinfo->mpol;
3548                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3549                 ctx->mpol = NULL;
3550         }
3551         raw_spin_unlock(&sbinfo->stat_lock);
3552         mpol_put(mpol);
3553         return 0;
3554 out:
3555         raw_spin_unlock(&sbinfo->stat_lock);
3556         return invalfc(fc, "%s", err);
3557 }
3558
3559 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3560 {
3561         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3562
3563         if (sbinfo->max_blocks != shmem_default_max_blocks())
3564                 seq_printf(seq, ",size=%luk",
3565                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3566         if (sbinfo->max_inodes != shmem_default_max_inodes())
3567                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3568         if (sbinfo->mode != (0777 | S_ISVTX))
3569                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3570         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3571                 seq_printf(seq, ",uid=%u",
3572                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3573         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3574                 seq_printf(seq, ",gid=%u",
3575                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3576
3577         /*
3578          * Showing inode{64,32} might be useful even if it's the system default,
3579          * since then people don't have to resort to checking both here and
3580          * /proc/config.gz to confirm 64-bit inums were successfully applied
3581          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3582          *
3583          * We hide it when inode64 isn't the default and we are using 32-bit
3584          * inodes, since that probably just means the feature isn't even under
3585          * consideration.
3586          *
3587          * As such:
3588          *
3589          *                     +-----------------+-----------------+
3590          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3591          *  +------------------+-----------------+-----------------+
3592          *  | full_inums=true  | show            | show            |
3593          *  | full_inums=false | show            | hide            |
3594          *  +------------------+-----------------+-----------------+
3595          *
3596          */
3597         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3598                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3600         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3601         if (sbinfo->huge)
3602                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3603 #endif
3604         shmem_show_mpol(seq, sbinfo->mpol);
3605         return 0;
3606 }
3607
3608 #endif /* CONFIG_TMPFS */
3609
3610 static void shmem_put_super(struct super_block *sb)
3611 {
3612         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3613
3614         free_percpu(sbinfo->ino_batch);
3615         percpu_counter_destroy(&sbinfo->used_blocks);
3616         mpol_put(sbinfo->mpol);
3617         kfree(sbinfo);
3618         sb->s_fs_info = NULL;
3619 }
3620
3621 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3622 {
3623         struct shmem_options *ctx = fc->fs_private;
3624         struct inode *inode;
3625         struct shmem_sb_info *sbinfo;
3626
3627         /* Round up to L1_CACHE_BYTES to resist false sharing */
3628         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3629                                 L1_CACHE_BYTES), GFP_KERNEL);
3630         if (!sbinfo)
3631                 return -ENOMEM;
3632
3633         sb->s_fs_info = sbinfo;
3634
3635 #ifdef CONFIG_TMPFS
3636         /*
3637          * Per default we only allow half of the physical ram per
3638          * tmpfs instance, limiting inodes to one per page of lowmem;
3639          * but the internal instance is left unlimited.
3640          */
3641         if (!(sb->s_flags & SB_KERNMOUNT)) {
3642                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3643                         ctx->blocks = shmem_default_max_blocks();
3644                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3645                         ctx->inodes = shmem_default_max_inodes();
3646                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3647                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3648         } else {
3649                 sb->s_flags |= SB_NOUSER;
3650         }
3651         sb->s_export_op = &shmem_export_ops;
3652         sb->s_flags |= SB_NOSEC;
3653 #else
3654         sb->s_flags |= SB_NOUSER;
3655 #endif
3656         sbinfo->max_blocks = ctx->blocks;
3657         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3658         if (sb->s_flags & SB_KERNMOUNT) {
3659                 sbinfo->ino_batch = alloc_percpu(ino_t);
3660                 if (!sbinfo->ino_batch)
3661                         goto failed;
3662         }
3663         sbinfo->uid = ctx->uid;
3664         sbinfo->gid = ctx->gid;
3665         sbinfo->full_inums = ctx->full_inums;
3666         sbinfo->mode = ctx->mode;
3667         sbinfo->huge = ctx->huge;
3668         sbinfo->mpol = ctx->mpol;
3669         ctx->mpol = NULL;
3670
3671         raw_spin_lock_init(&sbinfo->stat_lock);
3672         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3673                 goto failed;
3674         spin_lock_init(&sbinfo->shrinklist_lock);
3675         INIT_LIST_HEAD(&sbinfo->shrinklist);
3676
3677         sb->s_maxbytes = MAX_LFS_FILESIZE;
3678         sb->s_blocksize = PAGE_SIZE;
3679         sb->s_blocksize_bits = PAGE_SHIFT;
3680         sb->s_magic = TMPFS_MAGIC;
3681         sb->s_op = &shmem_ops;
3682         sb->s_time_gran = 1;
3683 #ifdef CONFIG_TMPFS_XATTR
3684         sb->s_xattr = shmem_xattr_handlers;
3685 #endif
3686 #ifdef CONFIG_TMPFS_POSIX_ACL
3687         sb->s_flags |= SB_POSIXACL;
3688 #endif
3689         uuid_gen(&sb->s_uuid);
3690
3691         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3692         if (!inode)
3693                 goto failed;
3694         inode->i_uid = sbinfo->uid;
3695         inode->i_gid = sbinfo->gid;
3696         sb->s_root = d_make_root(inode);
3697         if (!sb->s_root)
3698                 goto failed;
3699         return 0;
3700
3701 failed:
3702         shmem_put_super(sb);
3703         return -ENOMEM;
3704 }
3705
3706 static int shmem_get_tree(struct fs_context *fc)
3707 {
3708         return get_tree_nodev(fc, shmem_fill_super);
3709 }
3710
3711 static void shmem_free_fc(struct fs_context *fc)
3712 {
3713         struct shmem_options *ctx = fc->fs_private;
3714
3715         if (ctx) {
3716                 mpol_put(ctx->mpol);
3717                 kfree(ctx);
3718         }
3719 }
3720
3721 static const struct fs_context_operations shmem_fs_context_ops = {
3722         .free                   = shmem_free_fc,
3723         .get_tree               = shmem_get_tree,
3724 #ifdef CONFIG_TMPFS
3725         .parse_monolithic       = shmem_parse_options,
3726         .parse_param            = shmem_parse_one,
3727         .reconfigure            = shmem_reconfigure,
3728 #endif
3729 };
3730
3731 static struct kmem_cache *shmem_inode_cachep;
3732
3733 static struct inode *shmem_alloc_inode(struct super_block *sb)
3734 {
3735         struct shmem_inode_info *info;
3736         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3737         if (!info)
3738                 return NULL;
3739         return &info->vfs_inode;
3740 }
3741
3742 static void shmem_free_in_core_inode(struct inode *inode)
3743 {
3744         if (S_ISLNK(inode->i_mode))
3745                 kfree(inode->i_link);
3746         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3747 }
3748
3749 static void shmem_destroy_inode(struct inode *inode)
3750 {
3751         if (S_ISREG(inode->i_mode))
3752                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3753 }
3754
3755 static void shmem_init_inode(void *foo)
3756 {
3757         struct shmem_inode_info *info = foo;
3758         inode_init_once(&info->vfs_inode);
3759 }
3760
3761 static void shmem_init_inodecache(void)
3762 {
3763         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3764                                 sizeof(struct shmem_inode_info),
3765                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3766 }
3767
3768 static void shmem_destroy_inodecache(void)
3769 {
3770         kmem_cache_destroy(shmem_inode_cachep);
3771 }
3772
3773 const struct address_space_operations shmem_aops = {
3774         .writepage      = shmem_writepage,
3775         .set_page_dirty = __set_page_dirty_no_writeback,
3776 #ifdef CONFIG_TMPFS
3777         .write_begin    = shmem_write_begin,
3778         .write_end      = shmem_write_end,
3779 #endif
3780 #ifdef CONFIG_MIGRATION
3781         .migratepage    = migrate_page,
3782 #endif
3783         .error_remove_page = generic_error_remove_page,
3784 };
3785 EXPORT_SYMBOL(shmem_aops);
3786
3787 static const struct file_operations shmem_file_operations = {
3788         .mmap           = shmem_mmap,
3789         .get_unmapped_area = shmem_get_unmapped_area,
3790 #ifdef CONFIG_TMPFS
3791         .llseek         = shmem_file_llseek,
3792         .read_iter      = shmem_file_read_iter,
3793         .write_iter     = generic_file_write_iter,
3794         .fsync          = noop_fsync,
3795         .splice_read    = generic_file_splice_read,
3796         .splice_write   = iter_file_splice_write,
3797         .fallocate      = shmem_fallocate,
3798 #endif
3799 };
3800
3801 static const struct inode_operations shmem_inode_operations = {
3802         .getattr        = shmem_getattr,
3803         .setattr        = shmem_setattr,
3804 #ifdef CONFIG_TMPFS_XATTR
3805         .listxattr      = shmem_listxattr,
3806         .set_acl        = simple_set_acl,
3807 #endif
3808 };
3809
3810 static const struct inode_operations shmem_dir_inode_operations = {
3811 #ifdef CONFIG_TMPFS
3812         .create         = shmem_create,
3813         .lookup         = simple_lookup,
3814         .link           = shmem_link,
3815         .unlink         = shmem_unlink,
3816         .symlink        = shmem_symlink,
3817         .mkdir          = shmem_mkdir,
3818         .rmdir          = shmem_rmdir,
3819         .mknod          = shmem_mknod,
3820         .rename         = shmem_rename2,
3821         .tmpfile        = shmem_tmpfile,
3822 #endif
3823 #ifdef CONFIG_TMPFS_XATTR
3824         .listxattr      = shmem_listxattr,
3825 #endif
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827         .setattr        = shmem_setattr,
3828         .set_acl        = simple_set_acl,
3829 #endif
3830 };
3831
3832 static const struct inode_operations shmem_special_inode_operations = {
3833 #ifdef CONFIG_TMPFS_XATTR
3834         .listxattr      = shmem_listxattr,
3835 #endif
3836 #ifdef CONFIG_TMPFS_POSIX_ACL
3837         .setattr        = shmem_setattr,
3838         .set_acl        = simple_set_acl,
3839 #endif
3840 };
3841
3842 static const struct super_operations shmem_ops = {
3843         .alloc_inode    = shmem_alloc_inode,
3844         .free_inode     = shmem_free_in_core_inode,
3845         .destroy_inode  = shmem_destroy_inode,
3846 #ifdef CONFIG_TMPFS
3847         .statfs         = shmem_statfs,
3848         .show_options   = shmem_show_options,
3849 #endif
3850         .evict_inode    = shmem_evict_inode,
3851         .drop_inode     = generic_delete_inode,
3852         .put_super      = shmem_put_super,
3853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3854         .nr_cached_objects      = shmem_unused_huge_count,
3855         .free_cached_objects    = shmem_unused_huge_scan,
3856 #endif
3857 };
3858
3859 static const struct vm_operations_struct shmem_vm_ops = {
3860         .fault          = shmem_fault,
3861         .map_pages      = filemap_map_pages,
3862 #ifdef CONFIG_NUMA
3863         .set_policy     = shmem_set_policy,
3864         .get_policy     = shmem_get_policy,
3865 #endif
3866 };
3867
3868 int shmem_init_fs_context(struct fs_context *fc)
3869 {
3870         struct shmem_options *ctx;
3871
3872         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3873         if (!ctx)
3874                 return -ENOMEM;
3875
3876         ctx->mode = 0777 | S_ISVTX;
3877         ctx->uid = current_fsuid();
3878         ctx->gid = current_fsgid();
3879
3880         fc->fs_private = ctx;
3881         fc->ops = &shmem_fs_context_ops;
3882         return 0;
3883 }
3884
3885 static struct file_system_type shmem_fs_type = {
3886         .owner          = THIS_MODULE,
3887         .name           = "tmpfs",
3888         .init_fs_context = shmem_init_fs_context,
3889 #ifdef CONFIG_TMPFS
3890         .parameters     = shmem_fs_parameters,
3891 #endif
3892         .kill_sb        = kill_litter_super,
3893         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3894 };
3895
3896 int __init shmem_init(void)
3897 {
3898         int error;
3899
3900         shmem_init_inodecache();
3901
3902         error = register_filesystem(&shmem_fs_type);
3903         if (error) {
3904                 pr_err("Could not register tmpfs\n");
3905                 goto out2;
3906         }
3907
3908         shm_mnt = kern_mount(&shmem_fs_type);
3909         if (IS_ERR(shm_mnt)) {
3910                 error = PTR_ERR(shm_mnt);
3911                 pr_err("Could not kern_mount tmpfs\n");
3912                 goto out1;
3913         }
3914
3915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3916         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3917                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3918         else
3919                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3920 #endif
3921         return 0;
3922
3923 out1:
3924         unregister_filesystem(&shmem_fs_type);
3925 out2:
3926         shmem_destroy_inodecache();
3927         shm_mnt = ERR_PTR(error);
3928         return error;
3929 }
3930
3931 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3932 static ssize_t shmem_enabled_show(struct kobject *kobj,
3933                                   struct kobj_attribute *attr, char *buf)
3934 {
3935         static const int values[] = {
3936                 SHMEM_HUGE_ALWAYS,
3937                 SHMEM_HUGE_WITHIN_SIZE,
3938                 SHMEM_HUGE_ADVISE,
3939                 SHMEM_HUGE_NEVER,
3940                 SHMEM_HUGE_DENY,
3941                 SHMEM_HUGE_FORCE,
3942         };
3943         int len = 0;
3944         int i;
3945
3946         for (i = 0; i < ARRAY_SIZE(values); i++) {
3947                 len += sysfs_emit_at(buf, len,
3948                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3949                                      i ? " " : "",
3950                                      shmem_format_huge(values[i]));
3951         }
3952
3953         len += sysfs_emit_at(buf, len, "\n");
3954
3955         return len;
3956 }
3957
3958 static ssize_t shmem_enabled_store(struct kobject *kobj,
3959                 struct kobj_attribute *attr, const char *buf, size_t count)
3960 {
3961         char tmp[16];
3962         int huge;
3963
3964         if (count + 1 > sizeof(tmp))
3965                 return -EINVAL;
3966         memcpy(tmp, buf, count);
3967         tmp[count] = '\0';
3968         if (count && tmp[count - 1] == '\n')
3969                 tmp[count - 1] = '\0';
3970
3971         huge = shmem_parse_huge(tmp);
3972         if (huge == -EINVAL)
3973                 return -EINVAL;
3974         if (!has_transparent_hugepage() &&
3975                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3976                 return -EINVAL;
3977
3978         shmem_huge = huge;
3979         if (shmem_huge > SHMEM_HUGE_DENY)
3980                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3981         return count;
3982 }
3983
3984 struct kobj_attribute shmem_enabled_attr =
3985         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3987
3988 #else /* !CONFIG_SHMEM */
3989
3990 /*
3991  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3992  *
3993  * This is intended for small system where the benefits of the full
3994  * shmem code (swap-backed and resource-limited) are outweighed by
3995  * their complexity. On systems without swap this code should be
3996  * effectively equivalent, but much lighter weight.
3997  */
3998
3999 static struct file_system_type shmem_fs_type = {
4000         .name           = "tmpfs",
4001         .init_fs_context = ramfs_init_fs_context,
4002         .parameters     = ramfs_fs_parameters,
4003         .kill_sb        = kill_litter_super,
4004         .fs_flags       = FS_USERNS_MOUNT,
4005 };
4006
4007 int __init shmem_init(void)
4008 {
4009         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4010
4011         shm_mnt = kern_mount(&shmem_fs_type);
4012         BUG_ON(IS_ERR(shm_mnt));
4013
4014         return 0;
4015 }
4016
4017 int shmem_unuse(unsigned int type, bool frontswap,
4018                 unsigned long *fs_pages_to_unuse)
4019 {
4020         return 0;
4021 }
4022
4023 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4024 {
4025         return 0;
4026 }
4027
4028 void shmem_unlock_mapping(struct address_space *mapping)
4029 {
4030 }
4031
4032 #ifdef CONFIG_MMU
4033 unsigned long shmem_get_unmapped_area(struct file *file,
4034                                       unsigned long addr, unsigned long len,
4035                                       unsigned long pgoff, unsigned long flags)
4036 {
4037         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4038 }
4039 #endif
4040
4041 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4042 {
4043         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4044 }
4045 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4046
4047 #define shmem_vm_ops                            generic_file_vm_ops
4048 #define shmem_file_operations                   ramfs_file_operations
4049 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4050 #define shmem_acct_size(flags, size)            0
4051 #define shmem_unacct_size(flags, size)          do {} while (0)
4052
4053 #endif /* CONFIG_SHMEM */
4054
4055 /* common code */
4056
4057 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4058                                        unsigned long flags, unsigned int i_flags)
4059 {
4060         struct inode *inode;
4061         struct file *res;
4062
4063         if (IS_ERR(mnt))
4064                 return ERR_CAST(mnt);
4065
4066         if (size < 0 || size > MAX_LFS_FILESIZE)
4067                 return ERR_PTR(-EINVAL);
4068
4069         if (shmem_acct_size(flags, size))
4070                 return ERR_PTR(-ENOMEM);
4071
4072         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4073                                 flags);
4074         if (unlikely(!inode)) {
4075                 shmem_unacct_size(flags, size);
4076                 return ERR_PTR(-ENOSPC);
4077         }
4078         inode->i_flags |= i_flags;
4079         inode->i_size = size;
4080         clear_nlink(inode);     /* It is unlinked */
4081         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4082         if (!IS_ERR(res))
4083                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4084                                 &shmem_file_operations);
4085         if (IS_ERR(res))
4086                 iput(inode);
4087         return res;
4088 }
4089
4090 /**
4091  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4092  *      kernel internal.  There will be NO LSM permission checks against the
4093  *      underlying inode.  So users of this interface must do LSM checks at a
4094  *      higher layer.  The users are the big_key and shm implementations.  LSM
4095  *      checks are provided at the key or shm level rather than the inode.
4096  * @name: name for dentry (to be seen in /proc/<pid>/maps
4097  * @size: size to be set for the file
4098  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4099  */
4100 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4101 {
4102         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4103 }
4104
4105 /**
4106  * shmem_file_setup - get an unlinked file living in tmpfs
4107  * @name: name for dentry (to be seen in /proc/<pid>/maps
4108  * @size: size to be set for the file
4109  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4110  */
4111 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4112 {
4113         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4114 }
4115 EXPORT_SYMBOL_GPL(shmem_file_setup);
4116
4117 /**
4118  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4119  * @mnt: the tmpfs mount where the file will be created
4120  * @name: name for dentry (to be seen in /proc/<pid>/maps
4121  * @size: size to be set for the file
4122  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4123  */
4124 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4125                                        loff_t size, unsigned long flags)
4126 {
4127         return __shmem_file_setup(mnt, name, size, flags, 0);
4128 }
4129 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4130
4131 /**
4132  * shmem_zero_setup - setup a shared anonymous mapping
4133  * @vma: the vma to be mmapped is prepared by do_mmap
4134  */
4135 int shmem_zero_setup(struct vm_area_struct *vma)
4136 {
4137         struct file *file;
4138         loff_t size = vma->vm_end - vma->vm_start;
4139
4140         /*
4141          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4142          * between XFS directory reading and selinux: since this file is only
4143          * accessible to the user through its mapping, use S_PRIVATE flag to
4144          * bypass file security, in the same way as shmem_kernel_file_setup().
4145          */
4146         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4147         if (IS_ERR(file))
4148                 return PTR_ERR(file);
4149
4150         if (vma->vm_file)
4151                 fput(vma->vm_file);
4152         vma->vm_file = file;
4153         vma->vm_ops = &shmem_vm_ops;
4154
4155         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4156                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4157                         (vma->vm_end & HPAGE_PMD_MASK)) {
4158                 khugepaged_enter(vma, vma->vm_flags);
4159         }
4160
4161         return 0;
4162 }
4163
4164 /**
4165  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4166  * @mapping:    the page's address_space
4167  * @index:      the page index
4168  * @gfp:        the page allocator flags to use if allocating
4169  *
4170  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4171  * with any new page allocations done using the specified allocation flags.
4172  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4173  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4174  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4175  *
4176  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4177  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4178  */
4179 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4180                                          pgoff_t index, gfp_t gfp)
4181 {
4182 #ifdef CONFIG_SHMEM
4183         struct inode *inode = mapping->host;
4184         struct page *page;
4185         int error;
4186
4187         BUG_ON(!shmem_mapping(mapping));
4188         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4189                                   gfp, NULL, NULL, NULL);
4190         if (error)
4191                 page = ERR_PTR(error);
4192         else
4193                 unlock_page(page);
4194         return page;
4195 #else
4196         /*
4197          * The tiny !SHMEM case uses ramfs without swap
4198          */
4199         return read_cache_page_gfp(mapping, index, gfp);
4200 #endif
4201 }
4202 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.273665 seconds and 4 git commands to generate.