1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/time.h>
10 #include <linux/init.h>
11 #include <linux/string.h>
12 #include <linux/backing-dev.h>
13 #include <linux/mpage.h>
14 #include <linux/falloc.h>
15 #include <linux/swap.h>
16 #include <linux/writeback.h>
17 #include <linux/compat.h>
18 #include <linux/slab.h>
19 #include <linux/btrfs.h>
20 #include <linux/uio.h>
21 #include <linux/iversion.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "print-tree.h"
31 #include "compression.h"
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 * when auto defrag is enabled we
36 * queue up these defrag structs to remember which
37 * inodes need defragging passes
40 struct rb_node rb_node;
44 * transid where the defrag was added, we search for
45 * extents newer than this
52 /* last offset we were able to defrag */
55 /* if we've wrapped around back to zero once already */
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60 struct inode_defrag *defrag2)
62 if (defrag1->root > defrag2->root)
64 else if (defrag1->root < defrag2->root)
66 else if (defrag1->ino > defrag2->ino)
68 else if (defrag1->ino < defrag2->ino)
74 /* pop a record for an inode into the defrag tree. The lock
75 * must be held already
77 * If you're inserting a record for an older transid than an
78 * existing record, the transid already in the tree is lowered
80 * If an existing record is found the defrag item you
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84 struct inode_defrag *defrag)
86 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
87 struct inode_defrag *entry;
89 struct rb_node *parent = NULL;
92 p = &fs_info->defrag_inodes.rb_node;
95 entry = rb_entry(parent, struct inode_defrag, rb_node);
97 ret = __compare_inode_defrag(defrag, entry);
101 p = &parent->rb_right;
103 /* if we're reinserting an entry for
104 * an old defrag run, make sure to
105 * lower the transid of our existing record
107 if (defrag->transid < entry->transid)
108 entry->transid = defrag->transid;
109 if (defrag->last_offset > entry->last_offset)
110 entry->last_offset = defrag->last_offset;
114 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115 rb_link_node(&defrag->rb_node, parent, p);
116 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
125 if (btrfs_fs_closing(fs_info))
132 * insert a defrag record for this inode if auto defrag is
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136 struct btrfs_inode *inode)
138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
139 struct btrfs_root *root = inode->root;
140 struct inode_defrag *defrag;
144 if (!__need_auto_defrag(fs_info))
147 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
151 transid = trans->transid;
153 transid = inode->root->last_trans;
155 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
159 defrag->ino = btrfs_ino(inode);
160 defrag->transid = transid;
161 defrag->root = root->root_key.objectid;
163 spin_lock(&fs_info->defrag_inodes_lock);
164 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 * If we set IN_DEFRAG flag and evict the inode from memory,
167 * and then re-read this inode, this new inode doesn't have
168 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 ret = __btrfs_add_inode_defrag(inode, defrag);
172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 spin_unlock(&fs_info->defrag_inodes_lock);
181 * Requeue the defrag object. If there is a defrag object that points to
182 * the same inode in the tree, we will merge them together (by
183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186 struct inode_defrag *defrag)
188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
191 if (!__need_auto_defrag(fs_info))
195 * Here we don't check the IN_DEFRAG flag, because we need merge
198 spin_lock(&fs_info->defrag_inodes_lock);
199 ret = __btrfs_add_inode_defrag(inode, defrag);
200 spin_unlock(&fs_info->defrag_inodes_lock);
205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
209 * pick the defragable inode that we want, if it doesn't exist, we will get
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 struct inode_defrag *entry = NULL;
216 struct inode_defrag tmp;
218 struct rb_node *parent = NULL;
224 spin_lock(&fs_info->defrag_inodes_lock);
225 p = fs_info->defrag_inodes.rb_node;
228 entry = rb_entry(parent, struct inode_defrag, rb_node);
230 ret = __compare_inode_defrag(&tmp, entry);
234 p = parent->rb_right;
239 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240 parent = rb_next(parent);
242 entry = rb_entry(parent, struct inode_defrag, rb_node);
248 rb_erase(parent, &fs_info->defrag_inodes);
249 spin_unlock(&fs_info->defrag_inodes_lock);
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 struct inode_defrag *defrag;
256 struct rb_node *node;
258 spin_lock(&fs_info->defrag_inodes_lock);
259 node = rb_first(&fs_info->defrag_inodes);
261 rb_erase(node, &fs_info->defrag_inodes);
262 defrag = rb_entry(node, struct inode_defrag, rb_node);
263 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265 cond_resched_lock(&fs_info->defrag_inodes_lock);
267 node = rb_first(&fs_info->defrag_inodes);
269 spin_unlock(&fs_info->defrag_inodes_lock);
272 #define BTRFS_DEFRAG_BATCH 1024
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275 struct inode_defrag *defrag)
277 struct btrfs_root *inode_root;
279 struct btrfs_key key;
280 struct btrfs_ioctl_defrag_range_args range;
286 key.objectid = defrag->root;
287 key.type = BTRFS_ROOT_ITEM_KEY;
288 key.offset = (u64)-1;
290 index = srcu_read_lock(&fs_info->subvol_srcu);
292 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
293 if (IS_ERR(inode_root)) {
294 ret = PTR_ERR(inode_root);
298 key.objectid = defrag->ino;
299 key.type = BTRFS_INODE_ITEM_KEY;
301 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
303 ret = PTR_ERR(inode);
306 srcu_read_unlock(&fs_info->subvol_srcu, index);
308 /* do a chunk of defrag */
309 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
310 memset(&range, 0, sizeof(range));
312 range.start = defrag->last_offset;
314 sb_start_write(fs_info->sb);
315 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
317 sb_end_write(fs_info->sb);
319 * if we filled the whole defrag batch, there
320 * must be more work to do. Queue this defrag
323 if (num_defrag == BTRFS_DEFRAG_BATCH) {
324 defrag->last_offset = range.start;
325 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
326 } else if (defrag->last_offset && !defrag->cycled) {
328 * we didn't fill our defrag batch, but
329 * we didn't start at zero. Make sure we loop
330 * around to the start of the file.
332 defrag->last_offset = 0;
334 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
336 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342 srcu_read_unlock(&fs_info->subvol_srcu, index);
343 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 * run through the list of inodes in the FS that need
351 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
353 struct inode_defrag *defrag;
355 u64 root_objectid = 0;
357 atomic_inc(&fs_info->defrag_running);
359 /* Pause the auto defragger. */
360 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
364 if (!__need_auto_defrag(fs_info))
367 /* find an inode to defrag */
368 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
371 if (root_objectid || first_ino) {
380 first_ino = defrag->ino + 1;
381 root_objectid = defrag->root;
383 __btrfs_run_defrag_inode(fs_info, defrag);
385 atomic_dec(&fs_info->defrag_running);
388 * during unmount, we use the transaction_wait queue to
389 * wait for the defragger to stop
391 wake_up(&fs_info->transaction_wait);
395 /* simple helper to fault in pages and copy. This should go away
396 * and be replaced with calls into generic code.
398 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
399 struct page **prepared_pages,
403 size_t total_copied = 0;
405 int offset = pos & (PAGE_SIZE - 1);
407 while (write_bytes > 0) {
408 size_t count = min_t(size_t,
409 PAGE_SIZE - offset, write_bytes);
410 struct page *page = prepared_pages[pg];
412 * Copy data from userspace to the current page
414 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
416 /* Flush processor's dcache for this page */
417 flush_dcache_page(page);
420 * if we get a partial write, we can end up with
421 * partially up to date pages. These add
422 * a lot of complexity, so make sure they don't
423 * happen by forcing this copy to be retried.
425 * The rest of the btrfs_file_write code will fall
426 * back to page at a time copies after we return 0.
428 if (!PageUptodate(page) && copied < count)
431 iov_iter_advance(i, copied);
432 write_bytes -= copied;
433 total_copied += copied;
435 /* Return to btrfs_file_write_iter to fault page */
436 if (unlikely(copied == 0))
439 if (copied < PAGE_SIZE - offset) {
450 * unlocks pages after btrfs_file_write is done with them
452 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
455 for (i = 0; i < num_pages; i++) {
456 /* page checked is some magic around finding pages that
457 * have been modified without going through btrfs_set_page_dirty
458 * clear it here. There should be no need to mark the pages
459 * accessed as prepare_pages should have marked them accessed
460 * in prepare_pages via find_or_create_page()
462 ClearPageChecked(pages[i]);
463 unlock_page(pages[i]);
468 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
471 struct extent_state **cached_state)
473 u64 search_start = start;
474 const u64 end = start + len - 1;
476 while (search_start < end) {
477 const u64 search_len = end - search_start + 1;
478 struct extent_map *em;
482 em = btrfs_get_extent(inode, NULL, 0, search_start,
487 if (em->block_start != EXTENT_MAP_HOLE)
491 if (em->start < search_start)
492 em_len -= search_start - em->start;
493 if (em_len > search_len)
496 ret = set_extent_bit(&inode->io_tree, search_start,
497 search_start + em_len - 1,
499 NULL, cached_state, GFP_NOFS);
501 search_start = extent_map_end(em);
510 * after copy_from_user, pages need to be dirtied and we need to make
511 * sure holes are created between the current EOF and the start of
512 * any next extents (if required).
514 * this also makes the decision about creating an inline extent vs
515 * doing real data extents, marking pages dirty and delalloc as required.
517 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
518 size_t num_pages, loff_t pos, size_t write_bytes,
519 struct extent_state **cached)
521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
526 u64 end_of_last_block;
527 u64 end_pos = pos + write_bytes;
528 loff_t isize = i_size_read(inode);
529 unsigned int extra_bits = 0;
531 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
532 num_bytes = round_up(write_bytes + pos - start_pos,
533 fs_info->sectorsize);
535 end_of_last_block = start_pos + num_bytes - 1;
537 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
538 if (start_pos >= isize &&
539 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
541 * There can't be any extents following eof in this case
542 * so just set the delalloc new bit for the range
545 extra_bits |= EXTENT_DELALLOC_NEW;
547 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
555 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
556 extra_bits, cached, 0);
560 for (i = 0; i < num_pages; i++) {
561 struct page *p = pages[i];
568 * we've only changed i_size in ram, and we haven't updated
569 * the disk i_size. There is no need to log the inode
573 i_size_write(inode, end_pos);
578 * this drops all the extents in the cache that intersect the range
579 * [start, end]. Existing extents are split as required.
581 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
584 struct extent_map *em;
585 struct extent_map *split = NULL;
586 struct extent_map *split2 = NULL;
587 struct extent_map_tree *em_tree = &inode->extent_tree;
588 u64 len = end - start + 1;
596 WARN_ON(end < start);
597 if (end == (u64)-1) {
606 split = alloc_extent_map();
608 split2 = alloc_extent_map();
609 if (!split || !split2)
612 write_lock(&em_tree->lock);
613 em = lookup_extent_mapping(em_tree, start, len);
615 write_unlock(&em_tree->lock);
619 gen = em->generation;
620 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
621 if (testend && em->start + em->len >= start + len) {
623 write_unlock(&em_tree->lock);
626 start = em->start + em->len;
628 len = start + len - (em->start + em->len);
630 write_unlock(&em_tree->lock);
633 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
634 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
635 clear_bit(EXTENT_FLAG_LOGGING, &flags);
636 modified = !list_empty(&em->list);
640 if (em->start < start) {
641 split->start = em->start;
642 split->len = start - em->start;
644 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
645 split->orig_start = em->orig_start;
646 split->block_start = em->block_start;
649 split->block_len = em->block_len;
651 split->block_len = split->len;
652 split->orig_block_len = max(split->block_len,
654 split->ram_bytes = em->ram_bytes;
656 split->orig_start = split->start;
657 split->block_len = 0;
658 split->block_start = em->block_start;
659 split->orig_block_len = 0;
660 split->ram_bytes = split->len;
663 split->generation = gen;
664 split->bdev = em->bdev;
665 split->flags = flags;
666 split->compress_type = em->compress_type;
667 replace_extent_mapping(em_tree, em, split, modified);
668 free_extent_map(split);
672 if (testend && em->start + em->len > start + len) {
673 u64 diff = start + len - em->start;
675 split->start = start + len;
676 split->len = em->start + em->len - (start + len);
677 split->bdev = em->bdev;
678 split->flags = flags;
679 split->compress_type = em->compress_type;
680 split->generation = gen;
682 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
683 split->orig_block_len = max(em->block_len,
686 split->ram_bytes = em->ram_bytes;
688 split->block_len = em->block_len;
689 split->block_start = em->block_start;
690 split->orig_start = em->orig_start;
692 split->block_len = split->len;
693 split->block_start = em->block_start
695 split->orig_start = em->orig_start;
698 split->ram_bytes = split->len;
699 split->orig_start = split->start;
700 split->block_len = 0;
701 split->block_start = em->block_start;
702 split->orig_block_len = 0;
705 if (extent_map_in_tree(em)) {
706 replace_extent_mapping(em_tree, em, split,
709 ret = add_extent_mapping(em_tree, split,
711 ASSERT(ret == 0); /* Logic error */
713 free_extent_map(split);
717 if (extent_map_in_tree(em))
718 remove_extent_mapping(em_tree, em);
719 write_unlock(&em_tree->lock);
723 /* once for the tree*/
727 free_extent_map(split);
729 free_extent_map(split2);
733 * this is very complex, but the basic idea is to drop all extents
734 * in the range start - end. hint_block is filled in with a block number
735 * that would be a good hint to the block allocator for this file.
737 * If an extent intersects the range but is not entirely inside the range
738 * it is either truncated or split. Anything entirely inside the range
739 * is deleted from the tree.
741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
742 struct btrfs_root *root, struct inode *inode,
743 struct btrfs_path *path, u64 start, u64 end,
744 u64 *drop_end, int drop_cache,
746 u32 extent_item_size,
749 struct btrfs_fs_info *fs_info = root->fs_info;
750 struct extent_buffer *leaf;
751 struct btrfs_file_extent_item *fi;
752 struct btrfs_key key;
753 struct btrfs_key new_key;
754 u64 ino = btrfs_ino(BTRFS_I(inode));
755 u64 search_start = start;
758 u64 extent_offset = 0;
760 u64 last_end = start;
766 int modify_tree = -1;
769 int leafs_visited = 0;
772 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
774 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
777 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
778 root == fs_info->tree_root);
781 ret = btrfs_lookup_file_extent(trans, root, path, ino,
782 search_start, modify_tree);
785 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
786 leaf = path->nodes[0];
787 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
788 if (key.objectid == ino &&
789 key.type == BTRFS_EXTENT_DATA_KEY)
795 leaf = path->nodes[0];
796 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
798 ret = btrfs_next_leaf(root, path);
806 leaf = path->nodes[0];
810 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
812 if (key.objectid > ino)
814 if (WARN_ON_ONCE(key.objectid < ino) ||
815 key.type < BTRFS_EXTENT_DATA_KEY) {
820 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
823 fi = btrfs_item_ptr(leaf, path->slots[0],
824 struct btrfs_file_extent_item);
825 extent_type = btrfs_file_extent_type(leaf, fi);
827 if (extent_type == BTRFS_FILE_EXTENT_REG ||
828 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
829 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
830 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
831 extent_offset = btrfs_file_extent_offset(leaf, fi);
832 extent_end = key.offset +
833 btrfs_file_extent_num_bytes(leaf, fi);
834 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835 extent_end = key.offset +
836 btrfs_file_extent_inline_len(leaf,
844 * Don't skip extent items representing 0 byte lengths. They
845 * used to be created (bug) if while punching holes we hit
846 * -ENOSPC condition. So if we find one here, just ensure we
847 * delete it, otherwise we would insert a new file extent item
848 * with the same key (offset) as that 0 bytes length file
849 * extent item in the call to setup_items_for_insert() later
852 if (extent_end == key.offset && extent_end >= search_start) {
853 last_end = extent_end;
854 goto delete_extent_item;
857 if (extent_end <= search_start) {
863 search_start = max(key.offset, start);
864 if (recow || !modify_tree) {
866 btrfs_release_path(path);
871 * | - range to drop - |
872 * | -------- extent -------- |
874 if (start > key.offset && end < extent_end) {
876 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
881 memcpy(&new_key, &key, sizeof(new_key));
882 new_key.offset = start;
883 ret = btrfs_duplicate_item(trans, root, path,
885 if (ret == -EAGAIN) {
886 btrfs_release_path(path);
892 leaf = path->nodes[0];
893 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
894 struct btrfs_file_extent_item);
895 btrfs_set_file_extent_num_bytes(leaf, fi,
898 fi = btrfs_item_ptr(leaf, path->slots[0],
899 struct btrfs_file_extent_item);
901 extent_offset += start - key.offset;
902 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
903 btrfs_set_file_extent_num_bytes(leaf, fi,
905 btrfs_mark_buffer_dirty(leaf);
907 if (update_refs && disk_bytenr > 0) {
908 ret = btrfs_inc_extent_ref(trans, root,
909 disk_bytenr, num_bytes, 0,
910 root->root_key.objectid,
912 start - extent_offset);
913 BUG_ON(ret); /* -ENOMEM */
918 * From here on out we will have actually dropped something, so
919 * last_end can be updated.
921 last_end = extent_end;
924 * | ---- range to drop ----- |
925 * | -------- extent -------- |
927 if (start <= key.offset && end < extent_end) {
928 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
933 memcpy(&new_key, &key, sizeof(new_key));
934 new_key.offset = end;
935 btrfs_set_item_key_safe(fs_info, path, &new_key);
937 extent_offset += end - key.offset;
938 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
939 btrfs_set_file_extent_num_bytes(leaf, fi,
941 btrfs_mark_buffer_dirty(leaf);
942 if (update_refs && disk_bytenr > 0)
943 inode_sub_bytes(inode, end - key.offset);
947 search_start = extent_end;
949 * | ---- range to drop ----- |
950 * | -------- extent -------- |
952 if (start > key.offset && end >= extent_end) {
954 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
959 btrfs_set_file_extent_num_bytes(leaf, fi,
961 btrfs_mark_buffer_dirty(leaf);
962 if (update_refs && disk_bytenr > 0)
963 inode_sub_bytes(inode, extent_end - start);
964 if (end == extent_end)
972 * | ---- range to drop ----- |
973 * | ------ extent ------ |
975 if (start <= key.offset && end >= extent_end) {
978 del_slot = path->slots[0];
981 BUG_ON(del_slot + del_nr != path->slots[0]);
986 extent_type == BTRFS_FILE_EXTENT_INLINE) {
987 inode_sub_bytes(inode,
988 extent_end - key.offset);
989 extent_end = ALIGN(extent_end,
990 fs_info->sectorsize);
991 } else if (update_refs && disk_bytenr > 0) {
992 ret = btrfs_free_extent(trans, root,
993 disk_bytenr, num_bytes, 0,
994 root->root_key.objectid,
995 key.objectid, key.offset -
997 BUG_ON(ret); /* -ENOMEM */
998 inode_sub_bytes(inode,
999 extent_end - key.offset);
1002 if (end == extent_end)
1005 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1010 ret = btrfs_del_items(trans, root, path, del_slot,
1013 btrfs_abort_transaction(trans, ret);
1020 btrfs_release_path(path);
1027 if (!ret && del_nr > 0) {
1029 * Set path->slots[0] to first slot, so that after the delete
1030 * if items are move off from our leaf to its immediate left or
1031 * right neighbor leafs, we end up with a correct and adjusted
1032 * path->slots[0] for our insertion (if replace_extent != 0).
1034 path->slots[0] = del_slot;
1035 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1037 btrfs_abort_transaction(trans, ret);
1040 leaf = path->nodes[0];
1042 * If btrfs_del_items() was called, it might have deleted a leaf, in
1043 * which case it unlocked our path, so check path->locks[0] matches a
1046 if (!ret && replace_extent && leafs_visited == 1 &&
1047 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1048 path->locks[0] == BTRFS_WRITE_LOCK) &&
1049 btrfs_leaf_free_space(fs_info, leaf) >=
1050 sizeof(struct btrfs_item) + extent_item_size) {
1053 key.type = BTRFS_EXTENT_DATA_KEY;
1055 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1056 struct btrfs_key slot_key;
1058 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1059 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1062 setup_items_for_insert(root, path, &key,
1065 sizeof(struct btrfs_item) +
1066 extent_item_size, 1);
1070 if (!replace_extent || !(*key_inserted))
1071 btrfs_release_path(path);
1073 *drop_end = found ? min(end, last_end) : end;
1077 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1078 struct btrfs_root *root, struct inode *inode, u64 start,
1079 u64 end, int drop_cache)
1081 struct btrfs_path *path;
1084 path = btrfs_alloc_path();
1087 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1088 drop_cache, 0, 0, NULL);
1089 btrfs_free_path(path);
1093 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1094 u64 objectid, u64 bytenr, u64 orig_offset,
1095 u64 *start, u64 *end)
1097 struct btrfs_file_extent_item *fi;
1098 struct btrfs_key key;
1101 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1104 btrfs_item_key_to_cpu(leaf, &key, slot);
1105 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1108 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1109 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1110 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1111 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1112 btrfs_file_extent_compression(leaf, fi) ||
1113 btrfs_file_extent_encryption(leaf, fi) ||
1114 btrfs_file_extent_other_encoding(leaf, fi))
1117 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1118 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1121 *start = key.offset;
1127 * Mark extent in the range start - end as written.
1129 * This changes extent type from 'pre-allocated' to 'regular'. If only
1130 * part of extent is marked as written, the extent will be split into
1133 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1134 struct btrfs_inode *inode, u64 start, u64 end)
1136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1137 struct btrfs_root *root = inode->root;
1138 struct extent_buffer *leaf;
1139 struct btrfs_path *path;
1140 struct btrfs_file_extent_item *fi;
1141 struct btrfs_key key;
1142 struct btrfs_key new_key;
1154 u64 ino = btrfs_ino(inode);
1156 path = btrfs_alloc_path();
1163 key.type = BTRFS_EXTENT_DATA_KEY;
1166 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1169 if (ret > 0 && path->slots[0] > 0)
1172 leaf = path->nodes[0];
1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 if (key.objectid != ino ||
1175 key.type != BTRFS_EXTENT_DATA_KEY) {
1177 btrfs_abort_transaction(trans, ret);
1180 fi = btrfs_item_ptr(leaf, path->slots[0],
1181 struct btrfs_file_extent_item);
1182 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1184 btrfs_abort_transaction(trans, ret);
1187 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1188 if (key.offset > start || extent_end < end) {
1190 btrfs_abort_transaction(trans, ret);
1194 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1195 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1196 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1197 memcpy(&new_key, &key, sizeof(new_key));
1199 if (start == key.offset && end < extent_end) {
1202 if (extent_mergeable(leaf, path->slots[0] - 1,
1203 ino, bytenr, orig_offset,
1204 &other_start, &other_end)) {
1205 new_key.offset = end;
1206 btrfs_set_item_key_safe(fs_info, path, &new_key);
1207 fi = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_file_extent_item);
1209 btrfs_set_file_extent_generation(leaf, fi,
1211 btrfs_set_file_extent_num_bytes(leaf, fi,
1213 btrfs_set_file_extent_offset(leaf, fi,
1215 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1216 struct btrfs_file_extent_item);
1217 btrfs_set_file_extent_generation(leaf, fi,
1219 btrfs_set_file_extent_num_bytes(leaf, fi,
1221 btrfs_mark_buffer_dirty(leaf);
1226 if (start > key.offset && end == extent_end) {
1229 if (extent_mergeable(leaf, path->slots[0] + 1,
1230 ino, bytenr, orig_offset,
1231 &other_start, &other_end)) {
1232 fi = btrfs_item_ptr(leaf, path->slots[0],
1233 struct btrfs_file_extent_item);
1234 btrfs_set_file_extent_num_bytes(leaf, fi,
1235 start - key.offset);
1236 btrfs_set_file_extent_generation(leaf, fi,
1239 new_key.offset = start;
1240 btrfs_set_item_key_safe(fs_info, path, &new_key);
1242 fi = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_file_extent_item);
1244 btrfs_set_file_extent_generation(leaf, fi,
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1248 btrfs_set_file_extent_offset(leaf, fi,
1249 start - orig_offset);
1250 btrfs_mark_buffer_dirty(leaf);
1255 while (start > key.offset || end < extent_end) {
1256 if (key.offset == start)
1259 new_key.offset = split;
1260 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1261 if (ret == -EAGAIN) {
1262 btrfs_release_path(path);
1266 btrfs_abort_transaction(trans, ret);
1270 leaf = path->nodes[0];
1271 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1272 struct btrfs_file_extent_item);
1273 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1274 btrfs_set_file_extent_num_bytes(leaf, fi,
1275 split - key.offset);
1277 fi = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_file_extent_item);
1280 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1281 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1282 btrfs_set_file_extent_num_bytes(leaf, fi,
1283 extent_end - split);
1284 btrfs_mark_buffer_dirty(leaf);
1286 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1287 0, root->root_key.objectid,
1290 btrfs_abort_transaction(trans, ret);
1294 if (split == start) {
1297 if (start != key.offset) {
1299 btrfs_abort_transaction(trans, ret);
1310 if (extent_mergeable(leaf, path->slots[0] + 1,
1311 ino, bytenr, orig_offset,
1312 &other_start, &other_end)) {
1314 btrfs_release_path(path);
1317 extent_end = other_end;
1318 del_slot = path->slots[0] + 1;
1320 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1321 0, root->root_key.objectid,
1324 btrfs_abort_transaction(trans, ret);
1330 if (extent_mergeable(leaf, path->slots[0] - 1,
1331 ino, bytenr, orig_offset,
1332 &other_start, &other_end)) {
1334 btrfs_release_path(path);
1337 key.offset = other_start;
1338 del_slot = path->slots[0];
1340 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1341 0, root->root_key.objectid,
1344 btrfs_abort_transaction(trans, ret);
1349 fi = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 btrfs_set_file_extent_type(leaf, fi,
1352 BTRFS_FILE_EXTENT_REG);
1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354 btrfs_mark_buffer_dirty(leaf);
1356 fi = btrfs_item_ptr(leaf, del_slot - 1,
1357 struct btrfs_file_extent_item);
1358 btrfs_set_file_extent_type(leaf, fi,
1359 BTRFS_FILE_EXTENT_REG);
1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361 btrfs_set_file_extent_num_bytes(leaf, fi,
1362 extent_end - key.offset);
1363 btrfs_mark_buffer_dirty(leaf);
1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1367 btrfs_abort_transaction(trans, ret);
1372 btrfs_free_path(path);
1377 * on error we return an unlocked page and the error value
1378 * on success we return a locked page and 0
1380 static int prepare_uptodate_page(struct inode *inode,
1381 struct page *page, u64 pos,
1382 bool force_uptodate)
1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387 !PageUptodate(page)) {
1388 ret = btrfs_readpage(NULL, page);
1392 if (!PageUptodate(page)) {
1396 if (page->mapping != inode->i_mapping) {
1405 * this just gets pages into the page cache and locks them down.
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408 size_t num_pages, loff_t pos,
1409 size_t write_bytes, bool force_uptodate)
1412 unsigned long index = pos >> PAGE_SHIFT;
1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1417 for (i = 0; i < num_pages; i++) {
1419 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420 mask | __GFP_WRITE);
1428 err = prepare_uptodate_page(inode, pages[i], pos,
1430 if (!err && i == num_pages - 1)
1431 err = prepare_uptodate_page(inode, pages[i],
1432 pos + write_bytes, false);
1435 if (err == -EAGAIN) {
1442 wait_on_page_writeback(pages[i]);
1447 while (faili >= 0) {
1448 unlock_page(pages[faili]);
1449 put_page(pages[faili]);
1457 * This function locks the extent and properly waits for data=ordered extents
1458 * to finish before allowing the pages to be modified if need.
1461 * 1 - the extent is locked
1462 * 0 - the extent is not locked, and everything is OK
1463 * -EAGAIN - need re-prepare the pages
1464 * the other < 0 number - Something wrong happens
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468 size_t num_pages, loff_t pos,
1470 u64 *lockstart, u64 *lockend,
1471 struct extent_state **cached_state)
1473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1479 start_pos = round_down(pos, fs_info->sectorsize);
1480 last_pos = start_pos
1481 + round_up(pos + write_bytes - start_pos,
1482 fs_info->sectorsize) - 1;
1484 if (start_pos < inode->vfs_inode.i_size) {
1485 struct btrfs_ordered_extent *ordered;
1487 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1489 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490 last_pos - start_pos + 1);
1492 ordered->file_offset + ordered->len > start_pos &&
1493 ordered->file_offset <= last_pos) {
1494 unlock_extent_cached(&inode->io_tree, start_pos,
1495 last_pos, cached_state);
1496 for (i = 0; i < num_pages; i++) {
1497 unlock_page(pages[i]);
1500 btrfs_start_ordered_extent(&inode->vfs_inode,
1502 btrfs_put_ordered_extent(ordered);
1506 btrfs_put_ordered_extent(ordered);
1507 clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1508 EXTENT_DIRTY | EXTENT_DELALLOC |
1509 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1510 0, 0, cached_state);
1511 *lockstart = start_pos;
1512 *lockend = last_pos;
1516 for (i = 0; i < num_pages; i++) {
1517 if (clear_page_dirty_for_io(pages[i]))
1518 account_page_redirty(pages[i]);
1519 set_page_extent_mapped(pages[i]);
1520 WARN_ON(!PageLocked(pages[i]));
1526 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1527 size_t *write_bytes)
1529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1530 struct btrfs_root *root = inode->root;
1531 struct btrfs_ordered_extent *ordered;
1532 u64 lockstart, lockend;
1536 ret = btrfs_start_write_no_snapshotting(root);
1540 lockstart = round_down(pos, fs_info->sectorsize);
1541 lockend = round_up(pos + *write_bytes,
1542 fs_info->sectorsize) - 1;
1545 lock_extent(&inode->io_tree, lockstart, lockend);
1546 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1547 lockend - lockstart + 1);
1551 unlock_extent(&inode->io_tree, lockstart, lockend);
1552 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1553 btrfs_put_ordered_extent(ordered);
1556 num_bytes = lockend - lockstart + 1;
1557 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1561 btrfs_end_write_no_snapshotting(root);
1563 *write_bytes = min_t(size_t, *write_bytes ,
1564 num_bytes - pos + lockstart);
1567 unlock_extent(&inode->io_tree, lockstart, lockend);
1572 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1576 struct inode *inode = file_inode(file);
1577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1578 struct btrfs_root *root = BTRFS_I(inode)->root;
1579 struct page **pages = NULL;
1580 struct extent_state *cached_state = NULL;
1581 struct extent_changeset *data_reserved = NULL;
1582 u64 release_bytes = 0;
1585 size_t num_written = 0;
1588 bool only_release_metadata = false;
1589 bool force_page_uptodate = false;
1591 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1592 PAGE_SIZE / (sizeof(struct page *)));
1593 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1594 nrptrs = max(nrptrs, 8);
1595 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1599 while (iov_iter_count(i) > 0) {
1600 size_t offset = pos & (PAGE_SIZE - 1);
1601 size_t sector_offset;
1602 size_t write_bytes = min(iov_iter_count(i),
1603 nrptrs * (size_t)PAGE_SIZE -
1605 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1607 size_t reserve_bytes;
1610 size_t dirty_sectors;
1614 WARN_ON(num_pages > nrptrs);
1617 * Fault pages before locking them in prepare_pages
1618 * to avoid recursive lock
1620 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1625 sector_offset = pos & (fs_info->sectorsize - 1);
1626 reserve_bytes = round_up(write_bytes + sector_offset,
1627 fs_info->sectorsize);
1629 extent_changeset_release(data_reserved);
1630 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1633 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634 BTRFS_INODE_PREALLOC)) &&
1635 check_can_nocow(BTRFS_I(inode), pos,
1636 &write_bytes) > 0) {
1638 * For nodata cow case, no need to reserve
1641 only_release_metadata = true;
1643 * our prealloc extent may be smaller than
1644 * write_bytes, so scale down.
1646 num_pages = DIV_ROUND_UP(write_bytes + offset,
1648 reserve_bytes = round_up(write_bytes +
1650 fs_info->sectorsize);
1656 WARN_ON(reserve_bytes == 0);
1657 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1660 if (!only_release_metadata)
1661 btrfs_free_reserved_data_space(inode,
1665 btrfs_end_write_no_snapshotting(root);
1669 release_bytes = reserve_bytes;
1672 * This is going to setup the pages array with the number of
1673 * pages we want, so we don't really need to worry about the
1674 * contents of pages from loop to loop
1676 ret = prepare_pages(inode, pages, num_pages,
1678 force_page_uptodate);
1680 btrfs_delalloc_release_extents(BTRFS_I(inode),
1681 reserve_bytes, true);
1685 extents_locked = lock_and_cleanup_extent_if_need(
1686 BTRFS_I(inode), pages,
1687 num_pages, pos, write_bytes, &lockstart,
1688 &lockend, &cached_state);
1689 if (extents_locked < 0) {
1690 if (extents_locked == -EAGAIN)
1692 btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 reserve_bytes, true);
1694 ret = extents_locked;
1698 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1700 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1701 dirty_sectors = round_up(copied + sector_offset,
1702 fs_info->sectorsize);
1703 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1706 * if we have trouble faulting in the pages, fall
1707 * back to one page at a time
1709 if (copied < write_bytes)
1713 force_page_uptodate = true;
1717 force_page_uptodate = false;
1718 dirty_pages = DIV_ROUND_UP(copied + offset,
1722 if (num_sectors > dirty_sectors) {
1723 /* release everything except the sectors we dirtied */
1724 release_bytes -= dirty_sectors <<
1725 fs_info->sb->s_blocksize_bits;
1726 if (only_release_metadata) {
1727 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1728 release_bytes, true);
1732 __pos = round_down(pos,
1733 fs_info->sectorsize) +
1734 (dirty_pages << PAGE_SHIFT);
1735 btrfs_delalloc_release_space(inode,
1736 data_reserved, __pos,
1737 release_bytes, true);
1741 release_bytes = round_up(copied + sector_offset,
1742 fs_info->sectorsize);
1745 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1746 pos, copied, &cached_state);
1748 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1749 lockstart, lockend, &cached_state);
1750 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1753 btrfs_drop_pages(pages, num_pages);
1758 if (only_release_metadata)
1759 btrfs_end_write_no_snapshotting(root);
1761 if (only_release_metadata && copied > 0) {
1762 lockstart = round_down(pos,
1763 fs_info->sectorsize);
1764 lockend = round_up(pos + copied,
1765 fs_info->sectorsize) - 1;
1767 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768 lockend, EXTENT_NORESERVE, NULL,
1770 only_release_metadata = false;
1773 btrfs_drop_pages(pages, num_pages);
1777 balance_dirty_pages_ratelimited(inode->i_mapping);
1778 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1779 btrfs_btree_balance_dirty(fs_info);
1782 num_written += copied;
1787 if (release_bytes) {
1788 if (only_release_metadata) {
1789 btrfs_end_write_no_snapshotting(root);
1790 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1791 release_bytes, true);
1793 btrfs_delalloc_release_space(inode, data_reserved,
1794 round_down(pos, fs_info->sectorsize),
1795 release_bytes, true);
1799 extent_changeset_free(data_reserved);
1800 return num_written ? num_written : ret;
1803 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1805 struct file *file = iocb->ki_filp;
1806 struct inode *inode = file_inode(file);
1807 loff_t pos = iocb->ki_pos;
1809 ssize_t written_buffered;
1813 written = generic_file_direct_write(iocb, from);
1815 if (written < 0 || !iov_iter_count(from))
1819 written_buffered = __btrfs_buffered_write(file, from, pos);
1820 if (written_buffered < 0) {
1821 err = written_buffered;
1825 * Ensure all data is persisted. We want the next direct IO read to be
1826 * able to read what was just written.
1828 endbyte = pos + written_buffered - 1;
1829 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1832 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1835 written += written_buffered;
1836 iocb->ki_pos = pos + written_buffered;
1837 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1838 endbyte >> PAGE_SHIFT);
1840 return written ? written : err;
1843 static void update_time_for_write(struct inode *inode)
1845 struct timespec64 now;
1847 if (IS_NOCMTIME(inode))
1850 now = current_time(inode);
1851 if (!timespec64_equal(&inode->i_mtime, &now))
1852 inode->i_mtime = now;
1854 if (!timespec64_equal(&inode->i_ctime, &now))
1855 inode->i_ctime = now;
1857 if (IS_I_VERSION(inode))
1858 inode_inc_iversion(inode);
1861 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1862 struct iov_iter *from)
1864 struct file *file = iocb->ki_filp;
1865 struct inode *inode = file_inode(file);
1866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1870 ssize_t num_written = 0;
1871 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1874 size_t count = iov_iter_count(from);
1878 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1879 (iocb->ki_flags & IOCB_NOWAIT))
1882 if (!inode_trylock(inode)) {
1883 if (iocb->ki_flags & IOCB_NOWAIT)
1888 err = generic_write_checks(iocb, from);
1890 inode_unlock(inode);
1895 if (iocb->ki_flags & IOCB_NOWAIT) {
1897 * We will allocate space in case nodatacow is not set,
1900 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1901 BTRFS_INODE_PREALLOC)) ||
1902 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1903 inode_unlock(inode);
1908 current->backing_dev_info = inode_to_bdi(inode);
1909 err = file_remove_privs(file);
1911 inode_unlock(inode);
1916 * If BTRFS flips readonly due to some impossible error
1917 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1918 * although we have opened a file as writable, we have
1919 * to stop this write operation to ensure FS consistency.
1921 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1922 inode_unlock(inode);
1928 * We reserve space for updating the inode when we reserve space for the
1929 * extent we are going to write, so we will enospc out there. We don't
1930 * need to start yet another transaction to update the inode as we will
1931 * update the inode when we finish writing whatever data we write.
1933 update_time_for_write(inode);
1935 start_pos = round_down(pos, fs_info->sectorsize);
1936 oldsize = i_size_read(inode);
1937 if (start_pos > oldsize) {
1938 /* Expand hole size to cover write data, preventing empty gap */
1939 end_pos = round_up(pos + count,
1940 fs_info->sectorsize);
1941 err = btrfs_cont_expand(inode, oldsize, end_pos);
1943 inode_unlock(inode);
1946 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1951 atomic_inc(&BTRFS_I(inode)->sync_writers);
1953 if (iocb->ki_flags & IOCB_DIRECT) {
1954 num_written = __btrfs_direct_write(iocb, from);
1956 num_written = __btrfs_buffered_write(file, from, pos);
1957 if (num_written > 0)
1958 iocb->ki_pos = pos + num_written;
1960 pagecache_isize_extended(inode, oldsize,
1961 i_size_read(inode));
1964 inode_unlock(inode);
1967 * We also have to set last_sub_trans to the current log transid,
1968 * otherwise subsequent syncs to a file that's been synced in this
1969 * transaction will appear to have already occurred.
1971 spin_lock(&BTRFS_I(inode)->lock);
1972 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1973 spin_unlock(&BTRFS_I(inode)->lock);
1974 if (num_written > 0)
1975 num_written = generic_write_sync(iocb, num_written);
1978 atomic_dec(&BTRFS_I(inode)->sync_writers);
1980 current->backing_dev_info = NULL;
1981 return num_written ? num_written : err;
1984 int btrfs_release_file(struct inode *inode, struct file *filp)
1986 struct btrfs_file_private *private = filp->private_data;
1988 if (private && private->filldir_buf)
1989 kfree(private->filldir_buf);
1991 filp->private_data = NULL;
1994 * ordered_data_close is set by settattr when we are about to truncate
1995 * a file from a non-zero size to a zero size. This tries to
1996 * flush down new bytes that may have been written if the
1997 * application were using truncate to replace a file in place.
1999 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2000 &BTRFS_I(inode)->runtime_flags))
2001 filemap_flush(inode->i_mapping);
2005 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2008 struct blk_plug plug;
2011 * This is only called in fsync, which would do synchronous writes, so
2012 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2013 * multiple disks using raid profile, a large IO can be split to
2014 * several segments of stripe length (currently 64K).
2016 blk_start_plug(&plug);
2017 atomic_inc(&BTRFS_I(inode)->sync_writers);
2018 ret = btrfs_fdatawrite_range(inode, start, end);
2019 atomic_dec(&BTRFS_I(inode)->sync_writers);
2020 blk_finish_plug(&plug);
2026 * fsync call for both files and directories. This logs the inode into
2027 * the tree log instead of forcing full commits whenever possible.
2029 * It needs to call filemap_fdatawait so that all ordered extent updates are
2030 * in the metadata btree are up to date for copying to the log.
2032 * It drops the inode mutex before doing the tree log commit. This is an
2033 * important optimization for directories because holding the mutex prevents
2034 * new operations on the dir while we write to disk.
2036 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2038 struct dentry *dentry = file_dentry(file);
2039 struct inode *inode = d_inode(dentry);
2040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 struct btrfs_root *root = BTRFS_I(inode)->root;
2042 struct btrfs_trans_handle *trans;
2043 struct btrfs_log_ctx ctx;
2045 bool full_sync = false;
2049 * The range length can be represented by u64, we have to do the typecasts
2050 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2052 len = (u64)end - (u64)start + 1;
2053 trace_btrfs_sync_file(file, datasync);
2055 btrfs_init_log_ctx(&ctx, inode);
2058 * We write the dirty pages in the range and wait until they complete
2059 * out of the ->i_mutex. If so, we can flush the dirty pages by
2060 * multi-task, and make the performance up. See
2061 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2063 ret = start_ordered_ops(inode, start, end);
2068 atomic_inc(&root->log_batch);
2069 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2070 &BTRFS_I(inode)->runtime_flags);
2073 * We have to do this here to avoid the priority inversion of waiting on
2074 * IO of a lower priority task while holding a transaciton open.
2076 ret = btrfs_wait_ordered_range(inode, start, len);
2078 inode_unlock(inode);
2081 atomic_inc(&root->log_batch);
2084 * If the last transaction that changed this file was before the current
2085 * transaction and we have the full sync flag set in our inode, we can
2086 * bail out now without any syncing.
2088 * Note that we can't bail out if the full sync flag isn't set. This is
2089 * because when the full sync flag is set we start all ordered extents
2090 * and wait for them to fully complete - when they complete they update
2091 * the inode's last_trans field through:
2093 * btrfs_finish_ordered_io() ->
2094 * btrfs_update_inode_fallback() ->
2095 * btrfs_update_inode() ->
2096 * btrfs_set_inode_last_trans()
2098 * So we are sure that last_trans is up to date and can do this check to
2099 * bail out safely. For the fast path, when the full sync flag is not
2100 * set in our inode, we can not do it because we start only our ordered
2101 * extents and don't wait for them to complete (that is when
2102 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2103 * value might be less than or equals to fs_info->last_trans_committed,
2104 * and setting a speculative last_trans for an inode when a buffered
2105 * write is made (such as fs_info->generation + 1 for example) would not
2106 * be reliable since after setting the value and before fsync is called
2107 * any number of transactions can start and commit (transaction kthread
2108 * commits the current transaction periodically), and a transaction
2109 * commit does not start nor waits for ordered extents to complete.
2112 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2113 (full_sync && BTRFS_I(inode)->last_trans <=
2114 fs_info->last_trans_committed) ||
2115 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2116 BTRFS_I(inode)->last_trans
2117 <= fs_info->last_trans_committed)) {
2119 * We've had everything committed since the last time we were
2120 * modified so clear this flag in case it was set for whatever
2121 * reason, it's no longer relevant.
2123 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2124 &BTRFS_I(inode)->runtime_flags);
2126 * An ordered extent might have started before and completed
2127 * already with io errors, in which case the inode was not
2128 * updated and we end up here. So check the inode's mapping
2129 * for any errors that might have happened since we last
2130 * checked called fsync.
2132 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2133 inode_unlock(inode);
2138 * We use start here because we will need to wait on the IO to complete
2139 * in btrfs_sync_log, which could require joining a transaction (for
2140 * example checking cross references in the nocow path). If we use join
2141 * here we could get into a situation where we're waiting on IO to
2142 * happen that is blocked on a transaction trying to commit. With start
2143 * we inc the extwriter counter, so we wait for all extwriters to exit
2144 * before we start blocking join'ers. This comment is to keep somebody
2145 * from thinking they are super smart and changing this to
2146 * btrfs_join_transaction *cough*Josef*cough*.
2148 trans = btrfs_start_transaction(root, 0);
2149 if (IS_ERR(trans)) {
2150 ret = PTR_ERR(trans);
2151 inode_unlock(inode);
2156 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2158 /* Fallthrough and commit/free transaction. */
2162 /* we've logged all the items and now have a consistent
2163 * version of the file in the log. It is possible that
2164 * someone will come in and modify the file, but that's
2165 * fine because the log is consistent on disk, and we
2166 * have references to all of the file's extents
2168 * It is possible that someone will come in and log the
2169 * file again, but that will end up using the synchronization
2170 * inside btrfs_sync_log to keep things safe.
2172 inode_unlock(inode);
2175 * If any of the ordered extents had an error, just return it to user
2176 * space, so that the application knows some writes didn't succeed and
2177 * can take proper action (retry for e.g.). Blindly committing the
2178 * transaction in this case, would fool userspace that everything was
2179 * successful. And we also want to make sure our log doesn't contain
2180 * file extent items pointing to extents that weren't fully written to -
2181 * just like in the non fast fsync path, where we check for the ordered
2182 * operation's error flag before writing to the log tree and return -EIO
2183 * if any of them had this flag set (btrfs_wait_ordered_range) -
2184 * therefore we need to check for errors in the ordered operations,
2185 * which are indicated by ctx.io_err.
2188 btrfs_end_transaction(trans);
2193 if (ret != BTRFS_NO_LOG_SYNC) {
2195 ret = btrfs_sync_log(trans, root, &ctx);
2197 ret = btrfs_end_transaction(trans);
2201 ret = btrfs_commit_transaction(trans);
2203 ret = btrfs_end_transaction(trans);
2206 ASSERT(list_empty(&ctx.list));
2207 err = file_check_and_advance_wb_err(file);
2210 return ret > 0 ? -EIO : ret;
2213 static const struct vm_operations_struct btrfs_file_vm_ops = {
2214 .fault = filemap_fault,
2215 .map_pages = filemap_map_pages,
2216 .page_mkwrite = btrfs_page_mkwrite,
2219 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2221 struct address_space *mapping = filp->f_mapping;
2223 if (!mapping->a_ops->readpage)
2226 file_accessed(filp);
2227 vma->vm_ops = &btrfs_file_vm_ops;
2232 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2233 int slot, u64 start, u64 end)
2235 struct btrfs_file_extent_item *fi;
2236 struct btrfs_key key;
2238 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2241 btrfs_item_key_to_cpu(leaf, &key, slot);
2242 if (key.objectid != btrfs_ino(inode) ||
2243 key.type != BTRFS_EXTENT_DATA_KEY)
2246 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2248 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2251 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2254 if (key.offset == end)
2256 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2261 static int fill_holes(struct btrfs_trans_handle *trans,
2262 struct btrfs_inode *inode,
2263 struct btrfs_path *path, u64 offset, u64 end)
2265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2266 struct btrfs_root *root = inode->root;
2267 struct extent_buffer *leaf;
2268 struct btrfs_file_extent_item *fi;
2269 struct extent_map *hole_em;
2270 struct extent_map_tree *em_tree = &inode->extent_tree;
2271 struct btrfs_key key;
2274 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2277 key.objectid = btrfs_ino(inode);
2278 key.type = BTRFS_EXTENT_DATA_KEY;
2279 key.offset = offset;
2281 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2284 * We should have dropped this offset, so if we find it then
2285 * something has gone horribly wrong.
2292 leaf = path->nodes[0];
2293 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2297 fi = btrfs_item_ptr(leaf, path->slots[0],
2298 struct btrfs_file_extent_item);
2299 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2301 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2302 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2303 btrfs_set_file_extent_offset(leaf, fi, 0);
2304 btrfs_mark_buffer_dirty(leaf);
2308 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2311 key.offset = offset;
2312 btrfs_set_item_key_safe(fs_info, path, &key);
2313 fi = btrfs_item_ptr(leaf, path->slots[0],
2314 struct btrfs_file_extent_item);
2315 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2317 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2318 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2319 btrfs_set_file_extent_offset(leaf, fi, 0);
2320 btrfs_mark_buffer_dirty(leaf);
2323 btrfs_release_path(path);
2325 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2326 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2331 btrfs_release_path(path);
2333 hole_em = alloc_extent_map();
2335 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2336 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2338 hole_em->start = offset;
2339 hole_em->len = end - offset;
2340 hole_em->ram_bytes = hole_em->len;
2341 hole_em->orig_start = offset;
2343 hole_em->block_start = EXTENT_MAP_HOLE;
2344 hole_em->block_len = 0;
2345 hole_em->orig_block_len = 0;
2346 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2347 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2348 hole_em->generation = trans->transid;
2351 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2352 write_lock(&em_tree->lock);
2353 ret = add_extent_mapping(em_tree, hole_em, 1);
2354 write_unlock(&em_tree->lock);
2355 } while (ret == -EEXIST);
2356 free_extent_map(hole_em);
2358 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2359 &inode->runtime_flags);
2366 * Find a hole extent on given inode and change start/len to the end of hole
2367 * extent.(hole/vacuum extent whose em->start <= start &&
2368 * em->start + em->len > start)
2369 * When a hole extent is found, return 1 and modify start/len.
2371 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2374 struct extent_map *em;
2377 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2378 round_down(*start, fs_info->sectorsize),
2379 round_up(*len, fs_info->sectorsize), 0);
2383 /* Hole or vacuum extent(only exists in no-hole mode) */
2384 if (em->block_start == EXTENT_MAP_HOLE) {
2386 *len = em->start + em->len > *start + *len ?
2387 0 : *start + *len - em->start - em->len;
2388 *start = em->start + em->len;
2390 free_extent_map(em);
2394 static int btrfs_punch_hole_lock_range(struct inode *inode,
2395 const u64 lockstart,
2397 struct extent_state **cached_state)
2400 struct btrfs_ordered_extent *ordered;
2403 truncate_pagecache_range(inode, lockstart, lockend);
2405 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2407 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2410 * We need to make sure we have no ordered extents in this range
2411 * and nobody raced in and read a page in this range, if we did
2412 * we need to try again.
2415 (ordered->file_offset + ordered->len <= lockstart ||
2416 ordered->file_offset > lockend)) &&
2417 !filemap_range_has_page(inode->i_mapping,
2418 lockstart, lockend)) {
2420 btrfs_put_ordered_extent(ordered);
2424 btrfs_put_ordered_extent(ordered);
2425 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2426 lockend, cached_state);
2427 ret = btrfs_wait_ordered_range(inode, lockstart,
2428 lockend - lockstart + 1);
2435 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2437 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2438 struct btrfs_root *root = BTRFS_I(inode)->root;
2439 struct extent_state *cached_state = NULL;
2440 struct btrfs_path *path;
2441 struct btrfs_block_rsv *rsv;
2442 struct btrfs_trans_handle *trans;
2447 u64 orig_start = offset;
2449 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2453 unsigned int rsv_count;
2455 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2457 bool truncated_block = false;
2458 bool updated_inode = false;
2460 ret = btrfs_wait_ordered_range(inode, offset, len);
2465 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2466 ret = find_first_non_hole(inode, &offset, &len);
2468 goto out_only_mutex;
2470 /* Already in a large hole */
2472 goto out_only_mutex;
2475 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2476 lockend = round_down(offset + len,
2477 btrfs_inode_sectorsize(inode)) - 1;
2478 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2479 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2481 * We needn't truncate any block which is beyond the end of the file
2482 * because we are sure there is no data there.
2485 * Only do this if we are in the same block and we aren't doing the
2488 if (same_block && len < fs_info->sectorsize) {
2489 if (offset < ino_size) {
2490 truncated_block = true;
2491 ret = btrfs_truncate_block(inode, offset, len, 0);
2495 goto out_only_mutex;
2498 /* zero back part of the first block */
2499 if (offset < ino_size) {
2500 truncated_block = true;
2501 ret = btrfs_truncate_block(inode, offset, 0, 0);
2503 inode_unlock(inode);
2508 /* Check the aligned pages after the first unaligned page,
2509 * if offset != orig_start, which means the first unaligned page
2510 * including several following pages are already in holes,
2511 * the extra check can be skipped */
2512 if (offset == orig_start) {
2513 /* after truncate page, check hole again */
2514 len = offset + len - lockstart;
2516 ret = find_first_non_hole(inode, &offset, &len);
2518 goto out_only_mutex;
2521 goto out_only_mutex;
2526 /* Check the tail unaligned part is in a hole */
2527 tail_start = lockend + 1;
2528 tail_len = offset + len - tail_start;
2530 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2531 if (unlikely(ret < 0))
2532 goto out_only_mutex;
2534 /* zero the front end of the last page */
2535 if (tail_start + tail_len < ino_size) {
2536 truncated_block = true;
2537 ret = btrfs_truncate_block(inode,
2538 tail_start + tail_len,
2541 goto out_only_mutex;
2546 if (lockend < lockstart) {
2548 goto out_only_mutex;
2551 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2554 inode_unlock(inode);
2555 goto out_only_mutex;
2558 path = btrfs_alloc_path();
2564 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2569 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2573 * 1 - update the inode
2574 * 1 - removing the extents in the range
2575 * 1 - adding the hole extent if no_holes isn't set
2577 rsv_count = no_holes ? 2 : 3;
2578 trans = btrfs_start_transaction(root, rsv_count);
2579 if (IS_ERR(trans)) {
2580 err = PTR_ERR(trans);
2584 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2587 trans->block_rsv = rsv;
2589 cur_offset = lockstart;
2590 len = lockend - cur_offset;
2591 while (cur_offset < lockend) {
2592 ret = __btrfs_drop_extents(trans, root, inode, path,
2593 cur_offset, lockend + 1,
2594 &drop_end, 1, 0, 0, NULL);
2598 trans->block_rsv = &fs_info->trans_block_rsv;
2600 if (cur_offset < drop_end && cur_offset < ino_size) {
2601 ret = fill_holes(trans, BTRFS_I(inode), path,
2602 cur_offset, drop_end);
2605 * If we failed then we didn't insert our hole
2606 * entries for the area we dropped, so now the
2607 * fs is corrupted, so we must abort the
2610 btrfs_abort_transaction(trans, ret);
2616 cur_offset = drop_end;
2618 ret = btrfs_update_inode(trans, root, inode);
2624 btrfs_end_transaction(trans);
2625 btrfs_btree_balance_dirty(fs_info);
2627 trans = btrfs_start_transaction(root, rsv_count);
2628 if (IS_ERR(trans)) {
2629 ret = PTR_ERR(trans);
2634 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2636 BUG_ON(ret); /* shouldn't happen */
2637 trans->block_rsv = rsv;
2639 ret = find_first_non_hole(inode, &cur_offset, &len);
2640 if (unlikely(ret < 0))
2653 trans->block_rsv = &fs_info->trans_block_rsv;
2655 * If we are using the NO_HOLES feature we might have had already an
2656 * hole that overlaps a part of the region [lockstart, lockend] and
2657 * ends at (or beyond) lockend. Since we have no file extent items to
2658 * represent holes, drop_end can be less than lockend and so we must
2659 * make sure we have an extent map representing the existing hole (the
2660 * call to __btrfs_drop_extents() might have dropped the existing extent
2661 * map representing the existing hole), otherwise the fast fsync path
2662 * will not record the existence of the hole region
2663 * [existing_hole_start, lockend].
2665 if (drop_end <= lockend)
2666 drop_end = lockend + 1;
2668 * Don't insert file hole extent item if it's for a range beyond eof
2669 * (because it's useless) or if it represents a 0 bytes range (when
2670 * cur_offset == drop_end).
2672 if (cur_offset < ino_size && cur_offset < drop_end) {
2673 ret = fill_holes(trans, BTRFS_I(inode), path,
2674 cur_offset, drop_end);
2676 /* Same comment as above. */
2677 btrfs_abort_transaction(trans, ret);
2687 inode_inc_iversion(inode);
2688 inode->i_mtime = inode->i_ctime = current_time(inode);
2690 trans->block_rsv = &fs_info->trans_block_rsv;
2691 ret = btrfs_update_inode(trans, root, inode);
2692 updated_inode = true;
2693 btrfs_end_transaction(trans);
2694 btrfs_btree_balance_dirty(fs_info);
2696 btrfs_free_path(path);
2697 btrfs_free_block_rsv(fs_info, rsv);
2699 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2702 if (!updated_inode && truncated_block && !ret && !err) {
2704 * If we only end up zeroing part of a page, we still need to
2705 * update the inode item, so that all the time fields are
2706 * updated as well as the necessary btrfs inode in memory fields
2707 * for detecting, at fsync time, if the inode isn't yet in the
2708 * log tree or it's there but not up to date.
2710 trans = btrfs_start_transaction(root, 1);
2711 if (IS_ERR(trans)) {
2712 err = PTR_ERR(trans);
2714 err = btrfs_update_inode(trans, root, inode);
2715 ret = btrfs_end_transaction(trans);
2718 inode_unlock(inode);
2724 /* Helper structure to record which range is already reserved */
2725 struct falloc_range {
2726 struct list_head list;
2732 * Helper function to add falloc range
2734 * Caller should have locked the larger range of extent containing
2737 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2739 struct falloc_range *prev = NULL;
2740 struct falloc_range *range = NULL;
2742 if (list_empty(head))
2746 * As fallocate iterate by bytenr order, we only need to check
2749 prev = list_entry(head->prev, struct falloc_range, list);
2750 if (prev->start + prev->len == start) {
2755 range = kmalloc(sizeof(*range), GFP_KERNEL);
2758 range->start = start;
2760 list_add_tail(&range->list, head);
2764 static int btrfs_fallocate_update_isize(struct inode *inode,
2768 struct btrfs_trans_handle *trans;
2769 struct btrfs_root *root = BTRFS_I(inode)->root;
2773 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2776 trans = btrfs_start_transaction(root, 1);
2778 return PTR_ERR(trans);
2780 inode->i_ctime = current_time(inode);
2781 i_size_write(inode, end);
2782 btrfs_ordered_update_i_size(inode, end, NULL);
2783 ret = btrfs_update_inode(trans, root, inode);
2784 ret2 = btrfs_end_transaction(trans);
2786 return ret ? ret : ret2;
2790 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2791 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2792 RANGE_BOUNDARY_HOLE = 2,
2795 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2798 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2799 struct extent_map *em;
2802 offset = round_down(offset, sectorsize);
2803 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2807 if (em->block_start == EXTENT_MAP_HOLE)
2808 ret = RANGE_BOUNDARY_HOLE;
2809 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2810 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2812 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2814 free_extent_map(em);
2818 static int btrfs_zero_range(struct inode *inode,
2823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2824 struct extent_map *em;
2825 struct extent_changeset *data_reserved = NULL;
2828 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2829 u64 alloc_start = round_down(offset, sectorsize);
2830 u64 alloc_end = round_up(offset + len, sectorsize);
2831 u64 bytes_to_reserve = 0;
2832 bool space_reserved = false;
2834 inode_dio_wait(inode);
2836 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2837 alloc_start, alloc_end - alloc_start, 0);
2844 * Avoid hole punching and extent allocation for some cases. More cases
2845 * could be considered, but these are unlikely common and we keep things
2846 * as simple as possible for now. Also, intentionally, if the target
2847 * range contains one or more prealloc extents together with regular
2848 * extents and holes, we drop all the existing extents and allocate a
2849 * new prealloc extent, so that we get a larger contiguous disk extent.
2851 if (em->start <= alloc_start &&
2852 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2853 const u64 em_end = em->start + em->len;
2855 if (em_end >= offset + len) {
2857 * The whole range is already a prealloc extent,
2858 * do nothing except updating the inode's i_size if
2861 free_extent_map(em);
2862 ret = btrfs_fallocate_update_isize(inode, offset + len,
2867 * Part of the range is already a prealloc extent, so operate
2868 * only on the remaining part of the range.
2870 alloc_start = em_end;
2871 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2872 len = offset + len - alloc_start;
2873 offset = alloc_start;
2874 alloc_hint = em->block_start + em->len;
2876 free_extent_map(em);
2878 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2879 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2880 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2881 alloc_start, sectorsize, 0);
2887 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2888 free_extent_map(em);
2889 ret = btrfs_fallocate_update_isize(inode, offset + len,
2893 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2894 free_extent_map(em);
2895 ret = btrfs_truncate_block(inode, offset, len, 0);
2897 ret = btrfs_fallocate_update_isize(inode,
2902 free_extent_map(em);
2903 alloc_start = round_down(offset, sectorsize);
2904 alloc_end = alloc_start + sectorsize;
2908 alloc_start = round_up(offset, sectorsize);
2909 alloc_end = round_down(offset + len, sectorsize);
2912 * For unaligned ranges, check the pages at the boundaries, they might
2913 * map to an extent, in which case we need to partially zero them, or
2914 * they might map to a hole, in which case we need our allocation range
2917 if (!IS_ALIGNED(offset, sectorsize)) {
2918 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2921 if (ret == RANGE_BOUNDARY_HOLE) {
2922 alloc_start = round_down(offset, sectorsize);
2924 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2925 ret = btrfs_truncate_block(inode, offset, 0, 0);
2933 if (!IS_ALIGNED(offset + len, sectorsize)) {
2934 ret = btrfs_zero_range_check_range_boundary(inode,
2938 if (ret == RANGE_BOUNDARY_HOLE) {
2939 alloc_end = round_up(offset + len, sectorsize);
2941 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2942 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2951 if (alloc_start < alloc_end) {
2952 struct extent_state *cached_state = NULL;
2953 const u64 lockstart = alloc_start;
2954 const u64 lockend = alloc_end - 1;
2956 bytes_to_reserve = alloc_end - alloc_start;
2957 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2961 space_reserved = true;
2962 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2963 alloc_start, bytes_to_reserve);
2966 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2970 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2971 alloc_end - alloc_start,
2973 offset + len, &alloc_hint);
2974 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2975 lockend, &cached_state);
2976 /* btrfs_prealloc_file_range releases reserved space on error */
2978 space_reserved = false;
2982 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2984 if (ret && space_reserved)
2985 btrfs_free_reserved_data_space(inode, data_reserved,
2986 alloc_start, bytes_to_reserve);
2987 extent_changeset_free(data_reserved);
2992 static long btrfs_fallocate(struct file *file, int mode,
2993 loff_t offset, loff_t len)
2995 struct inode *inode = file_inode(file);
2996 struct extent_state *cached_state = NULL;
2997 struct extent_changeset *data_reserved = NULL;
2998 struct falloc_range *range;
2999 struct falloc_range *tmp;
3000 struct list_head reserve_list;
3008 struct extent_map *em;
3009 int blocksize = btrfs_inode_sectorsize(inode);
3012 alloc_start = round_down(offset, blocksize);
3013 alloc_end = round_up(offset + len, blocksize);
3014 cur_offset = alloc_start;
3016 /* Make sure we aren't being give some crap mode */
3017 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3018 FALLOC_FL_ZERO_RANGE))
3021 if (mode & FALLOC_FL_PUNCH_HOLE)
3022 return btrfs_punch_hole(inode, offset, len);
3025 * Only trigger disk allocation, don't trigger qgroup reserve
3027 * For qgroup space, it will be checked later.
3029 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3030 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3031 alloc_end - alloc_start);
3038 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3039 ret = inode_newsize_ok(inode, offset + len);
3045 * TODO: Move these two operations after we have checked
3046 * accurate reserved space, or fallocate can still fail but
3047 * with page truncated or size expanded.
3049 * But that's a minor problem and won't do much harm BTW.
3051 if (alloc_start > inode->i_size) {
3052 ret = btrfs_cont_expand(inode, i_size_read(inode),
3056 } else if (offset + len > inode->i_size) {
3058 * If we are fallocating from the end of the file onward we
3059 * need to zero out the end of the block if i_size lands in the
3060 * middle of a block.
3062 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3068 * wait for ordered IO before we have any locks. We'll loop again
3069 * below with the locks held.
3071 ret = btrfs_wait_ordered_range(inode, alloc_start,
3072 alloc_end - alloc_start);
3076 if (mode & FALLOC_FL_ZERO_RANGE) {
3077 ret = btrfs_zero_range(inode, offset, len, mode);
3078 inode_unlock(inode);
3082 locked_end = alloc_end - 1;
3084 struct btrfs_ordered_extent *ordered;
3086 /* the extent lock is ordered inside the running
3089 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3090 locked_end, &cached_state);
3091 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3094 ordered->file_offset + ordered->len > alloc_start &&
3095 ordered->file_offset < alloc_end) {
3096 btrfs_put_ordered_extent(ordered);
3097 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3098 alloc_start, locked_end,
3101 * we can't wait on the range with the transaction
3102 * running or with the extent lock held
3104 ret = btrfs_wait_ordered_range(inode, alloc_start,
3105 alloc_end - alloc_start);
3110 btrfs_put_ordered_extent(ordered);
3115 /* First, check if we exceed the qgroup limit */
3116 INIT_LIST_HEAD(&reserve_list);
3117 while (cur_offset < alloc_end) {
3118 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3119 alloc_end - cur_offset, 0);
3124 last_byte = min(extent_map_end(em), alloc_end);
3125 actual_end = min_t(u64, extent_map_end(em), offset + len);
3126 last_byte = ALIGN(last_byte, blocksize);
3127 if (em->block_start == EXTENT_MAP_HOLE ||
3128 (cur_offset >= inode->i_size &&
3129 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3130 ret = add_falloc_range(&reserve_list, cur_offset,
3131 last_byte - cur_offset);
3133 free_extent_map(em);
3136 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3137 cur_offset, last_byte - cur_offset);
3139 free_extent_map(em);
3144 * Do not need to reserve unwritten extent for this
3145 * range, free reserved data space first, otherwise
3146 * it'll result in false ENOSPC error.
3148 btrfs_free_reserved_data_space(inode, data_reserved,
3149 cur_offset, last_byte - cur_offset);
3151 free_extent_map(em);
3152 cur_offset = last_byte;
3156 * If ret is still 0, means we're OK to fallocate.
3157 * Or just cleanup the list and exit.
3159 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3161 ret = btrfs_prealloc_file_range(inode, mode,
3163 range->len, i_blocksize(inode),
3164 offset + len, &alloc_hint);
3166 btrfs_free_reserved_data_space(inode,
3167 data_reserved, range->start,
3169 list_del(&range->list);
3176 * We didn't need to allocate any more space, but we still extended the
3177 * size of the file so we need to update i_size and the inode item.
3179 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3181 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3184 inode_unlock(inode);
3185 /* Let go of our reservation. */
3186 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3187 btrfs_free_reserved_data_space(inode, data_reserved,
3188 alloc_start, alloc_end - cur_offset);
3189 extent_changeset_free(data_reserved);
3193 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3195 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3196 struct extent_map *em = NULL;
3197 struct extent_state *cached_state = NULL;
3204 if (inode->i_size == 0)
3208 * *offset can be negative, in this case we start finding DATA/HOLE from
3209 * the very start of the file.
3211 start = max_t(loff_t, 0, *offset);
3213 lockstart = round_down(start, fs_info->sectorsize);
3214 lockend = round_up(i_size_read(inode),
3215 fs_info->sectorsize);
3216 if (lockend <= lockstart)
3217 lockend = lockstart + fs_info->sectorsize;
3219 len = lockend - lockstart + 1;
3221 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3224 while (start < inode->i_size) {
3225 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3233 if (whence == SEEK_HOLE &&
3234 (em->block_start == EXTENT_MAP_HOLE ||
3235 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3237 else if (whence == SEEK_DATA &&
3238 (em->block_start != EXTENT_MAP_HOLE &&
3239 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3242 start = em->start + em->len;
3243 free_extent_map(em);
3247 free_extent_map(em);
3249 if (whence == SEEK_DATA && start >= inode->i_size)
3252 *offset = min_t(loff_t, start, inode->i_size);
3254 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3259 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3261 struct inode *inode = file->f_mapping->host;
3268 offset = generic_file_llseek(file, offset, whence);
3272 if (offset >= i_size_read(inode)) {
3273 inode_unlock(inode);
3277 ret = find_desired_extent(inode, &offset, whence);
3279 inode_unlock(inode);
3284 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3286 inode_unlock(inode);
3290 static int btrfs_file_open(struct inode *inode, struct file *filp)
3292 filp->f_mode |= FMODE_NOWAIT;
3293 return generic_file_open(inode, filp);
3296 const struct file_operations btrfs_file_operations = {
3297 .llseek = btrfs_file_llseek,
3298 .read_iter = generic_file_read_iter,
3299 .splice_read = generic_file_splice_read,
3300 .write_iter = btrfs_file_write_iter,
3301 .mmap = btrfs_file_mmap,
3302 .open = btrfs_file_open,
3303 .release = btrfs_release_file,
3304 .fsync = btrfs_sync_file,
3305 .fallocate = btrfs_fallocate,
3306 .unlocked_ioctl = btrfs_ioctl,
3307 #ifdef CONFIG_COMPAT
3308 .compat_ioctl = btrfs_compat_ioctl,
3310 .clone_file_range = btrfs_clone_file_range,
3311 .dedupe_file_range = btrfs_dedupe_file_range,
3314 void __cold btrfs_auto_defrag_exit(void)
3316 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3319 int __init btrfs_auto_defrag_init(void)
3321 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3322 sizeof(struct inode_defrag), 0,
3325 if (!btrfs_inode_defrag_cachep)
3331 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3336 * So with compression we will find and lock a dirty page and clear the
3337 * first one as dirty, setup an async extent, and immediately return
3338 * with the entire range locked but with nobody actually marked with
3339 * writeback. So we can't just filemap_write_and_wait_range() and
3340 * expect it to work since it will just kick off a thread to do the
3341 * actual work. So we need to call filemap_fdatawrite_range _again_
3342 * since it will wait on the page lock, which won't be unlocked until
3343 * after the pages have been marked as writeback and so we're good to go
3344 * from there. We have to do this otherwise we'll miss the ordered
3345 * extents and that results in badness. Please Josef, do not think you
3346 * know better and pull this out at some point in the future, it is
3347 * right and you are wrong.
3349 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3350 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3351 &BTRFS_I(inode)->runtime_flags))
3352 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);