1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
47 #include "pgalloc-track.h"
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
52 static int __init set_nohugeiomap(char *str)
54 ioremap_max_page_shift = PAGE_SHIFT;
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
65 static int __init set_nohugevmalloc(char *str)
67 vmap_allow_huge = false;
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 bool is_vmalloc_addr(const void *x)
77 unsigned long addr = (unsigned long)kasan_reset_tag(x);
79 return addr >= VMALLOC_START && addr < VMALLOC_END;
81 EXPORT_SYMBOL(is_vmalloc_addr);
83 struct vfree_deferred {
84 struct llist_head list;
85 struct work_struct wq;
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
89 static void __vunmap(const void *, int);
91 static void free_work(struct work_struct *w)
93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 struct llist_node *t, *llnode;
96 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 __vunmap((void *)llnode, 1);
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 phys_addr_t phys_addr, pgprot_t prot,
103 unsigned int max_page_shift, pgtbl_mod_mask *mask)
107 unsigned long size = PAGE_SIZE;
109 pfn = phys_addr >> PAGE_SHIFT;
110 pte = pte_alloc_kernel_track(pmd, addr, mask);
114 BUG_ON(!pte_none(*pte));
116 #ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry);
123 pfn += PFN_DOWN(size);
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
130 *mask |= PGTBL_PTE_MODIFIED;
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
138 if (max_page_shift < PMD_SHIFT)
141 if (!arch_vmap_pmd_supported(prot))
144 if ((end - addr) != PMD_SIZE)
147 if (!IS_ALIGNED(addr, PMD_SIZE))
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
156 return pmd_set_huge(pmd, phys_addr, prot);
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
170 next = pmd_addr_end(addr, end);
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
174 *mask |= PGTBL_PMD_MODIFIED;
178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
188 if (max_page_shift < PUD_SHIFT)
191 if (!arch_vmap_pud_supported(prot))
194 if ((end - addr) != PUD_SIZE)
197 if (!IS_ALIGNED(addr, PUD_SIZE))
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
206 return pud_set_huge(pud, phys_addr, prot);
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
220 next = pud_addr_end(addr, end);
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
224 *mask |= PGTBL_PUD_MODIFIED;
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
239 if (max_page_shift < P4D_SHIFT)
242 if (!arch_vmap_p4d_supported(prot))
245 if ((end - addr) != P4D_SIZE)
248 if (!IS_ALIGNED(addr, P4D_SIZE))
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
257 return p4d_set_huge(p4d, phys_addr, prot);
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
271 next = p4d_addr_end(addr, end);
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
275 *mask |= PGTBL_P4D_MODIFIED;
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
294 pgtbl_mod_mask mask = 0;
300 pgd = pgd_offset_k(addr);
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 ioremap_max_page_shift);
322 flush_cache_vmap(addr, end);
326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 pgtbl_mod_mask *mask)
331 pte = pte_offset_kernel(pmd, addr);
333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 } while (pte++, addr += PAGE_SIZE, addr != end);
336 *mask |= PGTBL_PTE_MODIFIED;
339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 pgtbl_mod_mask *mask)
346 pmd = pmd_offset(pud, addr);
348 next = pmd_addr_end(addr, end);
350 cleared = pmd_clear_huge(pmd);
351 if (cleared || pmd_bad(*pmd))
352 *mask |= PGTBL_PMD_MODIFIED;
356 if (pmd_none_or_clear_bad(pmd))
358 vunmap_pte_range(pmd, addr, next, mask);
361 } while (pmd++, addr = next, addr != end);
364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 pgtbl_mod_mask *mask)
371 pud = pud_offset(p4d, addr);
373 next = pud_addr_end(addr, end);
375 cleared = pud_clear_huge(pud);
376 if (cleared || pud_bad(*pud))
377 *mask |= PGTBL_PUD_MODIFIED;
381 if (pud_none_or_clear_bad(pud))
383 vunmap_pmd_range(pud, addr, next, mask);
384 } while (pud++, addr = next, addr != end);
387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
394 p4d = p4d_offset(pgd, addr);
396 next = p4d_addr_end(addr, end);
398 cleared = p4d_clear_huge(p4d);
399 if (cleared || p4d_bad(*p4d))
400 *mask |= PGTBL_P4D_MODIFIED;
404 if (p4d_none_or_clear_bad(p4d))
406 vunmap_pud_range(p4d, addr, next, mask);
407 } while (p4d++, addr = next, addr != end);
411 * vunmap_range_noflush is similar to vunmap_range, but does not
412 * flush caches or TLBs.
414 * The caller is responsible for calling flush_cache_vmap() before calling
415 * this function, and flush_tlb_kernel_range after it has returned
416 * successfully (and before the addresses are expected to cause a page fault
417 * or be re-mapped for something else, if TLB flushes are being delayed or
420 * This is an internal function only. Do not use outside mm/.
422 void vunmap_range_noflush(unsigned long start, unsigned long end)
426 unsigned long addr = start;
427 pgtbl_mod_mask mask = 0;
430 pgd = pgd_offset_k(addr);
432 next = pgd_addr_end(addr, end);
434 mask |= PGTBL_PGD_MODIFIED;
435 if (pgd_none_or_clear_bad(pgd))
437 vunmap_p4d_range(pgd, addr, next, &mask);
438 } while (pgd++, addr = next, addr != end);
440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 arch_sync_kernel_mappings(start, end);
445 * vunmap_range - unmap kernel virtual addresses
446 * @addr: start of the VM area to unmap
447 * @end: end of the VM area to unmap (non-inclusive)
449 * Clears any present PTEs in the virtual address range, flushes TLBs and
450 * caches. Any subsequent access to the address before it has been re-mapped
453 void vunmap_range(unsigned long addr, unsigned long end)
455 flush_cache_vunmap(addr, end);
456 vunmap_range_noflush(addr, end);
457 flush_tlb_kernel_range(addr, end);
460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
461 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462 pgtbl_mod_mask *mask)
467 * nr is a running index into the array which helps higher level
468 * callers keep track of where we're up to.
471 pte = pte_alloc_kernel_track(pmd, addr, mask);
475 struct page *page = pages[*nr];
477 if (WARN_ON(!pte_none(*pte)))
481 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
484 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
486 } while (pte++, addr += PAGE_SIZE, addr != end);
487 *mask |= PGTBL_PTE_MODIFIED;
491 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
492 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
493 pgtbl_mod_mask *mask)
498 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
502 next = pmd_addr_end(addr, end);
503 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
505 } while (pmd++, addr = next, addr != end);
509 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
510 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
511 pgtbl_mod_mask *mask)
516 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
520 next = pud_addr_end(addr, end);
521 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
523 } while (pud++, addr = next, addr != end);
527 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
528 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
529 pgtbl_mod_mask *mask)
534 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
538 next = p4d_addr_end(addr, end);
539 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
541 } while (p4d++, addr = next, addr != end);
545 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
546 pgprot_t prot, struct page **pages)
548 unsigned long start = addr;
553 pgtbl_mod_mask mask = 0;
556 pgd = pgd_offset_k(addr);
558 next = pgd_addr_end(addr, end);
560 mask |= PGTBL_PGD_MODIFIED;
561 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
564 } while (pgd++, addr = next, addr != end);
566 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
567 arch_sync_kernel_mappings(start, end);
573 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
576 * The caller is responsible for calling flush_cache_vmap() after this
577 * function returns successfully and before the addresses are accessed.
579 * This is an internal function only. Do not use outside mm/.
581 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
582 pgprot_t prot, struct page **pages, unsigned int page_shift)
584 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
586 WARN_ON(page_shift < PAGE_SHIFT);
588 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
589 page_shift == PAGE_SHIFT)
590 return vmap_small_pages_range_noflush(addr, end, prot, pages);
592 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
595 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
596 __pa(page_address(pages[i])), prot,
601 addr += 1UL << page_shift;
608 * vmap_pages_range - map pages to a kernel virtual address
609 * @addr: start of the VM area to map
610 * @end: end of the VM area to map (non-inclusive)
611 * @prot: page protection flags to use
612 * @pages: pages to map (always PAGE_SIZE pages)
613 * @page_shift: maximum shift that the pages may be mapped with, @pages must
614 * be aligned and contiguous up to at least this shift.
617 * 0 on success, -errno on failure.
619 static int vmap_pages_range(unsigned long addr, unsigned long end,
620 pgprot_t prot, struct page **pages, unsigned int page_shift)
624 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
625 flush_cache_vmap(addr, end);
629 int is_vmalloc_or_module_addr(const void *x)
632 * ARM, x86-64 and sparc64 put modules in a special place,
633 * and fall back on vmalloc() if that fails. Others
634 * just put it in the vmalloc space.
636 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
637 unsigned long addr = (unsigned long)kasan_reset_tag(x);
638 if (addr >= MODULES_VADDR && addr < MODULES_END)
641 return is_vmalloc_addr(x);
645 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
646 * return the tail page that corresponds to the base page address, which
647 * matches small vmap mappings.
649 struct page *vmalloc_to_page(const void *vmalloc_addr)
651 unsigned long addr = (unsigned long) vmalloc_addr;
652 struct page *page = NULL;
653 pgd_t *pgd = pgd_offset_k(addr);
660 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
661 * architectures that do not vmalloc module space
663 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
667 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
668 return NULL; /* XXX: no allowance for huge pgd */
669 if (WARN_ON_ONCE(pgd_bad(*pgd)))
672 p4d = p4d_offset(pgd, addr);
676 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
677 if (WARN_ON_ONCE(p4d_bad(*p4d)))
680 pud = pud_offset(p4d, addr);
684 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
685 if (WARN_ON_ONCE(pud_bad(*pud)))
688 pmd = pmd_offset(pud, addr);
692 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
693 if (WARN_ON_ONCE(pmd_bad(*pmd)))
696 ptep = pte_offset_map(pmd, addr);
698 if (pte_present(pte))
699 page = pte_page(pte);
704 EXPORT_SYMBOL(vmalloc_to_page);
707 * Map a vmalloc()-space virtual address to the physical page frame number.
709 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
711 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
713 EXPORT_SYMBOL(vmalloc_to_pfn);
716 /*** Global kva allocator ***/
718 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
719 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
722 static DEFINE_SPINLOCK(vmap_area_lock);
723 static DEFINE_SPINLOCK(free_vmap_area_lock);
724 /* Export for kexec only */
725 LIST_HEAD(vmap_area_list);
726 static struct rb_root vmap_area_root = RB_ROOT;
727 static bool vmap_initialized __read_mostly;
729 static struct rb_root purge_vmap_area_root = RB_ROOT;
730 static LIST_HEAD(purge_vmap_area_list);
731 static DEFINE_SPINLOCK(purge_vmap_area_lock);
734 * This kmem_cache is used for vmap_area objects. Instead of
735 * allocating from slab we reuse an object from this cache to
736 * make things faster. Especially in "no edge" splitting of
739 static struct kmem_cache *vmap_area_cachep;
742 * This linked list is used in pair with free_vmap_area_root.
743 * It gives O(1) access to prev/next to perform fast coalescing.
745 static LIST_HEAD(free_vmap_area_list);
748 * This augment red-black tree represents the free vmap space.
749 * All vmap_area objects in this tree are sorted by va->va_start
750 * address. It is used for allocation and merging when a vmap
751 * object is released.
753 * Each vmap_area node contains a maximum available free block
754 * of its sub-tree, right or left. Therefore it is possible to
755 * find a lowest match of free area.
757 static struct rb_root free_vmap_area_root = RB_ROOT;
760 * Preload a CPU with one object for "no edge" split case. The
761 * aim is to get rid of allocations from the atomic context, thus
762 * to use more permissive allocation masks.
764 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
766 static __always_inline unsigned long
767 va_size(struct vmap_area *va)
769 return (va->va_end - va->va_start);
772 static __always_inline unsigned long
773 get_subtree_max_size(struct rb_node *node)
775 struct vmap_area *va;
777 va = rb_entry_safe(node, struct vmap_area, rb_node);
778 return va ? va->subtree_max_size : 0;
781 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
782 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
784 static void purge_vmap_area_lazy(void);
785 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
786 static void drain_vmap_area_work(struct work_struct *work);
787 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
789 static atomic_long_t nr_vmalloc_pages;
791 unsigned long vmalloc_nr_pages(void)
793 return atomic_long_read(&nr_vmalloc_pages);
796 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
798 struct vmap_area *va = NULL;
799 struct rb_node *n = vmap_area_root.rb_node;
801 addr = (unsigned long)kasan_reset_tag((void *)addr);
804 struct vmap_area *tmp;
806 tmp = rb_entry(n, struct vmap_area, rb_node);
807 if (tmp->va_end > addr) {
809 if (tmp->va_start <= addr)
820 static struct vmap_area *__find_vmap_area(unsigned long addr)
822 struct rb_node *n = vmap_area_root.rb_node;
824 addr = (unsigned long)kasan_reset_tag((void *)addr);
827 struct vmap_area *va;
829 va = rb_entry(n, struct vmap_area, rb_node);
830 if (addr < va->va_start)
832 else if (addr >= va->va_end)
842 * This function returns back addresses of parent node
843 * and its left or right link for further processing.
845 * Otherwise NULL is returned. In that case all further
846 * steps regarding inserting of conflicting overlap range
847 * have to be declined and actually considered as a bug.
849 static __always_inline struct rb_node **
850 find_va_links(struct vmap_area *va,
851 struct rb_root *root, struct rb_node *from,
852 struct rb_node **parent)
854 struct vmap_area *tmp_va;
855 struct rb_node **link;
858 link = &root->rb_node;
859 if (unlikely(!*link)) {
868 * Go to the bottom of the tree. When we hit the last point
869 * we end up with parent rb_node and correct direction, i name
870 * it link, where the new va->rb_node will be attached to.
873 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
876 * During the traversal we also do some sanity check.
877 * Trigger the BUG() if there are sides(left/right)
880 if (va->va_start < tmp_va->va_end &&
881 va->va_end <= tmp_va->va_start)
882 link = &(*link)->rb_left;
883 else if (va->va_end > tmp_va->va_start &&
884 va->va_start >= tmp_va->va_end)
885 link = &(*link)->rb_right;
887 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
888 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
894 *parent = &tmp_va->rb_node;
898 static __always_inline struct list_head *
899 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
901 struct list_head *list;
903 if (unlikely(!parent))
905 * The red-black tree where we try to find VA neighbors
906 * before merging or inserting is empty, i.e. it means
907 * there is no free vmap space. Normally it does not
908 * happen but we handle this case anyway.
912 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
913 return (&parent->rb_right == link ? list->next : list);
916 static __always_inline void
917 link_va(struct vmap_area *va, struct rb_root *root,
918 struct rb_node *parent, struct rb_node **link, struct list_head *head)
921 * VA is still not in the list, but we can
922 * identify its future previous list_head node.
924 if (likely(parent)) {
925 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
926 if (&parent->rb_right != link)
930 /* Insert to the rb-tree */
931 rb_link_node(&va->rb_node, parent, link);
932 if (root == &free_vmap_area_root) {
934 * Some explanation here. Just perform simple insertion
935 * to the tree. We do not set va->subtree_max_size to
936 * its current size before calling rb_insert_augmented().
937 * It is because of we populate the tree from the bottom
938 * to parent levels when the node _is_ in the tree.
940 * Therefore we set subtree_max_size to zero after insertion,
941 * to let __augment_tree_propagate_from() puts everything to
942 * the correct order later on.
944 rb_insert_augmented(&va->rb_node,
945 root, &free_vmap_area_rb_augment_cb);
946 va->subtree_max_size = 0;
948 rb_insert_color(&va->rb_node, root);
951 /* Address-sort this list */
952 list_add(&va->list, head);
955 static __always_inline void
956 unlink_va(struct vmap_area *va, struct rb_root *root)
958 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
961 if (root == &free_vmap_area_root)
962 rb_erase_augmented(&va->rb_node,
963 root, &free_vmap_area_rb_augment_cb);
965 rb_erase(&va->rb_node, root);
968 RB_CLEAR_NODE(&va->rb_node);
971 #if DEBUG_AUGMENT_PROPAGATE_CHECK
973 * Gets called when remove the node and rotate.
975 static __always_inline unsigned long
976 compute_subtree_max_size(struct vmap_area *va)
978 return max3(va_size(va),
979 get_subtree_max_size(va->rb_node.rb_left),
980 get_subtree_max_size(va->rb_node.rb_right));
984 augment_tree_propagate_check(void)
986 struct vmap_area *va;
987 unsigned long computed_size;
989 list_for_each_entry(va, &free_vmap_area_list, list) {
990 computed_size = compute_subtree_max_size(va);
991 if (computed_size != va->subtree_max_size)
992 pr_emerg("tree is corrupted: %lu, %lu\n",
993 va_size(va), va->subtree_max_size);
999 * This function populates subtree_max_size from bottom to upper
1000 * levels starting from VA point. The propagation must be done
1001 * when VA size is modified by changing its va_start/va_end. Or
1002 * in case of newly inserting of VA to the tree.
1004 * It means that __augment_tree_propagate_from() must be called:
1005 * - After VA has been inserted to the tree(free path);
1006 * - After VA has been shrunk(allocation path);
1007 * - After VA has been increased(merging path).
1009 * Please note that, it does not mean that upper parent nodes
1010 * and their subtree_max_size are recalculated all the time up
1019 * For example if we modify the node 4, shrinking it to 2, then
1020 * no any modification is required. If we shrink the node 2 to 1
1021 * its subtree_max_size is updated only, and set to 1. If we shrink
1022 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1023 * node becomes 4--6.
1025 static __always_inline void
1026 augment_tree_propagate_from(struct vmap_area *va)
1029 * Populate the tree from bottom towards the root until
1030 * the calculated maximum available size of checked node
1031 * is equal to its current one.
1033 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1035 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1036 augment_tree_propagate_check();
1041 insert_vmap_area(struct vmap_area *va,
1042 struct rb_root *root, struct list_head *head)
1044 struct rb_node **link;
1045 struct rb_node *parent;
1047 link = find_va_links(va, root, NULL, &parent);
1049 link_va(va, root, parent, link, head);
1053 insert_vmap_area_augment(struct vmap_area *va,
1054 struct rb_node *from, struct rb_root *root,
1055 struct list_head *head)
1057 struct rb_node **link;
1058 struct rb_node *parent;
1061 link = find_va_links(va, NULL, from, &parent);
1063 link = find_va_links(va, root, NULL, &parent);
1066 link_va(va, root, parent, link, head);
1067 augment_tree_propagate_from(va);
1072 * Merge de-allocated chunk of VA memory with previous
1073 * and next free blocks. If coalesce is not done a new
1074 * free area is inserted. If VA has been merged, it is
1077 * Please note, it can return NULL in case of overlap
1078 * ranges, followed by WARN() report. Despite it is a
1079 * buggy behaviour, a system can be alive and keep
1082 static __always_inline struct vmap_area *
1083 merge_or_add_vmap_area(struct vmap_area *va,
1084 struct rb_root *root, struct list_head *head)
1086 struct vmap_area *sibling;
1087 struct list_head *next;
1088 struct rb_node **link;
1089 struct rb_node *parent;
1090 bool merged = false;
1093 * Find a place in the tree where VA potentially will be
1094 * inserted, unless it is merged with its sibling/siblings.
1096 link = find_va_links(va, root, NULL, &parent);
1101 * Get next node of VA to check if merging can be done.
1103 next = get_va_next_sibling(parent, link);
1104 if (unlikely(next == NULL))
1110 * |<------VA------>|<-----Next----->|
1115 sibling = list_entry(next, struct vmap_area, list);
1116 if (sibling->va_start == va->va_end) {
1117 sibling->va_start = va->va_start;
1119 /* Free vmap_area object. */
1120 kmem_cache_free(vmap_area_cachep, va);
1122 /* Point to the new merged area. */
1131 * |<-----Prev----->|<------VA------>|
1135 if (next->prev != head) {
1136 sibling = list_entry(next->prev, struct vmap_area, list);
1137 if (sibling->va_end == va->va_start) {
1139 * If both neighbors are coalesced, it is important
1140 * to unlink the "next" node first, followed by merging
1141 * with "previous" one. Otherwise the tree might not be
1142 * fully populated if a sibling's augmented value is
1143 * "normalized" because of rotation operations.
1146 unlink_va(va, root);
1148 sibling->va_end = va->va_end;
1150 /* Free vmap_area object. */
1151 kmem_cache_free(vmap_area_cachep, va);
1153 /* Point to the new merged area. */
1161 link_va(va, root, parent, link, head);
1166 static __always_inline struct vmap_area *
1167 merge_or_add_vmap_area_augment(struct vmap_area *va,
1168 struct rb_root *root, struct list_head *head)
1170 va = merge_or_add_vmap_area(va, root, head);
1172 augment_tree_propagate_from(va);
1177 static __always_inline bool
1178 is_within_this_va(struct vmap_area *va, unsigned long size,
1179 unsigned long align, unsigned long vstart)
1181 unsigned long nva_start_addr;
1183 if (va->va_start > vstart)
1184 nva_start_addr = ALIGN(va->va_start, align);
1186 nva_start_addr = ALIGN(vstart, align);
1188 /* Can be overflowed due to big size or alignment. */
1189 if (nva_start_addr + size < nva_start_addr ||
1190 nva_start_addr < vstart)
1193 return (nva_start_addr + size <= va->va_end);
1197 * Find the first free block(lowest start address) in the tree,
1198 * that will accomplish the request corresponding to passing
1199 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1200 * a search length is adjusted to account for worst case alignment
1203 static __always_inline struct vmap_area *
1204 find_vmap_lowest_match(unsigned long size, unsigned long align,
1205 unsigned long vstart, bool adjust_search_size)
1207 struct vmap_area *va;
1208 struct rb_node *node;
1209 unsigned long length;
1211 /* Start from the root. */
1212 node = free_vmap_area_root.rb_node;
1214 /* Adjust the search size for alignment overhead. */
1215 length = adjust_search_size ? size + align - 1 : size;
1218 va = rb_entry(node, struct vmap_area, rb_node);
1220 if (get_subtree_max_size(node->rb_left) >= length &&
1221 vstart < va->va_start) {
1222 node = node->rb_left;
1224 if (is_within_this_va(va, size, align, vstart))
1228 * Does not make sense to go deeper towards the right
1229 * sub-tree if it does not have a free block that is
1230 * equal or bigger to the requested search length.
1232 if (get_subtree_max_size(node->rb_right) >= length) {
1233 node = node->rb_right;
1238 * OK. We roll back and find the first right sub-tree,
1239 * that will satisfy the search criteria. It can happen
1240 * due to "vstart" restriction or an alignment overhead
1241 * that is bigger then PAGE_SIZE.
1243 while ((node = rb_parent(node))) {
1244 va = rb_entry(node, struct vmap_area, rb_node);
1245 if (is_within_this_va(va, size, align, vstart))
1248 if (get_subtree_max_size(node->rb_right) >= length &&
1249 vstart <= va->va_start) {
1251 * Shift the vstart forward. Please note, we update it with
1252 * parent's start address adding "1" because we do not want
1253 * to enter same sub-tree after it has already been checked
1254 * and no suitable free block found there.
1256 vstart = va->va_start + 1;
1257 node = node->rb_right;
1267 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1268 #include <linux/random.h>
1270 static struct vmap_area *
1271 find_vmap_lowest_linear_match(unsigned long size,
1272 unsigned long align, unsigned long vstart)
1274 struct vmap_area *va;
1276 list_for_each_entry(va, &free_vmap_area_list, list) {
1277 if (!is_within_this_va(va, size, align, vstart))
1287 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1289 struct vmap_area *va_1, *va_2;
1290 unsigned long vstart;
1293 get_random_bytes(&rnd, sizeof(rnd));
1294 vstart = VMALLOC_START + rnd;
1296 va_1 = find_vmap_lowest_match(size, align, vstart, false);
1297 va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1300 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1301 va_1, va_2, vstart);
1307 FL_FIT_TYPE = 1, /* full fit */
1308 LE_FIT_TYPE = 2, /* left edge fit */
1309 RE_FIT_TYPE = 3, /* right edge fit */
1310 NE_FIT_TYPE = 4 /* no edge fit */
1313 static __always_inline enum fit_type
1314 classify_va_fit_type(struct vmap_area *va,
1315 unsigned long nva_start_addr, unsigned long size)
1319 /* Check if it is within VA. */
1320 if (nva_start_addr < va->va_start ||
1321 nva_start_addr + size > va->va_end)
1325 if (va->va_start == nva_start_addr) {
1326 if (va->va_end == nva_start_addr + size)
1330 } else if (va->va_end == nva_start_addr + size) {
1339 static __always_inline int
1340 adjust_va_to_fit_type(struct vmap_area *va,
1341 unsigned long nva_start_addr, unsigned long size,
1344 struct vmap_area *lva = NULL;
1346 if (type == FL_FIT_TYPE) {
1348 * No need to split VA, it fully fits.
1354 unlink_va(va, &free_vmap_area_root);
1355 kmem_cache_free(vmap_area_cachep, va);
1356 } else if (type == LE_FIT_TYPE) {
1358 * Split left edge of fit VA.
1364 va->va_start += size;
1365 } else if (type == RE_FIT_TYPE) {
1367 * Split right edge of fit VA.
1373 va->va_end = nva_start_addr;
1374 } else if (type == NE_FIT_TYPE) {
1376 * Split no edge of fit VA.
1382 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1383 if (unlikely(!lva)) {
1385 * For percpu allocator we do not do any pre-allocation
1386 * and leave it as it is. The reason is it most likely
1387 * never ends up with NE_FIT_TYPE splitting. In case of
1388 * percpu allocations offsets and sizes are aligned to
1389 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1390 * are its main fitting cases.
1392 * There are a few exceptions though, as an example it is
1393 * a first allocation (early boot up) when we have "one"
1394 * big free space that has to be split.
1396 * Also we can hit this path in case of regular "vmap"
1397 * allocations, if "this" current CPU was not preloaded.
1398 * See the comment in alloc_vmap_area() why. If so, then
1399 * GFP_NOWAIT is used instead to get an extra object for
1400 * split purpose. That is rare and most time does not
1403 * What happens if an allocation gets failed. Basically,
1404 * an "overflow" path is triggered to purge lazily freed
1405 * areas to free some memory, then, the "retry" path is
1406 * triggered to repeat one more time. See more details
1407 * in alloc_vmap_area() function.
1409 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1415 * Build the remainder.
1417 lva->va_start = va->va_start;
1418 lva->va_end = nva_start_addr;
1421 * Shrink this VA to remaining size.
1423 va->va_start = nva_start_addr + size;
1428 if (type != FL_FIT_TYPE) {
1429 augment_tree_propagate_from(va);
1431 if (lva) /* type == NE_FIT_TYPE */
1432 insert_vmap_area_augment(lva, &va->rb_node,
1433 &free_vmap_area_root, &free_vmap_area_list);
1440 * Returns a start address of the newly allocated area, if success.
1441 * Otherwise a vend is returned that indicates failure.
1443 static __always_inline unsigned long
1444 __alloc_vmap_area(unsigned long size, unsigned long align,
1445 unsigned long vstart, unsigned long vend)
1447 bool adjust_search_size = true;
1448 unsigned long nva_start_addr;
1449 struct vmap_area *va;
1454 * Do not adjust when:
1455 * a) align <= PAGE_SIZE, because it does not make any sense.
1456 * All blocks(their start addresses) are at least PAGE_SIZE
1458 * b) a short range where a requested size corresponds to exactly
1459 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1460 * With adjusted search length an allocation would not succeed.
1462 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1463 adjust_search_size = false;
1465 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
1469 if (va->va_start > vstart)
1470 nva_start_addr = ALIGN(va->va_start, align);
1472 nva_start_addr = ALIGN(vstart, align);
1474 /* Check the "vend" restriction. */
1475 if (nva_start_addr + size > vend)
1478 /* Classify what we have found. */
1479 type = classify_va_fit_type(va, nva_start_addr, size);
1480 if (WARN_ON_ONCE(type == NOTHING_FIT))
1483 /* Update the free vmap_area. */
1484 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1488 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1489 find_vmap_lowest_match_check(size, align);
1492 return nva_start_addr;
1496 * Free a region of KVA allocated by alloc_vmap_area
1498 static void free_vmap_area(struct vmap_area *va)
1501 * Remove from the busy tree/list.
1503 spin_lock(&vmap_area_lock);
1504 unlink_va(va, &vmap_area_root);
1505 spin_unlock(&vmap_area_lock);
1508 * Insert/Merge it back to the free tree/list.
1510 spin_lock(&free_vmap_area_lock);
1511 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1512 spin_unlock(&free_vmap_area_lock);
1516 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1518 struct vmap_area *va = NULL;
1521 * Preload this CPU with one extra vmap_area object. It is used
1522 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1523 * a CPU that does an allocation is preloaded.
1525 * We do it in non-atomic context, thus it allows us to use more
1526 * permissive allocation masks to be more stable under low memory
1527 * condition and high memory pressure.
1529 if (!this_cpu_read(ne_fit_preload_node))
1530 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1534 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1535 kmem_cache_free(vmap_area_cachep, va);
1539 * Allocate a region of KVA of the specified size and alignment, within the
1542 static struct vmap_area *alloc_vmap_area(unsigned long size,
1543 unsigned long align,
1544 unsigned long vstart, unsigned long vend,
1545 int node, gfp_t gfp_mask)
1547 struct vmap_area *va;
1548 unsigned long freed;
1554 BUG_ON(offset_in_page(size));
1555 BUG_ON(!is_power_of_2(align));
1557 if (unlikely(!vmap_initialized))
1558 return ERR_PTR(-EBUSY);
1561 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1563 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1565 return ERR_PTR(-ENOMEM);
1568 * Only scan the relevant parts containing pointers to other objects
1569 * to avoid false negatives.
1571 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1574 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1575 addr = __alloc_vmap_area(size, align, vstart, vend);
1576 spin_unlock(&free_vmap_area_lock);
1579 * If an allocation fails, the "vend" address is
1580 * returned. Therefore trigger the overflow path.
1582 if (unlikely(addr == vend))
1585 va->va_start = addr;
1586 va->va_end = addr + size;
1589 spin_lock(&vmap_area_lock);
1590 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1591 spin_unlock(&vmap_area_lock);
1593 BUG_ON(!IS_ALIGNED(va->va_start, align));
1594 BUG_ON(va->va_start < vstart);
1595 BUG_ON(va->va_end > vend);
1597 ret = kasan_populate_vmalloc(addr, size);
1600 return ERR_PTR(ret);
1607 purge_vmap_area_lazy();
1613 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1620 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1621 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1624 kmem_cache_free(vmap_area_cachep, va);
1625 return ERR_PTR(-EBUSY);
1628 int register_vmap_purge_notifier(struct notifier_block *nb)
1630 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1632 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1634 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1636 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1638 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1641 * lazy_max_pages is the maximum amount of virtual address space we gather up
1642 * before attempting to purge with a TLB flush.
1644 * There is a tradeoff here: a larger number will cover more kernel page tables
1645 * and take slightly longer to purge, but it will linearly reduce the number of
1646 * global TLB flushes that must be performed. It would seem natural to scale
1647 * this number up linearly with the number of CPUs (because vmapping activity
1648 * could also scale linearly with the number of CPUs), however it is likely
1649 * that in practice, workloads might be constrained in other ways that mean
1650 * vmap activity will not scale linearly with CPUs. Also, I want to be
1651 * conservative and not introduce a big latency on huge systems, so go with
1652 * a less aggressive log scale. It will still be an improvement over the old
1653 * code, and it will be simple to change the scale factor if we find that it
1654 * becomes a problem on bigger systems.
1656 static unsigned long lazy_max_pages(void)
1660 log = fls(num_online_cpus());
1662 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1665 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1668 * Serialize vmap purging. There is no actual critical section protected
1669 * by this look, but we want to avoid concurrent calls for performance
1670 * reasons and to make the pcpu_get_vm_areas more deterministic.
1672 static DEFINE_MUTEX(vmap_purge_lock);
1674 /* for per-CPU blocks */
1675 static void purge_fragmented_blocks_allcpus(void);
1678 * Purges all lazily-freed vmap areas.
1680 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1682 unsigned long resched_threshold;
1683 struct list_head local_pure_list;
1684 struct vmap_area *va, *n_va;
1686 lockdep_assert_held(&vmap_purge_lock);
1688 spin_lock(&purge_vmap_area_lock);
1689 purge_vmap_area_root = RB_ROOT;
1690 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1691 spin_unlock(&purge_vmap_area_lock);
1693 if (unlikely(list_empty(&local_pure_list)))
1697 list_first_entry(&local_pure_list,
1698 struct vmap_area, list)->va_start);
1701 list_last_entry(&local_pure_list,
1702 struct vmap_area, list)->va_end);
1704 flush_tlb_kernel_range(start, end);
1705 resched_threshold = lazy_max_pages() << 1;
1707 spin_lock(&free_vmap_area_lock);
1708 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1709 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1710 unsigned long orig_start = va->va_start;
1711 unsigned long orig_end = va->va_end;
1714 * Finally insert or merge lazily-freed area. It is
1715 * detached and there is no need to "unlink" it from
1718 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1719 &free_vmap_area_list);
1724 if (is_vmalloc_or_module_addr((void *)orig_start))
1725 kasan_release_vmalloc(orig_start, orig_end,
1726 va->va_start, va->va_end);
1728 atomic_long_sub(nr, &vmap_lazy_nr);
1730 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1731 cond_resched_lock(&free_vmap_area_lock);
1733 spin_unlock(&free_vmap_area_lock);
1738 * Kick off a purge of the outstanding lazy areas.
1740 static void purge_vmap_area_lazy(void)
1742 mutex_lock(&vmap_purge_lock);
1743 purge_fragmented_blocks_allcpus();
1744 __purge_vmap_area_lazy(ULONG_MAX, 0);
1745 mutex_unlock(&vmap_purge_lock);
1748 static void drain_vmap_area_work(struct work_struct *work)
1750 unsigned long nr_lazy;
1753 mutex_lock(&vmap_purge_lock);
1754 __purge_vmap_area_lazy(ULONG_MAX, 0);
1755 mutex_unlock(&vmap_purge_lock);
1757 /* Recheck if further work is required. */
1758 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1759 } while (nr_lazy > lazy_max_pages());
1763 * Free a vmap area, caller ensuring that the area has been unmapped
1764 * and flush_cache_vunmap had been called for the correct range
1767 static void free_vmap_area_noflush(struct vmap_area *va)
1769 unsigned long nr_lazy;
1771 spin_lock(&vmap_area_lock);
1772 unlink_va(va, &vmap_area_root);
1773 spin_unlock(&vmap_area_lock);
1775 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1776 PAGE_SHIFT, &vmap_lazy_nr);
1779 * Merge or place it to the purge tree/list.
1781 spin_lock(&purge_vmap_area_lock);
1782 merge_or_add_vmap_area(va,
1783 &purge_vmap_area_root, &purge_vmap_area_list);
1784 spin_unlock(&purge_vmap_area_lock);
1786 /* After this point, we may free va at any time */
1787 if (unlikely(nr_lazy > lazy_max_pages()))
1788 schedule_work(&drain_vmap_work);
1792 * Free and unmap a vmap area
1794 static void free_unmap_vmap_area(struct vmap_area *va)
1796 flush_cache_vunmap(va->va_start, va->va_end);
1797 vunmap_range_noflush(va->va_start, va->va_end);
1798 if (debug_pagealloc_enabled_static())
1799 flush_tlb_kernel_range(va->va_start, va->va_end);
1801 free_vmap_area_noflush(va);
1804 static struct vmap_area *find_vmap_area(unsigned long addr)
1806 struct vmap_area *va;
1808 spin_lock(&vmap_area_lock);
1809 va = __find_vmap_area(addr);
1810 spin_unlock(&vmap_area_lock);
1815 /*** Per cpu kva allocator ***/
1818 * vmap space is limited especially on 32 bit architectures. Ensure there is
1819 * room for at least 16 percpu vmap blocks per CPU.
1822 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1823 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1824 * instead (we just need a rough idea)
1826 #if BITS_PER_LONG == 32
1827 #define VMALLOC_SPACE (128UL*1024*1024)
1829 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1832 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1833 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1834 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1835 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1836 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1837 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1838 #define VMAP_BBMAP_BITS \
1839 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1840 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1841 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1843 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1845 struct vmap_block_queue {
1847 struct list_head free;
1852 struct vmap_area *va;
1853 unsigned long free, dirty;
1854 unsigned long dirty_min, dirty_max; /*< dirty range */
1855 struct list_head free_list;
1856 struct rcu_head rcu_head;
1857 struct list_head purge;
1860 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1861 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1864 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1865 * in the free path. Could get rid of this if we change the API to return a
1866 * "cookie" from alloc, to be passed to free. But no big deal yet.
1868 static DEFINE_XARRAY(vmap_blocks);
1871 * We should probably have a fallback mechanism to allocate virtual memory
1872 * out of partially filled vmap blocks. However vmap block sizing should be
1873 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1877 static unsigned long addr_to_vb_idx(unsigned long addr)
1879 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1880 addr /= VMAP_BLOCK_SIZE;
1884 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1888 addr = va_start + (pages_off << PAGE_SHIFT);
1889 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1890 return (void *)addr;
1894 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1895 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1896 * @order: how many 2^order pages should be occupied in newly allocated block
1897 * @gfp_mask: flags for the page level allocator
1899 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1901 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1903 struct vmap_block_queue *vbq;
1904 struct vmap_block *vb;
1905 struct vmap_area *va;
1906 unsigned long vb_idx;
1910 node = numa_node_id();
1912 vb = kmalloc_node(sizeof(struct vmap_block),
1913 gfp_mask & GFP_RECLAIM_MASK, node);
1915 return ERR_PTR(-ENOMEM);
1917 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1918 VMALLOC_START, VMALLOC_END,
1922 return ERR_CAST(va);
1925 vaddr = vmap_block_vaddr(va->va_start, 0);
1926 spin_lock_init(&vb->lock);
1928 /* At least something should be left free */
1929 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1930 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1932 vb->dirty_min = VMAP_BBMAP_BITS;
1934 INIT_LIST_HEAD(&vb->free_list);
1936 vb_idx = addr_to_vb_idx(va->va_start);
1937 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1941 return ERR_PTR(err);
1944 vbq = &get_cpu_var(vmap_block_queue);
1945 spin_lock(&vbq->lock);
1946 list_add_tail_rcu(&vb->free_list, &vbq->free);
1947 spin_unlock(&vbq->lock);
1948 put_cpu_var(vmap_block_queue);
1953 static void free_vmap_block(struct vmap_block *vb)
1955 struct vmap_block *tmp;
1957 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1960 free_vmap_area_noflush(vb->va);
1961 kfree_rcu(vb, rcu_head);
1964 static void purge_fragmented_blocks(int cpu)
1967 struct vmap_block *vb;
1968 struct vmap_block *n_vb;
1969 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1972 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1974 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1977 spin_lock(&vb->lock);
1978 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1979 vb->free = 0; /* prevent further allocs after releasing lock */
1980 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1982 vb->dirty_max = VMAP_BBMAP_BITS;
1983 spin_lock(&vbq->lock);
1984 list_del_rcu(&vb->free_list);
1985 spin_unlock(&vbq->lock);
1986 spin_unlock(&vb->lock);
1987 list_add_tail(&vb->purge, &purge);
1989 spin_unlock(&vb->lock);
1993 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1994 list_del(&vb->purge);
1995 free_vmap_block(vb);
1999 static void purge_fragmented_blocks_allcpus(void)
2003 for_each_possible_cpu(cpu)
2004 purge_fragmented_blocks(cpu);
2007 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2009 struct vmap_block_queue *vbq;
2010 struct vmap_block *vb;
2014 BUG_ON(offset_in_page(size));
2015 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2016 if (WARN_ON(size == 0)) {
2018 * Allocating 0 bytes isn't what caller wants since
2019 * get_order(0) returns funny result. Just warn and terminate
2024 order = get_order(size);
2027 vbq = &get_cpu_var(vmap_block_queue);
2028 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2029 unsigned long pages_off;
2031 spin_lock(&vb->lock);
2032 if (vb->free < (1UL << order)) {
2033 spin_unlock(&vb->lock);
2037 pages_off = VMAP_BBMAP_BITS - vb->free;
2038 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2039 vb->free -= 1UL << order;
2040 if (vb->free == 0) {
2041 spin_lock(&vbq->lock);
2042 list_del_rcu(&vb->free_list);
2043 spin_unlock(&vbq->lock);
2046 spin_unlock(&vb->lock);
2050 put_cpu_var(vmap_block_queue);
2053 /* Allocate new block if nothing was found */
2055 vaddr = new_vmap_block(order, gfp_mask);
2060 static void vb_free(unsigned long addr, unsigned long size)
2062 unsigned long offset;
2064 struct vmap_block *vb;
2066 BUG_ON(offset_in_page(size));
2067 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2069 flush_cache_vunmap(addr, addr + size);
2071 order = get_order(size);
2072 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2073 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2075 vunmap_range_noflush(addr, addr + size);
2077 if (debug_pagealloc_enabled_static())
2078 flush_tlb_kernel_range(addr, addr + size);
2080 spin_lock(&vb->lock);
2082 /* Expand dirty range */
2083 vb->dirty_min = min(vb->dirty_min, offset);
2084 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2086 vb->dirty += 1UL << order;
2087 if (vb->dirty == VMAP_BBMAP_BITS) {
2089 spin_unlock(&vb->lock);
2090 free_vmap_block(vb);
2092 spin_unlock(&vb->lock);
2095 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2099 if (unlikely(!vmap_initialized))
2104 for_each_possible_cpu(cpu) {
2105 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2106 struct vmap_block *vb;
2109 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2110 spin_lock(&vb->lock);
2111 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2112 unsigned long va_start = vb->va->va_start;
2115 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2116 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2118 start = min(s, start);
2123 spin_unlock(&vb->lock);
2128 mutex_lock(&vmap_purge_lock);
2129 purge_fragmented_blocks_allcpus();
2130 if (!__purge_vmap_area_lazy(start, end) && flush)
2131 flush_tlb_kernel_range(start, end);
2132 mutex_unlock(&vmap_purge_lock);
2136 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2138 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2139 * to amortize TLB flushing overheads. What this means is that any page you
2140 * have now, may, in a former life, have been mapped into kernel virtual
2141 * address by the vmap layer and so there might be some CPUs with TLB entries
2142 * still referencing that page (additional to the regular 1:1 kernel mapping).
2144 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2145 * be sure that none of the pages we have control over will have any aliases
2146 * from the vmap layer.
2148 void vm_unmap_aliases(void)
2150 unsigned long start = ULONG_MAX, end = 0;
2153 _vm_unmap_aliases(start, end, flush);
2155 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2158 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2159 * @mem: the pointer returned by vm_map_ram
2160 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2162 void vm_unmap_ram(const void *mem, unsigned int count)
2164 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2165 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2166 struct vmap_area *va;
2170 BUG_ON(addr < VMALLOC_START);
2171 BUG_ON(addr > VMALLOC_END);
2172 BUG_ON(!PAGE_ALIGNED(addr));
2174 kasan_poison_vmalloc(mem, size);
2176 if (likely(count <= VMAP_MAX_ALLOC)) {
2177 debug_check_no_locks_freed(mem, size);
2178 vb_free(addr, size);
2182 va = find_vmap_area(addr);
2184 debug_check_no_locks_freed((void *)va->va_start,
2185 (va->va_end - va->va_start));
2186 free_unmap_vmap_area(va);
2188 EXPORT_SYMBOL(vm_unmap_ram);
2191 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2192 * @pages: an array of pointers to the pages to be mapped
2193 * @count: number of pages
2194 * @node: prefer to allocate data structures on this node
2196 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2197 * faster than vmap so it's good. But if you mix long-life and short-life
2198 * objects with vm_map_ram(), it could consume lots of address space through
2199 * fragmentation (especially on a 32bit machine). You could see failures in
2200 * the end. Please use this function for short-lived objects.
2202 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2204 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2206 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2210 if (likely(count <= VMAP_MAX_ALLOC)) {
2211 mem = vb_alloc(size, GFP_KERNEL);
2214 addr = (unsigned long)mem;
2216 struct vmap_area *va;
2217 va = alloc_vmap_area(size, PAGE_SIZE,
2218 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2222 addr = va->va_start;
2226 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2227 pages, PAGE_SHIFT) < 0) {
2228 vm_unmap_ram(mem, count);
2233 * Mark the pages as accessible, now that they are mapped.
2234 * With hardware tag-based KASAN, marking is skipped for
2235 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2237 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2241 EXPORT_SYMBOL(vm_map_ram);
2243 static struct vm_struct *vmlist __initdata;
2245 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2247 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2248 return vm->page_order;
2254 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2256 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2257 vm->page_order = order;
2264 * vm_area_add_early - add vmap area early during boot
2265 * @vm: vm_struct to add
2267 * This function is used to add fixed kernel vm area to vmlist before
2268 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2269 * should contain proper values and the other fields should be zero.
2271 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2273 void __init vm_area_add_early(struct vm_struct *vm)
2275 struct vm_struct *tmp, **p;
2277 BUG_ON(vmap_initialized);
2278 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2279 if (tmp->addr >= vm->addr) {
2280 BUG_ON(tmp->addr < vm->addr + vm->size);
2283 BUG_ON(tmp->addr + tmp->size > vm->addr);
2290 * vm_area_register_early - register vmap area early during boot
2291 * @vm: vm_struct to register
2292 * @align: requested alignment
2294 * This function is used to register kernel vm area before
2295 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2296 * proper values on entry and other fields should be zero. On return,
2297 * vm->addr contains the allocated address.
2299 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2301 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2303 unsigned long addr = ALIGN(VMALLOC_START, align);
2304 struct vm_struct *cur, **p;
2306 BUG_ON(vmap_initialized);
2308 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2309 if ((unsigned long)cur->addr - addr >= vm->size)
2311 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2314 BUG_ON(addr > VMALLOC_END - vm->size);
2315 vm->addr = (void *)addr;
2318 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2321 static void vmap_init_free_space(void)
2323 unsigned long vmap_start = 1;
2324 const unsigned long vmap_end = ULONG_MAX;
2325 struct vmap_area *busy, *free;
2329 * -|-----|.....|-----|-----|-----|.....|-
2331 * |<--------------------------------->|
2333 list_for_each_entry(busy, &vmap_area_list, list) {
2334 if (busy->va_start - vmap_start > 0) {
2335 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2336 if (!WARN_ON_ONCE(!free)) {
2337 free->va_start = vmap_start;
2338 free->va_end = busy->va_start;
2340 insert_vmap_area_augment(free, NULL,
2341 &free_vmap_area_root,
2342 &free_vmap_area_list);
2346 vmap_start = busy->va_end;
2349 if (vmap_end - vmap_start > 0) {
2350 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2351 if (!WARN_ON_ONCE(!free)) {
2352 free->va_start = vmap_start;
2353 free->va_end = vmap_end;
2355 insert_vmap_area_augment(free, NULL,
2356 &free_vmap_area_root,
2357 &free_vmap_area_list);
2362 void __init vmalloc_init(void)
2364 struct vmap_area *va;
2365 struct vm_struct *tmp;
2369 * Create the cache for vmap_area objects.
2371 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2373 for_each_possible_cpu(i) {
2374 struct vmap_block_queue *vbq;
2375 struct vfree_deferred *p;
2377 vbq = &per_cpu(vmap_block_queue, i);
2378 spin_lock_init(&vbq->lock);
2379 INIT_LIST_HEAD(&vbq->free);
2380 p = &per_cpu(vfree_deferred, i);
2381 init_llist_head(&p->list);
2382 INIT_WORK(&p->wq, free_work);
2385 /* Import existing vmlist entries. */
2386 for (tmp = vmlist; tmp; tmp = tmp->next) {
2387 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2388 if (WARN_ON_ONCE(!va))
2391 va->va_start = (unsigned long)tmp->addr;
2392 va->va_end = va->va_start + tmp->size;
2394 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2398 * Now we can initialize a free vmap space.
2400 vmap_init_free_space();
2401 vmap_initialized = true;
2404 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2405 struct vmap_area *va, unsigned long flags, const void *caller)
2408 vm->addr = (void *)va->va_start;
2409 vm->size = va->va_end - va->va_start;
2410 vm->caller = caller;
2414 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2415 unsigned long flags, const void *caller)
2417 spin_lock(&vmap_area_lock);
2418 setup_vmalloc_vm_locked(vm, va, flags, caller);
2419 spin_unlock(&vmap_area_lock);
2422 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2425 * Before removing VM_UNINITIALIZED,
2426 * we should make sure that vm has proper values.
2427 * Pair with smp_rmb() in show_numa_info().
2430 vm->flags &= ~VM_UNINITIALIZED;
2433 static struct vm_struct *__get_vm_area_node(unsigned long size,
2434 unsigned long align, unsigned long shift, unsigned long flags,
2435 unsigned long start, unsigned long end, int node,
2436 gfp_t gfp_mask, const void *caller)
2438 struct vmap_area *va;
2439 struct vm_struct *area;
2440 unsigned long requested_size = size;
2442 BUG_ON(in_interrupt());
2443 size = ALIGN(size, 1ul << shift);
2444 if (unlikely(!size))
2447 if (flags & VM_IOREMAP)
2448 align = 1ul << clamp_t(int, get_count_order_long(size),
2449 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2451 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2452 if (unlikely(!area))
2455 if (!(flags & VM_NO_GUARD))
2458 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2464 setup_vmalloc_vm(area, va, flags, caller);
2467 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2468 * best-effort approach, as they can be mapped outside of vmalloc code.
2469 * For VM_ALLOC mappings, the pages are marked as accessible after
2470 * getting mapped in __vmalloc_node_range().
2471 * With hardware tag-based KASAN, marking is skipped for
2472 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2474 if (!(flags & VM_ALLOC))
2475 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2476 KASAN_VMALLOC_PROT_NORMAL);
2481 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2482 unsigned long start, unsigned long end,
2485 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2486 NUMA_NO_NODE, GFP_KERNEL, caller);
2490 * get_vm_area - reserve a contiguous kernel virtual area
2491 * @size: size of the area
2492 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2494 * Search an area of @size in the kernel virtual mapping area,
2495 * and reserved it for out purposes. Returns the area descriptor
2496 * on success or %NULL on failure.
2498 * Return: the area descriptor on success or %NULL on failure.
2500 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2502 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2503 VMALLOC_START, VMALLOC_END,
2504 NUMA_NO_NODE, GFP_KERNEL,
2505 __builtin_return_address(0));
2508 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2511 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2512 VMALLOC_START, VMALLOC_END,
2513 NUMA_NO_NODE, GFP_KERNEL, caller);
2517 * find_vm_area - find a continuous kernel virtual area
2518 * @addr: base address
2520 * Search for the kernel VM area starting at @addr, and return it.
2521 * It is up to the caller to do all required locking to keep the returned
2524 * Return: the area descriptor on success or %NULL on failure.
2526 struct vm_struct *find_vm_area(const void *addr)
2528 struct vmap_area *va;
2530 va = find_vmap_area((unsigned long)addr);
2538 * remove_vm_area - find and remove a continuous kernel virtual area
2539 * @addr: base address
2541 * Search for the kernel VM area starting at @addr, and remove it.
2542 * This function returns the found VM area, but using it is NOT safe
2543 * on SMP machines, except for its size or flags.
2545 * Return: the area descriptor on success or %NULL on failure.
2547 struct vm_struct *remove_vm_area(const void *addr)
2549 struct vmap_area *va;
2553 spin_lock(&vmap_area_lock);
2554 va = __find_vmap_area((unsigned long)addr);
2556 struct vm_struct *vm = va->vm;
2559 spin_unlock(&vmap_area_lock);
2561 kasan_free_module_shadow(vm);
2562 free_unmap_vmap_area(va);
2567 spin_unlock(&vmap_area_lock);
2571 static inline void set_area_direct_map(const struct vm_struct *area,
2572 int (*set_direct_map)(struct page *page))
2576 /* HUGE_VMALLOC passes small pages to set_direct_map */
2577 for (i = 0; i < area->nr_pages; i++)
2578 if (page_address(area->pages[i]))
2579 set_direct_map(area->pages[i]);
2582 /* Handle removing and resetting vm mappings related to the vm_struct. */
2583 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2585 unsigned long start = ULONG_MAX, end = 0;
2586 unsigned int page_order = vm_area_page_order(area);
2587 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2591 remove_vm_area(area->addr);
2593 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2598 * If not deallocating pages, just do the flush of the VM area and
2601 if (!deallocate_pages) {
2607 * If execution gets here, flush the vm mapping and reset the direct
2608 * map. Find the start and end range of the direct mappings to make sure
2609 * the vm_unmap_aliases() flush includes the direct map.
2611 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2612 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2614 unsigned long page_size;
2616 page_size = PAGE_SIZE << page_order;
2617 start = min(addr, start);
2618 end = max(addr + page_size, end);
2624 * Set direct map to something invalid so that it won't be cached if
2625 * there are any accesses after the TLB flush, then flush the TLB and
2626 * reset the direct map permissions to the default.
2628 set_area_direct_map(area, set_direct_map_invalid_noflush);
2629 _vm_unmap_aliases(start, end, flush_dmap);
2630 set_area_direct_map(area, set_direct_map_default_noflush);
2633 static void __vunmap(const void *addr, int deallocate_pages)
2635 struct vm_struct *area;
2640 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2644 area = find_vm_area(addr);
2645 if (unlikely(!area)) {
2646 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2651 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2652 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2654 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2656 vm_remove_mappings(area, deallocate_pages);
2658 if (deallocate_pages) {
2661 for (i = 0; i < area->nr_pages; i++) {
2662 struct page *page = area->pages[i];
2665 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2667 * High-order allocs for huge vmallocs are split, so
2668 * can be freed as an array of order-0 allocations
2670 __free_pages(page, 0);
2673 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2675 kvfree(area->pages);
2681 static inline void __vfree_deferred(const void *addr)
2684 * Use raw_cpu_ptr() because this can be called from preemptible
2685 * context. Preemption is absolutely fine here, because the llist_add()
2686 * implementation is lockless, so it works even if we are adding to
2687 * another cpu's list. schedule_work() should be fine with this too.
2689 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2691 if (llist_add((struct llist_node *)addr, &p->list))
2692 schedule_work(&p->wq);
2696 * vfree_atomic - release memory allocated by vmalloc()
2697 * @addr: memory base address
2699 * This one is just like vfree() but can be called in any atomic context
2702 void vfree_atomic(const void *addr)
2706 kmemleak_free(addr);
2710 __vfree_deferred(addr);
2713 static void __vfree(const void *addr)
2715 if (unlikely(in_interrupt()))
2716 __vfree_deferred(addr);
2722 * vfree - Release memory allocated by vmalloc()
2723 * @addr: Memory base address
2725 * Free the virtually continuous memory area starting at @addr, as obtained
2726 * from one of the vmalloc() family of APIs. This will usually also free the
2727 * physical memory underlying the virtual allocation, but that memory is
2728 * reference counted, so it will not be freed until the last user goes away.
2730 * If @addr is NULL, no operation is performed.
2733 * May sleep if called *not* from interrupt context.
2734 * Must not be called in NMI context (strictly speaking, it could be
2735 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2736 * conventions for vfree() arch-dependent would be a really bad idea).
2738 void vfree(const void *addr)
2742 kmemleak_free(addr);
2744 might_sleep_if(!in_interrupt());
2751 EXPORT_SYMBOL(vfree);
2754 * vunmap - release virtual mapping obtained by vmap()
2755 * @addr: memory base address
2757 * Free the virtually contiguous memory area starting at @addr,
2758 * which was created from the page array passed to vmap().
2760 * Must not be called in interrupt context.
2762 void vunmap(const void *addr)
2764 BUG_ON(in_interrupt());
2769 EXPORT_SYMBOL(vunmap);
2772 * vmap - map an array of pages into virtually contiguous space
2773 * @pages: array of page pointers
2774 * @count: number of pages to map
2775 * @flags: vm_area->flags
2776 * @prot: page protection for the mapping
2778 * Maps @count pages from @pages into contiguous kernel virtual space.
2779 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2780 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2781 * are transferred from the caller to vmap(), and will be freed / dropped when
2782 * vfree() is called on the return value.
2784 * Return: the address of the area or %NULL on failure
2786 void *vmap(struct page **pages, unsigned int count,
2787 unsigned long flags, pgprot_t prot)
2789 struct vm_struct *area;
2791 unsigned long size; /* In bytes */
2796 * Your top guard is someone else's bottom guard. Not having a top
2797 * guard compromises someone else's mappings too.
2799 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2800 flags &= ~VM_NO_GUARD;
2802 if (count > totalram_pages())
2805 size = (unsigned long)count << PAGE_SHIFT;
2806 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2810 addr = (unsigned long)area->addr;
2811 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2812 pages, PAGE_SHIFT) < 0) {
2817 if (flags & VM_MAP_PUT_PAGES) {
2818 area->pages = pages;
2819 area->nr_pages = count;
2823 EXPORT_SYMBOL(vmap);
2825 #ifdef CONFIG_VMAP_PFN
2826 struct vmap_pfn_data {
2827 unsigned long *pfns;
2832 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2834 struct vmap_pfn_data *data = private;
2836 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2838 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2843 * vmap_pfn - map an array of PFNs into virtually contiguous space
2844 * @pfns: array of PFNs
2845 * @count: number of pages to map
2846 * @prot: page protection for the mapping
2848 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2849 * the start address of the mapping.
2851 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2853 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2854 struct vm_struct *area;
2856 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2857 __builtin_return_address(0));
2860 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2861 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2867 EXPORT_SYMBOL_GPL(vmap_pfn);
2868 #endif /* CONFIG_VMAP_PFN */
2870 static inline unsigned int
2871 vm_area_alloc_pages(gfp_t gfp, int nid,
2872 unsigned int order, unsigned int nr_pages, struct page **pages)
2874 unsigned int nr_allocated = 0;
2879 * For order-0 pages we make use of bulk allocator, if
2880 * the page array is partly or not at all populated due
2881 * to fails, fallback to a single page allocator that is
2885 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2887 while (nr_allocated < nr_pages) {
2888 unsigned int nr, nr_pages_request;
2891 * A maximum allowed request is hard-coded and is 100
2892 * pages per call. That is done in order to prevent a
2893 * long preemption off scenario in the bulk-allocator
2894 * so the range is [1:100].
2896 nr_pages_request = min(100U, nr_pages - nr_allocated);
2898 /* memory allocation should consider mempolicy, we can't
2899 * wrongly use nearest node when nid == NUMA_NO_NODE,
2900 * otherwise memory may be allocated in only one node,
2901 * but mempolicy wants to alloc memory by interleaving.
2903 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2904 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2906 pages + nr_allocated);
2909 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2911 pages + nr_allocated);
2917 * If zero or pages were obtained partly,
2918 * fallback to a single page allocator.
2920 if (nr != nr_pages_request)
2925 /* High-order pages or fallback path if "bulk" fails. */
2927 while (nr_allocated < nr_pages) {
2928 if (fatal_signal_pending(current))
2931 if (nid == NUMA_NO_NODE)
2932 page = alloc_pages(gfp, order);
2934 page = alloc_pages_node(nid, gfp, order);
2935 if (unlikely(!page))
2938 * Higher order allocations must be able to be treated as
2939 * indepdenent small pages by callers (as they can with
2940 * small-page vmallocs). Some drivers do their own refcounting
2941 * on vmalloc_to_page() pages, some use page->mapping,
2945 split_page(page, order);
2948 * Careful, we allocate and map page-order pages, but
2949 * tracking is done per PAGE_SIZE page so as to keep the
2950 * vm_struct APIs independent of the physical/mapped size.
2952 for (i = 0; i < (1U << order); i++)
2953 pages[nr_allocated + i] = page + i;
2956 nr_allocated += 1U << order;
2959 return nr_allocated;
2962 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2963 pgprot_t prot, unsigned int page_shift,
2966 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2967 bool nofail = gfp_mask & __GFP_NOFAIL;
2968 unsigned long addr = (unsigned long)area->addr;
2969 unsigned long size = get_vm_area_size(area);
2970 unsigned long array_size;
2971 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2972 unsigned int page_order;
2976 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2977 gfp_mask |= __GFP_NOWARN;
2978 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2979 gfp_mask |= __GFP_HIGHMEM;
2981 /* Please note that the recursion is strictly bounded. */
2982 if (array_size > PAGE_SIZE) {
2983 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2986 area->pages = kmalloc_node(array_size, nested_gfp, node);
2990 warn_alloc(gfp_mask, NULL,
2991 "vmalloc error: size %lu, failed to allocated page array size %lu",
2992 nr_small_pages * PAGE_SIZE, array_size);
2997 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2998 page_order = vm_area_page_order(area);
3000 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3001 node, page_order, nr_small_pages, area->pages);
3003 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3004 if (gfp_mask & __GFP_ACCOUNT) {
3007 for (i = 0; i < area->nr_pages; i++)
3008 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3012 * If not enough pages were obtained to accomplish an
3013 * allocation request, free them via __vfree() if any.
3015 if (area->nr_pages != nr_small_pages) {
3016 warn_alloc(gfp_mask, NULL,
3017 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3018 area->nr_pages * PAGE_SIZE, page_order);
3023 * page tables allocations ignore external gfp mask, enforce it
3026 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3027 flags = memalloc_nofs_save();
3028 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3029 flags = memalloc_noio_save();
3032 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3034 if (nofail && (ret < 0))
3035 schedule_timeout_uninterruptible(1);
3036 } while (nofail && (ret < 0));
3038 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3039 memalloc_nofs_restore(flags);
3040 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3041 memalloc_noio_restore(flags);
3044 warn_alloc(gfp_mask, NULL,
3045 "vmalloc error: size %lu, failed to map pages",
3046 area->nr_pages * PAGE_SIZE);
3053 __vfree(area->addr);
3058 * __vmalloc_node_range - allocate virtually contiguous memory
3059 * @size: allocation size
3060 * @align: desired alignment
3061 * @start: vm area range start
3062 * @end: vm area range end
3063 * @gfp_mask: flags for the page level allocator
3064 * @prot: protection mask for the allocated pages
3065 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3066 * @node: node to use for allocation or NUMA_NO_NODE
3067 * @caller: caller's return address
3069 * Allocate enough pages to cover @size from the page level
3070 * allocator with @gfp_mask flags. Please note that the full set of gfp
3071 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3073 * Zone modifiers are not supported. From the reclaim modifiers
3074 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3075 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3076 * __GFP_RETRY_MAYFAIL are not supported).
3078 * __GFP_NOWARN can be used to suppress failures messages.
3080 * Map them into contiguous kernel virtual space, using a pagetable
3081 * protection of @prot.
3083 * Return: the address of the area or %NULL on failure
3085 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3086 unsigned long start, unsigned long end, gfp_t gfp_mask,
3087 pgprot_t prot, unsigned long vm_flags, int node,
3090 struct vm_struct *area;
3092 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3093 unsigned long real_size = size;
3094 unsigned long real_align = align;
3095 unsigned int shift = PAGE_SHIFT;
3097 if (WARN_ON_ONCE(!size))
3100 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3101 warn_alloc(gfp_mask, NULL,
3102 "vmalloc error: size %lu, exceeds total pages",
3107 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3108 unsigned long size_per_node;
3111 * Try huge pages. Only try for PAGE_KERNEL allocations,
3112 * others like modules don't yet expect huge pages in
3113 * their allocations due to apply_to_page_range not
3117 size_per_node = size;
3118 if (node == NUMA_NO_NODE)
3119 size_per_node /= num_online_nodes();
3120 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3123 shift = arch_vmap_pte_supported_shift(size_per_node);
3125 align = max(real_align, 1UL << shift);
3126 size = ALIGN(real_size, 1UL << shift);
3130 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3131 VM_UNINITIALIZED | vm_flags, start, end, node,
3134 bool nofail = gfp_mask & __GFP_NOFAIL;
3135 warn_alloc(gfp_mask, NULL,
3136 "vmalloc error: size %lu, vm_struct allocation failed%s",
3137 real_size, (nofail) ? ". Retrying." : "");
3139 schedule_timeout_uninterruptible(1);
3146 * Prepare arguments for __vmalloc_area_node() and
3147 * kasan_unpoison_vmalloc().
3149 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3150 if (kasan_hw_tags_enabled()) {
3152 * Modify protection bits to allow tagging.
3153 * This must be done before mapping.
3155 prot = arch_vmap_pgprot_tagged(prot);
3158 * Skip page_alloc poisoning and zeroing for physical
3159 * pages backing VM_ALLOC mapping. Memory is instead
3160 * poisoned and zeroed by kasan_unpoison_vmalloc().
3162 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3165 /* Take note that the mapping is PAGE_KERNEL. */
3166 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3169 /* Allocate physical pages and map them into vmalloc space. */
3170 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3175 * Mark the pages as accessible, now that they are mapped.
3176 * The init condition should match the one in post_alloc_hook()
3177 * (except for the should_skip_init() check) to make sure that memory
3178 * is initialized under the same conditions regardless of the enabled
3180 * Tag-based KASAN modes only assign tags to normal non-executable
3181 * allocations, see __kasan_unpoison_vmalloc().
3183 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3184 if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3185 kasan_flags |= KASAN_VMALLOC_INIT;
3186 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3187 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3190 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3191 * flag. It means that vm_struct is not fully initialized.
3192 * Now, it is fully initialized, so remove this flag here.
3194 clear_vm_uninitialized_flag(area);
3196 size = PAGE_ALIGN(size);
3197 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3198 kmemleak_vmalloc(area, size, gfp_mask);
3203 if (shift > PAGE_SHIFT) {
3214 * __vmalloc_node - allocate virtually contiguous memory
3215 * @size: allocation size
3216 * @align: desired alignment
3217 * @gfp_mask: flags for the page level allocator
3218 * @node: node to use for allocation or NUMA_NO_NODE
3219 * @caller: caller's return address
3221 * Allocate enough pages to cover @size from the page level allocator with
3222 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3224 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3225 * and __GFP_NOFAIL are not supported
3227 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3230 * Return: pointer to the allocated memory or %NULL on error
3232 void *__vmalloc_node(unsigned long size, unsigned long align,
3233 gfp_t gfp_mask, int node, const void *caller)
3235 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3236 gfp_mask, PAGE_KERNEL, 0, node, caller);
3239 * This is only for performance analysis of vmalloc and stress purpose.
3240 * It is required by vmalloc test module, therefore do not use it other
3243 #ifdef CONFIG_TEST_VMALLOC_MODULE
3244 EXPORT_SYMBOL_GPL(__vmalloc_node);
3247 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3249 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3250 __builtin_return_address(0));
3252 EXPORT_SYMBOL(__vmalloc);
3255 * vmalloc - allocate virtually contiguous memory
3256 * @size: allocation size
3258 * Allocate enough pages to cover @size from the page level
3259 * allocator and map them into contiguous kernel virtual space.
3261 * For tight control over page level allocator and protection flags
3262 * use __vmalloc() instead.
3264 * Return: pointer to the allocated memory or %NULL on error
3266 void *vmalloc(unsigned long size)
3268 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3269 __builtin_return_address(0));
3271 EXPORT_SYMBOL(vmalloc);
3274 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3275 * @size: allocation size
3276 * @gfp_mask: flags for the page level allocator
3278 * Allocate enough pages to cover @size from the page level
3279 * allocator and map them into contiguous kernel virtual space.
3280 * If @size is greater than or equal to PMD_SIZE, allow using
3281 * huge pages for the memory
3283 * Return: pointer to the allocated memory or %NULL on error
3285 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3287 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3288 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3289 NUMA_NO_NODE, __builtin_return_address(0));
3291 EXPORT_SYMBOL_GPL(vmalloc_huge);
3294 * vzalloc - allocate virtually contiguous memory with zero fill
3295 * @size: allocation size
3297 * Allocate enough pages to cover @size from the page level
3298 * allocator and map them into contiguous kernel virtual space.
3299 * The memory allocated is set to zero.
3301 * For tight control over page level allocator and protection flags
3302 * use __vmalloc() instead.
3304 * Return: pointer to the allocated memory or %NULL on error
3306 void *vzalloc(unsigned long size)
3308 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3309 __builtin_return_address(0));
3311 EXPORT_SYMBOL(vzalloc);
3314 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3315 * @size: allocation size
3317 * The resulting memory area is zeroed so it can be mapped to userspace
3318 * without leaking data.
3320 * Return: pointer to the allocated memory or %NULL on error
3322 void *vmalloc_user(unsigned long size)
3324 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3325 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3326 VM_USERMAP, NUMA_NO_NODE,
3327 __builtin_return_address(0));
3329 EXPORT_SYMBOL(vmalloc_user);
3332 * vmalloc_node - allocate memory on a specific node
3333 * @size: allocation size
3336 * Allocate enough pages to cover @size from the page level
3337 * allocator and map them into contiguous kernel virtual space.
3339 * For tight control over page level allocator and protection flags
3340 * use __vmalloc() instead.
3342 * Return: pointer to the allocated memory or %NULL on error
3344 void *vmalloc_node(unsigned long size, int node)
3346 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3347 __builtin_return_address(0));
3349 EXPORT_SYMBOL(vmalloc_node);
3352 * vzalloc_node - allocate memory on a specific node with zero fill
3353 * @size: allocation size
3356 * Allocate enough pages to cover @size from the page level
3357 * allocator and map them into contiguous kernel virtual space.
3358 * The memory allocated is set to zero.
3360 * Return: pointer to the allocated memory or %NULL on error
3362 void *vzalloc_node(unsigned long size, int node)
3364 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3365 __builtin_return_address(0));
3367 EXPORT_SYMBOL(vzalloc_node);
3369 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3370 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3371 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3372 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3375 * 64b systems should always have either DMA or DMA32 zones. For others
3376 * GFP_DMA32 should do the right thing and use the normal zone.
3378 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3382 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3383 * @size: allocation size
3385 * Allocate enough 32bit PA addressable pages to cover @size from the
3386 * page level allocator and map them into contiguous kernel virtual space.
3388 * Return: pointer to the allocated memory or %NULL on error
3390 void *vmalloc_32(unsigned long size)
3392 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3393 __builtin_return_address(0));
3395 EXPORT_SYMBOL(vmalloc_32);
3398 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3399 * @size: allocation size
3401 * The resulting memory area is 32bit addressable and zeroed so it can be
3402 * mapped to userspace without leaking data.
3404 * Return: pointer to the allocated memory or %NULL on error
3406 void *vmalloc_32_user(unsigned long size)
3408 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3409 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3410 VM_USERMAP, NUMA_NO_NODE,
3411 __builtin_return_address(0));
3413 EXPORT_SYMBOL(vmalloc_32_user);
3416 * small helper routine , copy contents to buf from addr.
3417 * If the page is not present, fill zero.
3420 static int aligned_vread(char *buf, char *addr, unsigned long count)
3426 unsigned long offset, length;
3428 offset = offset_in_page(addr);
3429 length = PAGE_SIZE - offset;
3432 p = vmalloc_to_page(addr);
3434 * To do safe access to this _mapped_ area, we need
3435 * lock. But adding lock here means that we need to add
3436 * overhead of vmalloc()/vfree() calls for this _debug_
3437 * interface, rarely used. Instead of that, we'll use
3438 * kmap() and get small overhead in this access function.
3441 /* We can expect USER0 is not used -- see vread() */
3442 void *map = kmap_atomic(p);
3443 memcpy(buf, map + offset, length);
3446 memset(buf, 0, length);
3457 * vread() - read vmalloc area in a safe way.
3458 * @buf: buffer for reading data
3459 * @addr: vm address.
3460 * @count: number of bytes to be read.
3462 * This function checks that addr is a valid vmalloc'ed area, and
3463 * copy data from that area to a given buffer. If the given memory range
3464 * of [addr...addr+count) includes some valid address, data is copied to
3465 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3466 * IOREMAP area is treated as memory hole and no copy is done.
3468 * If [addr...addr+count) doesn't includes any intersects with alive
3469 * vm_struct area, returns 0. @buf should be kernel's buffer.
3471 * Note: In usual ops, vread() is never necessary because the caller
3472 * should know vmalloc() area is valid and can use memcpy().
3473 * This is for routines which have to access vmalloc area without
3474 * any information, as /proc/kcore.
3476 * Return: number of bytes for which addr and buf should be increased
3477 * (same number as @count) or %0 if [addr...addr+count) doesn't
3478 * include any intersection with valid vmalloc area
3480 long vread(char *buf, char *addr, unsigned long count)
3482 struct vmap_area *va;
3483 struct vm_struct *vm;
3484 char *vaddr, *buf_start = buf;
3485 unsigned long buflen = count;
3488 addr = kasan_reset_tag(addr);
3490 /* Don't allow overflow */
3491 if ((unsigned long) addr + count < count)
3492 count = -(unsigned long) addr;
3494 spin_lock(&vmap_area_lock);
3495 va = find_vmap_area_exceed_addr((unsigned long)addr);
3499 /* no intersects with alive vmap_area */
3500 if ((unsigned long)addr + count <= va->va_start)
3503 list_for_each_entry_from(va, &vmap_area_list, list) {
3511 vaddr = (char *) vm->addr;
3512 if (addr >= vaddr + get_vm_area_size(vm))
3514 while (addr < vaddr) {
3522 n = vaddr + get_vm_area_size(vm) - addr;
3525 if (!(vm->flags & VM_IOREMAP))
3526 aligned_vread(buf, addr, n);
3527 else /* IOREMAP area is treated as memory hole */
3534 spin_unlock(&vmap_area_lock);
3536 if (buf == buf_start)
3538 /* zero-fill memory holes */
3539 if (buf != buf_start + buflen)
3540 memset(buf, 0, buflen - (buf - buf_start));
3546 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3547 * @vma: vma to cover
3548 * @uaddr: target user address to start at
3549 * @kaddr: virtual address of vmalloc kernel memory
3550 * @pgoff: offset from @kaddr to start at
3551 * @size: size of map area
3553 * Returns: 0 for success, -Exxx on failure
3555 * This function checks that @kaddr is a valid vmalloc'ed area,
3556 * and that it is big enough to cover the range starting at
3557 * @uaddr in @vma. Will return failure if that criteria isn't
3560 * Similar to remap_pfn_range() (see mm/memory.c)
3562 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3563 void *kaddr, unsigned long pgoff,
3566 struct vm_struct *area;
3568 unsigned long end_index;
3570 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3573 size = PAGE_ALIGN(size);
3575 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3578 area = find_vm_area(kaddr);
3582 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3585 if (check_add_overflow(size, off, &end_index) ||
3586 end_index > get_vm_area_size(area))
3591 struct page *page = vmalloc_to_page(kaddr);
3594 ret = vm_insert_page(vma, uaddr, page);
3603 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3609 * remap_vmalloc_range - map vmalloc pages to userspace
3610 * @vma: vma to cover (map full range of vma)
3611 * @addr: vmalloc memory
3612 * @pgoff: number of pages into addr before first page to map
3614 * Returns: 0 for success, -Exxx on failure
3616 * This function checks that addr is a valid vmalloc'ed area, and
3617 * that it is big enough to cover the vma. Will return failure if
3618 * that criteria isn't met.
3620 * Similar to remap_pfn_range() (see mm/memory.c)
3622 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3623 unsigned long pgoff)
3625 return remap_vmalloc_range_partial(vma, vma->vm_start,
3627 vma->vm_end - vma->vm_start);
3629 EXPORT_SYMBOL(remap_vmalloc_range);
3631 void free_vm_area(struct vm_struct *area)
3633 struct vm_struct *ret;
3634 ret = remove_vm_area(area->addr);
3635 BUG_ON(ret != area);
3638 EXPORT_SYMBOL_GPL(free_vm_area);
3641 static struct vmap_area *node_to_va(struct rb_node *n)
3643 return rb_entry_safe(n, struct vmap_area, rb_node);
3647 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3648 * @addr: target address
3650 * Returns: vmap_area if it is found. If there is no such area
3651 * the first highest(reverse order) vmap_area is returned
3652 * i.e. va->va_start < addr && va->va_end < addr or NULL
3653 * if there are no any areas before @addr.
3655 static struct vmap_area *
3656 pvm_find_va_enclose_addr(unsigned long addr)
3658 struct vmap_area *va, *tmp;
3661 n = free_vmap_area_root.rb_node;
3665 tmp = rb_entry(n, struct vmap_area, rb_node);
3666 if (tmp->va_start <= addr) {
3668 if (tmp->va_end >= addr)
3681 * pvm_determine_end_from_reverse - find the highest aligned address
3682 * of free block below VMALLOC_END
3684 * in - the VA we start the search(reverse order);
3685 * out - the VA with the highest aligned end address.
3686 * @align: alignment for required highest address
3688 * Returns: determined end address within vmap_area
3690 static unsigned long
3691 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3693 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3697 list_for_each_entry_from_reverse((*va),
3698 &free_vmap_area_list, list) {
3699 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3700 if ((*va)->va_start < addr)
3709 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3710 * @offsets: array containing offset of each area
3711 * @sizes: array containing size of each area
3712 * @nr_vms: the number of areas to allocate
3713 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3715 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3716 * vm_structs on success, %NULL on failure
3718 * Percpu allocator wants to use congruent vm areas so that it can
3719 * maintain the offsets among percpu areas. This function allocates
3720 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3721 * be scattered pretty far, distance between two areas easily going up
3722 * to gigabytes. To avoid interacting with regular vmallocs, these
3723 * areas are allocated from top.
3725 * Despite its complicated look, this allocator is rather simple. It
3726 * does everything top-down and scans free blocks from the end looking
3727 * for matching base. While scanning, if any of the areas do not fit the
3728 * base address is pulled down to fit the area. Scanning is repeated till
3729 * all the areas fit and then all necessary data structures are inserted
3730 * and the result is returned.
3732 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3733 const size_t *sizes, int nr_vms,
3736 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3737 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3738 struct vmap_area **vas, *va;
3739 struct vm_struct **vms;
3740 int area, area2, last_area, term_area;
3741 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3742 bool purged = false;
3745 /* verify parameters and allocate data structures */
3746 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3747 for (last_area = 0, area = 0; area < nr_vms; area++) {
3748 start = offsets[area];
3749 end = start + sizes[area];
3751 /* is everything aligned properly? */
3752 BUG_ON(!IS_ALIGNED(offsets[area], align));
3753 BUG_ON(!IS_ALIGNED(sizes[area], align));
3755 /* detect the area with the highest address */
3756 if (start > offsets[last_area])
3759 for (area2 = area + 1; area2 < nr_vms; area2++) {
3760 unsigned long start2 = offsets[area2];
3761 unsigned long end2 = start2 + sizes[area2];
3763 BUG_ON(start2 < end && start < end2);
3766 last_end = offsets[last_area] + sizes[last_area];
3768 if (vmalloc_end - vmalloc_start < last_end) {
3773 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3774 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3778 for (area = 0; area < nr_vms; area++) {
3779 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3780 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3781 if (!vas[area] || !vms[area])
3785 spin_lock(&free_vmap_area_lock);
3787 /* start scanning - we scan from the top, begin with the last area */
3788 area = term_area = last_area;
3789 start = offsets[area];
3790 end = start + sizes[area];
3792 va = pvm_find_va_enclose_addr(vmalloc_end);
3793 base = pvm_determine_end_from_reverse(&va, align) - end;
3797 * base might have underflowed, add last_end before
3800 if (base + last_end < vmalloc_start + last_end)
3804 * Fitting base has not been found.
3810 * If required width exceeds current VA block, move
3811 * base downwards and then recheck.
3813 if (base + end > va->va_end) {
3814 base = pvm_determine_end_from_reverse(&va, align) - end;
3820 * If this VA does not fit, move base downwards and recheck.
3822 if (base + start < va->va_start) {
3823 va = node_to_va(rb_prev(&va->rb_node));
3824 base = pvm_determine_end_from_reverse(&va, align) - end;
3830 * This area fits, move on to the previous one. If
3831 * the previous one is the terminal one, we're done.
3833 area = (area + nr_vms - 1) % nr_vms;
3834 if (area == term_area)
3837 start = offsets[area];
3838 end = start + sizes[area];
3839 va = pvm_find_va_enclose_addr(base + end);
3842 /* we've found a fitting base, insert all va's */
3843 for (area = 0; area < nr_vms; area++) {
3846 start = base + offsets[area];
3849 va = pvm_find_va_enclose_addr(start);
3850 if (WARN_ON_ONCE(va == NULL))
3851 /* It is a BUG(), but trigger recovery instead. */
3854 type = classify_va_fit_type(va, start, size);
3855 if (WARN_ON_ONCE(type == NOTHING_FIT))
3856 /* It is a BUG(), but trigger recovery instead. */
3859 ret = adjust_va_to_fit_type(va, start, size, type);
3863 /* Allocated area. */
3865 va->va_start = start;
3866 va->va_end = start + size;
3869 spin_unlock(&free_vmap_area_lock);
3871 /* populate the kasan shadow space */
3872 for (area = 0; area < nr_vms; area++) {
3873 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3874 goto err_free_shadow;
3877 /* insert all vm's */
3878 spin_lock(&vmap_area_lock);
3879 for (area = 0; area < nr_vms; area++) {
3880 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3882 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3885 spin_unlock(&vmap_area_lock);
3888 * Mark allocated areas as accessible. Do it now as a best-effort
3889 * approach, as they can be mapped outside of vmalloc code.
3890 * With hardware tag-based KASAN, marking is skipped for
3891 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3893 for (area = 0; area < nr_vms; area++)
3894 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3895 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3902 * Remove previously allocated areas. There is no
3903 * need in removing these areas from the busy tree,
3904 * because they are inserted only on the final step
3905 * and when pcpu_get_vm_areas() is success.
3908 orig_start = vas[area]->va_start;
3909 orig_end = vas[area]->va_end;
3910 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3911 &free_vmap_area_list);
3913 kasan_release_vmalloc(orig_start, orig_end,
3914 va->va_start, va->va_end);
3919 spin_unlock(&free_vmap_area_lock);
3921 purge_vmap_area_lazy();
3924 /* Before "retry", check if we recover. */
3925 for (area = 0; area < nr_vms; area++) {
3929 vas[area] = kmem_cache_zalloc(
3930 vmap_area_cachep, GFP_KERNEL);
3939 for (area = 0; area < nr_vms; area++) {
3941 kmem_cache_free(vmap_area_cachep, vas[area]);
3951 spin_lock(&free_vmap_area_lock);
3953 * We release all the vmalloc shadows, even the ones for regions that
3954 * hadn't been successfully added. This relies on kasan_release_vmalloc
3955 * being able to tolerate this case.
3957 for (area = 0; area < nr_vms; area++) {
3958 orig_start = vas[area]->va_start;
3959 orig_end = vas[area]->va_end;
3960 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3961 &free_vmap_area_list);
3963 kasan_release_vmalloc(orig_start, orig_end,
3964 va->va_start, va->va_end);
3968 spin_unlock(&free_vmap_area_lock);
3975 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3976 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3977 * @nr_vms: the number of allocated areas
3979 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3981 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3985 for (i = 0; i < nr_vms; i++)
3986 free_vm_area(vms[i]);
3989 #endif /* CONFIG_SMP */
3991 #ifdef CONFIG_PRINTK
3992 bool vmalloc_dump_obj(void *object)
3994 struct vm_struct *vm;
3995 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3997 vm = find_vm_area(objp);
4000 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4001 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4006 #ifdef CONFIG_PROC_FS
4007 static void *s_start(struct seq_file *m, loff_t *pos)
4008 __acquires(&vmap_purge_lock)
4009 __acquires(&vmap_area_lock)
4011 mutex_lock(&vmap_purge_lock);
4012 spin_lock(&vmap_area_lock);
4014 return seq_list_start(&vmap_area_list, *pos);
4017 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4019 return seq_list_next(p, &vmap_area_list, pos);
4022 static void s_stop(struct seq_file *m, void *p)
4023 __releases(&vmap_area_lock)
4024 __releases(&vmap_purge_lock)
4026 spin_unlock(&vmap_area_lock);
4027 mutex_unlock(&vmap_purge_lock);
4030 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4032 if (IS_ENABLED(CONFIG_NUMA)) {
4033 unsigned int nr, *counters = m->private;
4034 unsigned int step = 1U << vm_area_page_order(v);
4039 if (v->flags & VM_UNINITIALIZED)
4041 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4044 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4046 for (nr = 0; nr < v->nr_pages; nr += step)
4047 counters[page_to_nid(v->pages[nr])] += step;
4048 for_each_node_state(nr, N_HIGH_MEMORY)
4050 seq_printf(m, " N%u=%u", nr, counters[nr]);
4054 static void show_purge_info(struct seq_file *m)
4056 struct vmap_area *va;
4058 spin_lock(&purge_vmap_area_lock);
4059 list_for_each_entry(va, &purge_vmap_area_list, list) {
4060 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4061 (void *)va->va_start, (void *)va->va_end,
4062 va->va_end - va->va_start);
4064 spin_unlock(&purge_vmap_area_lock);
4067 static int s_show(struct seq_file *m, void *p)
4069 struct vmap_area *va;
4070 struct vm_struct *v;
4072 va = list_entry(p, struct vmap_area, list);
4075 * s_show can encounter race with remove_vm_area, !vm on behalf
4076 * of vmap area is being tear down or vm_map_ram allocation.
4079 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4080 (void *)va->va_start, (void *)va->va_end,
4081 va->va_end - va->va_start);
4088 seq_printf(m, "0x%pK-0x%pK %7ld",
4089 v->addr, v->addr + v->size, v->size);
4092 seq_printf(m, " %pS", v->caller);
4095 seq_printf(m, " pages=%d", v->nr_pages);
4098 seq_printf(m, " phys=%pa", &v->phys_addr);
4100 if (v->flags & VM_IOREMAP)
4101 seq_puts(m, " ioremap");
4103 if (v->flags & VM_ALLOC)
4104 seq_puts(m, " vmalloc");
4106 if (v->flags & VM_MAP)
4107 seq_puts(m, " vmap");
4109 if (v->flags & VM_USERMAP)
4110 seq_puts(m, " user");
4112 if (v->flags & VM_DMA_COHERENT)
4113 seq_puts(m, " dma-coherent");
4115 if (is_vmalloc_addr(v->pages))
4116 seq_puts(m, " vpages");
4118 show_numa_info(m, v);
4122 * As a final step, dump "unpurged" areas.
4125 if (list_is_last(&va->list, &vmap_area_list))
4131 static const struct seq_operations vmalloc_op = {
4138 static int __init proc_vmalloc_init(void)
4140 if (IS_ENABLED(CONFIG_NUMA))
4141 proc_create_seq_private("vmallocinfo", 0400, NULL,
4143 nr_node_ids * sizeof(unsigned int), NULL);
4145 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4148 module_init(proc_vmalloc_init);