]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/display/dc/resource/dcn32/dcn32_resource.c
aaaa888d112dac4069d9b14a768539519b12cdce
[linux.git] / drivers / gpu / drm / amd / display / dc / resource / dcn32 / dcn32_resource.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26
27 #include "dm_services.h"
28 #include "dc.h"
29
30 #include "dcn32/dcn32_init.h"
31
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32/dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hwseq.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91
92 #include "dc_state_priv.h"
93
94 #include "dml2/dml2_wrapper.h"
95
96 #define DC_LOGGER_INIT(logger)
97
98 enum dcn32_clk_src_array_id {
99         DCN32_CLK_SRC_PLL0,
100         DCN32_CLK_SRC_PLL1,
101         DCN32_CLK_SRC_PLL2,
102         DCN32_CLK_SRC_PLL3,
103         DCN32_CLK_SRC_PLL4,
104         DCN32_CLK_SRC_TOTAL
105 };
106
107 /* begin *********************
108  * macros to expend register list macro defined in HW object header file
109  */
110
111 /* DCN */
112 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
113
114 #define BASE(seg) BASE_INNER(seg)
115
116 #define SR(reg_name)\
117                 REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
118                                         reg ## reg_name
119 #define SR_ARR(reg_name, id) \
120         REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
121
122 #define SR_ARR_INIT(reg_name, id, value) \
123         REG_STRUCT[id].reg_name = value
124
125 #define SRI(reg_name, block, id)\
126         REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127                 reg ## block ## id ## _ ## reg_name
128
129 #define SRI_ARR(reg_name, block, id)\
130         REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
131                 reg ## block ## id ## _ ## reg_name
132
133 #define SR_ARR_I2C(reg_name, id) \
134         REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
135
136 #define SRI_ARR_I2C(reg_name, block, id)\
137         REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138                 reg ## block ## id ## _ ## reg_name
139
140 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
141         REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
142                 reg ## block ## id ## _ ## reg_name
143
144 #define SRI2(reg_name, block, id)\
145         .reg_name = BASE(reg ## reg_name ## _BASE_IDX) +        \
146                 reg ## reg_name
147 #define SRI2_ARR(reg_name, block, id)\
148         REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
149                 reg ## reg_name
150
151 #define SRIR(var_name, reg_name, block, id)\
152         .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153                 reg ## block ## id ## _ ## reg_name
154
155 #define SRII(reg_name, block, id)\
156         REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157                                         reg ## block ## id ## _ ## reg_name
158
159 #define SRII_ARR_2(reg_name, block, id, inst)\
160         REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161                 reg ## block ## id ## _ ## reg_name
162
163 #define SRII_MPC_RMU(reg_name, block, id)\
164         .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
165                 reg ## block ## id ## _ ## reg_name
166
167 #define SRII_DWB(reg_name, temp_name, block, id)\
168         REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
169                 reg ## block ## id ## _ ## temp_name
170
171 #define SF_DWB2(reg_name, block, id, field_name, post_fix)      \
172         .field_name = reg_name ## __ ## field_name ## post_fix
173
174 #define DCCG_SRII(reg_name, block, id)\
175         REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
176                 reg ## block ## id ## _ ## reg_name
177
178 #define VUPDATE_SRII(reg_name, block, id)\
179         REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
180                 reg ## reg_name ## _ ## block ## id
181
182 /* NBIO */
183 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
184
185 #define NBIO_BASE(seg) \
186         NBIO_BASE_INNER(seg)
187
188 #define NBIO_SR(reg_name)\
189         REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
190                         regBIF_BX0_ ## reg_name
191 #define NBIO_SR_ARR(reg_name, id)\
192         REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
193                 regBIF_BX0_ ## reg_name
194
195 #undef CTX
196 #define CTX ctx
197 #define REG(reg_name) \
198         (ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
199
200 static struct bios_registers bios_regs;
201
202 #define bios_regs_init() \
203                 ( \
204                 NBIO_SR(BIOS_SCRATCH_3),\
205                 NBIO_SR(BIOS_SCRATCH_6)\
206                 )
207
208 #define clk_src_regs_init(index, pllid)\
209         CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
210
211 static struct dce110_clk_src_regs clk_src_regs[5];
212
213 static const struct dce110_clk_src_shift cs_shift = {
214                 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
215 };
216
217 static const struct dce110_clk_src_mask cs_mask = {
218                 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
219 };
220
221 #define abm_regs_init(id)\
222                 ABM_DCN32_REG_LIST_RI(id)
223
224 static struct dce_abm_registers abm_regs[4];
225
226 static const struct dce_abm_shift abm_shift = {
227                 ABM_MASK_SH_LIST_DCN32(__SHIFT)
228 };
229
230 static const struct dce_abm_mask abm_mask = {
231                 ABM_MASK_SH_LIST_DCN32(_MASK)
232 };
233
234 #define audio_regs_init(id)\
235                 AUD_COMMON_REG_LIST_RI(id)
236
237 static struct dce_audio_registers audio_regs[5];
238
239 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
240                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
241                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
242                 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
243
244 static const struct dce_audio_shift audio_shift = {
245                 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
246 };
247
248 static const struct dce_audio_mask audio_mask = {
249                 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
250 };
251
252 #define vpg_regs_init(id)\
253         VPG_DCN3_REG_LIST_RI(id)
254
255 static struct dcn30_vpg_registers vpg_regs[10];
256
257 static const struct dcn30_vpg_shift vpg_shift = {
258         DCN3_VPG_MASK_SH_LIST(__SHIFT)
259 };
260
261 static const struct dcn30_vpg_mask vpg_mask = {
262         DCN3_VPG_MASK_SH_LIST(_MASK)
263 };
264
265 #define afmt_regs_init(id)\
266         AFMT_DCN3_REG_LIST_RI(id)
267
268 static struct dcn30_afmt_registers afmt_regs[6];
269
270 static const struct dcn30_afmt_shift afmt_shift = {
271         DCN3_AFMT_MASK_SH_LIST(__SHIFT)
272 };
273
274 static const struct dcn30_afmt_mask afmt_mask = {
275         DCN3_AFMT_MASK_SH_LIST(_MASK)
276 };
277
278 #define apg_regs_init(id)\
279         APG_DCN31_REG_LIST_RI(id)
280
281 static struct dcn31_apg_registers apg_regs[4];
282
283 static const struct dcn31_apg_shift apg_shift = {
284         DCN31_APG_MASK_SH_LIST(__SHIFT)
285 };
286
287 static const struct dcn31_apg_mask apg_mask = {
288                 DCN31_APG_MASK_SH_LIST(_MASK)
289 };
290
291 #define stream_enc_regs_init(id)\
292         SE_DCN32_REG_LIST_RI(id)
293
294 static struct dcn10_stream_enc_registers stream_enc_regs[5];
295
296 static const struct dcn10_stream_encoder_shift se_shift = {
297                 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
298 };
299
300 static const struct dcn10_stream_encoder_mask se_mask = {
301                 SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
302 };
303
304
305 #define aux_regs_init(id)\
306         DCN2_AUX_REG_LIST_RI(id)
307
308 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
309
310 #define hpd_regs_init(id)\
311         HPD_REG_LIST_RI(id)
312
313 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
314
315 #define link_regs_init(id, phyid)\
316         ( \
317         LE_DCN31_REG_LIST_RI(id), \
318         UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
319         )
320         /*DPCS_DCN31_REG_LIST(id),*/ \
321
322 static struct dcn10_link_enc_registers link_enc_regs[5];
323
324 static const struct dcn10_link_enc_shift le_shift = {
325         LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
326         //DPCS_DCN31_MASK_SH_LIST(__SHIFT)
327 };
328
329 static const struct dcn10_link_enc_mask le_mask = {
330         LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
331         //DPCS_DCN31_MASK_SH_LIST(_MASK)
332 };
333
334 #define hpo_dp_stream_encoder_reg_init(id)\
335         DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
336
337 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
338
339 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
340         DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
341 };
342
343 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
344         DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
345 };
346
347
348 #define hpo_dp_link_encoder_reg_init(id)\
349         DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
350         /*DCN3_1_RDPCSTX_REG_LIST(0),*/
351         /*DCN3_1_RDPCSTX_REG_LIST(1),*/
352         /*DCN3_1_RDPCSTX_REG_LIST(2),*/
353         /*DCN3_1_RDPCSTX_REG_LIST(3),*/
354
355 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
356
357 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
358         DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
359 };
360
361 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
362         DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
363 };
364
365 #define dpp_regs_init(id)\
366         DPP_REG_LIST_DCN30_COMMON_RI(id)
367
368 static struct dcn3_dpp_registers dpp_regs[4];
369
370 static const struct dcn3_dpp_shift tf_shift = {
371                 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
372 };
373
374 static const struct dcn3_dpp_mask tf_mask = {
375                 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
376 };
377
378
379 #define opp_regs_init(id)\
380         OPP_REG_LIST_DCN30_RI(id)
381
382 static struct dcn20_opp_registers opp_regs[4];
383
384 static const struct dcn20_opp_shift opp_shift = {
385         OPP_MASK_SH_LIST_DCN20(__SHIFT)
386 };
387
388 static const struct dcn20_opp_mask opp_mask = {
389         OPP_MASK_SH_LIST_DCN20(_MASK)
390 };
391
392 #define aux_engine_regs_init(id)\
393         ( \
394         AUX_COMMON_REG_LIST0_RI(id), \
395         SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
396         SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
397         SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
398         SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
399         )
400
401 static struct dce110_aux_registers aux_engine_regs[5];
402
403 static const struct dce110_aux_registers_shift aux_shift = {
404         DCN_AUX_MASK_SH_LIST(__SHIFT)
405 };
406
407 static const struct dce110_aux_registers_mask aux_mask = {
408         DCN_AUX_MASK_SH_LIST(_MASK)
409 };
410
411 #define dwbc_regs_dcn3_init(id)\
412         DWBC_COMMON_REG_LIST_DCN30_RI(id)
413
414 static struct dcn30_dwbc_registers dwbc30_regs[1];
415
416 static const struct dcn30_dwbc_shift dwbc30_shift = {
417         DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
418 };
419
420 static const struct dcn30_dwbc_mask dwbc30_mask = {
421         DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
422 };
423
424 #define mcif_wb_regs_dcn3_init(id)\
425         MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
426
427 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
428
429 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
430         MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
431 };
432
433 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
434         MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
435 };
436
437 #define dsc_regsDCN20_init(id)\
438         DSC_REG_LIST_DCN20_RI(id)
439
440 static struct dcn20_dsc_registers dsc_regs[4];
441
442 static const struct dcn20_dsc_shift dsc_shift = {
443         DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
444 };
445
446 static const struct dcn20_dsc_mask dsc_mask = {
447         DSC_REG_LIST_SH_MASK_DCN20(_MASK)
448 };
449
450 static struct dcn30_mpc_registers mpc_regs;
451
452 #define dcn_mpc_regs_init() \
453         MPC_REG_LIST_DCN3_2_RI(0),\
454         MPC_REG_LIST_DCN3_2_RI(1),\
455         MPC_REG_LIST_DCN3_2_RI(2),\
456         MPC_REG_LIST_DCN3_2_RI(3),\
457         MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
458         MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
459         MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
460         MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
461         MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
462
463 static const struct dcn30_mpc_shift mpc_shift = {
464         MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
465 };
466
467 static const struct dcn30_mpc_mask mpc_mask = {
468         MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
469 };
470
471 #define optc_regs_init(id)\
472         OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
473
474 static struct dcn_optc_registers optc_regs[4];
475
476 static const struct dcn_optc_shift optc_shift = {
477         OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
478 };
479
480 static const struct dcn_optc_mask optc_mask = {
481         OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
482 };
483
484 #define hubp_regs_init(id)\
485         HUBP_REG_LIST_DCN32_RI(id)
486
487 static struct dcn_hubp2_registers hubp_regs[4];
488
489
490 static const struct dcn_hubp2_shift hubp_shift = {
491                 HUBP_MASK_SH_LIST_DCN32(__SHIFT)
492 };
493
494 static const struct dcn_hubp2_mask hubp_mask = {
495                 HUBP_MASK_SH_LIST_DCN32(_MASK)
496 };
497
498 static struct dcn_hubbub_registers hubbub_reg;
499 #define hubbub_reg_init()\
500                 HUBBUB_REG_LIST_DCN32_RI(0)
501
502 static const struct dcn_hubbub_shift hubbub_shift = {
503                 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
504 };
505
506 static const struct dcn_hubbub_mask hubbub_mask = {
507                 HUBBUB_MASK_SH_LIST_DCN32(_MASK)
508 };
509
510 static struct dccg_registers dccg_regs;
511
512 #define dccg_regs_init()\
513         DCCG_REG_LIST_DCN32_RI()
514
515 static const struct dccg_shift dccg_shift = {
516                 DCCG_MASK_SH_LIST_DCN32(__SHIFT)
517 };
518
519 static const struct dccg_mask dccg_mask = {
520                 DCCG_MASK_SH_LIST_DCN32(_MASK)
521 };
522
523
524 #define SRII2(reg_name_pre, reg_name_post, id)\
525         .reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
526                         ## id ## _ ## reg_name_post ## _BASE_IDX) + \
527                         reg ## reg_name_pre ## id ## _ ## reg_name_post
528
529
530 #define HWSEQ_DCN32_REG_LIST()\
531         SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
532         SR(DIO_MEM_PWR_CTRL), \
533         SR(ODM_MEM_PWR_CTRL3), \
534         SR(MMHUBBUB_MEM_PWR_CNTL), \
535         SR(DCCG_GATE_DISABLE_CNTL), \
536         SR(DCCG_GATE_DISABLE_CNTL2), \
537         SR(DCFCLK_CNTL),\
538         SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
539         SRII(PIXEL_RATE_CNTL, OTG, 0), \
540         SRII(PIXEL_RATE_CNTL, OTG, 1),\
541         SRII(PIXEL_RATE_CNTL, OTG, 2),\
542         SRII(PIXEL_RATE_CNTL, OTG, 3),\
543         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
544         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
545         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
546         SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
547         SR(MICROSECOND_TIME_BASE_DIV), \
548         SR(MILLISECOND_TIME_BASE_DIV), \
549         SR(DISPCLK_FREQ_CHANGE_CNTL), \
550         SR(RBBMIF_TIMEOUT_DIS), \
551         SR(RBBMIF_TIMEOUT_DIS_2), \
552         SR(DCHUBBUB_CRC_CTRL), \
553         SR(DPP_TOP0_DPP_CRC_CTRL), \
554         SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
555         SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
556         SR(MPC_CRC_CTRL), \
557         SR(MPC_CRC_RESULT_GB), \
558         SR(MPC_CRC_RESULT_C), \
559         SR(MPC_CRC_RESULT_AR), \
560         SR(DOMAIN0_PG_CONFIG), \
561         SR(DOMAIN1_PG_CONFIG), \
562         SR(DOMAIN2_PG_CONFIG), \
563         SR(DOMAIN3_PG_CONFIG), \
564         SR(DOMAIN16_PG_CONFIG), \
565         SR(DOMAIN17_PG_CONFIG), \
566         SR(DOMAIN18_PG_CONFIG), \
567         SR(DOMAIN19_PG_CONFIG), \
568         SR(DOMAIN0_PG_STATUS), \
569         SR(DOMAIN1_PG_STATUS), \
570         SR(DOMAIN2_PG_STATUS), \
571         SR(DOMAIN3_PG_STATUS), \
572         SR(DOMAIN16_PG_STATUS), \
573         SR(DOMAIN17_PG_STATUS), \
574         SR(DOMAIN18_PG_STATUS), \
575         SR(DOMAIN19_PG_STATUS), \
576         SR(D1VGA_CONTROL), \
577         SR(D2VGA_CONTROL), \
578         SR(D3VGA_CONTROL), \
579         SR(D4VGA_CONTROL), \
580         SR(D5VGA_CONTROL), \
581         SR(D6VGA_CONTROL), \
582         SR(DC_IP_REQUEST_CNTL), \
583         SR(AZALIA_AUDIO_DTO), \
584         SR(AZALIA_CONTROLLER_CLOCK_GATING)
585
586 static struct dce_hwseq_registers hwseq_reg;
587
588 #define hwseq_reg_init()\
589         HWSEQ_DCN32_REG_LIST()
590
591 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
592         HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
593         HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
594         HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595         HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596         HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597         HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598         HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599         HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600         HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601         HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602         HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603         HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604         HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605         HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606         HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
607         HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
608         HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
609         HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
610         HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611         HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612         HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613         HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614         HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
615         HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
616         HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
617         HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
618         HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
619         HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
620         HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
621         HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
622         HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
623         HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
624
625 static const struct dce_hwseq_shift hwseq_shift = {
626                 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
627 };
628
629 static const struct dce_hwseq_mask hwseq_mask = {
630                 HWSEQ_DCN32_MASK_SH_LIST(_MASK)
631 };
632 #define vmid_regs_init(id)\
633                 DCN20_VMID_REG_LIST_RI(id)
634
635 static struct dcn_vmid_registers vmid_regs[16];
636
637 static const struct dcn20_vmid_shift vmid_shifts = {
638                 DCN20_VMID_MASK_SH_LIST(__SHIFT)
639 };
640
641 static const struct dcn20_vmid_mask vmid_masks = {
642                 DCN20_VMID_MASK_SH_LIST(_MASK)
643 };
644
645 static const struct resource_caps res_cap_dcn32 = {
646         .num_timing_generator = 4,
647         .num_opp = 4,
648         .num_video_plane = 4,
649         .num_audio = 5,
650         .num_stream_encoder = 5,
651         .num_hpo_dp_stream_encoder = 4,
652         .num_hpo_dp_link_encoder = 2,
653         .num_pll = 5,
654         .num_dwb = 1,
655         .num_ddc = 5,
656         .num_vmid = 16,
657         .num_mpc_3dlut = 4,
658         .num_dsc = 4,
659 };
660
661 static const struct dc_plane_cap plane_cap = {
662         .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
663         .per_pixel_alpha = true,
664
665         .pixel_format_support = {
666                         .argb8888 = true,
667                         .nv12 = true,
668                         .fp16 = true,
669                         .p010 = true,
670                         .ayuv = false,
671         },
672
673         .max_upscale_factor = {
674                         .argb8888 = 16000,
675                         .nv12 = 16000,
676                         .fp16 = 16000
677         },
678
679         // 6:1 downscaling ratio: 1000/6 = 166.666
680         .max_downscale_factor = {
681                         .argb8888 = 167,
682                         .nv12 = 167,
683                         .fp16 = 167
684         },
685         64,
686         64
687 };
688
689 static const struct dc_debug_options debug_defaults_drv = {
690         .disable_dmcu = true,
691         .force_abm_enable = false,
692         .timing_trace = false,
693         .clock_trace = true,
694         .disable_pplib_clock_request = false,
695         .pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
696         .force_single_disp_pipe_split = false,
697         .disable_dcc = DCC_ENABLE,
698         .vsr_support = true,
699         .performance_trace = false,
700         .max_downscale_src_width = 7680,/*upto 8K*/
701         .disable_pplib_wm_range = false,
702         .scl_reset_length10 = true,
703         .sanity_checks = false,
704         .underflow_assert_delay_us = 0xFFFFFFFF,
705         .dwb_fi_phase = -1, // -1 = disable,
706         .dmub_command_table = true,
707         .enable_mem_low_power = {
708                 .bits = {
709                         .vga = false,
710                         .i2c = false,
711                         .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
712                         .dscl = false,
713                         .cm = false,
714                         .mpc = false,
715                         .optc = true,
716                 }
717         },
718         .use_max_lb = true,
719         .force_disable_subvp = false,
720         .exit_idle_opt_for_cursor_updates = true,
721         .using_dml2 = false,
722         .using_dml21 = false, // TODO : Temporary for N-1 validation. Remove after N-1 is done.
723         .enable_single_display_2to1_odm_policy = true,
724
725         /* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
726         .enable_double_buffered_dsc_pg_support = true,
727         .enable_dp_dig_pixel_rate_div_policy = 1,
728         .allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
729         .alloc_extra_way_for_cursor = true,
730         .min_prefetch_in_strobe_ns = 60000, // 60us
731         .disable_unbounded_requesting = false,
732         .override_dispclk_programming = true,
733         .disable_fpo_optimizations = false,
734         .fpo_vactive_margin_us = 2000, // 2000us
735         .disable_fpo_vactive = false,
736         .disable_boot_optimizations = false,
737         .disable_subvp_high_refresh = false,
738         .disable_dp_plus_plus_wa = true,
739         .fpo_vactive_min_active_margin_us = 200,
740         .fpo_vactive_max_blank_us = 1000,
741         .enable_legacy_fast_update = false,
742 };
743
744 static struct dce_aux *dcn32_aux_engine_create(
745         struct dc_context *ctx,
746         uint32_t inst)
747 {
748         struct aux_engine_dce110 *aux_engine =
749                 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
750
751         if (!aux_engine)
752                 return NULL;
753
754 #undef REG_STRUCT
755 #define REG_STRUCT aux_engine_regs
756         aux_engine_regs_init(0),
757         aux_engine_regs_init(1),
758         aux_engine_regs_init(2),
759         aux_engine_regs_init(3),
760         aux_engine_regs_init(4);
761
762         dce110_aux_engine_construct(aux_engine, ctx, inst,
763                                     SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
764                                     &aux_engine_regs[inst],
765                                         &aux_mask,
766                                         &aux_shift,
767                                         ctx->dc->caps.extended_aux_timeout_support);
768
769         return &aux_engine->base;
770 }
771 #define i2c_inst_regs_init(id)\
772         I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
773
774 static struct dce_i2c_registers i2c_hw_regs[5];
775
776 static const struct dce_i2c_shift i2c_shifts = {
777                 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
778 };
779
780 static const struct dce_i2c_mask i2c_masks = {
781                 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
782 };
783
784 static struct dce_i2c_hw *dcn32_i2c_hw_create(
785         struct dc_context *ctx,
786         uint32_t inst)
787 {
788         struct dce_i2c_hw *dce_i2c_hw =
789                 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
790
791         if (!dce_i2c_hw)
792                 return NULL;
793
794 #undef REG_STRUCT
795 #define REG_STRUCT i2c_hw_regs
796         i2c_inst_regs_init(1),
797         i2c_inst_regs_init(2),
798         i2c_inst_regs_init(3),
799         i2c_inst_regs_init(4),
800         i2c_inst_regs_init(5);
801
802         dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
803                                     &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
804
805         return dce_i2c_hw;
806 }
807
808 static struct clock_source *dcn32_clock_source_create(
809                 struct dc_context *ctx,
810                 struct dc_bios *bios,
811                 enum clock_source_id id,
812                 const struct dce110_clk_src_regs *regs,
813                 bool dp_clk_src)
814 {
815         struct dce110_clk_src *clk_src =
816                 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
817
818         if (!clk_src)
819                 return NULL;
820
821         if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
822                         regs, &cs_shift, &cs_mask)) {
823                 clk_src->base.dp_clk_src = dp_clk_src;
824                 return &clk_src->base;
825         }
826
827         kfree(clk_src);
828         BREAK_TO_DEBUGGER();
829         return NULL;
830 }
831
832 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
833 {
834         int i;
835
836         struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
837                                           GFP_KERNEL);
838
839         if (!hubbub2)
840                 return NULL;
841
842 #undef REG_STRUCT
843 #define REG_STRUCT hubbub_reg
844         hubbub_reg_init();
845
846 #undef REG_STRUCT
847 #define REG_STRUCT vmid_regs
848         vmid_regs_init(0),
849         vmid_regs_init(1),
850         vmid_regs_init(2),
851         vmid_regs_init(3),
852         vmid_regs_init(4),
853         vmid_regs_init(5),
854         vmid_regs_init(6),
855         vmid_regs_init(7),
856         vmid_regs_init(8),
857         vmid_regs_init(9),
858         vmid_regs_init(10),
859         vmid_regs_init(11),
860         vmid_regs_init(12),
861         vmid_regs_init(13),
862         vmid_regs_init(14),
863         vmid_regs_init(15);
864
865         hubbub32_construct(hubbub2, ctx,
866                         &hubbub_reg,
867                         &hubbub_shift,
868                         &hubbub_mask,
869                         ctx->dc->dml.ip.det_buffer_size_kbytes,
870                         ctx->dc->dml.ip.pixel_chunk_size_kbytes,
871                         ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
872
873
874         for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
875                 struct dcn20_vmid *vmid = &hubbub2->vmid[i];
876
877                 vmid->ctx = ctx;
878
879                 vmid->regs = &vmid_regs[i];
880                 vmid->shifts = &vmid_shifts;
881                 vmid->masks = &vmid_masks;
882         }
883
884         return &hubbub2->base;
885 }
886
887 static struct hubp *dcn32_hubp_create(
888         struct dc_context *ctx,
889         uint32_t inst)
890 {
891         struct dcn20_hubp *hubp2 =
892                 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
893
894         if (!hubp2)
895                 return NULL;
896
897 #undef REG_STRUCT
898 #define REG_STRUCT hubp_regs
899         hubp_regs_init(0),
900         hubp_regs_init(1),
901         hubp_regs_init(2),
902         hubp_regs_init(3);
903
904         if (hubp32_construct(hubp2, ctx, inst,
905                         &hubp_regs[inst], &hubp_shift, &hubp_mask))
906                 return &hubp2->base;
907
908         BREAK_TO_DEBUGGER();
909         kfree(hubp2);
910         return NULL;
911 }
912
913 static void dcn32_dpp_destroy(struct dpp **dpp)
914 {
915         kfree(TO_DCN30_DPP(*dpp));
916         *dpp = NULL;
917 }
918
919 static struct dpp *dcn32_dpp_create(
920         struct dc_context *ctx,
921         uint32_t inst)
922 {
923         struct dcn3_dpp *dpp3 =
924                 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
925
926         if (!dpp3)
927                 return NULL;
928
929 #undef REG_STRUCT
930 #define REG_STRUCT dpp_regs
931         dpp_regs_init(0),
932         dpp_regs_init(1),
933         dpp_regs_init(2),
934         dpp_regs_init(3);
935
936         if (dpp32_construct(dpp3, ctx, inst,
937                         &dpp_regs[inst], &tf_shift, &tf_mask))
938                 return &dpp3->base;
939
940         BREAK_TO_DEBUGGER();
941         kfree(dpp3);
942         return NULL;
943 }
944
945 static struct mpc *dcn32_mpc_create(
946                 struct dc_context *ctx,
947                 int num_mpcc,
948                 int num_rmu)
949 {
950         struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
951                                           GFP_KERNEL);
952
953         if (!mpc30)
954                 return NULL;
955
956 #undef REG_STRUCT
957 #define REG_STRUCT mpc_regs
958         dcn_mpc_regs_init();
959
960         dcn32_mpc_construct(mpc30, ctx,
961                         &mpc_regs,
962                         &mpc_shift,
963                         &mpc_mask,
964                         num_mpcc,
965                         num_rmu);
966
967         return &mpc30->base;
968 }
969
970 static struct output_pixel_processor *dcn32_opp_create(
971         struct dc_context *ctx, uint32_t inst)
972 {
973         struct dcn20_opp *opp2 =
974                 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
975
976         if (!opp2) {
977                 BREAK_TO_DEBUGGER();
978                 return NULL;
979         }
980
981 #undef REG_STRUCT
982 #define REG_STRUCT opp_regs
983         opp_regs_init(0),
984         opp_regs_init(1),
985         opp_regs_init(2),
986         opp_regs_init(3);
987
988         dcn20_opp_construct(opp2, ctx, inst,
989                         &opp_regs[inst], &opp_shift, &opp_mask);
990         return &opp2->base;
991 }
992
993
994 static struct timing_generator *dcn32_timing_generator_create(
995                 struct dc_context *ctx,
996                 uint32_t instance)
997 {
998         struct optc *tgn10 =
999                 kzalloc(sizeof(struct optc), GFP_KERNEL);
1000
1001         if (!tgn10)
1002                 return NULL;
1003
1004 #undef REG_STRUCT
1005 #define REG_STRUCT optc_regs
1006         optc_regs_init(0),
1007         optc_regs_init(1),
1008         optc_regs_init(2),
1009         optc_regs_init(3);
1010
1011         tgn10->base.inst = instance;
1012         tgn10->base.ctx = ctx;
1013
1014         tgn10->tg_regs = &optc_regs[instance];
1015         tgn10->tg_shift = &optc_shift;
1016         tgn10->tg_mask = &optc_mask;
1017
1018         dcn32_timing_generator_init(tgn10);
1019
1020         return &tgn10->base;
1021 }
1022
1023 static const struct encoder_feature_support link_enc_feature = {
1024                 .max_hdmi_deep_color = COLOR_DEPTH_121212,
1025                 .max_hdmi_pixel_clock = 600000,
1026                 .hdmi_ycbcr420_supported = true,
1027                 .dp_ycbcr420_supported = true,
1028                 .fec_supported = true,
1029                 .flags.bits.IS_HBR2_CAPABLE = true,
1030                 .flags.bits.IS_HBR3_CAPABLE = true,
1031                 .flags.bits.IS_TPS3_CAPABLE = true,
1032                 .flags.bits.IS_TPS4_CAPABLE = true
1033 };
1034
1035 static struct link_encoder *dcn32_link_encoder_create(
1036         struct dc_context *ctx,
1037         const struct encoder_init_data *enc_init_data)
1038 {
1039         struct dcn20_link_encoder *enc20 =
1040                 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1041
1042         if (!enc20 || enc_init_data->hpd_source >= ARRAY_SIZE(link_enc_hpd_regs))
1043                 return NULL;
1044
1045 #undef REG_STRUCT
1046 #define REG_STRUCT link_enc_aux_regs
1047         aux_regs_init(0),
1048         aux_regs_init(1),
1049         aux_regs_init(2),
1050         aux_regs_init(3),
1051         aux_regs_init(4);
1052
1053 #undef REG_STRUCT
1054 #define REG_STRUCT link_enc_hpd_regs
1055         hpd_regs_init(0),
1056         hpd_regs_init(1),
1057         hpd_regs_init(2),
1058         hpd_regs_init(3),
1059         hpd_regs_init(4);
1060
1061 #undef REG_STRUCT
1062 #define REG_STRUCT link_enc_regs
1063         link_regs_init(0, A),
1064         link_regs_init(1, B),
1065         link_regs_init(2, C),
1066         link_regs_init(3, D),
1067         link_regs_init(4, E);
1068
1069         dcn32_link_encoder_construct(enc20,
1070                         enc_init_data,
1071                         &link_enc_feature,
1072                         &link_enc_regs[enc_init_data->transmitter],
1073                         &link_enc_aux_regs[enc_init_data->channel - 1],
1074                         &link_enc_hpd_regs[enc_init_data->hpd_source],
1075                         &le_shift,
1076                         &le_mask);
1077
1078         return &enc20->enc10.base;
1079 }
1080
1081 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1082 {
1083         struct dcn31_panel_cntl *panel_cntl =
1084                 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1085
1086         if (!panel_cntl)
1087                 return NULL;
1088
1089         dcn31_panel_cntl_construct(panel_cntl, init_data);
1090
1091         return &panel_cntl->base;
1092 }
1093
1094 static void read_dce_straps(
1095         struct dc_context *ctx,
1096         struct resource_straps *straps)
1097 {
1098         generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1099                 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1100
1101 }
1102
1103 static struct audio *dcn32_create_audio(
1104                 struct dc_context *ctx, unsigned int inst)
1105 {
1106
1107 #undef REG_STRUCT
1108 #define REG_STRUCT audio_regs
1109         audio_regs_init(0),
1110         audio_regs_init(1),
1111         audio_regs_init(2),
1112         audio_regs_init(3),
1113         audio_regs_init(4);
1114
1115         return dce_audio_create(ctx, inst,
1116                         &audio_regs[inst], &audio_shift, &audio_mask);
1117 }
1118
1119 static struct vpg *dcn32_vpg_create(
1120         struct dc_context *ctx,
1121         uint32_t inst)
1122 {
1123         struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1124
1125         if (!vpg3)
1126                 return NULL;
1127
1128 #undef REG_STRUCT
1129 #define REG_STRUCT vpg_regs
1130         vpg_regs_init(0),
1131         vpg_regs_init(1),
1132         vpg_regs_init(2),
1133         vpg_regs_init(3),
1134         vpg_regs_init(4),
1135         vpg_regs_init(5),
1136         vpg_regs_init(6),
1137         vpg_regs_init(7),
1138         vpg_regs_init(8),
1139         vpg_regs_init(9);
1140
1141         vpg3_construct(vpg3, ctx, inst,
1142                         &vpg_regs[inst],
1143                         &vpg_shift,
1144                         &vpg_mask);
1145
1146         return &vpg3->base;
1147 }
1148
1149 static struct afmt *dcn32_afmt_create(
1150         struct dc_context *ctx,
1151         uint32_t inst)
1152 {
1153         struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1154
1155         if (!afmt3)
1156                 return NULL;
1157
1158 #undef REG_STRUCT
1159 #define REG_STRUCT afmt_regs
1160         afmt_regs_init(0),
1161         afmt_regs_init(1),
1162         afmt_regs_init(2),
1163         afmt_regs_init(3),
1164         afmt_regs_init(4),
1165         afmt_regs_init(5);
1166
1167         afmt3_construct(afmt3, ctx, inst,
1168                         &afmt_regs[inst],
1169                         &afmt_shift,
1170                         &afmt_mask);
1171
1172         return &afmt3->base;
1173 }
1174
1175 static struct apg *dcn31_apg_create(
1176         struct dc_context *ctx,
1177         uint32_t inst)
1178 {
1179         struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1180
1181         if (!apg31)
1182                 return NULL;
1183
1184 #undef REG_STRUCT
1185 #define REG_STRUCT apg_regs
1186         apg_regs_init(0),
1187         apg_regs_init(1),
1188         apg_regs_init(2),
1189         apg_regs_init(3);
1190
1191         apg31_construct(apg31, ctx, inst,
1192                         &apg_regs[inst],
1193                         &apg_shift,
1194                         &apg_mask);
1195
1196         return &apg31->base;
1197 }
1198
1199 static struct stream_encoder *dcn32_stream_encoder_create(
1200         enum engine_id eng_id,
1201         struct dc_context *ctx)
1202 {
1203         struct dcn10_stream_encoder *enc1;
1204         struct vpg *vpg;
1205         struct afmt *afmt;
1206         int vpg_inst;
1207         int afmt_inst;
1208
1209         /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1210         if (eng_id <= ENGINE_ID_DIGF) {
1211                 vpg_inst = eng_id;
1212                 afmt_inst = eng_id;
1213         } else
1214                 return NULL;
1215
1216         enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1217         vpg = dcn32_vpg_create(ctx, vpg_inst);
1218         afmt = dcn32_afmt_create(ctx, afmt_inst);
1219
1220         if (!enc1 || !vpg || !afmt) {
1221                 kfree(enc1);
1222                 kfree(vpg);
1223                 kfree(afmt);
1224                 return NULL;
1225         }
1226
1227 #undef REG_STRUCT
1228 #define REG_STRUCT stream_enc_regs
1229         stream_enc_regs_init(0),
1230         stream_enc_regs_init(1),
1231         stream_enc_regs_init(2),
1232         stream_enc_regs_init(3),
1233         stream_enc_regs_init(4);
1234
1235         dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1236                                         eng_id, vpg, afmt,
1237                                         &stream_enc_regs[eng_id],
1238                                         &se_shift, &se_mask);
1239
1240         return &enc1->base;
1241 }
1242
1243 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1244         enum engine_id eng_id,
1245         struct dc_context *ctx)
1246 {
1247         struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1248         struct vpg *vpg;
1249         struct apg *apg;
1250         uint32_t hpo_dp_inst;
1251         uint32_t vpg_inst;
1252         uint32_t apg_inst;
1253
1254         ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1255         hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1256
1257         /* Mapping of VPG register blocks to HPO DP block instance:
1258          * VPG[6] -> HPO_DP[0]
1259          * VPG[7] -> HPO_DP[1]
1260          * VPG[8] -> HPO_DP[2]
1261          * VPG[9] -> HPO_DP[3]
1262          */
1263         vpg_inst = hpo_dp_inst + 6;
1264
1265         /* Mapping of APG register blocks to HPO DP block instance:
1266          * APG[0] -> HPO_DP[0]
1267          * APG[1] -> HPO_DP[1]
1268          * APG[2] -> HPO_DP[2]
1269          * APG[3] -> HPO_DP[3]
1270          */
1271         apg_inst = hpo_dp_inst;
1272
1273         /* allocate HPO stream encoder and create VPG sub-block */
1274         hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1275         vpg = dcn32_vpg_create(ctx, vpg_inst);
1276         apg = dcn31_apg_create(ctx, apg_inst);
1277
1278         if (!hpo_dp_enc31 || !vpg || !apg) {
1279                 kfree(hpo_dp_enc31);
1280                 kfree(vpg);
1281                 kfree(apg);
1282                 return NULL;
1283         }
1284
1285 #undef REG_STRUCT
1286 #define REG_STRUCT hpo_dp_stream_enc_regs
1287         hpo_dp_stream_encoder_reg_init(0),
1288         hpo_dp_stream_encoder_reg_init(1),
1289         hpo_dp_stream_encoder_reg_init(2),
1290         hpo_dp_stream_encoder_reg_init(3);
1291
1292         dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1293                                         hpo_dp_inst, eng_id, vpg, apg,
1294                                         &hpo_dp_stream_enc_regs[hpo_dp_inst],
1295                                         &hpo_dp_se_shift, &hpo_dp_se_mask);
1296
1297         return &hpo_dp_enc31->base;
1298 }
1299
1300 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1301         uint8_t inst,
1302         struct dc_context *ctx)
1303 {
1304         struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1305
1306         /* allocate HPO link encoder */
1307         hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1308         if (!hpo_dp_enc31)
1309                 return NULL; /* out of memory */
1310
1311 #undef REG_STRUCT
1312 #define REG_STRUCT hpo_dp_link_enc_regs
1313         hpo_dp_link_encoder_reg_init(0),
1314         hpo_dp_link_encoder_reg_init(1);
1315
1316         hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1317                                         &hpo_dp_link_enc_regs[inst],
1318                                         &hpo_dp_le_shift, &hpo_dp_le_mask);
1319
1320         return &hpo_dp_enc31->base;
1321 }
1322
1323 static struct dce_hwseq *dcn32_hwseq_create(
1324         struct dc_context *ctx)
1325 {
1326         struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1327
1328 #undef REG_STRUCT
1329 #define REG_STRUCT hwseq_reg
1330         hwseq_reg_init();
1331
1332         if (hws) {
1333                 hws->ctx = ctx;
1334                 hws->regs = &hwseq_reg;
1335                 hws->shifts = &hwseq_shift;
1336                 hws->masks = &hwseq_mask;
1337         }
1338         return hws;
1339 }
1340 static const struct resource_create_funcs res_create_funcs = {
1341         .read_dce_straps = read_dce_straps,
1342         .create_audio = dcn32_create_audio,
1343         .create_stream_encoder = dcn32_stream_encoder_create,
1344         .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1345         .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1346         .create_hwseq = dcn32_hwseq_create,
1347 };
1348
1349 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1350 {
1351         unsigned int i;
1352
1353         for (i = 0; i < pool->base.stream_enc_count; i++) {
1354                 if (pool->base.stream_enc[i] != NULL) {
1355                         if (pool->base.stream_enc[i]->vpg != NULL) {
1356                                 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1357                                 pool->base.stream_enc[i]->vpg = NULL;
1358                         }
1359                         if (pool->base.stream_enc[i]->afmt != NULL) {
1360                                 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1361                                 pool->base.stream_enc[i]->afmt = NULL;
1362                         }
1363                         kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1364                         pool->base.stream_enc[i] = NULL;
1365                 }
1366         }
1367
1368         for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1369                 if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1370                         if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1371                                 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1372                                 pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1373                         }
1374                         if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1375                                 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1376                                 pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1377                         }
1378                         kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1379                         pool->base.hpo_dp_stream_enc[i] = NULL;
1380                 }
1381         }
1382
1383         for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1384                 if (pool->base.hpo_dp_link_enc[i] != NULL) {
1385                         kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1386                         pool->base.hpo_dp_link_enc[i] = NULL;
1387                 }
1388         }
1389
1390         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1391                 if (pool->base.dscs[i] != NULL)
1392                         dcn20_dsc_destroy(&pool->base.dscs[i]);
1393         }
1394
1395         if (pool->base.mpc != NULL) {
1396                 kfree(TO_DCN20_MPC(pool->base.mpc));
1397                 pool->base.mpc = NULL;
1398         }
1399         if (pool->base.hubbub != NULL) {
1400                 kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1401                 pool->base.hubbub = NULL;
1402         }
1403         for (i = 0; i < pool->base.pipe_count; i++) {
1404                 if (pool->base.dpps[i] != NULL)
1405                         dcn32_dpp_destroy(&pool->base.dpps[i]);
1406
1407                 if (pool->base.ipps[i] != NULL)
1408                         pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1409
1410                 if (pool->base.hubps[i] != NULL) {
1411                         kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1412                         pool->base.hubps[i] = NULL;
1413                 }
1414
1415                 if (pool->base.irqs != NULL) {
1416                         dal_irq_service_destroy(&pool->base.irqs);
1417                 }
1418         }
1419
1420         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1421                 if (pool->base.engines[i] != NULL)
1422                         dce110_engine_destroy(&pool->base.engines[i]);
1423                 if (pool->base.hw_i2cs[i] != NULL) {
1424                         kfree(pool->base.hw_i2cs[i]);
1425                         pool->base.hw_i2cs[i] = NULL;
1426                 }
1427                 if (pool->base.sw_i2cs[i] != NULL) {
1428                         kfree(pool->base.sw_i2cs[i]);
1429                         pool->base.sw_i2cs[i] = NULL;
1430                 }
1431         }
1432
1433         for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1434                 if (pool->base.opps[i] != NULL)
1435                         pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1436         }
1437
1438         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1439                 if (pool->base.timing_generators[i] != NULL)    {
1440                         kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1441                         pool->base.timing_generators[i] = NULL;
1442                 }
1443         }
1444
1445         for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1446                 if (pool->base.dwbc[i] != NULL) {
1447                         kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1448                         pool->base.dwbc[i] = NULL;
1449                 }
1450                 if (pool->base.mcif_wb[i] != NULL) {
1451                         kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1452                         pool->base.mcif_wb[i] = NULL;
1453                 }
1454         }
1455
1456         for (i = 0; i < pool->base.audio_count; i++) {
1457                 if (pool->base.audios[i])
1458                         dce_aud_destroy(&pool->base.audios[i]);
1459         }
1460
1461         for (i = 0; i < pool->base.clk_src_count; i++) {
1462                 if (pool->base.clock_sources[i] != NULL) {
1463                         dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1464                         pool->base.clock_sources[i] = NULL;
1465                 }
1466         }
1467
1468         for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1469                 if (pool->base.mpc_lut[i] != NULL) {
1470                         dc_3dlut_func_release(pool->base.mpc_lut[i]);
1471                         pool->base.mpc_lut[i] = NULL;
1472                 }
1473                 if (pool->base.mpc_shaper[i] != NULL) {
1474                         dc_transfer_func_release(pool->base.mpc_shaper[i]);
1475                         pool->base.mpc_shaper[i] = NULL;
1476                 }
1477         }
1478
1479         if (pool->base.dp_clock_source != NULL) {
1480                 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1481                 pool->base.dp_clock_source = NULL;
1482         }
1483
1484         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1485                 if (pool->base.multiple_abms[i] != NULL)
1486                         dce_abm_destroy(&pool->base.multiple_abms[i]);
1487         }
1488
1489         if (pool->base.psr != NULL)
1490                 dmub_psr_destroy(&pool->base.psr);
1491
1492         if (pool->base.dccg != NULL)
1493                 dcn_dccg_destroy(&pool->base.dccg);
1494
1495         if (pool->base.oem_device != NULL) {
1496                 struct dc *dc = pool->base.oem_device->ctx->dc;
1497
1498                 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1499         }
1500 }
1501
1502
1503 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1504 {
1505         int i;
1506         uint32_t dwb_count = pool->res_cap->num_dwb;
1507
1508         for (i = 0; i < dwb_count; i++) {
1509                 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1510                                                     GFP_KERNEL);
1511
1512                 if (!dwbc30) {
1513                         dm_error("DC: failed to create dwbc30!\n");
1514                         return false;
1515                 }
1516
1517 #undef REG_STRUCT
1518 #define REG_STRUCT dwbc30_regs
1519                 dwbc_regs_dcn3_init(0);
1520
1521                 dcn30_dwbc_construct(dwbc30, ctx,
1522                                 &dwbc30_regs[i],
1523                                 &dwbc30_shift,
1524                                 &dwbc30_mask,
1525                                 i);
1526
1527                 pool->dwbc[i] = &dwbc30->base;
1528         }
1529         return true;
1530 }
1531
1532 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1533 {
1534         int i;
1535         uint32_t dwb_count = pool->res_cap->num_dwb;
1536
1537         for (i = 0; i < dwb_count; i++) {
1538                 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1539                                                     GFP_KERNEL);
1540
1541                 if (!mcif_wb30) {
1542                         dm_error("DC: failed to create mcif_wb30!\n");
1543                         return false;
1544                 }
1545
1546 #undef REG_STRUCT
1547 #define REG_STRUCT mcif_wb30_regs
1548                 mcif_wb_regs_dcn3_init(0);
1549
1550                 dcn32_mmhubbub_construct(mcif_wb30, ctx,
1551                                 &mcif_wb30_regs[i],
1552                                 &mcif_wb30_shift,
1553                                 &mcif_wb30_mask,
1554                                 i);
1555
1556                 pool->mcif_wb[i] = &mcif_wb30->base;
1557         }
1558         return true;
1559 }
1560
1561 static struct display_stream_compressor *dcn32_dsc_create(
1562         struct dc_context *ctx, uint32_t inst)
1563 {
1564         struct dcn20_dsc *dsc =
1565                 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1566
1567         if (!dsc) {
1568                 BREAK_TO_DEBUGGER();
1569                 return NULL;
1570         }
1571
1572 #undef REG_STRUCT
1573 #define REG_STRUCT dsc_regs
1574         dsc_regsDCN20_init(0),
1575         dsc_regsDCN20_init(1),
1576         dsc_regsDCN20_init(2),
1577         dsc_regsDCN20_init(3);
1578
1579         dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1580
1581         dsc->max_image_width = 6016;
1582
1583         return &dsc->base;
1584 }
1585
1586 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1587 {
1588         struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1589
1590         dcn32_resource_destruct(dcn32_pool);
1591         kfree(dcn32_pool);
1592         *pool = NULL;
1593 }
1594
1595 bool dcn32_acquire_post_bldn_3dlut(
1596                 struct resource_context *res_ctx,
1597                 const struct resource_pool *pool,
1598                 int mpcc_id,
1599                 struct dc_3dlut **lut,
1600                 struct dc_transfer_func **shaper)
1601 {
1602         bool ret = false;
1603
1604         ASSERT(*lut == NULL && *shaper == NULL);
1605         *lut = NULL;
1606         *shaper = NULL;
1607
1608         if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1609                 *lut = pool->mpc_lut[mpcc_id];
1610                 *shaper = pool->mpc_shaper[mpcc_id];
1611                 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1612                 ret = true;
1613         }
1614         return ret;
1615 }
1616
1617 bool dcn32_release_post_bldn_3dlut(
1618                 struct resource_context *res_ctx,
1619                 const struct resource_pool *pool,
1620                 struct dc_3dlut **lut,
1621                 struct dc_transfer_func **shaper)
1622 {
1623         int i;
1624         bool ret = false;
1625
1626         for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1627                 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1628                         res_ctx->is_mpc_3dlut_acquired[i] = false;
1629                         pool->mpc_lut[i]->state.raw = 0;
1630                         *lut = NULL;
1631                         *shaper = NULL;
1632                         ret = true;
1633                         break;
1634                 }
1635         }
1636         return ret;
1637 }
1638
1639 static void dcn32_enable_phantom_plane(struct dc *dc,
1640                 struct dc_state *context,
1641                 struct dc_stream_state *phantom_stream,
1642                 unsigned int dc_pipe_idx)
1643 {
1644         struct dc_plane_state *phantom_plane = NULL;
1645         struct dc_plane_state *prev_phantom_plane = NULL;
1646         struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1647
1648         while (curr_pipe) {
1649                 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1650                         phantom_plane = prev_phantom_plane;
1651                 else
1652                         phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state);
1653
1654                 if (!phantom_plane)
1655                         continue;
1656
1657                 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1658                 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1659                                 sizeof(phantom_plane->scaling_quality));
1660                 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1661                 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1662                 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1663                 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1664                                 sizeof(phantom_plane->plane_size));
1665                 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1666                                 sizeof(phantom_plane->tiling_info));
1667                 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1668                 phantom_plane->format = curr_pipe->plane_state->format;
1669                 phantom_plane->rotation = curr_pipe->plane_state->rotation;
1670                 phantom_plane->visible = curr_pipe->plane_state->visible;
1671
1672                 /* Shadow pipe has small viewport. */
1673                 phantom_plane->clip_rect.y = 0;
1674                 phantom_plane->clip_rect.height = phantom_stream->src.height;
1675
1676                 dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context);
1677
1678                 curr_pipe = curr_pipe->bottom_pipe;
1679                 prev_phantom_plane = phantom_plane;
1680         }
1681 }
1682
1683 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1684                 struct dc_state *context,
1685                 display_e2e_pipe_params_st *pipes,
1686                 unsigned int pipe_cnt,
1687                 unsigned int dc_pipe_idx)
1688 {
1689         struct dc_stream_state *phantom_stream = NULL;
1690         struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1691
1692         phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream);
1693         if (!phantom_stream)
1694                 return phantom_stream;
1695
1696         /* stream has limited viewport and small timing */
1697         memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1698         memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1699         memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1700         DC_FP_START();
1701         dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1702         DC_FP_END();
1703
1704         dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream);
1705         return phantom_stream;
1706 }
1707
1708 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1709  * require a phantom pipe / stream
1710  */
1711 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1712                 display_e2e_pipe_params_st *pipes,
1713                 unsigned int pipe_cnt,
1714                 unsigned int index)
1715 {
1716         struct dc_stream_state *phantom_stream = NULL;
1717         unsigned int i;
1718
1719         // The index of the DC pipe passed into this function is guarenteed to
1720         // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1721         // already have phantom pipe assigned, etc.) by previous checks.
1722         phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1723         if (!phantom_stream)
1724                 return;
1725
1726         dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1727
1728         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1729                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1730
1731                 // Build scaling params for phantom pipes which were newly added.
1732                 // We determine which phantom pipes were added by comparing with
1733                 // the phantom stream.
1734                 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1735                                 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1736                         pipe->stream->use_dynamic_meta = false;
1737                         pipe->plane_state->flip_immediate = false;
1738                         if (!resource_build_scaling_params(pipe)) {
1739                                 // Log / remove phantom pipes since failed to build scaling params
1740                         }
1741                 }
1742         }
1743 }
1744
1745 static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
1746 {
1747         bool out = false;
1748
1749         BW_VAL_TRACE_SETUP();
1750
1751         int vlevel = 0;
1752         int pipe_cnt = 0;
1753         display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1754
1755         /* To handle Freesync properly, setting FreeSync DML parameters
1756          * to its default state for the first stage of validation
1757          */
1758         context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1759         context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1760
1761         DC_LOGGER_INIT(dc->ctx->logger);
1762
1763         BW_VAL_TRACE_COUNT();
1764
1765         if (!pipes)
1766                 goto validate_fail;
1767
1768         DC_FP_START();
1769         out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1770         DC_FP_END();
1771
1772         if (pipe_cnt == 0)
1773                 goto validate_out;
1774
1775         if (!out)
1776                 goto validate_fail;
1777
1778         BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1779
1780         if (fast_validate) {
1781                 BW_VAL_TRACE_SKIP(fast);
1782                 goto validate_out;
1783         }
1784
1785         dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1786
1787         dcn32_override_min_req_memclk(dc, context);
1788         dcn32_override_min_req_dcfclk(dc, context);
1789
1790         BW_VAL_TRACE_END_WATERMARKS();
1791
1792         goto validate_out;
1793
1794 validate_fail:
1795         DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1796                 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1797
1798         BW_VAL_TRACE_SKIP(fail);
1799         out = false;
1800
1801 validate_out:
1802         kfree(pipes);
1803
1804         BW_VAL_TRACE_FINISH();
1805
1806         return out;
1807 }
1808
1809 bool dcn32_validate_bandwidth(struct dc *dc,
1810                 struct dc_state *context,
1811                 bool fast_validate)
1812 {
1813         bool out = false;
1814
1815         if (dc->debug.using_dml2)
1816                 out = dml2_validate(dc, context,
1817                                 context->power_source == DC_POWER_SOURCE_DC ? context->bw_ctx.dml2_dc_power_source : context->bw_ctx.dml2,
1818                                 fast_validate);
1819         else
1820                 out = dml1_validate(dc, context, fast_validate);
1821         return out;
1822 }
1823
1824 int dcn32_populate_dml_pipes_from_context(
1825         struct dc *dc, struct dc_state *context,
1826         display_e2e_pipe_params_st *pipes,
1827         bool fast_validate)
1828 {
1829         int i, pipe_cnt;
1830         struct resource_context *res_ctx = &context->res_ctx;
1831         struct pipe_ctx *pipe = NULL;
1832         bool subvp_in_use = false;
1833         struct dc_crtc_timing *timing;
1834         int subvp_main_pipe_index = -1;
1835         enum mall_stream_type mall_type;
1836         bool single_display_subvp = false;
1837         struct dc_stream_state *stream = NULL;
1838         int num_subvp_main = 0;
1839         int num_subvp_phantom = 0;
1840         int num_subvp_none = 0;
1841         int odm_slice_count;
1842
1843         dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1844
1845         /* For single display subvp, look for subvp main so if we have phantom
1846          *  pipe, we can set odm policy to match main pipe
1847          */
1848         for (i = 0; i < context->stream_count; i++) {
1849                 stream = context->streams[i];
1850                 mall_type = dc_state_get_stream_subvp_type(context, stream);
1851                 if (mall_type == SUBVP_MAIN)
1852                         num_subvp_main++;
1853                 else if (mall_type == SUBVP_PHANTOM)
1854                         num_subvp_phantom++;
1855                 else
1856                         num_subvp_none++;
1857         }
1858         if (num_subvp_main == 1 && num_subvp_phantom == 1 && num_subvp_none == 0)
1859                 single_display_subvp = true;
1860
1861         if (single_display_subvp) {
1862                 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1863                         pipe = &res_ctx->pipe_ctx[i];
1864                         if (!res_ctx->pipe_ctx[i].stream)
1865                                 continue;
1866
1867                         mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1868                         if (mall_type == SUBVP_MAIN) {
1869                                 if (resource_is_pipe_type(pipe, OTG_MASTER))
1870                                         subvp_main_pipe_index = i;
1871                         }
1872                         pipe_cnt++;
1873                 }
1874         }
1875
1876         for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1877
1878                 if (!res_ctx->pipe_ctx[i].stream)
1879                         continue;
1880                 pipe = &res_ctx->pipe_ctx[i];
1881                 timing = &pipe->stream->timing;
1882
1883                 pipes[pipe_cnt].pipe.src.gpuvm = true;
1884                 DC_FP_START();
1885                 dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1886                 DC_FP_END();
1887                 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1888                 if (dc->config.enable_windowed_mpo_odm &&
1889                                 dc->debug.enable_single_display_2to1_odm_policy) {
1890                         /* For single display subvp, if pipe is phantom pipe,
1891                          *  then copy odm policy from subvp main pipe
1892                          */
1893                         mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1894                         if (single_display_subvp && (mall_type == SUBVP_PHANTOM)) {
1895                                 if (subvp_main_pipe_index < 0) {
1896                                         odm_slice_count = -1;
1897                                         ASSERT(0);
1898                                 } else {
1899                                         odm_slice_count = resource_get_odm_slice_count(&res_ctx->pipe_ctx[subvp_main_pipe_index]);
1900                                 }
1901                         } else {
1902                                 odm_slice_count = resource_get_odm_slice_count(pipe);
1903                         }
1904                         switch (odm_slice_count) {
1905                         case 2:
1906                                 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1907                                 break;
1908                         case 4:
1909                                 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
1910                                 break;
1911                         default:
1912                                 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1913                         }
1914                 } else {
1915                         pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1916                 }
1917
1918                 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1919                 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1920                 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1921
1922                 /* Only populate DML input with subvp info for full updates.
1923                  * This is just a workaround -- needs a proper fix.
1924                  */
1925                 if (!fast_validate) {
1926                         switch (dc_state_get_pipe_subvp_type(context, pipe)) {
1927                         case SUBVP_MAIN:
1928                                 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1929                                 subvp_in_use = true;
1930                                 break;
1931                         case SUBVP_PHANTOM:
1932                                 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1933                                 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1934                                 // Disallow unbounded req for SubVP according to DCHUB programming guide
1935                                 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1936                                 break;
1937                         case SUBVP_NONE:
1938                                 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1939                                 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1940                                 break;
1941                         default:
1942                                 break;
1943                         }
1944                 }
1945
1946                 pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1947                 if (pipes[pipe_cnt].dout.dsc_enable) {
1948                         switch (timing->display_color_depth) {
1949                         case COLOR_DEPTH_888:
1950                                 pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1951                                 break;
1952                         case COLOR_DEPTH_101010:
1953                                 pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1954                                 break;
1955                         case COLOR_DEPTH_121212:
1956                                 pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1957                                 break;
1958                         default:
1959                                 ASSERT(0);
1960                                 break;
1961                         }
1962                 }
1963
1964
1965                 pipe_cnt++;
1966         }
1967
1968         /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
1969          * the DET available for each pipe). Use the DET override input to maintain our driver
1970          * policy.
1971          */
1972         dcn32_set_det_allocations(dc, context, pipes);
1973
1974         // In general cases we want to keep the dram clock change requirement
1975         // (prefer configs that support MCLK switch). Only override to false
1976         // for SubVP
1977         if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
1978                 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
1979         else
1980                 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1981
1982         return pipe_cnt;
1983 }
1984
1985 unsigned int dcn32_calculate_mall_ways_from_bytes(const struct dc *dc, unsigned int total_size_in_mall_bytes)
1986 {
1987         uint32_t cache_lines_used, lines_per_way, total_cache_lines, num_ways;
1988
1989         if (total_size_in_mall_bytes == 0) {
1990                 return 0;
1991         }
1992
1993         if (dc->caps.max_cab_allocation_bytes == 0) {
1994                 return 0xffffffff;
1995         }
1996
1997         /* add 2 lines for worst case alignment */
1998         cache_lines_used = total_size_in_mall_bytes / dc->caps.cache_line_size + 2;
1999
2000         total_cache_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
2001         lines_per_way = total_cache_lines / dc->caps.cache_num_ways;
2002         num_ways = cache_lines_used / lines_per_way;
2003         if (cache_lines_used % lines_per_way > 0)
2004                 num_ways++;
2005
2006         return num_ways;
2007 }
2008
2009 static struct dc_cap_funcs cap_funcs = {
2010         .get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
2011         .get_subvp_en = dcn32_subvp_in_use,
2012 };
2013
2014 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2015                                 display_e2e_pipe_params_st *pipes,
2016                                 int pipe_cnt,
2017                                 int vlevel)
2018 {
2019     DC_FP_START();
2020     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2021     DC_FP_END();
2022 }
2023
2024 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2025 {
2026         struct dml2_configuration_options *dml2_opt = &dc->dml2_tmp;
2027
2028         memcpy(dml2_opt, &dc->dml2_options, sizeof(dc->dml2_options));
2029
2030         DC_FP_START();
2031
2032         dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2033
2034         dml2_opt->use_clock_dc_limits = false;
2035         if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2)
2036                 dml2_reinit(dc, dml2_opt, &dc->current_state->bw_ctx.dml2);
2037
2038         dml2_opt->use_clock_dc_limits = true;
2039         if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2_dc_power_source)
2040                 dml2_reinit(dc, dml2_opt, &dc->current_state->bw_ctx.dml2_dc_power_source);
2041
2042         DC_FP_END();
2043 }
2044
2045 static struct resource_funcs dcn32_res_pool_funcs = {
2046         .destroy = dcn32_destroy_resource_pool,
2047         .link_enc_create = dcn32_link_encoder_create,
2048         .link_enc_create_minimal = NULL,
2049         .panel_cntl_create = dcn32_panel_cntl_create,
2050         .validate_bandwidth = dcn32_validate_bandwidth,
2051         .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2052         .populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2053         .acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
2054         .acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
2055         .release_pipe = dcn20_release_pipe,
2056         .add_stream_to_ctx = dcn30_add_stream_to_ctx,
2057         .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2058         .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2059         .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2060         .set_mcif_arb_params = dcn30_set_mcif_arb_params,
2061         .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2062         .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2063         .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2064         .update_bw_bounding_box = dcn32_update_bw_bounding_box,
2065         .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2066         .update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2067         .add_phantom_pipes = dcn32_add_phantom_pipes,
2068         .build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params,
2069         .calculate_mall_ways_from_bytes = dcn32_calculate_mall_ways_from_bytes,
2070 };
2071
2072 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2073 {
2074         uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2075         /* DCN32 support max 4 pipes */
2076         value = value & 0xf;
2077         return value;
2078 }
2079
2080
2081 static bool dcn32_resource_construct(
2082         uint8_t num_virtual_links,
2083         struct dc *dc,
2084         struct dcn32_resource_pool *pool)
2085 {
2086         int i, j;
2087         struct dc_context *ctx = dc->ctx;
2088         struct irq_service_init_data init_data;
2089         struct ddc_service_init_data ddc_init_data = {0};
2090         uint32_t pipe_fuses = 0;
2091         uint32_t num_pipes  = 4;
2092
2093 #undef REG_STRUCT
2094 #define REG_STRUCT bios_regs
2095         bios_regs_init();
2096
2097 #undef REG_STRUCT
2098 #define REG_STRUCT clk_src_regs
2099         clk_src_regs_init(0, A),
2100         clk_src_regs_init(1, B),
2101         clk_src_regs_init(2, C),
2102         clk_src_regs_init(3, D),
2103         clk_src_regs_init(4, E);
2104
2105 #undef REG_STRUCT
2106 #define REG_STRUCT abm_regs
2107         abm_regs_init(0),
2108         abm_regs_init(1),
2109         abm_regs_init(2),
2110         abm_regs_init(3);
2111
2112 #undef REG_STRUCT
2113 #define REG_STRUCT dccg_regs
2114         dccg_regs_init();
2115
2116         DC_FP_START();
2117
2118         ctx->dc_bios->regs = &bios_regs;
2119
2120         pool->base.res_cap = &res_cap_dcn32;
2121         /* max number of pipes for ASIC before checking for pipe fuses */
2122         num_pipes  = pool->base.res_cap->num_timing_generator;
2123         pipe_fuses = read_pipe_fuses(ctx);
2124
2125         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2126                 if (pipe_fuses & 1 << i)
2127                         num_pipes--;
2128
2129         if (pipe_fuses & 1)
2130                 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2131
2132         if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2133                 ASSERT(0); //Entire DCN is harvested!
2134
2135         /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2136          * value will be changed, update max_num_dpp and max_num_otg for dml.
2137          */
2138         dcn3_2_ip.max_num_dpp = num_pipes;
2139         dcn3_2_ip.max_num_otg = num_pipes;
2140
2141         pool->base.funcs = &dcn32_res_pool_funcs;
2142
2143         /*************************************************
2144          *  Resource + asic cap harcoding                *
2145          *************************************************/
2146         pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2147         pool->base.timing_generator_count = num_pipes;
2148         pool->base.pipe_count = num_pipes;
2149         pool->base.mpcc_count = num_pipes;
2150         dc->caps.max_downscale_ratio = 600;
2151         dc->caps.i2c_speed_in_khz = 100;
2152         dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2153         /* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2154         dc->caps.max_cursor_size = 64;
2155         dc->caps.min_horizontal_blanking_period = 80;
2156         dc->caps.dmdata_alloc_size = 2048;
2157         dc->caps.mall_size_per_mem_channel = 4;
2158         /* total size = mall per channel * num channels * 1024 * 1024 */
2159         dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2160         dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2161
2162         dc->caps.cache_line_size = 64;
2163         dc->caps.cache_num_ways = 16;
2164
2165         /* Calculate the available MALL space */
2166         dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2167                 dc, dc->ctx->dc_bios->vram_info.num_chans) *
2168                 dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2169         dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2170
2171         dc->caps.subvp_fw_processing_delay_us = 15;
2172         dc->caps.subvp_drr_max_vblank_margin_us = 40;
2173         dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2174         dc->caps.subvp_swath_height_margin_lines = 16;
2175         dc->caps.subvp_pstate_allow_width_us = 20;
2176         dc->caps.subvp_vertical_int_margin_us = 30;
2177         dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2178
2179         dc->caps.max_slave_planes = 2;
2180         dc->caps.max_slave_yuv_planes = 2;
2181         dc->caps.max_slave_rgb_planes = 2;
2182         dc->caps.post_blend_color_processing = true;
2183         dc->caps.force_dp_tps4_for_cp2520 = true;
2184         if (dc->config.forceHBR2CP2520)
2185                 dc->caps.force_dp_tps4_for_cp2520 = false;
2186         dc->caps.dp_hpo = true;
2187         dc->caps.dp_hdmi21_pcon_support = true;
2188         dc->caps.edp_dsc_support = true;
2189         dc->caps.extended_aux_timeout_support = true;
2190         dc->caps.dmcub_support = true;
2191         dc->caps.seamless_odm = true;
2192         dc->caps.max_v_total = (1 << 15) - 1;
2193
2194         /* Color pipeline capabilities */
2195         dc->caps.color.dpp.dcn_arch = 1;
2196         dc->caps.color.dpp.input_lut_shared = 0;
2197         dc->caps.color.dpp.icsc = 1;
2198         dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2199         dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2200         dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2201         dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2202         dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2203         dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2204         dc->caps.color.dpp.post_csc = 1;
2205         dc->caps.color.dpp.gamma_corr = 1;
2206         dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2207
2208         dc->caps.color.dpp.hw_3d_lut = 1;
2209         dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2210         // no OGAM ROM on DCN2 and later ASICs
2211         dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2212         dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2213         dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2214         dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2215         dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2216         dc->caps.color.dpp.ocsc = 0;
2217
2218         dc->caps.color.mpc.gamut_remap = 1;
2219         dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2220         dc->caps.color.mpc.ogam_ram = 1;
2221         dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2222         dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2223         dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2224         dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2225         dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2226         dc->caps.color.mpc.ocsc = 1;
2227
2228         /* Use pipe context based otg sync logic */
2229         dc->config.use_pipe_ctx_sync_logic = true;
2230
2231         dc->config.dc_mode_clk_limit_support = true;
2232         dc->config.enable_windowed_mpo_odm = true;
2233         dc->config.disable_hbr_audio_dp2 = true;
2234         /* read VBIOS LTTPR caps */
2235         {
2236                 if (ctx->dc_bios->funcs->get_lttpr_caps) {
2237                         enum bp_result bp_query_result;
2238                         uint8_t is_vbios_lttpr_enable = 0;
2239
2240                         bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2241                         dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2242                 }
2243
2244                 /* interop bit is implicit */
2245                 {
2246                         dc->caps.vbios_lttpr_aware = true;
2247                 }
2248         }
2249
2250         if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2251                 dc->debug = debug_defaults_drv;
2252
2253         // Init the vm_helper
2254         if (dc->vm_helper)
2255                 vm_helper_init(dc->vm_helper, 16);
2256
2257         /*************************************************
2258          *  Create resources                             *
2259          *************************************************/
2260
2261         /* Clock Sources for Pixel Clock*/
2262         pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2263                         dcn32_clock_source_create(ctx, ctx->dc_bios,
2264                                 CLOCK_SOURCE_COMBO_PHY_PLL0,
2265                                 &clk_src_regs[0], false);
2266         pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2267                         dcn32_clock_source_create(ctx, ctx->dc_bios,
2268                                 CLOCK_SOURCE_COMBO_PHY_PLL1,
2269                                 &clk_src_regs[1], false);
2270         pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2271                         dcn32_clock_source_create(ctx, ctx->dc_bios,
2272                                 CLOCK_SOURCE_COMBO_PHY_PLL2,
2273                                 &clk_src_regs[2], false);
2274         pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2275                         dcn32_clock_source_create(ctx, ctx->dc_bios,
2276                                 CLOCK_SOURCE_COMBO_PHY_PLL3,
2277                                 &clk_src_regs[3], false);
2278         pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2279                         dcn32_clock_source_create(ctx, ctx->dc_bios,
2280                                 CLOCK_SOURCE_COMBO_PHY_PLL4,
2281                                 &clk_src_regs[4], false);
2282
2283         pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2284
2285         /* todo: not reuse phy_pll registers */
2286         pool->base.dp_clock_source =
2287                         dcn32_clock_source_create(ctx, ctx->dc_bios,
2288                                 CLOCK_SOURCE_ID_DP_DTO,
2289                                 &clk_src_regs[0], true);
2290
2291         for (i = 0; i < pool->base.clk_src_count; i++) {
2292                 if (pool->base.clock_sources[i] == NULL) {
2293                         dm_error("DC: failed to create clock sources!\n");
2294                         BREAK_TO_DEBUGGER();
2295                         goto create_fail;
2296                 }
2297         }
2298
2299         /* DCCG */
2300         pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2301         if (pool->base.dccg == NULL) {
2302                 dm_error("DC: failed to create dccg!\n");
2303                 BREAK_TO_DEBUGGER();
2304                 goto create_fail;
2305         }
2306
2307         /* DML */
2308         dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2309
2310         /* IRQ Service */
2311         init_data.ctx = dc->ctx;
2312         pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2313         if (!pool->base.irqs)
2314                 goto create_fail;
2315
2316         /* HUBBUB */
2317         pool->base.hubbub = dcn32_hubbub_create(ctx);
2318         if (pool->base.hubbub == NULL) {
2319                 BREAK_TO_DEBUGGER();
2320                 dm_error("DC: failed to create hubbub!\n");
2321                 goto create_fail;
2322         }
2323
2324         /* HUBPs, DPPs, OPPs, TGs, ABMs */
2325         for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2326
2327                 /* if pipe is disabled, skip instance of HW pipe,
2328                  * i.e, skip ASIC register instance
2329                  */
2330                 if (pipe_fuses & 1 << i)
2331                         continue;
2332
2333                 /* HUBPs */
2334                 pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2335                 if (pool->base.hubps[j] == NULL) {
2336                         BREAK_TO_DEBUGGER();
2337                         dm_error(
2338                                 "DC: failed to create hubps!\n");
2339                         goto create_fail;
2340                 }
2341
2342                 /* DPPs */
2343                 pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2344                 if (pool->base.dpps[j] == NULL) {
2345                         BREAK_TO_DEBUGGER();
2346                         dm_error(
2347                                 "DC: failed to create dpps!\n");
2348                         goto create_fail;
2349                 }
2350
2351                 /* OPPs */
2352                 pool->base.opps[j] = dcn32_opp_create(ctx, i);
2353                 if (pool->base.opps[j] == NULL) {
2354                         BREAK_TO_DEBUGGER();
2355                         dm_error(
2356                                 "DC: failed to create output pixel processor!\n");
2357                         goto create_fail;
2358                 }
2359
2360                 /* TGs */
2361                 pool->base.timing_generators[j] = dcn32_timing_generator_create(
2362                                 ctx, i);
2363                 if (pool->base.timing_generators[j] == NULL) {
2364                         BREAK_TO_DEBUGGER();
2365                         dm_error("DC: failed to create tg!\n");
2366                         goto create_fail;
2367                 }
2368
2369                 /* ABMs */
2370                 pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2371                                 &abm_regs[i],
2372                                 &abm_shift,
2373                                 &abm_mask);
2374                 if (pool->base.multiple_abms[j] == NULL) {
2375                         dm_error("DC: failed to create abm for pipe %d!\n", i);
2376                         BREAK_TO_DEBUGGER();
2377                         goto create_fail;
2378                 }
2379
2380                 /* index for resource pool arrays for next valid pipe */
2381                 j++;
2382         }
2383
2384         /* PSR */
2385         pool->base.psr = dmub_psr_create(ctx);
2386         if (pool->base.psr == NULL) {
2387                 dm_error("DC: failed to create psr obj!\n");
2388                 BREAK_TO_DEBUGGER();
2389                 goto create_fail;
2390         }
2391
2392         /* MPCCs */
2393         pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2394         if (pool->base.mpc == NULL) {
2395                 BREAK_TO_DEBUGGER();
2396                 dm_error("DC: failed to create mpc!\n");
2397                 goto create_fail;
2398         }
2399
2400         /* DSCs */
2401         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2402                 pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2403                 if (pool->base.dscs[i] == NULL) {
2404                         BREAK_TO_DEBUGGER();
2405                         dm_error("DC: failed to create display stream compressor %d!\n", i);
2406                         goto create_fail;
2407                 }
2408         }
2409
2410         /* DWB */
2411         if (!dcn32_dwbc_create(ctx, &pool->base)) {
2412                 BREAK_TO_DEBUGGER();
2413                 dm_error("DC: failed to create dwbc!\n");
2414                 goto create_fail;
2415         }
2416
2417         /* MMHUBBUB */
2418         if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2419                 BREAK_TO_DEBUGGER();
2420                 dm_error("DC: failed to create mcif_wb!\n");
2421                 goto create_fail;
2422         }
2423
2424         /* AUX and I2C */
2425         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2426                 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2427                 if (pool->base.engines[i] == NULL) {
2428                         BREAK_TO_DEBUGGER();
2429                         dm_error(
2430                                 "DC:failed to create aux engine!!\n");
2431                         goto create_fail;
2432                 }
2433                 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2434                 if (pool->base.hw_i2cs[i] == NULL) {
2435                         BREAK_TO_DEBUGGER();
2436                         dm_error(
2437                                 "DC:failed to create hw i2c!!\n");
2438                         goto create_fail;
2439                 }
2440                 pool->base.sw_i2cs[i] = NULL;
2441         }
2442
2443         /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2444         if (!resource_construct(num_virtual_links, dc, &pool->base,
2445                         &res_create_funcs))
2446                 goto create_fail;
2447
2448         /* HW Sequencer init functions and Plane caps */
2449         dcn32_hw_sequencer_init_functions(dc);
2450
2451         dc->caps.max_planes =  pool->base.pipe_count;
2452
2453         for (i = 0; i < dc->caps.max_planes; ++i)
2454                 dc->caps.planes[i] = plane_cap;
2455
2456         dc->cap_funcs = cap_funcs;
2457
2458         if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2459                 ddc_init_data.ctx = dc->ctx;
2460                 ddc_init_data.link = NULL;
2461                 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2462                 ddc_init_data.id.enum_id = 0;
2463                 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2464                 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2465         } else {
2466                 pool->base.oem_device = NULL;
2467         }
2468
2469         dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
2470         dc->dml2_options.use_native_pstate_optimization = false;
2471         dc->dml2_options.use_native_soc_bb_construction = true;
2472         dc->dml2_options.minimize_dispclk_using_odm = true;
2473
2474         resource_init_common_dml2_callbacks(dc, &dc->dml2_options);
2475         dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
2476         dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;
2477         dc->dml2_options.svp_pstate.callbacks.calculate_mall_ways_from_bytes = pool->base.funcs->calculate_mall_ways_from_bytes;
2478
2479         dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
2480         dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
2481         dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
2482         dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;
2483
2484         dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
2485         dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;
2486
2487         dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
2488         dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
2489         dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
2490         dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
2491         dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
2492         dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
2493         dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;
2494
2495         dc->dml2_options.max_segments_per_hubp = 18;
2496         dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
2497         dc->dml2_options.map_dc_pipes_with_callbacks = true;
2498
2499         if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2500                 dc->config.sdpif_request_limit_words_per_umc = 16;
2501
2502         DC_FP_END();
2503
2504         return true;
2505
2506 create_fail:
2507
2508         DC_FP_END();
2509
2510         dcn32_resource_destruct(pool);
2511
2512         return false;
2513 }
2514
2515 struct resource_pool *dcn32_create_resource_pool(
2516                 const struct dc_init_data *init_data,
2517                 struct dc *dc)
2518 {
2519         struct dcn32_resource_pool *pool =
2520                 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2521
2522         if (!pool)
2523                 return NULL;
2524
2525         if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2526                 return &pool->base;
2527
2528         BREAK_TO_DEBUGGER();
2529         kfree(pool);
2530         return NULL;
2531 }
2532
2533 /*
2534  * Find the most optimal free pipe from res_ctx, which could be used as a
2535  * secondary dpp pipe for input opp head pipe.
2536  *
2537  * a free pipe - a pipe in input res_ctx not yet used for any streams or
2538  * planes.
2539  * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2540  * tree. This is typical used for rendering MPO planes or additional offset
2541  * areas in MPCC combine.
2542  *
2543  * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2544  * -------------------------------------------------------------------------
2545  *
2546  * PROBLEM:
2547  *
2548  * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2549  * transferred from one MPC blending tree to the other in a single frame.
2550  * Otherwise it could cause glitches on the screen.
2551  *
2552  * For instance, we cannot transition from state 1 to state 2 in one frame. This
2553  * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2554  * PIPE2's MPC blending tree, which is not supported by hardware.
2555  * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2556  * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2557  * in the next frame. This is not optimal as it will delay the flip for two
2558  * frames.
2559  *
2560  *      State 1:
2561  *      PIPE0 -- secondary DPP pipe --> (PIPE1)
2562  *      PIPE2 -- secondary DPP pipe --> NONE
2563  *
2564  *      State 2:
2565  *      PIPE0 -- secondary DPP pipe --> NONE
2566  *      PIPE2 -- secondary DPP pipe --> (PIPE1)
2567  *
2568  * 2. We want to in general minimize the unnecessary changes in pipe topology.
2569  * If a pipe is already added in current blending tree and there are no changes
2570  * to plane topology, we don't want to swap it with another free pipe
2571  * unnecessarily in every update. Powering up and down a pipe would require a
2572  * full update which delays the flip for 1 frame. If we use the original pipe
2573  * we don't have to toggle its power. So we can flip faster.
2574  */
2575 int dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(
2576                 const struct resource_context *cur_res_ctx,
2577                 struct resource_context *new_res_ctx,
2578                 const struct resource_pool *pool,
2579                 const struct pipe_ctx *new_opp_head)
2580 {
2581         const struct pipe_ctx *cur_opp_head;
2582         int free_pipe_idx;
2583
2584         cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2585         free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2586                         cur_res_ctx, new_res_ctx, cur_opp_head);
2587
2588         /* Up until here if we have not found a free secondary pipe, we will
2589          * need to wait for at least one frame to complete the transition
2590          * sequence.
2591          */
2592         if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2593                 free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2594                                 cur_res_ctx, new_res_ctx, pool);
2595
2596         /* Up until here if we have not found a free secondary pipe, we will
2597          * need to wait for at least two frames to complete the transition
2598          * sequence. It really doesn't matter which pipe we decide take from
2599          * current enabled pipes. It won't save our frame time when we swap only
2600          * one pipe or more pipes.
2601          */
2602         if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2603                 free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2604                                 cur_res_ctx, new_res_ctx, pool);
2605
2606         if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2607                 free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2608
2609         return free_pipe_idx;
2610 }
2611
2612 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2613                 struct resource_context *res_ctx,
2614                 const struct resource_pool *pool,
2615                 const struct pipe_ctx *primary_pipe)
2616 {
2617         int i;
2618         struct pipe_ctx *secondary_pipe = NULL;
2619         struct pipe_ctx *next_odm_mpo_pipe = NULL;
2620         int primary_index, preferred_pipe_idx;
2621         struct pipe_ctx *old_primary_pipe = NULL;
2622
2623         /*
2624          * Modified from find_idle_secondary_pipe
2625          * With windowed MPO and ODM, we want to avoid the case where we want a
2626          *  free pipe for the left side but the free pipe is being used on the
2627          *  right side.
2628          * Add check on current_state if the primary_pipe is the left side,
2629          *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2630          *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2631          * - If so, then don't use this pipe
2632          * EXCEPTION - 3 plane ( 2 MPO plane ) case
2633          * - in this case, the primary pipe has already gotten a free pipe for the
2634          *  MPO window in the left
2635          * - when it tries to get a free pipe for the MPO window on the right,
2636          *  it will see that it is already assigned to the right side
2637          *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2638          *  free pipe, since it will be for the right side.  So add an
2639          *  additional condition, that skipping the free pipe on the right only
2640          *  applies if the primary pipe has no bottom pipe currently assigned
2641          */
2642         if (primary_pipe) {
2643                 primary_index = primary_pipe->pipe_idx;
2644                 old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2645                 if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2646                         && (!primary_pipe->bottom_pipe))
2647                         next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2648
2649                 preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2650                 if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2651                         !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2652                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2653                         secondary_pipe->pipe_idx = preferred_pipe_idx;
2654                 }
2655         }
2656
2657         /*
2658          * search backwards for the second pipe to keep pipe
2659          * assignment more consistent
2660          */
2661         if (!secondary_pipe)
2662                 for (i = pool->pipe_count - 1; i >= 0; i--) {
2663                         if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2664                                 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2665                                 secondary_pipe = &res_ctx->pipe_ctx[i];
2666                                 secondary_pipe->pipe_idx = i;
2667                                 break;
2668                         }
2669                 }
2670
2671         return secondary_pipe;
2672 }
2673
2674 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2675                 struct dc_state *state,
2676                 const struct resource_pool *pool,
2677                 struct dc_stream_state *stream,
2678                 const struct pipe_ctx *head_pipe)
2679 {
2680         struct resource_context *res_ctx = &state->res_ctx;
2681         struct pipe_ctx *idle_pipe, *pipe;
2682         struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2683         int head_index;
2684
2685         if (!head_pipe) {
2686                 ASSERT(0);
2687                 return NULL;
2688         }
2689
2690         /*
2691          * Modified from dcn20_acquire_idle_pipe_for_layer
2692          * Check if head_pipe in old_context already has bottom_pipe allocated.
2693          * - If so, check if that pipe is available in the current context.
2694          * --  If so, reuse pipe from old_context
2695          */
2696         head_index = head_pipe->pipe_idx;
2697         pipe = &old_ctx->pipe_ctx[head_index];
2698         if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2699                 idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2700                 idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2701         } else {
2702                 idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2703                 if (!idle_pipe)
2704                         return NULL;
2705         }
2706
2707         idle_pipe->stream = head_pipe->stream;
2708         idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2709         idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2710
2711         idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2712         idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2713         idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2714         idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2715
2716         return idle_pipe;
2717 }
2718
2719 static int find_optimal_free_pipe_as_secondary_opp_head(
2720                 const struct resource_context *cur_res_ctx,
2721                 struct resource_context *new_res_ctx,
2722                 const struct resource_pool *pool,
2723                 const struct pipe_ctx *new_otg_master)
2724 {
2725         const struct pipe_ctx *cur_otg_master;
2726         int free_pipe_idx;
2727
2728         cur_otg_master =  &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
2729         free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
2730                         cur_res_ctx, new_res_ctx, cur_otg_master);
2731
2732         /* Up until here if we have not found a free secondary pipe, we will
2733          * need to wait for at least one frame to complete the transition
2734          * sequence.
2735          */
2736         if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2737                 free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2738                                 cur_res_ctx, new_res_ctx, pool);
2739
2740         if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2741                 free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2742
2743         return free_pipe_idx;
2744 }
2745
2746 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2747                 const struct dc_state *cur_ctx,
2748                 struct dc_state *new_ctx,
2749                 const struct resource_pool *pool,
2750                 const struct pipe_ctx *opp_head_pipe)
2751 {
2752
2753         int free_pipe_idx;
2754         struct pipe_ctx *free_pipe;
2755
2756         if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2757                 return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2758                                 new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2759
2760         free_pipe_idx = dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(
2761                                         &cur_ctx->res_ctx, &new_ctx->res_ctx,
2762                                         pool, opp_head_pipe);
2763         if (free_pipe_idx >= 0) {
2764                 free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2765                 free_pipe->pipe_idx = free_pipe_idx;
2766                 free_pipe->stream = opp_head_pipe->stream;
2767                 free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2768                 free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2769
2770                 free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2771                 free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2772                 free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2773                 free_pipe->plane_res.mpcc_inst =
2774                                 pool->dpps[free_pipe->pipe_idx]->inst;
2775         } else {
2776                 ASSERT(opp_head_pipe);
2777                 free_pipe = NULL;
2778         }
2779
2780         return free_pipe;
2781 }
2782
2783 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
2784                 const struct dc_state *cur_ctx,
2785                 struct dc_state *new_ctx,
2786                 const struct resource_pool *pool,
2787                 const struct pipe_ctx *otg_master)
2788 {
2789         int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
2790                         &cur_ctx->res_ctx, &new_ctx->res_ctx,
2791                         pool, otg_master);
2792         struct pipe_ctx *free_pipe;
2793
2794         if (free_pipe_idx >= 0) {
2795                 free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2796                 free_pipe->pipe_idx = free_pipe_idx;
2797                 free_pipe->stream = otg_master->stream;
2798                 free_pipe->stream_res.tg = otg_master->stream_res.tg;
2799                 free_pipe->stream_res.dsc = NULL;
2800                 free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
2801                 free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
2802                 free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
2803                 free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
2804                 free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
2805                 free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
2806                 free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
2807                 if (free_pipe->stream->timing.flags.DSC == 1) {
2808                         dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
2809                                         &new_ctx->res_ctx,
2810                                         &free_pipe->stream_res.dsc,
2811                                         free_pipe_idx);
2812                         ASSERT(free_pipe->stream_res.dsc);
2813                         if (free_pipe->stream_res.dsc == NULL) {
2814                                 memset(free_pipe, 0, sizeof(*free_pipe));
2815                                 free_pipe = NULL;
2816                         }
2817                 }
2818         } else {
2819                 ASSERT(otg_master);
2820                 free_pipe = NULL;
2821         }
2822
2823         return free_pipe;
2824 }
2825
2826 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2827 {
2828         /*
2829          * DCN32 and DCN321 SKUs may have different sizes for MALL
2830          *  but we may not be able to access all the MALL space.
2831          *  If the num_chans is power of 2, then we can access all
2832          *  of the available MALL space.  Otherwise, we can only
2833          *  access:
2834          *
2835          *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2836          *    ((2^floor(log2(num_chans)))/num_chans)
2837          *
2838          * Calculating the MALL sizes for all available SKUs, we
2839          *  have come up with the follow simplified check.
2840          * - we have max_chans which provides the max MALL size.
2841          *  Each chans supports 4MB of MALL so:
2842          *
2843          *  total_cache_size_in_bytes = max_chans * 4 MB
2844          *
2845          * - we have avail_chans which shows the number of channels
2846          *  we can use if we can't access the entire MALL space.
2847          *  It is generally half of max_chans
2848          * - so we use the following checks:
2849          *
2850          *   if (num_chans == max_chans), return max_chans
2851          *   if (num_chans < max_chans), return avail_chans
2852          *
2853          * - exception is GC_11_0_0 where we can't access max_chans,
2854          *  so we define max_avail_chans as the maximum available
2855          *  MALL space
2856          *
2857          */
2858         int gc_11_0_0_max_chans = 48;
2859         int gc_11_0_0_max_avail_chans = 32;
2860         int gc_11_0_0_avail_chans = 16;
2861         int gc_11_0_3_max_chans = 16;
2862         int gc_11_0_3_avail_chans = 8;
2863         int gc_11_0_2_max_chans = 8;
2864         int gc_11_0_2_avail_chans = 4;
2865
2866         if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2867                 return (num_chans == gc_11_0_0_max_chans) ?
2868                         gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2869         } else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2870                 return (num_chans == gc_11_0_2_max_chans) ?
2871                         gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2872         } else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2873                 return (num_chans == gc_11_0_3_max_chans) ?
2874                         gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2875         }
2876 }
This page took 0.202864 seconds and 2 git commands to generate.