1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
4 * Common eBPF ELF object loading operations.
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
41 #include <sys/types.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
52 #include "str_error.h"
53 #include "libbpf_internal.h"
55 #include "bpf_gen_internal.h"
59 #define BPF_FS_MAGIC 0xcafe4a11
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74 static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
107 [BPF_LIRC_MODE2] = "lirc_mode2",
108 [BPF_FLOW_DISSECTOR] = "flow_dissector",
109 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
110 [BPF_TRACE_FENTRY] = "trace_fentry",
111 [BPF_TRACE_FEXIT] = "trace_fexit",
112 [BPF_MODIFY_RETURN] = "modify_return",
113 [BPF_LSM_MAC] = "lsm_mac",
114 [BPF_LSM_CGROUP] = "lsm_cgroup",
115 [BPF_SK_LOOKUP] = "sk_lookup",
116 [BPF_TRACE_ITER] = "trace_iter",
117 [BPF_XDP_DEVMAP] = "xdp_devmap",
118 [BPF_XDP_CPUMAP] = "xdp_cpumap",
120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
122 [BPF_PERF_EVENT] = "perf_event",
123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
124 [BPF_STRUCT_OPS] = "struct_ops",
125 [BPF_NETFILTER] = "netfilter",
126 [BPF_TCX_INGRESS] = "tcx_ingress",
127 [BPF_TCX_EGRESS] = "tcx_egress",
128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
129 [BPF_NETKIT_PRIMARY] = "netkit_primary",
130 [BPF_NETKIT_PEER] = "netkit_peer",
133 static const char * const link_type_name[] = {
134 [BPF_LINK_TYPE_UNSPEC] = "unspec",
135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
136 [BPF_LINK_TYPE_TRACING] = "tracing",
137 [BPF_LINK_TYPE_CGROUP] = "cgroup",
138 [BPF_LINK_TYPE_ITER] = "iter",
139 [BPF_LINK_TYPE_NETNS] = "netns",
140 [BPF_LINK_TYPE_XDP] = "xdp",
141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
144 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
145 [BPF_LINK_TYPE_TCX] = "tcx",
146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
147 [BPF_LINK_TYPE_NETKIT] = "netkit",
150 static const char * const map_type_name[] = {
151 [BPF_MAP_TYPE_UNSPEC] = "unspec",
152 [BPF_MAP_TYPE_HASH] = "hash",
153 [BPF_MAP_TYPE_ARRAY] = "array",
154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
165 [BPF_MAP_TYPE_DEVMAP] = "devmap",
166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
168 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
169 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
174 [BPF_MAP_TYPE_QUEUE] = "queue",
175 [BPF_MAP_TYPE_STACK] = "stack",
176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
186 static const char * const prog_type_name[] = {
187 [BPF_PROG_TYPE_UNSPEC] = "unspec",
188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
189 [BPF_PROG_TYPE_KPROBE] = "kprobe",
190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
193 [BPF_PROG_TYPE_XDP] = "xdp",
194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
213 [BPF_PROG_TYPE_TRACING] = "tracing",
214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
215 [BPF_PROG_TYPE_EXT] = "ext",
216 [BPF_PROG_TYPE_LSM] = "lsm",
217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
218 [BPF_PROG_TYPE_SYSCALL] = "syscall",
219 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
222 static int __base_pr(enum libbpf_print_level level, const char *format,
225 if (level == LIBBPF_DEBUG)
228 return vfprintf(stderr, format, args);
231 static libbpf_print_fn_t __libbpf_pr = __base_pr;
233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
235 libbpf_print_fn_t old_print_fn;
237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
243 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
247 libbpf_print_fn_t print_fn;
249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
255 va_start(args, format);
256 __libbpf_pr(level, format, args);
262 static void pr_perm_msg(int err)
267 if (err != -EPERM || geteuid() != 0)
270 err = getrlimit(RLIMIT_MEMLOCK, &limit);
274 if (limit.rlim_cur == RLIM_INFINITY)
277 if (limit.rlim_cur < 1024)
278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
279 else if (limit.rlim_cur < 1024*1024)
280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
288 #define STRERR_BUFSIZE 128
290 /* Copied from tools/perf/util/util.h */
292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
296 # define zclose(fd) ({ \
299 ___err = close((fd)); \
304 static inline __u64 ptr_to_u64(const void *ptr)
306 return (__u64) (unsigned long) ptr;
309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
315 __u32 libbpf_major_version(void)
317 return LIBBPF_MAJOR_VERSION;
320 __u32 libbpf_minor_version(void)
322 return LIBBPF_MINOR_VERSION;
325 const char *libbpf_version_string(void)
329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
345 enum reloc_type type;
348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
360 /* expected_attach_type is optional, if kernel doesn't support that */
361 SEC_EXP_ATTACH_OPT = 1,
362 /* legacy, only used by libbpf_get_type_names() and
363 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
364 * This used to be associated with cgroup (and few other) BPF programs
365 * that were attachable through BPF_PROG_ATTACH command. Pretty
366 * meaningless nowadays, though.
369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
370 /* attachment target is specified through BTF ID in either kernel or
371 * other BPF program's BTF object
374 /* BPF program type allows sleeping/blocking in kernel */
376 /* BPF program support non-linear XDP buffer */
378 /* Setup proper attach type for usdt probes. */
384 enum bpf_prog_type prog_type;
385 enum bpf_attach_type expected_attach_type;
389 libbpf_prog_setup_fn_t prog_setup_fn;
390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
391 libbpf_prog_attach_fn_t prog_attach_fn;
395 * bpf_prog should be a better name but it has been used in
402 const struct bpf_sec_def *sec_def;
403 /* this program's instruction offset (in number of instructions)
404 * within its containing ELF section
407 /* number of original instructions in ELF section belonging to this
408 * program, not taking into account subprogram instructions possible
409 * appended later during relocation
412 /* Offset (in number of instructions) of the start of instruction
413 * belonging to this BPF program within its containing main BPF
414 * program. For the entry-point (main) BPF program, this is always
415 * zero. For a sub-program, this gets reset before each of main BPF
416 * programs are processed and relocated and is used to determined
417 * whether sub-program was already appended to the main program, and
418 * if yes, at which instruction offset.
422 /* instructions that belong to BPF program; insns[0] is located at
423 * sec_insn_off instruction within its ELF section in ELF file, so
424 * when mapping ELF file instruction index to the local instruction,
425 * one needs to subtract sec_insn_off; and vice versa.
427 struct bpf_insn *insns;
428 /* actual number of instruction in this BPF program's image; for
429 * entry-point BPF programs this includes the size of main program
430 * itself plus all the used sub-programs, appended at the end
434 struct reloc_desc *reloc_desc;
437 /* BPF verifier log settings */
442 struct bpf_object *obj;
448 bool mark_btf_static;
449 enum bpf_prog_type type;
450 enum bpf_attach_type expected_attach_type;
451 int exception_cb_idx;
454 __u32 attach_btf_obj_fd;
456 __u32 attach_prog_fd;
459 __u32 func_info_rec_size;
463 __u32 line_info_rec_size;
468 struct bpf_struct_ops {
470 const struct btf_type *type;
471 struct bpf_program **progs;
472 __u32 *kern_func_off;
473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
476 * btf_vmlinux's format.
477 * struct bpf_struct_ops_tcp_congestion_ops {
478 * [... some other kernel fields ...]
479 * struct tcp_congestion_ops data;
481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
489 #define DATA_SEC ".data"
490 #define BSS_SEC ".bss"
491 #define RODATA_SEC ".rodata"
492 #define KCONFIG_SEC ".kconfig"
493 #define KSYMS_SEC ".ksyms"
494 #define STRUCT_OPS_SEC ".struct_ops"
495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
497 enum libbpf_map_type {
507 unsigned int key_size;
508 unsigned int value_size;
509 unsigned int max_entries;
510 unsigned int map_flags;
514 struct bpf_object *obj;
516 /* real_name is defined for special internal maps (.rodata*,
517 * .data*, .bss, .kconfig) and preserves their original ELF section
518 * name. This is important to be able to find corresponding BTF
519 * DATASEC information.
527 struct bpf_map_def def;
530 __u32 btf_key_type_id;
531 __u32 btf_value_type_id;
532 __u32 btf_vmlinux_value_type_id;
533 enum libbpf_map_type libbpf_type;
535 struct bpf_struct_ops *st_ops;
536 struct bpf_map *inner_map;
562 enum extern_type type;
579 unsigned long long addr;
581 /* target btf_id of the corresponding kernel var. */
582 int kernel_btf_obj_fd;
585 /* local btf_id of the ksym extern's type. */
587 /* BTF fd index to be patched in for insn->off, this is
588 * 0 for vmlinux BTF, index in obj->fd_array for module
612 struct elf_sec_desc {
613 enum sec_type sec_type;
625 Elf_Data *st_ops_data;
626 Elf_Data *st_ops_link_data;
627 size_t shstrndx; /* section index for section name strings */
629 struct elf_sec_desc *secs;
632 __u32 btf_maps_sec_btf_id;
636 int st_ops_link_shndx;
642 char name[BPF_OBJ_NAME_LEN];
646 struct bpf_program *programs;
648 struct bpf_map *maps;
653 struct extern_desc *externs;
661 struct bpf_gen *gen_loader;
663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
664 struct elf_state efile;
667 struct btf_ext *btf_ext;
669 /* Parse and load BTF vmlinux if any of the programs in the object need
672 struct btf *btf_vmlinux;
673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
674 * override for vmlinux BTF.
676 char *btf_custom_path;
677 /* vmlinux BTF override for CO-RE relocations */
678 struct btf *btf_vmlinux_override;
679 /* Lazily initialized kernel module BTFs */
680 struct module_btf *btf_modules;
681 bool btf_modules_loaded;
682 size_t btf_module_cnt;
683 size_t btf_module_cap;
685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
694 struct usdt_manager *usdt_man;
699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
709 void bpf_program__unload(struct bpf_program *prog)
716 zfree(&prog->func_info);
717 zfree(&prog->line_info);
720 static void bpf_program__exit(struct bpf_program *prog)
725 bpf_program__unload(prog);
727 zfree(&prog->sec_name);
729 zfree(&prog->reloc_desc);
736 static bool insn_is_subprog_call(const struct bpf_insn *insn)
738 return BPF_CLASS(insn->code) == BPF_JMP &&
739 BPF_OP(insn->code) == BPF_CALL &&
740 BPF_SRC(insn->code) == BPF_K &&
741 insn->src_reg == BPF_PSEUDO_CALL &&
742 insn->dst_reg == 0 &&
746 static bool is_call_insn(const struct bpf_insn *insn)
748 return insn->code == (BPF_JMP | BPF_CALL);
751 static bool insn_is_pseudo_func(struct bpf_insn *insn)
753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
758 const char *name, size_t sec_idx, const char *sec_name,
759 size_t sec_off, void *insn_data, size_t insn_data_sz)
761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
763 sec_name, name, sec_off, insn_data_sz);
767 memset(prog, 0, sizeof(*prog));
770 prog->sec_idx = sec_idx;
771 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
773 /* insns_cnt can later be increased by appending used subprograms */
774 prog->insns_cnt = prog->sec_insn_cnt;
776 prog->type = BPF_PROG_TYPE_UNSPEC;
778 prog->exception_cb_idx = -1;
780 /* libbpf's convention for SEC("?abc...") is that it's just like
781 * SEC("abc...") but the corresponding bpf_program starts out with
782 * autoload set to false.
784 if (sec_name[0] == '?') {
785 prog->autoload = false;
786 /* from now on forget there was ? in section name */
789 prog->autoload = true;
792 prog->autoattach = true;
794 /* inherit object's log_level */
795 prog->log_level = obj->log_level;
797 prog->sec_name = strdup(sec_name);
801 prog->name = strdup(name);
805 prog->insns = malloc(insn_data_sz);
808 memcpy(prog->insns, insn_data, insn_data_sz);
812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
813 bpf_program__exit(prog);
818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
819 const char *sec_name, int sec_idx)
821 Elf_Data *symbols = obj->efile.symbols;
822 struct bpf_program *prog, *progs;
823 void *data = sec_data->d_buf;
824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
825 int nr_progs, err, i;
829 progs = obj->programs;
830 nr_progs = obj->nr_programs;
831 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
833 for (i = 0; i < nr_syms; i++) {
834 sym = elf_sym_by_idx(obj, i);
836 if (sym->st_shndx != sec_idx)
838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
841 prog_sz = sym->st_size;
842 sec_off = sym->st_value;
844 name = elf_sym_str(obj, sym->st_name);
846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
848 return -LIBBPF_ERRNO__FORMAT;
851 if (sec_off + prog_sz > sec_sz) {
852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
854 return -LIBBPF_ERRNO__FORMAT;
857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
868 * In this case the original obj->programs
869 * is still valid, so don't need special treat for
870 * bpf_close_object().
872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
876 obj->programs = progs;
878 prog = &progs[nr_progs];
880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
881 sec_off, data + sec_off, prog_sz);
885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
886 prog->sym_global = true;
888 /* if function is a global/weak symbol, but has restricted
889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
890 * as static to enable more permissive BPF verification mode
891 * with more outside context available to BPF verifier
893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
895 prog->mark_btf_static = true;
898 obj->nr_programs = nr_progs;
904 static const struct btf_member *
905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
907 struct btf_member *m;
910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
911 if (btf_member_bit_offset(t, i) == bit_offset)
918 static const struct btf_member *
919 find_member_by_name(const struct btf *btf, const struct btf_type *t,
922 struct btf_member *m;
925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
935 const char *name, __u32 kind);
938 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
939 const struct btf_type **type, __u32 *type_id,
940 const struct btf_type **vtype, __u32 *vtype_id,
941 const struct btf_member **data_member)
943 const struct btf_type *kern_type, *kern_vtype;
944 const struct btf_member *kern_data_member;
945 __s32 kern_vtype_id, kern_type_id;
948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
949 if (kern_type_id < 0) {
950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
954 kern_type = btf__type_by_id(btf, kern_type_id);
956 /* Find the corresponding "map_value" type that will be used
957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
962 tname, BTF_KIND_STRUCT);
963 if (kern_vtype_id < 0) {
964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
965 STRUCT_OPS_VALUE_PREFIX, tname);
966 return kern_vtype_id;
968 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
970 /* Find "struct tcp_congestion_ops" from
971 * struct bpf_struct_ops_tcp_congestion_ops {
973 * struct tcp_congestion_ops data;
976 kern_data_member = btf_members(kern_vtype);
977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
978 if (kern_data_member->type == kern_type_id)
981 if (i == btf_vlen(kern_vtype)) {
982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
983 tname, STRUCT_OPS_VALUE_PREFIX, tname);
988 *type_id = kern_type_id;
990 *vtype_id = kern_vtype_id;
991 *data_member = kern_data_member;
996 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1001 /* Init the map's fields that depend on kern_btf */
1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1003 const struct btf *btf,
1004 const struct btf *kern_btf)
1006 const struct btf_member *member, *kern_member, *kern_data_member;
1007 const struct btf_type *type, *kern_type, *kern_vtype;
1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1009 struct bpf_struct_ops *st_ops;
1010 void *data, *kern_data;
1014 st_ops = map->st_ops;
1015 type = st_ops->type;
1016 tname = st_ops->tname;
1017 err = find_struct_ops_kern_types(kern_btf, tname,
1018 &kern_type, &kern_type_id,
1019 &kern_vtype, &kern_vtype_id,
1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1027 map->def.value_size = kern_vtype->size;
1028 map->btf_vmlinux_value_type_id = kern_vtype_id;
1030 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1031 if (!st_ops->kern_vdata)
1034 data = st_ops->data;
1035 kern_data_off = kern_data_member->offset / 8;
1036 kern_data = st_ops->kern_vdata + kern_data_off;
1038 member = btf_members(type);
1039 for (i = 0; i < btf_vlen(type); i++, member++) {
1040 const struct btf_type *mtype, *kern_mtype;
1041 __u32 mtype_id, kern_mtype_id;
1042 void *mdata, *kern_mdata;
1043 __s64 msize, kern_msize;
1044 __u32 moff, kern_moff;
1045 __u32 kern_member_idx;
1048 mname = btf__name_by_offset(btf, member->name_off);
1049 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1056 kern_member_idx = kern_member - btf_members(kern_type);
1057 if (btf_member_bitfield_size(type, i) ||
1058 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1064 moff = member->offset / 8;
1065 kern_moff = kern_member->offset / 8;
1067 mdata = data + moff;
1068 kern_mdata = kern_data + kern_moff;
1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1073 if (BTF_INFO_KIND(mtype->info) !=
1074 BTF_INFO_KIND(kern_mtype->info)) {
1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1076 map->name, mname, BTF_INFO_KIND(mtype->info),
1077 BTF_INFO_KIND(kern_mtype->info));
1081 if (btf_is_ptr(mtype)) {
1082 struct bpf_program *prog;
1084 prog = st_ops->progs[i];
1088 kern_mtype = skip_mods_and_typedefs(kern_btf,
1092 /* mtype->type must be a func_proto which was
1093 * guaranteed in bpf_object__collect_st_ops_relos(),
1094 * so only check kern_mtype for func_proto here.
1096 if (!btf_is_func_proto(kern_mtype)) {
1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1102 prog->attach_btf_id = kern_type_id;
1103 prog->expected_attach_type = kern_member_idx;
1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1108 map->name, mname, prog->name, moff,
1114 msize = btf__resolve_size(btf, mtype_id);
1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1118 map->name, mname, (ssize_t)msize,
1119 (ssize_t)kern_msize);
1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1124 map->name, mname, (unsigned int)msize,
1126 memcpy(kern_mdata, mdata, msize);
1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1134 struct bpf_map *map;
1138 for (i = 0; i < obj->nr_maps; i++) {
1139 map = &obj->maps[i];
1141 if (!bpf_map__is_struct_ops(map))
1144 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1154 int shndx, Elf_Data *data, __u32 map_flags)
1156 const struct btf_type *type, *datasec;
1157 const struct btf_var_secinfo *vsi;
1158 struct bpf_struct_ops *st_ops;
1159 const char *tname, *var_name;
1160 __s32 type_id, datasec_id;
1161 const struct btf *btf;
1162 struct bpf_map *map;
1169 datasec_id = btf__find_by_name_kind(btf, sec_name,
1171 if (datasec_id < 0) {
1172 pr_warn("struct_ops init: DATASEC %s not found\n",
1177 datasec = btf__type_by_id(btf, datasec_id);
1178 vsi = btf_var_secinfos(datasec);
1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1180 type = btf__type_by_id(obj->btf, vsi->type);
1181 var_name = btf__name_by_offset(obj->btf, type->name_off);
1183 type_id = btf__resolve_type(obj->btf, vsi->type);
1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1186 vsi->type, sec_name);
1190 type = btf__type_by_id(obj->btf, type_id);
1191 tname = btf__name_by_offset(obj->btf, type->name_off);
1193 pr_warn("struct_ops init: anonymous type is not supported\n");
1196 if (!btf_is_struct(type)) {
1197 pr_warn("struct_ops init: %s is not a struct\n", tname);
1201 map = bpf_object__add_map(obj);
1203 return PTR_ERR(map);
1205 map->sec_idx = shndx;
1206 map->sec_offset = vsi->offset;
1207 map->name = strdup(var_name);
1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1212 map->def.key_size = sizeof(int);
1213 map->def.value_size = type->size;
1214 map->def.max_entries = 1;
1215 map->def.map_flags = map_flags;
1217 map->st_ops = calloc(1, sizeof(*map->st_ops));
1220 st_ops = map->st_ops;
1221 st_ops->data = malloc(type->size);
1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1223 st_ops->kern_func_off = malloc(btf_vlen(type) *
1224 sizeof(*st_ops->kern_func_off));
1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1228 if (vsi->offset + type->size > data->d_size) {
1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1230 var_name, sec_name);
1234 memcpy(st_ops->data,
1235 data->d_buf + vsi->offset,
1237 st_ops->tname = tname;
1238 st_ops->type = type;
1239 st_ops->type_id = type_id;
1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1242 tname, type_id, var_name, vsi->offset);
1248 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1253 obj->efile.st_ops_data, 0);
1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1255 obj->efile.st_ops_link_shndx,
1256 obj->efile.st_ops_link_data,
1261 static struct bpf_object *bpf_object__new(const char *path,
1262 const void *obj_buf,
1264 const char *obj_name)
1266 struct bpf_object *obj;
1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1271 pr_warn("alloc memory failed for %s\n", path);
1272 return ERR_PTR(-ENOMEM);
1275 strcpy(obj->path, path);
1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1279 /* Using basename() GNU version which doesn't modify arg. */
1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1281 end = strchr(obj->name, '.');
1288 * Caller of this function should also call
1289 * bpf_object__elf_finish() after data collection to return
1290 * obj_buf to user. If not, we should duplicate the buffer to
1291 * avoid user freeing them before elf finish.
1293 obj->efile.obj_buf = obj_buf;
1294 obj->efile.obj_buf_sz = obj_buf_sz;
1295 obj->efile.btf_maps_shndx = -1;
1296 obj->efile.st_ops_shndx = -1;
1297 obj->efile.st_ops_link_shndx = -1;
1298 obj->kconfig_map_idx = -1;
1300 obj->kern_version = get_kernel_version();
1301 obj->loaded = false;
1306 static void bpf_object__elf_finish(struct bpf_object *obj)
1308 if (!obj->efile.elf)
1311 elf_end(obj->efile.elf);
1312 obj->efile.elf = NULL;
1313 obj->efile.symbols = NULL;
1314 obj->efile.st_ops_data = NULL;
1315 obj->efile.st_ops_link_data = NULL;
1317 zfree(&obj->efile.secs);
1318 obj->efile.sec_cnt = 0;
1319 zclose(obj->efile.fd);
1320 obj->efile.obj_buf = NULL;
1321 obj->efile.obj_buf_sz = 0;
1324 static int bpf_object__elf_init(struct bpf_object *obj)
1330 if (obj->efile.elf) {
1331 pr_warn("elf: init internal error\n");
1332 return -LIBBPF_ERRNO__LIBELF;
1335 if (obj->efile.obj_buf_sz > 0) {
1336 /* obj_buf should have been validated by bpf_object__open_mem(). */
1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1340 if (obj->efile.fd < 0) {
1341 char errmsg[STRERR_BUFSIZE], *cp;
1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1354 err = -LIBBPF_ERRNO__LIBELF;
1358 obj->efile.elf = elf;
1360 if (elf_kind(elf) != ELF_K_ELF) {
1361 err = -LIBBPF_ERRNO__FORMAT;
1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1366 if (gelf_getclass(elf) != ELFCLASS64) {
1367 err = -LIBBPF_ERRNO__FORMAT;
1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1373 if (!obj->efile.ehdr) {
1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1375 err = -LIBBPF_ERRNO__FORMAT;
1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1380 pr_warn("elf: failed to get section names section index for %s: %s\n",
1381 obj->path, elf_errmsg(-1));
1382 err = -LIBBPF_ERRNO__FORMAT;
1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1388 pr_warn("elf: failed to get section names strings from %s: %s\n",
1389 obj->path, elf_errmsg(-1));
1390 err = -LIBBPF_ERRNO__FORMAT;
1394 /* Old LLVM set e_machine to EM_NONE */
1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1397 err = -LIBBPF_ERRNO__FORMAT;
1403 bpf_object__elf_finish(obj);
1407 static int bpf_object__check_endianness(struct bpf_object *obj)
1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1416 # error "Unrecognized __BYTE_ORDER__"
1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1419 return -LIBBPF_ERRNO__ENDIAN;
1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1426 pr_warn("invalid license section in %s\n", obj->path);
1427 return -LIBBPF_ERRNO__FORMAT;
1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1430 * go over allowed ELF data section buffer
1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1433 pr_debug("license of %s is %s\n", obj->path, obj->license);
1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1442 if (!data || size != sizeof(kver)) {
1443 pr_warn("invalid kver section in %s\n", obj->path);
1444 return -LIBBPF_ERRNO__FORMAT;
1446 memcpy(&kver, data, sizeof(kver));
1447 obj->kern_version = kver;
1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1455 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1468 scn = elf_sec_by_name(obj, name);
1469 data = elf_sec_data(obj, scn);
1471 *size = data->d_size;
1472 return 0; /* found it */
1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1480 Elf_Data *symbols = obj->efile.symbols;
1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1494 sname = elf_sym_str(obj, sym->st_name);
1496 pr_warn("failed to get sym name string for var %s\n", name);
1497 return ERR_PTR(-EIO);
1499 if (strcmp(name, sname) == 0)
1503 return ERR_PTR(-ENOENT);
1506 static int create_placeholder_fd(void)
1510 fd = ensure_good_fd(memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1516 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1518 struct bpf_map *map;
1521 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1522 sizeof(*obj->maps), obj->nr_maps + 1);
1524 return ERR_PTR(err);
1526 map = &obj->maps[obj->nr_maps++];
1528 /* Preallocate map FD without actually creating BPF map just yet.
1529 * These map FD "placeholders" will be reused later without changing
1530 * FD value when map is actually created in the kernel.
1532 * This is useful to be able to perform BPF program relocations
1533 * without having to create BPF maps before that step. This allows us
1534 * to finalize and load BTF very late in BPF object's loading phase,
1535 * right before BPF maps have to be created and BPF programs have to
1536 * be loaded. By having these map FD placeholders we can perform all
1537 * the sanitizations, relocations, and any other adjustments before we
1538 * start creating actual BPF kernel objects (BTF, maps, progs).
1540 map->fd = create_placeholder_fd();
1542 return ERR_PTR(map->fd);
1543 map->inner_map_fd = -1;
1544 map->autocreate = true;
1549 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1551 const long page_sz = sysconf(_SC_PAGE_SIZE);
1554 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1555 map_sz = roundup(map_sz, page_sz);
1559 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1566 if (old_sz == new_sz)
1569 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1570 if (mmaped == MAP_FAILED)
1573 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1574 munmap(map->mmaped, old_sz);
1575 map->mmaped = mmaped;
1579 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1581 char map_name[BPF_OBJ_NAME_LEN], *p;
1582 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1584 /* This is one of the more confusing parts of libbpf for various
1585 * reasons, some of which are historical. The original idea for naming
1586 * internal names was to include as much of BPF object name prefix as
1587 * possible, so that it can be distinguished from similar internal
1588 * maps of a different BPF object.
1589 * As an example, let's say we have bpf_object named 'my_object_name'
1590 * and internal map corresponding to '.rodata' ELF section. The final
1591 * map name advertised to user and to the kernel will be
1592 * 'my_objec.rodata', taking first 8 characters of object name and
1593 * entire 7 characters of '.rodata'.
1594 * Somewhat confusingly, if internal map ELF section name is shorter
1595 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1596 * for the suffix, even though we only have 4 actual characters, and
1597 * resulting map will be called 'my_objec.bss', not even using all 15
1598 * characters allowed by the kernel. Oh well, at least the truncated
1599 * object name is somewhat consistent in this case. But if the map
1600 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1601 * (8 chars) and thus will be left with only first 7 characters of the
1602 * object name ('my_obje'). Happy guessing, user, that the final map
1603 * name will be "my_obje.kconfig".
1604 * Now, with libbpf starting to support arbitrarily named .rodata.*
1605 * and .data.* data sections, it's possible that ELF section name is
1606 * longer than allowed 15 chars, so we now need to be careful to take
1607 * only up to 15 first characters of ELF name, taking no BPF object
1608 * name characters at all. So '.rodata.abracadabra' will result in
1609 * '.rodata.abracad' kernel and user-visible name.
1610 * We need to keep this convoluted logic intact for .data, .bss and
1611 * .rodata maps, but for new custom .data.custom and .rodata.custom
1612 * maps we use their ELF names as is, not prepending bpf_object name
1613 * in front. We still need to truncate them to 15 characters for the
1614 * kernel. Full name can be recovered for such maps by using DATASEC
1615 * BTF type associated with such map's value type, though.
1617 if (sfx_len >= BPF_OBJ_NAME_LEN)
1618 sfx_len = BPF_OBJ_NAME_LEN - 1;
1620 /* if there are two or more dots in map name, it's a custom dot map */
1621 if (strchr(real_name + 1, '.') != NULL)
1624 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1626 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1627 sfx_len, real_name);
1629 /* sanitise map name to characters allowed by kernel */
1630 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1631 if (!isalnum(*p) && *p != '_' && *p != '.')
1634 return strdup(map_name);
1638 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1640 /* Internal BPF map is mmap()'able only if at least one of corresponding
1641 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1642 * variable and it's not marked as __hidden (which turns it into, effectively,
1643 * a STATIC variable).
1645 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1647 const struct btf_type *t, *vt;
1648 struct btf_var_secinfo *vsi;
1651 if (!map->btf_value_type_id)
1654 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1655 if (!btf_is_datasec(t))
1658 vsi = btf_var_secinfos(t);
1659 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1660 vt = btf__type_by_id(obj->btf, vsi->type);
1661 if (!btf_is_var(vt))
1664 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1672 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1673 const char *real_name, int sec_idx, void *data, size_t data_sz)
1675 struct bpf_map_def *def;
1676 struct bpf_map *map;
1680 map = bpf_object__add_map(obj);
1682 return PTR_ERR(map);
1684 map->libbpf_type = type;
1685 map->sec_idx = sec_idx;
1686 map->sec_offset = 0;
1687 map->real_name = strdup(real_name);
1688 map->name = internal_map_name(obj, real_name);
1689 if (!map->real_name || !map->name) {
1690 zfree(&map->real_name);
1696 def->type = BPF_MAP_TYPE_ARRAY;
1697 def->key_size = sizeof(int);
1698 def->value_size = data_sz;
1699 def->max_entries = 1;
1700 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1701 ? BPF_F_RDONLY_PROG : 0;
1703 /* failures are fine because of maps like .rodata.str1.1 */
1704 (void) map_fill_btf_type_info(obj, map);
1706 if (map_is_mmapable(obj, map))
1707 def->map_flags |= BPF_F_MMAPABLE;
1709 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1710 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1712 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1713 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1714 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1715 if (map->mmaped == MAP_FAILED) {
1718 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1720 zfree(&map->real_name);
1726 memcpy(map->mmaped, data, data_sz);
1728 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1732 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1734 struct elf_sec_desc *sec_desc;
1735 const char *sec_name;
1736 int err = 0, sec_idx;
1739 * Populate obj->maps with libbpf internal maps.
1741 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1742 sec_desc = &obj->efile.secs[sec_idx];
1744 /* Skip recognized sections with size 0. */
1745 if (!sec_desc->data || sec_desc->data->d_size == 0)
1748 switch (sec_desc->sec_type) {
1750 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1751 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1753 sec_desc->data->d_buf,
1754 sec_desc->data->d_size);
1757 obj->has_rodata = true;
1758 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1759 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1761 sec_desc->data->d_buf,
1762 sec_desc->data->d_size);
1765 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1766 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1769 sec_desc->data->d_size);
1782 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1787 for (i = 0; i < obj->nr_extern; i++) {
1788 if (strcmp(obj->externs[i].name, name) == 0)
1789 return &obj->externs[i];
1794 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1797 switch (ext->kcfg.type) {
1800 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1804 *(bool *)ext_val = value == 'y' ? true : false;
1808 *(enum libbpf_tristate *)ext_val = TRI_YES;
1809 else if (value == 'm')
1810 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1811 else /* value == 'n' */
1812 *(enum libbpf_tristate *)ext_val = TRI_NO;
1815 *(char *)ext_val = value;
1821 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1829 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1834 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1835 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1840 len = strlen(value);
1841 if (value[len - 1] != '"') {
1842 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1849 if (len >= ext->kcfg.sz) {
1850 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1851 ext->name, value, len, ext->kcfg.sz - 1);
1852 len = ext->kcfg.sz - 1;
1854 memcpy(ext_val, value + 1, len);
1855 ext_val[len] = '\0';
1860 static int parse_u64(const char *value, __u64 *res)
1866 *res = strtoull(value, &value_end, 0);
1869 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1873 pr_warn("failed to parse '%s' as integer completely\n", value);
1879 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1881 int bit_sz = ext->kcfg.sz * 8;
1883 if (ext->kcfg.sz == 8)
1886 /* Validate that value stored in u64 fits in integer of `ext->sz`
1887 * bytes size without any loss of information. If the target integer
1888 * is signed, we rely on the following limits of integer type of
1889 * Y bits and subsequent transformation:
1891 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1892 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1893 * 0 <= X + 2^(Y-1) < 2^Y
1895 * For unsigned target integer, check that all the (64 - Y) bits are
1898 if (ext->kcfg.is_signed)
1899 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1901 return (v >> bit_sz) == 0;
1904 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1907 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1908 ext->kcfg.type != KCFG_BOOL) {
1909 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1910 ext->name, (unsigned long long)value);
1913 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1914 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1915 ext->name, (unsigned long long)value);
1919 if (!is_kcfg_value_in_range(ext, value)) {
1920 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1921 ext->name, (unsigned long long)value, ext->kcfg.sz);
1924 switch (ext->kcfg.sz) {
1926 *(__u8 *)ext_val = value;
1929 *(__u16 *)ext_val = value;
1932 *(__u32 *)ext_val = value;
1935 *(__u64 *)ext_val = value;
1944 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1945 char *buf, void *data)
1947 struct extern_desc *ext;
1953 if (!str_has_pfx(buf, "CONFIG_"))
1956 sep = strchr(buf, '=');
1958 pr_warn("failed to parse '%s': no separator\n", buf);
1962 /* Trim ending '\n' */
1964 if (buf[len - 1] == '\n')
1965 buf[len - 1] = '\0';
1966 /* Split on '=' and ensure that a value is present. */
1970 pr_warn("failed to parse '%s': no value\n", buf);
1974 ext = find_extern_by_name(obj, buf);
1975 if (!ext || ext->is_set)
1978 ext_val = data + ext->kcfg.data_off;
1982 case 'y': case 'n': case 'm':
1983 err = set_kcfg_value_tri(ext, ext_val, *value);
1986 err = set_kcfg_value_str(ext, ext_val, value);
1989 /* assume integer */
1990 err = parse_u64(value, &num);
1992 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1995 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1996 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1999 err = set_kcfg_value_num(ext, ext_val, num);
2004 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2008 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2016 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2019 else if (len >= PATH_MAX)
2020 return -ENAMETOOLONG;
2022 /* gzopen also accepts uncompressed files. */
2023 file = gzopen(buf, "re");
2025 file = gzopen("/proc/config.gz", "re");
2028 pr_warn("failed to open system Kconfig\n");
2032 while (gzgets(file, buf, sizeof(buf))) {
2033 err = bpf_object__process_kconfig_line(obj, buf, data);
2035 pr_warn("error parsing system Kconfig line '%s': %d\n",
2046 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2047 const char *config, void *data)
2053 file = fmemopen((void *)config, strlen(config), "r");
2056 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2060 while (fgets(buf, sizeof(buf), file)) {
2061 err = bpf_object__process_kconfig_line(obj, buf, data);
2063 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2073 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2075 struct extern_desc *last_ext = NULL, *ext;
2079 for (i = 0; i < obj->nr_extern; i++) {
2080 ext = &obj->externs[i];
2081 if (ext->type == EXT_KCFG)
2088 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2089 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2090 ".kconfig", obj->efile.symbols_shndx,
2095 obj->kconfig_map_idx = obj->nr_maps - 1;
2100 const struct btf_type *
2101 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2103 const struct btf_type *t = btf__type_by_id(btf, id);
2108 while (btf_is_mod(t) || btf_is_typedef(t)) {
2111 t = btf__type_by_id(btf, t->type);
2117 static const struct btf_type *
2118 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2120 const struct btf_type *t;
2122 t = skip_mods_and_typedefs(btf, id, NULL);
2126 t = skip_mods_and_typedefs(btf, t->type, res_id);
2128 return btf_is_func_proto(t) ? t : NULL;
2131 static const char *__btf_kind_str(__u16 kind)
2134 case BTF_KIND_UNKN: return "void";
2135 case BTF_KIND_INT: return "int";
2136 case BTF_KIND_PTR: return "ptr";
2137 case BTF_KIND_ARRAY: return "array";
2138 case BTF_KIND_STRUCT: return "struct";
2139 case BTF_KIND_UNION: return "union";
2140 case BTF_KIND_ENUM: return "enum";
2141 case BTF_KIND_FWD: return "fwd";
2142 case BTF_KIND_TYPEDEF: return "typedef";
2143 case BTF_KIND_VOLATILE: return "volatile";
2144 case BTF_KIND_CONST: return "const";
2145 case BTF_KIND_RESTRICT: return "restrict";
2146 case BTF_KIND_FUNC: return "func";
2147 case BTF_KIND_FUNC_PROTO: return "func_proto";
2148 case BTF_KIND_VAR: return "var";
2149 case BTF_KIND_DATASEC: return "datasec";
2150 case BTF_KIND_FLOAT: return "float";
2151 case BTF_KIND_DECL_TAG: return "decl_tag";
2152 case BTF_KIND_TYPE_TAG: return "type_tag";
2153 case BTF_KIND_ENUM64: return "enum64";
2154 default: return "unknown";
2158 const char *btf_kind_str(const struct btf_type *t)
2160 return __btf_kind_str(btf_kind(t));
2164 * Fetch integer attribute of BTF map definition. Such attributes are
2165 * represented using a pointer to an array, in which dimensionality of array
2166 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2167 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2168 * type definition, while using only sizeof(void *) space in ELF data section.
2170 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2171 const struct btf_member *m, __u32 *res)
2173 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2174 const char *name = btf__name_by_offset(btf, m->name_off);
2175 const struct btf_array *arr_info;
2176 const struct btf_type *arr_t;
2178 if (!btf_is_ptr(t)) {
2179 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2180 map_name, name, btf_kind_str(t));
2184 arr_t = btf__type_by_id(btf, t->type);
2186 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2187 map_name, name, t->type);
2190 if (!btf_is_array(arr_t)) {
2191 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2192 map_name, name, btf_kind_str(arr_t));
2195 arr_info = btf_array(arr_t);
2196 *res = arr_info->nelems;
2200 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2204 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2208 return -ENAMETOOLONG;
2213 static int build_map_pin_path(struct bpf_map *map, const char *path)
2219 path = "/sys/fs/bpf";
2221 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2225 return bpf_map__set_pin_path(map, buf);
2228 /* should match definition in bpf_helpers.h */
2229 enum libbpf_pin_type {
2231 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2235 int parse_btf_map_def(const char *map_name, struct btf *btf,
2236 const struct btf_type *def_t, bool strict,
2237 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2239 const struct btf_type *t;
2240 const struct btf_member *m;
2241 bool is_inner = inner_def == NULL;
2244 vlen = btf_vlen(def_t);
2245 m = btf_members(def_t);
2246 for (i = 0; i < vlen; i++, m++) {
2247 const char *name = btf__name_by_offset(btf, m->name_off);
2250 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2253 if (strcmp(name, "type") == 0) {
2254 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2256 map_def->parts |= MAP_DEF_MAP_TYPE;
2257 } else if (strcmp(name, "max_entries") == 0) {
2258 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2260 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2261 } else if (strcmp(name, "map_flags") == 0) {
2262 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2264 map_def->parts |= MAP_DEF_MAP_FLAGS;
2265 } else if (strcmp(name, "numa_node") == 0) {
2266 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2268 map_def->parts |= MAP_DEF_NUMA_NODE;
2269 } else if (strcmp(name, "key_size") == 0) {
2272 if (!get_map_field_int(map_name, btf, m, &sz))
2274 if (map_def->key_size && map_def->key_size != sz) {
2275 pr_warn("map '%s': conflicting key size %u != %u.\n",
2276 map_name, map_def->key_size, sz);
2279 map_def->key_size = sz;
2280 map_def->parts |= MAP_DEF_KEY_SIZE;
2281 } else if (strcmp(name, "key") == 0) {
2284 t = btf__type_by_id(btf, m->type);
2286 pr_warn("map '%s': key type [%d] not found.\n",
2290 if (!btf_is_ptr(t)) {
2291 pr_warn("map '%s': key spec is not PTR: %s.\n",
2292 map_name, btf_kind_str(t));
2295 sz = btf__resolve_size(btf, t->type);
2297 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2298 map_name, t->type, (ssize_t)sz);
2301 if (map_def->key_size && map_def->key_size != sz) {
2302 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2303 map_name, map_def->key_size, (ssize_t)sz);
2306 map_def->key_size = sz;
2307 map_def->key_type_id = t->type;
2308 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2309 } else if (strcmp(name, "value_size") == 0) {
2312 if (!get_map_field_int(map_name, btf, m, &sz))
2314 if (map_def->value_size && map_def->value_size != sz) {
2315 pr_warn("map '%s': conflicting value size %u != %u.\n",
2316 map_name, map_def->value_size, sz);
2319 map_def->value_size = sz;
2320 map_def->parts |= MAP_DEF_VALUE_SIZE;
2321 } else if (strcmp(name, "value") == 0) {
2324 t = btf__type_by_id(btf, m->type);
2326 pr_warn("map '%s': value type [%d] not found.\n",
2330 if (!btf_is_ptr(t)) {
2331 pr_warn("map '%s': value spec is not PTR: %s.\n",
2332 map_name, btf_kind_str(t));
2335 sz = btf__resolve_size(btf, t->type);
2337 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2338 map_name, t->type, (ssize_t)sz);
2341 if (map_def->value_size && map_def->value_size != sz) {
2342 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2343 map_name, map_def->value_size, (ssize_t)sz);
2346 map_def->value_size = sz;
2347 map_def->value_type_id = t->type;
2348 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2350 else if (strcmp(name, "values") == 0) {
2351 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2352 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2353 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2354 char inner_map_name[128];
2358 pr_warn("map '%s': multi-level inner maps not supported.\n",
2362 if (i != vlen - 1) {
2363 pr_warn("map '%s': '%s' member should be last.\n",
2367 if (!is_map_in_map && !is_prog_array) {
2368 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2372 if (map_def->value_size && map_def->value_size != 4) {
2373 pr_warn("map '%s': conflicting value size %u != 4.\n",
2374 map_name, map_def->value_size);
2377 map_def->value_size = 4;
2378 t = btf__type_by_id(btf, m->type);
2380 pr_warn("map '%s': %s type [%d] not found.\n",
2381 map_name, desc, m->type);
2384 if (!btf_is_array(t) || btf_array(t)->nelems) {
2385 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2389 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2390 if (!btf_is_ptr(t)) {
2391 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2392 map_name, desc, btf_kind_str(t));
2395 t = skip_mods_and_typedefs(btf, t->type, NULL);
2396 if (is_prog_array) {
2397 if (!btf_is_func_proto(t)) {
2398 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2399 map_name, btf_kind_str(t));
2404 if (!btf_is_struct(t)) {
2405 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2406 map_name, btf_kind_str(t));
2410 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2411 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2415 map_def->parts |= MAP_DEF_INNER_MAP;
2416 } else if (strcmp(name, "pinning") == 0) {
2420 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2423 if (!get_map_field_int(map_name, btf, m, &val))
2425 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2426 pr_warn("map '%s': invalid pinning value %u.\n",
2430 map_def->pinning = val;
2431 map_def->parts |= MAP_DEF_PINNING;
2432 } else if (strcmp(name, "map_extra") == 0) {
2435 if (!get_map_field_int(map_name, btf, m, &map_extra))
2437 map_def->map_extra = map_extra;
2438 map_def->parts |= MAP_DEF_MAP_EXTRA;
2441 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2444 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2448 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2449 pr_warn("map '%s': map type isn't specified.\n", map_name);
2456 static size_t adjust_ringbuf_sz(size_t sz)
2458 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2461 /* if user forgot to set any size, make sure they see error */
2464 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2465 * a power-of-2 multiple of kernel's page size. If user diligently
2466 * satisified these conditions, pass the size through.
2468 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2471 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2472 * user-set size to satisfy both user size request and kernel
2473 * requirements and substitute correct max_entries for map creation.
2475 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2476 if (mul * page_sz > sz)
2477 return mul * page_sz;
2480 /* if it's impossible to satisfy the conditions (i.e., user size is
2481 * very close to UINT_MAX but is not a power-of-2 multiple of
2482 * page_size) then just return original size and let kernel reject it
2487 static bool map_is_ringbuf(const struct bpf_map *map)
2489 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2490 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2493 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2495 map->def.type = def->map_type;
2496 map->def.key_size = def->key_size;
2497 map->def.value_size = def->value_size;
2498 map->def.max_entries = def->max_entries;
2499 map->def.map_flags = def->map_flags;
2500 map->map_extra = def->map_extra;
2502 map->numa_node = def->numa_node;
2503 map->btf_key_type_id = def->key_type_id;
2504 map->btf_value_type_id = def->value_type_id;
2506 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2507 if (map_is_ringbuf(map))
2508 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2510 if (def->parts & MAP_DEF_MAP_TYPE)
2511 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2513 if (def->parts & MAP_DEF_KEY_TYPE)
2514 pr_debug("map '%s': found key [%u], sz = %u.\n",
2515 map->name, def->key_type_id, def->key_size);
2516 else if (def->parts & MAP_DEF_KEY_SIZE)
2517 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2519 if (def->parts & MAP_DEF_VALUE_TYPE)
2520 pr_debug("map '%s': found value [%u], sz = %u.\n",
2521 map->name, def->value_type_id, def->value_size);
2522 else if (def->parts & MAP_DEF_VALUE_SIZE)
2523 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2525 if (def->parts & MAP_DEF_MAX_ENTRIES)
2526 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2527 if (def->parts & MAP_DEF_MAP_FLAGS)
2528 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2529 if (def->parts & MAP_DEF_MAP_EXTRA)
2530 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2531 (unsigned long long)def->map_extra);
2532 if (def->parts & MAP_DEF_PINNING)
2533 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2534 if (def->parts & MAP_DEF_NUMA_NODE)
2535 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2537 if (def->parts & MAP_DEF_INNER_MAP)
2538 pr_debug("map '%s': found inner map definition.\n", map->name);
2541 static const char *btf_var_linkage_str(__u32 linkage)
2544 case BTF_VAR_STATIC: return "static";
2545 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2546 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2547 default: return "unknown";
2551 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2552 const struct btf_type *sec,
2553 int var_idx, int sec_idx,
2554 const Elf_Data *data, bool strict,
2555 const char *pin_root_path)
2557 struct btf_map_def map_def = {}, inner_def = {};
2558 const struct btf_type *var, *def;
2559 const struct btf_var_secinfo *vi;
2560 const struct btf_var *var_extra;
2561 const char *map_name;
2562 struct bpf_map *map;
2565 vi = btf_var_secinfos(sec) + var_idx;
2566 var = btf__type_by_id(obj->btf, vi->type);
2567 var_extra = btf_var(var);
2568 map_name = btf__name_by_offset(obj->btf, var->name_off);
2570 if (map_name == NULL || map_name[0] == '\0') {
2571 pr_warn("map #%d: empty name.\n", var_idx);
2574 if ((__u64)vi->offset + vi->size > data->d_size) {
2575 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2578 if (!btf_is_var(var)) {
2579 pr_warn("map '%s': unexpected var kind %s.\n",
2580 map_name, btf_kind_str(var));
2583 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2584 pr_warn("map '%s': unsupported map linkage %s.\n",
2585 map_name, btf_var_linkage_str(var_extra->linkage));
2589 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2590 if (!btf_is_struct(def)) {
2591 pr_warn("map '%s': unexpected def kind %s.\n",
2592 map_name, btf_kind_str(var));
2595 if (def->size > vi->size) {
2596 pr_warn("map '%s': invalid def size.\n", map_name);
2600 map = bpf_object__add_map(obj);
2602 return PTR_ERR(map);
2603 map->name = strdup(map_name);
2605 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2608 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2609 map->def.type = BPF_MAP_TYPE_UNSPEC;
2610 map->sec_idx = sec_idx;
2611 map->sec_offset = vi->offset;
2612 map->btf_var_idx = var_idx;
2613 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2614 map_name, map->sec_idx, map->sec_offset);
2616 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2620 fill_map_from_def(map, &map_def);
2622 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2623 err = build_map_pin_path(map, pin_root_path);
2625 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2630 if (map_def.parts & MAP_DEF_INNER_MAP) {
2631 map->inner_map = calloc(1, sizeof(*map->inner_map));
2632 if (!map->inner_map)
2634 map->inner_map->fd = create_placeholder_fd();
2635 if (map->inner_map->fd < 0)
2636 return map->inner_map->fd;
2637 map->inner_map->sec_idx = sec_idx;
2638 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2639 if (!map->inner_map->name)
2641 sprintf(map->inner_map->name, "%s.inner", map_name);
2643 fill_map_from_def(map->inner_map, &inner_def);
2646 err = map_fill_btf_type_info(obj, map);
2653 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2654 const char *pin_root_path)
2656 const struct btf_type *sec = NULL;
2657 int nr_types, i, vlen, err;
2658 const struct btf_type *t;
2663 if (obj->efile.btf_maps_shndx < 0)
2666 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2667 data = elf_sec_data(obj, scn);
2668 if (!scn || !data) {
2669 pr_warn("elf: failed to get %s map definitions for %s\n",
2670 MAPS_ELF_SEC, obj->path);
2674 nr_types = btf__type_cnt(obj->btf);
2675 for (i = 1; i < nr_types; i++) {
2676 t = btf__type_by_id(obj->btf, i);
2677 if (!btf_is_datasec(t))
2679 name = btf__name_by_offset(obj->btf, t->name_off);
2680 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2682 obj->efile.btf_maps_sec_btf_id = i;
2688 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2692 vlen = btf_vlen(sec);
2693 for (i = 0; i < vlen; i++) {
2694 err = bpf_object__init_user_btf_map(obj, sec, i,
2695 obj->efile.btf_maps_shndx,
2705 static int bpf_object__init_maps(struct bpf_object *obj,
2706 const struct bpf_object_open_opts *opts)
2708 const char *pin_root_path;
2712 strict = !OPTS_GET(opts, relaxed_maps, false);
2713 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2715 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2716 err = err ?: bpf_object__init_global_data_maps(obj);
2717 err = err ?: bpf_object__init_kconfig_map(obj);
2718 err = err ?: bpf_object_init_struct_ops(obj);
2723 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2727 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2731 return sh->sh_flags & SHF_EXECINSTR;
2734 static bool btf_needs_sanitization(struct bpf_object *obj)
2736 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2737 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2738 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2739 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2740 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2741 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2742 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2744 return !has_func || !has_datasec || !has_func_global || !has_float ||
2745 !has_decl_tag || !has_type_tag || !has_enum64;
2748 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2750 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2751 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2752 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2753 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2754 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2755 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2756 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2757 int enum64_placeholder_id = 0;
2761 for (i = 1; i < btf__type_cnt(btf); i++) {
2762 t = (struct btf_type *)btf__type_by_id(btf, i);
2764 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2765 /* replace VAR/DECL_TAG with INT */
2766 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2768 * using size = 1 is the safest choice, 4 will be too
2769 * big and cause kernel BTF validation failure if
2770 * original variable took less than 4 bytes
2773 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2774 } else if (!has_datasec && btf_is_datasec(t)) {
2775 /* replace DATASEC with STRUCT */
2776 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2777 struct btf_member *m = btf_members(t);
2778 struct btf_type *vt;
2781 name = (char *)btf__name_by_offset(btf, t->name_off);
2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2790 for (j = 0; j < vlen; j++, v++, m++) {
2791 /* order of field assignments is important */
2792 m->offset = v->offset * 8;
2794 /* preserve variable name as member name */
2795 vt = (void *)btf__type_by_id(btf, v->type);
2796 m->name_off = vt->name_off;
2798 } else if (!has_func && btf_is_func_proto(t)) {
2799 /* replace FUNC_PROTO with ENUM */
2801 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2802 t->size = sizeof(__u32); /* kernel enforced */
2803 } else if (!has_func && btf_is_func(t)) {
2804 /* replace FUNC with TYPEDEF */
2805 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2806 } else if (!has_func_global && btf_is_func(t)) {
2807 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2808 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2809 } else if (!has_float && btf_is_float(t)) {
2810 /* replace FLOAT with an equally-sized empty STRUCT;
2811 * since C compilers do not accept e.g. "float" as a
2812 * valid struct name, make it anonymous
2815 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2816 } else if (!has_type_tag && btf_is_type_tag(t)) {
2817 /* replace TYPE_TAG with a CONST */
2819 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2820 } else if (!has_enum64 && btf_is_enum(t)) {
2821 /* clear the kflag */
2822 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2823 } else if (!has_enum64 && btf_is_enum64(t)) {
2824 /* replace ENUM64 with a union */
2825 struct btf_member *m;
2827 if (enum64_placeholder_id == 0) {
2828 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2829 if (enum64_placeholder_id < 0)
2830 return enum64_placeholder_id;
2832 t = (struct btf_type *)btf__type_by_id(btf, i);
2837 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2838 for (j = 0; j < vlen; j++, m++) {
2839 m->type = enum64_placeholder_id;
2848 static bool libbpf_needs_btf(const struct bpf_object *obj)
2850 return obj->efile.btf_maps_shndx >= 0 ||
2851 obj->efile.st_ops_shndx >= 0 ||
2852 obj->efile.st_ops_link_shndx >= 0 ||
2856 static bool kernel_needs_btf(const struct bpf_object *obj)
2858 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2861 static int bpf_object__init_btf(struct bpf_object *obj,
2863 Elf_Data *btf_ext_data)
2868 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2869 err = libbpf_get_error(obj->btf);
2872 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2875 /* enforce 8-byte pointers for BPF-targeted BTFs */
2876 btf__set_pointer_size(obj->btf, 8);
2879 struct btf_ext_info *ext_segs[3];
2880 int seg_num, sec_num;
2883 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2884 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2887 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2888 err = libbpf_get_error(obj->btf_ext);
2890 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2891 BTF_EXT_ELF_SEC, err);
2892 obj->btf_ext = NULL;
2896 /* setup .BTF.ext to ELF section mapping */
2897 ext_segs[0] = &obj->btf_ext->func_info;
2898 ext_segs[1] = &obj->btf_ext->line_info;
2899 ext_segs[2] = &obj->btf_ext->core_relo_info;
2900 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2901 struct btf_ext_info *seg = ext_segs[seg_num];
2902 const struct btf_ext_info_sec *sec;
2903 const char *sec_name;
2906 if (seg->sec_cnt == 0)
2909 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2910 if (!seg->sec_idxs) {
2916 for_each_btf_ext_sec(seg, sec) {
2917 /* preventively increment index to avoid doing
2918 * this before every continue below
2922 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2923 if (str_is_empty(sec_name))
2925 scn = elf_sec_by_name(obj, sec_name);
2929 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2934 if (err && libbpf_needs_btf(obj)) {
2935 pr_warn("BTF is required, but is missing or corrupted.\n");
2941 static int compare_vsi_off(const void *_a, const void *_b)
2943 const struct btf_var_secinfo *a = _a;
2944 const struct btf_var_secinfo *b = _b;
2946 return a->offset - b->offset;
2949 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2952 __u32 size = 0, i, vars = btf_vlen(t);
2953 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2954 struct btf_var_secinfo *vsi;
2955 bool fixup_offsets = false;
2959 pr_debug("No name found in string section for DATASEC kind.\n");
2963 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2964 * variable offsets set at the previous step. Further, not every
2965 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2966 * all fixups altogether for such sections and go straight to sorting
2967 * VARs within their DATASEC.
2969 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2972 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2973 * fix this up. But BPF static linker already fixes this up and fills
2974 * all the sizes and offsets during static linking. So this step has
2975 * to be optional. But the STV_HIDDEN handling is non-optional for any
2976 * non-extern DATASEC, so the variable fixup loop below handles both
2977 * functions at the same time, paying the cost of BTF VAR <-> ELF
2978 * symbol matching just once.
2981 err = find_elf_sec_sz(obj, sec_name, &size);
2983 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2984 sec_name, size, err);
2989 fixup_offsets = true;
2992 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2993 const struct btf_type *t_var;
2994 struct btf_var *var;
2995 const char *var_name;
2998 t_var = btf__type_by_id(btf, vsi->type);
2999 if (!t_var || !btf_is_var(t_var)) {
3000 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3004 var = btf_var(t_var);
3005 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3008 var_name = btf__name_by_offset(btf, t_var->name_off);
3010 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3015 sym = find_elf_var_sym(obj, var_name);
3017 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3018 sec_name, var_name);
3023 vsi->offset = sym->st_value;
3025 /* if variable is a global/weak symbol, but has restricted
3026 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3027 * as static. This follows similar logic for functions (BPF
3028 * subprogs) and influences libbpf's further decisions about
3029 * whether to make global data BPF array maps as
3032 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3033 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3034 var->linkage = BTF_VAR_STATIC;
3038 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3042 static int bpf_object_fixup_btf(struct bpf_object *obj)
3049 n = btf__type_cnt(obj->btf);
3050 for (i = 1; i < n; i++) {
3051 struct btf_type *t = btf_type_by_id(obj->btf, i);
3053 /* Loader needs to fix up some of the things compiler
3054 * couldn't get its hands on while emitting BTF. This
3055 * is section size and global variable offset. We use
3056 * the info from the ELF itself for this purpose.
3058 if (btf_is_datasec(t)) {
3059 err = btf_fixup_datasec(obj, obj->btf, t);
3068 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3070 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3071 prog->type == BPF_PROG_TYPE_LSM)
3074 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3075 * also need vmlinux BTF
3077 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3083 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3085 return bpf_map__is_struct_ops(map);
3088 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3090 struct bpf_program *prog;
3091 struct bpf_map *map;
3094 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3097 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3100 /* Support for typed ksyms needs kernel BTF */
3101 for (i = 0; i < obj->nr_extern; i++) {
3102 const struct extern_desc *ext;
3104 ext = &obj->externs[i];
3105 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3109 bpf_object__for_each_program(prog, obj) {
3110 if (!prog->autoload)
3112 if (prog_needs_vmlinux_btf(prog))
3116 bpf_object__for_each_map(map, obj) {
3117 if (map_needs_vmlinux_btf(map))
3124 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3128 /* btf_vmlinux could be loaded earlier */
3129 if (obj->btf_vmlinux || obj->gen_loader)
3132 if (!force && !obj_needs_vmlinux_btf(obj))
3135 obj->btf_vmlinux = btf__load_vmlinux_btf();
3136 err = libbpf_get_error(obj->btf_vmlinux);
3138 pr_warn("Error loading vmlinux BTF: %d\n", err);
3139 obj->btf_vmlinux = NULL;
3145 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3147 struct btf *kern_btf = obj->btf;
3148 bool btf_mandatory, sanitize;
3154 if (!kernel_supports(obj, FEAT_BTF)) {
3155 if (kernel_needs_btf(obj)) {
3159 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3163 /* Even though some subprogs are global/weak, user might prefer more
3164 * permissive BPF verification process that BPF verifier performs for
3165 * static functions, taking into account more context from the caller
3166 * functions. In such case, they need to mark such subprogs with
3167 * __attribute__((visibility("hidden"))) and libbpf will adjust
3168 * corresponding FUNC BTF type to be marked as static and trigger more
3169 * involved BPF verification process.
3171 for (i = 0; i < obj->nr_programs; i++) {
3172 struct bpf_program *prog = &obj->programs[i];
3177 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3180 n = btf__type_cnt(obj->btf);
3181 for (j = 1; j < n; j++) {
3182 t = btf_type_by_id(obj->btf, j);
3183 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3186 name = btf__str_by_offset(obj->btf, t->name_off);
3187 if (strcmp(name, prog->name) != 0)
3190 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3195 sanitize = btf_needs_sanitization(obj);
3197 const void *raw_data;
3200 /* clone BTF to sanitize a copy and leave the original intact */
3201 raw_data = btf__raw_data(obj->btf, &sz);
3202 kern_btf = btf__new(raw_data, sz);
3203 err = libbpf_get_error(kern_btf);
3207 /* enforce 8-byte pointers for BPF-targeted BTFs */
3208 btf__set_pointer_size(obj->btf, 8);
3209 err = bpf_object__sanitize_btf(obj, kern_btf);
3214 if (obj->gen_loader) {
3216 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3220 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3221 /* Pretend to have valid FD to pass various fd >= 0 checks.
3222 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3224 btf__set_fd(kern_btf, 0);
3226 /* currently BPF_BTF_LOAD only supports log_level 1 */
3227 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3228 obj->log_level ? 1 : 0);
3232 /* move fd to libbpf's BTF */
3233 btf__set_fd(obj->btf, btf__fd(kern_btf));
3234 btf__set_fd(kern_btf, -1);
3236 btf__free(kern_btf);
3240 btf_mandatory = kernel_needs_btf(obj);
3241 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3242 btf_mandatory ? "BTF is mandatory, can't proceed."
3243 : "BTF is optional, ignoring.");
3250 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3254 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3256 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3257 off, obj->path, elf_errmsg(-1));
3264 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3268 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3270 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3271 off, obj->path, elf_errmsg(-1));
3278 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3282 scn = elf_getscn(obj->efile.elf, idx);
3284 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3285 idx, obj->path, elf_errmsg(-1));
3291 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3293 Elf_Scn *scn = NULL;
3294 Elf *elf = obj->efile.elf;
3295 const char *sec_name;
3297 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3298 sec_name = elf_sec_name(obj, scn);
3302 if (strcmp(sec_name, name) != 0)
3310 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3317 shdr = elf64_getshdr(scn);
3319 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3320 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3327 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3335 sh = elf_sec_hdr(obj, scn);
3339 name = elf_sec_str(obj, sh->sh_name);
3341 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3342 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3349 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3356 data = elf_getdata(scn, 0);
3358 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3359 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3360 obj->path, elf_errmsg(-1));
3367 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3369 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3372 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3375 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3377 if (idx >= data->d_size / sizeof(Elf64_Rel))
3380 return (Elf64_Rel *)data->d_buf + idx;
3383 static bool is_sec_name_dwarf(const char *name)
3385 /* approximation, but the actual list is too long */
3386 return str_has_pfx(name, ".debug_");
3389 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3391 /* no special handling of .strtab */
3392 if (hdr->sh_type == SHT_STRTAB)
3395 /* ignore .llvm_addrsig section as well */
3396 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3399 /* no subprograms will lead to an empty .text section, ignore it */
3400 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3401 strcmp(name, ".text") == 0)
3404 /* DWARF sections */
3405 if (is_sec_name_dwarf(name))
3408 if (str_has_pfx(name, ".rel")) {
3409 name += sizeof(".rel") - 1;
3410 /* DWARF section relocations */
3411 if (is_sec_name_dwarf(name))
3414 /* .BTF and .BTF.ext don't need relocations */
3415 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3416 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3423 static int cmp_progs(const void *_a, const void *_b)
3425 const struct bpf_program *a = _a;
3426 const struct bpf_program *b = _b;
3428 if (a->sec_idx != b->sec_idx)
3429 return a->sec_idx < b->sec_idx ? -1 : 1;
3431 /* sec_insn_off can't be the same within the section */
3432 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3435 static int bpf_object__elf_collect(struct bpf_object *obj)
3437 struct elf_sec_desc *sec_desc;
3438 Elf *elf = obj->efile.elf;
3439 Elf_Data *btf_ext_data = NULL;
3440 Elf_Data *btf_data = NULL;
3441 int idx = 0, err = 0;
3447 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3448 * section. Since section count retrieved by elf_getshdrnum() does
3449 * include sec #0, it is already the necessary size of an array to keep
3452 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3453 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3454 obj->path, elf_errmsg(-1));
3455 return -LIBBPF_ERRNO__FORMAT;
3457 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3458 if (!obj->efile.secs)
3461 /* a bunch of ELF parsing functionality depends on processing symbols,
3462 * so do the first pass and find the symbol table
3465 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3466 sh = elf_sec_hdr(obj, scn);
3468 return -LIBBPF_ERRNO__FORMAT;
3470 if (sh->sh_type == SHT_SYMTAB) {
3471 if (obj->efile.symbols) {
3472 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3473 return -LIBBPF_ERRNO__FORMAT;
3476 data = elf_sec_data(obj, scn);
3478 return -LIBBPF_ERRNO__FORMAT;
3480 idx = elf_ndxscn(scn);
3482 obj->efile.symbols = data;
3483 obj->efile.symbols_shndx = idx;
3484 obj->efile.strtabidx = sh->sh_link;
3488 if (!obj->efile.symbols) {
3489 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3495 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3496 idx = elf_ndxscn(scn);
3497 sec_desc = &obj->efile.secs[idx];
3499 sh = elf_sec_hdr(obj, scn);
3501 return -LIBBPF_ERRNO__FORMAT;
3503 name = elf_sec_str(obj, sh->sh_name);
3505 return -LIBBPF_ERRNO__FORMAT;
3507 if (ignore_elf_section(sh, name))
3510 data = elf_sec_data(obj, scn);
3512 return -LIBBPF_ERRNO__FORMAT;
3514 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3515 idx, name, (unsigned long)data->d_size,
3516 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3519 if (strcmp(name, "license") == 0) {
3520 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3523 } else if (strcmp(name, "version") == 0) {
3524 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3527 } else if (strcmp(name, "maps") == 0) {
3528 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3530 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3531 obj->efile.btf_maps_shndx = idx;
3532 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3533 if (sh->sh_type != SHT_PROGBITS)
3534 return -LIBBPF_ERRNO__FORMAT;
3536 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3537 if (sh->sh_type != SHT_PROGBITS)
3538 return -LIBBPF_ERRNO__FORMAT;
3539 btf_ext_data = data;
3540 } else if (sh->sh_type == SHT_SYMTAB) {
3541 /* already processed during the first pass above */
3542 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3543 if (sh->sh_flags & SHF_EXECINSTR) {
3544 if (strcmp(name, ".text") == 0)
3545 obj->efile.text_shndx = idx;
3546 err = bpf_object__add_programs(obj, data, name, idx);
3549 } else if (strcmp(name, DATA_SEC) == 0 ||
3550 str_has_pfx(name, DATA_SEC ".")) {
3551 sec_desc->sec_type = SEC_DATA;
3552 sec_desc->shdr = sh;
3553 sec_desc->data = data;
3554 } else if (strcmp(name, RODATA_SEC) == 0 ||
3555 str_has_pfx(name, RODATA_SEC ".")) {
3556 sec_desc->sec_type = SEC_RODATA;
3557 sec_desc->shdr = sh;
3558 sec_desc->data = data;
3559 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3560 obj->efile.st_ops_data = data;
3561 obj->efile.st_ops_shndx = idx;
3562 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3563 obj->efile.st_ops_link_data = data;
3564 obj->efile.st_ops_link_shndx = idx;
3566 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3569 } else if (sh->sh_type == SHT_REL) {
3570 int targ_sec_idx = sh->sh_info; /* points to other section */
3572 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3573 targ_sec_idx >= obj->efile.sec_cnt)
3574 return -LIBBPF_ERRNO__FORMAT;
3576 /* Only do relo for section with exec instructions */
3577 if (!section_have_execinstr(obj, targ_sec_idx) &&
3578 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3579 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3580 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3581 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3582 idx, name, targ_sec_idx,
3583 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3587 sec_desc->sec_type = SEC_RELO;
3588 sec_desc->shdr = sh;
3589 sec_desc->data = data;
3590 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3591 str_has_pfx(name, BSS_SEC "."))) {
3592 sec_desc->sec_type = SEC_BSS;
3593 sec_desc->shdr = sh;
3594 sec_desc->data = data;
3596 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3597 (size_t)sh->sh_size);
3601 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3602 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3603 return -LIBBPF_ERRNO__FORMAT;
3606 /* sort BPF programs by section name and in-section instruction offset
3609 if (obj->nr_programs)
3610 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3612 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3615 static bool sym_is_extern(const Elf64_Sym *sym)
3617 int bind = ELF64_ST_BIND(sym->st_info);
3618 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3619 return sym->st_shndx == SHN_UNDEF &&
3620 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3621 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3624 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3626 int bind = ELF64_ST_BIND(sym->st_info);
3627 int type = ELF64_ST_TYPE(sym->st_info);
3629 /* in .text section */
3630 if (sym->st_shndx != text_shndx)
3633 /* local function */
3634 if (bind == STB_LOCAL && type == STT_SECTION)
3637 /* global function */
3638 return bind == STB_GLOBAL && type == STT_FUNC;
3641 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3643 const struct btf_type *t;
3650 n = btf__type_cnt(btf);
3651 for (i = 1; i < n; i++) {
3652 t = btf__type_by_id(btf, i);
3654 if (!btf_is_var(t) && !btf_is_func(t))
3657 tname = btf__name_by_offset(btf, t->name_off);
3658 if (strcmp(tname, ext_name))
3661 if (btf_is_var(t) &&
3662 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3665 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3674 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3675 const struct btf_var_secinfo *vs;
3676 const struct btf_type *t;
3682 n = btf__type_cnt(btf);
3683 for (i = 1; i < n; i++) {
3684 t = btf__type_by_id(btf, i);
3686 if (!btf_is_datasec(t))
3689 vs = btf_var_secinfos(t);
3690 for (j = 0; j < btf_vlen(t); j++, vs++) {
3691 if (vs->type == ext_btf_id)
3699 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3702 const struct btf_type *t;
3705 t = skip_mods_and_typedefs(btf, id, NULL);
3706 name = btf__name_by_offset(btf, t->name_off);
3710 switch (btf_kind(t)) {
3711 case BTF_KIND_INT: {
3712 int enc = btf_int_encoding(t);
3714 if (enc & BTF_INT_BOOL)
3715 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3717 *is_signed = enc & BTF_INT_SIGNED;
3720 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3721 return KCFG_UNKNOWN;
3726 return KCFG_UNKNOWN;
3727 if (strcmp(name, "libbpf_tristate"))
3728 return KCFG_UNKNOWN;
3729 return KCFG_TRISTATE;
3730 case BTF_KIND_ENUM64:
3731 if (strcmp(name, "libbpf_tristate"))
3732 return KCFG_UNKNOWN;
3733 return KCFG_TRISTATE;
3734 case BTF_KIND_ARRAY:
3735 if (btf_array(t)->nelems == 0)
3736 return KCFG_UNKNOWN;
3737 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3738 return KCFG_UNKNOWN;
3739 return KCFG_CHAR_ARR;
3741 return KCFG_UNKNOWN;
3745 static int cmp_externs(const void *_a, const void *_b)
3747 const struct extern_desc *a = _a;
3748 const struct extern_desc *b = _b;
3750 if (a->type != b->type)
3751 return a->type < b->type ? -1 : 1;
3753 if (a->type == EXT_KCFG) {
3754 /* descending order by alignment requirements */
3755 if (a->kcfg.align != b->kcfg.align)
3756 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3757 /* ascending order by size, within same alignment class */
3758 if (a->kcfg.sz != b->kcfg.sz)
3759 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3762 /* resolve ties by name */
3763 return strcmp(a->name, b->name);
3766 static int find_int_btf_id(const struct btf *btf)
3768 const struct btf_type *t;
3771 n = btf__type_cnt(btf);
3772 for (i = 1; i < n; i++) {
3773 t = btf__type_by_id(btf, i);
3775 if (btf_is_int(t) && btf_int_bits(t) == 32)
3782 static int add_dummy_ksym_var(struct btf *btf)
3784 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3785 const struct btf_var_secinfo *vs;
3786 const struct btf_type *sec;
3791 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3796 sec = btf__type_by_id(btf, sec_btf_id);
3797 vs = btf_var_secinfos(sec);
3798 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3799 const struct btf_type *vt;
3801 vt = btf__type_by_id(btf, vs->type);
3802 if (btf_is_func(vt))
3806 /* No func in ksyms sec. No need to add dummy var. */
3807 if (i == btf_vlen(sec))
3810 int_btf_id = find_int_btf_id(btf);
3811 dummy_var_btf_id = btf__add_var(btf,
3813 BTF_VAR_GLOBAL_ALLOCATED,
3815 if (dummy_var_btf_id < 0)
3816 pr_warn("cannot create a dummy_ksym var\n");
3818 return dummy_var_btf_id;
3821 static int bpf_object__collect_externs(struct bpf_object *obj)
3823 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3824 const struct btf_type *t;
3825 struct extern_desc *ext;
3826 int i, n, off, dummy_var_btf_id;
3827 const char *ext_name, *sec_name;
3828 size_t ext_essent_len;
3832 if (!obj->efile.symbols)
3835 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3836 sh = elf_sec_hdr(obj, scn);
3837 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3838 return -LIBBPF_ERRNO__FORMAT;
3840 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3841 if (dummy_var_btf_id < 0)
3842 return dummy_var_btf_id;
3844 n = sh->sh_size / sh->sh_entsize;
3845 pr_debug("looking for externs among %d symbols...\n", n);
3847 for (i = 0; i < n; i++) {
3848 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3851 return -LIBBPF_ERRNO__FORMAT;
3852 if (!sym_is_extern(sym))
3854 ext_name = elf_sym_str(obj, sym->st_name);
3855 if (!ext_name || !ext_name[0])
3859 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3863 ext = &ext[obj->nr_extern];
3864 memset(ext, 0, sizeof(*ext));
3867 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3868 if (ext->btf_id <= 0) {
3869 pr_warn("failed to find BTF for extern '%s': %d\n",
3870 ext_name, ext->btf_id);
3873 t = btf__type_by_id(obj->btf, ext->btf_id);
3874 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3876 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3878 ext_essent_len = bpf_core_essential_name_len(ext->name);
3879 ext->essent_name = NULL;
3880 if (ext_essent_len != strlen(ext->name)) {
3881 ext->essent_name = strndup(ext->name, ext_essent_len);
3882 if (!ext->essent_name)
3886 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3887 if (ext->sec_btf_id <= 0) {
3888 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3889 ext_name, ext->btf_id, ext->sec_btf_id);
3890 return ext->sec_btf_id;
3892 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3893 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3895 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3896 if (btf_is_func(t)) {
3897 pr_warn("extern function %s is unsupported under %s section\n",
3898 ext->name, KCONFIG_SEC);
3902 ext->type = EXT_KCFG;
3903 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3904 if (ext->kcfg.sz <= 0) {
3905 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3906 ext_name, ext->kcfg.sz);
3907 return ext->kcfg.sz;
3909 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3910 if (ext->kcfg.align <= 0) {
3911 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3912 ext_name, ext->kcfg.align);
3915 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3916 &ext->kcfg.is_signed);
3917 if (ext->kcfg.type == KCFG_UNKNOWN) {
3918 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3921 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3923 ext->type = EXT_KSYM;
3924 skip_mods_and_typedefs(obj->btf, t->type,
3925 &ext->ksym.type_id);
3927 pr_warn("unrecognized extern section '%s'\n", sec_name);
3931 pr_debug("collected %d externs total\n", obj->nr_extern);
3933 if (!obj->nr_extern)
3936 /* sort externs by type, for kcfg ones also by (align, size, name) */
3937 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3939 /* for .ksyms section, we need to turn all externs into allocated
3940 * variables in BTF to pass kernel verification; we do this by
3941 * pretending that each extern is a 8-byte variable
3944 /* find existing 4-byte integer type in BTF to use for fake
3945 * extern variables in DATASEC
3947 int int_btf_id = find_int_btf_id(obj->btf);
3948 /* For extern function, a dummy_var added earlier
3949 * will be used to replace the vs->type and
3950 * its name string will be used to refill
3951 * the missing param's name.
3953 const struct btf_type *dummy_var;
3955 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3956 for (i = 0; i < obj->nr_extern; i++) {
3957 ext = &obj->externs[i];
3958 if (ext->type != EXT_KSYM)
3960 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3961 i, ext->sym_idx, ext->name);
3966 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3967 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3968 struct btf_type *vt;
3970 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3971 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3972 ext = find_extern_by_name(obj, ext_name);
3974 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3975 btf_kind_str(vt), ext_name);
3978 if (btf_is_func(vt)) {
3979 const struct btf_type *func_proto;
3980 struct btf_param *param;
3983 func_proto = btf__type_by_id(obj->btf,
3985 param = btf_params(func_proto);
3986 /* Reuse the dummy_var string if the
3987 * func proto does not have param name.
3989 for (j = 0; j < btf_vlen(func_proto); j++)
3990 if (param[j].type && !param[j].name_off)
3992 dummy_var->name_off;
3993 vs->type = dummy_var_btf_id;
3994 vt->info &= ~0xffff;
3995 vt->info |= BTF_FUNC_GLOBAL;
3997 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3998 vt->type = int_btf_id;
4001 vs->size = sizeof(int);
4008 /* for kcfg externs calculate their offsets within a .kconfig map */
4010 for (i = 0; i < obj->nr_extern; i++) {
4011 ext = &obj->externs[i];
4012 if (ext->type != EXT_KCFG)
4015 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4016 off = ext->kcfg.data_off + ext->kcfg.sz;
4017 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4018 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4022 for (i = 0; i < n; i++) {
4023 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4025 t = btf__type_by_id(obj->btf, vs->type);
4026 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4027 ext = find_extern_by_name(obj, ext_name);
4029 pr_warn("failed to find extern definition for BTF var '%s'\n",
4033 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4034 vs->offset = ext->kcfg.data_off;
4040 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4042 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4045 struct bpf_program *
4046 bpf_object__find_program_by_name(const struct bpf_object *obj,
4049 struct bpf_program *prog;
4051 bpf_object__for_each_program(prog, obj) {
4052 if (prog_is_subprog(obj, prog))
4054 if (!strcmp(prog->name, name))
4057 return errno = ENOENT, NULL;
4060 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4063 switch (obj->efile.secs[shndx].sec_type) {
4073 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4076 return shndx == obj->efile.btf_maps_shndx;
4079 static enum libbpf_map_type
4080 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4082 if (shndx == obj->efile.symbols_shndx)
4083 return LIBBPF_MAP_KCONFIG;
4085 switch (obj->efile.secs[shndx].sec_type) {
4087 return LIBBPF_MAP_BSS;
4089 return LIBBPF_MAP_DATA;
4091 return LIBBPF_MAP_RODATA;
4093 return LIBBPF_MAP_UNSPEC;
4097 static int bpf_program__record_reloc(struct bpf_program *prog,
4098 struct reloc_desc *reloc_desc,
4099 __u32 insn_idx, const char *sym_name,
4100 const Elf64_Sym *sym, const Elf64_Rel *rel)
4102 struct bpf_insn *insn = &prog->insns[insn_idx];
4103 size_t map_idx, nr_maps = prog->obj->nr_maps;
4104 struct bpf_object *obj = prog->obj;
4105 __u32 shdr_idx = sym->st_shndx;
4106 enum libbpf_map_type type;
4107 const char *sym_sec_name;
4108 struct bpf_map *map;
4110 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4111 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4112 prog->name, sym_name, insn_idx, insn->code);
4113 return -LIBBPF_ERRNO__RELOC;
4116 if (sym_is_extern(sym)) {
4117 int sym_idx = ELF64_R_SYM(rel->r_info);
4118 int i, n = obj->nr_extern;
4119 struct extern_desc *ext;
4121 for (i = 0; i < n; i++) {
4122 ext = &obj->externs[i];
4123 if (ext->sym_idx == sym_idx)
4127 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4128 prog->name, sym_name, sym_idx);
4129 return -LIBBPF_ERRNO__RELOC;
4131 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4132 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4133 if (insn->code == (BPF_JMP | BPF_CALL))
4134 reloc_desc->type = RELO_EXTERN_CALL;
4136 reloc_desc->type = RELO_EXTERN_LD64;
4137 reloc_desc->insn_idx = insn_idx;
4138 reloc_desc->ext_idx = i;
4142 /* sub-program call relocation */
4143 if (is_call_insn(insn)) {
4144 if (insn->src_reg != BPF_PSEUDO_CALL) {
4145 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4146 return -LIBBPF_ERRNO__RELOC;
4148 /* text_shndx can be 0, if no default "main" program exists */
4149 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4150 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4151 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4152 prog->name, sym_name, sym_sec_name);
4153 return -LIBBPF_ERRNO__RELOC;
4155 if (sym->st_value % BPF_INSN_SZ) {
4156 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4157 prog->name, sym_name, (size_t)sym->st_value);
4158 return -LIBBPF_ERRNO__RELOC;
4160 reloc_desc->type = RELO_CALL;
4161 reloc_desc->insn_idx = insn_idx;
4162 reloc_desc->sym_off = sym->st_value;
4166 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4167 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4168 prog->name, sym_name, shdr_idx);
4169 return -LIBBPF_ERRNO__RELOC;
4172 /* loading subprog addresses */
4173 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4174 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4175 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4177 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4178 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4179 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4180 return -LIBBPF_ERRNO__RELOC;
4183 reloc_desc->type = RELO_SUBPROG_ADDR;
4184 reloc_desc->insn_idx = insn_idx;
4185 reloc_desc->sym_off = sym->st_value;
4189 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4190 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4192 /* generic map reference relocation */
4193 if (type == LIBBPF_MAP_UNSPEC) {
4194 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4195 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4196 prog->name, sym_name, sym_sec_name);
4197 return -LIBBPF_ERRNO__RELOC;
4199 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4200 map = &obj->maps[map_idx];
4201 if (map->libbpf_type != type ||
4202 map->sec_idx != sym->st_shndx ||
4203 map->sec_offset != sym->st_value)
4205 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4206 prog->name, map_idx, map->name, map->sec_idx,
4207 map->sec_offset, insn_idx);
4210 if (map_idx >= nr_maps) {
4211 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4212 prog->name, sym_sec_name, (size_t)sym->st_value);
4213 return -LIBBPF_ERRNO__RELOC;
4215 reloc_desc->type = RELO_LD64;
4216 reloc_desc->insn_idx = insn_idx;
4217 reloc_desc->map_idx = map_idx;
4218 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4222 /* global data map relocation */
4223 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4224 pr_warn("prog '%s': bad data relo against section '%s'\n",
4225 prog->name, sym_sec_name);
4226 return -LIBBPF_ERRNO__RELOC;
4228 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4229 map = &obj->maps[map_idx];
4230 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4232 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4233 prog->name, map_idx, map->name, map->sec_idx,
4234 map->sec_offset, insn_idx);
4237 if (map_idx >= nr_maps) {
4238 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4239 prog->name, sym_sec_name);
4240 return -LIBBPF_ERRNO__RELOC;
4243 reloc_desc->type = RELO_DATA;
4244 reloc_desc->insn_idx = insn_idx;
4245 reloc_desc->map_idx = map_idx;
4246 reloc_desc->sym_off = sym->st_value;
4250 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4252 return insn_idx >= prog->sec_insn_off &&
4253 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4256 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4257 size_t sec_idx, size_t insn_idx)
4259 int l = 0, r = obj->nr_programs - 1, m;
4260 struct bpf_program *prog;
4262 if (!obj->nr_programs)
4266 m = l + (r - l + 1) / 2;
4267 prog = &obj->programs[m];
4269 if (prog->sec_idx < sec_idx ||
4270 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4275 /* matching program could be at index l, but it still might be the
4276 * wrong one, so we need to double check conditions for the last time
4278 prog = &obj->programs[l];
4279 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4285 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4287 const char *relo_sec_name, *sec_name;
4288 size_t sec_idx = shdr->sh_info, sym_idx;
4289 struct bpf_program *prog;
4290 struct reloc_desc *relos;
4292 const char *sym_name;
4299 if (sec_idx >= obj->efile.sec_cnt)
4302 scn = elf_sec_by_idx(obj, sec_idx);
4303 scn_data = elf_sec_data(obj, scn);
4305 return -LIBBPF_ERRNO__FORMAT;
4307 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4308 sec_name = elf_sec_name(obj, scn);
4309 if (!relo_sec_name || !sec_name)
4312 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4313 relo_sec_name, sec_idx, sec_name);
4314 nrels = shdr->sh_size / shdr->sh_entsize;
4316 for (i = 0; i < nrels; i++) {
4317 rel = elf_rel_by_idx(data, i);
4319 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4320 return -LIBBPF_ERRNO__FORMAT;
4323 sym_idx = ELF64_R_SYM(rel->r_info);
4324 sym = elf_sym_by_idx(obj, sym_idx);
4326 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4327 relo_sec_name, sym_idx, i);
4328 return -LIBBPF_ERRNO__FORMAT;
4331 if (sym->st_shndx >= obj->efile.sec_cnt) {
4332 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4333 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4334 return -LIBBPF_ERRNO__FORMAT;
4337 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4338 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4339 relo_sec_name, (size_t)rel->r_offset, i);
4340 return -LIBBPF_ERRNO__FORMAT;
4343 insn_idx = rel->r_offset / BPF_INSN_SZ;
4344 /* relocations against static functions are recorded as
4345 * relocations against the section that contains a function;
4346 * in such case, symbol will be STT_SECTION and sym.st_name
4347 * will point to empty string (0), so fetch section name
4350 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4351 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4353 sym_name = elf_sym_str(obj, sym->st_name);
4354 sym_name = sym_name ?: "<?";
4356 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4357 relo_sec_name, i, insn_idx, sym_name);
4359 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4361 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4362 relo_sec_name, i, sec_name, insn_idx);
4366 relos = libbpf_reallocarray(prog->reloc_desc,
4367 prog->nr_reloc + 1, sizeof(*relos));
4370 prog->reloc_desc = relos;
4372 /* adjust insn_idx to local BPF program frame of reference */
4373 insn_idx -= prog->sec_insn_off;
4374 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4375 insn_idx, sym_name, sym, rel);
4384 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4391 /* if it's BTF-defined map, we don't need to search for type IDs.
4392 * For struct_ops map, it does not need btf_key_type_id and
4393 * btf_value_type_id.
4395 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4399 * LLVM annotates global data differently in BTF, that is,
4400 * only as '.data', '.bss' or '.rodata'.
4402 if (!bpf_map__is_internal(map))
4405 id = btf__find_by_name(obj->btf, map->real_name);
4409 map->btf_key_type_id = 0;
4410 map->btf_value_type_id = id;
4414 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4416 char file[PATH_MAX], buff[4096];
4421 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4422 memset(info, 0, sizeof(*info));
4424 fp = fopen(file, "re");
4427 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4432 while (fgets(buff, sizeof(buff), fp)) {
4433 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4435 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4436 info->key_size = val;
4437 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4438 info->value_size = val;
4439 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4440 info->max_entries = val;
4441 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4442 info->map_flags = val;
4450 bool bpf_map__autocreate(const struct bpf_map *map)
4452 return map->autocreate;
4455 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4457 if (map->obj->loaded)
4458 return libbpf_err(-EBUSY);
4460 map->autocreate = autocreate;
4464 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4466 struct bpf_map_info info;
4467 __u32 len = sizeof(info), name_len;
4471 memset(&info, 0, len);
4472 err = bpf_map_get_info_by_fd(fd, &info, &len);
4473 if (err && errno == EINVAL)
4474 err = bpf_get_map_info_from_fdinfo(fd, &info);
4476 return libbpf_err(err);
4478 name_len = strlen(info.name);
4479 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4480 new_name = strdup(map->name);
4482 new_name = strdup(info.name);
4485 return libbpf_err(-errno);
4488 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4489 * This is similar to what we do in ensure_good_fd(), but without
4490 * closing original FD.
4492 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4495 goto err_free_new_name;
4498 err = reuse_fd(map->fd, new_fd);
4500 goto err_free_new_name;
4504 map->name = new_name;
4505 map->def.type = info.type;
4506 map->def.key_size = info.key_size;
4507 map->def.value_size = info.value_size;
4508 map->def.max_entries = info.max_entries;
4509 map->def.map_flags = info.map_flags;
4510 map->btf_key_type_id = info.btf_key_type_id;
4511 map->btf_value_type_id = info.btf_value_type_id;
4513 map->map_extra = info.map_extra;
4519 return libbpf_err(err);
4522 __u32 bpf_map__max_entries(const struct bpf_map *map)
4524 return map->def.max_entries;
4527 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4529 if (!bpf_map_type__is_map_in_map(map->def.type))
4530 return errno = EINVAL, NULL;
4532 return map->inner_map;
4535 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4537 if (map->obj->loaded)
4538 return libbpf_err(-EBUSY);
4540 map->def.max_entries = max_entries;
4542 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4543 if (map_is_ringbuf(map))
4544 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4550 bpf_object__probe_loading(struct bpf_object *obj)
4552 char *cp, errmsg[STRERR_BUFSIZE];
4553 struct bpf_insn insns[] = {
4554 BPF_MOV64_IMM(BPF_REG_0, 0),
4557 int ret, insn_cnt = ARRAY_SIZE(insns);
4559 if (obj->gen_loader)
4562 ret = bump_rlimit_memlock();
4564 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4566 /* make sure basic loading works */
4567 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4569 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4572 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4573 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4574 "program. Make sure your kernel supports BPF "
4575 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4576 "set to big enough value.\n", __func__, cp, ret);
4584 static int probe_fd(int fd)
4591 static int probe_kern_prog_name(void)
4593 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4594 struct bpf_insn insns[] = {
4595 BPF_MOV64_IMM(BPF_REG_0, 0),
4598 union bpf_attr attr;
4601 memset(&attr, 0, attr_sz);
4602 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4603 attr.license = ptr_to_u64("GPL");
4604 attr.insns = ptr_to_u64(insns);
4605 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4606 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4608 /* make sure loading with name works */
4609 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4610 return probe_fd(ret);
4613 static int probe_kern_global_data(void)
4615 char *cp, errmsg[STRERR_BUFSIZE];
4616 struct bpf_insn insns[] = {
4617 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4618 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4619 BPF_MOV64_IMM(BPF_REG_0, 0),
4622 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4624 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4627 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4628 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4629 __func__, cp, -ret);
4635 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4637 return probe_fd(ret);
4640 static int probe_kern_btf(void)
4642 static const char strs[] = "\0int";
4645 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4648 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4649 strs, sizeof(strs)));
4652 static int probe_kern_btf_func(void)
4654 static const char strs[] = "\0int\0x\0a";
4655 /* void x(int a) {} */
4658 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4659 /* FUNC_PROTO */ /* [2] */
4660 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4661 BTF_PARAM_ENC(7, 1),
4662 /* FUNC x */ /* [3] */
4663 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4666 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4667 strs, sizeof(strs)));
4670 static int probe_kern_btf_func_global(void)
4672 static const char strs[] = "\0int\0x\0a";
4673 /* static void x(int a) {} */
4676 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4677 /* FUNC_PROTO */ /* [2] */
4678 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4679 BTF_PARAM_ENC(7, 1),
4680 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4681 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4684 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4685 strs, sizeof(strs)));
4688 static int probe_kern_btf_datasec(void)
4690 static const char strs[] = "\0x\0.data";
4694 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4695 /* VAR x */ /* [2] */
4696 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4698 /* DATASEC val */ /* [3] */
4699 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4700 BTF_VAR_SECINFO_ENC(2, 0, 4),
4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4704 strs, sizeof(strs)));
4707 static int probe_kern_btf_float(void)
4709 static const char strs[] = "\0float";
4712 BTF_TYPE_FLOAT_ENC(1, 4),
4715 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4716 strs, sizeof(strs)));
4719 static int probe_kern_btf_decl_tag(void)
4721 static const char strs[] = "\0tag";
4724 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4725 /* VAR x */ /* [2] */
4726 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4729 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4732 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4733 strs, sizeof(strs)));
4736 static int probe_kern_btf_type_tag(void)
4738 static const char strs[] = "\0tag";
4741 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4743 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4745 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4748 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4749 strs, sizeof(strs)));
4752 static int probe_kern_array_mmap(void)
4754 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4757 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4758 return probe_fd(fd);
4761 static int probe_kern_exp_attach_type(void)
4763 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4764 struct bpf_insn insns[] = {
4765 BPF_MOV64_IMM(BPF_REG_0, 0),
4768 int fd, insn_cnt = ARRAY_SIZE(insns);
4770 /* use any valid combination of program type and (optional)
4771 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4772 * to see if kernel supports expected_attach_type field for
4773 * BPF_PROG_LOAD command
4775 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4776 return probe_fd(fd);
4779 static int probe_kern_probe_read_kernel(void)
4781 struct bpf_insn insns[] = {
4782 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4783 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4784 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4785 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4786 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4789 int fd, insn_cnt = ARRAY_SIZE(insns);
4791 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4792 return probe_fd(fd);
4795 static int probe_prog_bind_map(void)
4797 char *cp, errmsg[STRERR_BUFSIZE];
4798 struct bpf_insn insns[] = {
4799 BPF_MOV64_IMM(BPF_REG_0, 0),
4802 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4804 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4807 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4808 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4809 __func__, cp, -ret);
4813 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4819 ret = bpf_prog_bind_map(prog, map, NULL);
4827 static int probe_module_btf(void)
4829 static const char strs[] = "\0int";
4832 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4834 struct bpf_btf_info info;
4835 __u32 len = sizeof(info);
4839 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4841 return 0; /* BTF not supported at all */
4843 memset(&info, 0, sizeof(info));
4844 info.name = ptr_to_u64(name);
4845 info.name_len = sizeof(name);
4847 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4848 * kernel's module BTF support coincides with support for
4849 * name/name_len fields in struct bpf_btf_info.
4851 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4856 static int probe_perf_link(void)
4858 struct bpf_insn insns[] = {
4859 BPF_MOV64_IMM(BPF_REG_0, 0),
4862 int prog_fd, link_fd, err;
4864 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4865 insns, ARRAY_SIZE(insns), NULL);
4869 /* use invalid perf_event FD to get EBADF, if link is supported;
4870 * otherwise EINVAL should be returned
4872 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4873 err = -errno; /* close() can clobber errno */
4879 return link_fd < 0 && err == -EBADF;
4882 static int probe_uprobe_multi_link(void)
4884 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4885 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4887 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4888 struct bpf_insn insns[] = {
4889 BPF_MOV64_IMM(BPF_REG_0, 0),
4892 int prog_fd, link_fd, err;
4893 unsigned long offset = 0;
4895 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4896 insns, ARRAY_SIZE(insns), &load_opts);
4900 /* Creating uprobe in '/' binary should fail with -EBADF. */
4901 link_opts.uprobe_multi.path = "/";
4902 link_opts.uprobe_multi.offsets = &offset;
4903 link_opts.uprobe_multi.cnt = 1;
4905 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4906 err = -errno; /* close() can clobber errno */
4912 return link_fd < 0 && err == -EBADF;
4915 static int probe_kern_bpf_cookie(void)
4917 struct bpf_insn insns[] = {
4918 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4921 int ret, insn_cnt = ARRAY_SIZE(insns);
4923 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4924 return probe_fd(ret);
4927 static int probe_kern_btf_enum64(void)
4929 static const char strs[] = "\0enum64";
4931 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4934 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4935 strs, sizeof(strs)));
4938 static int probe_kern_syscall_wrapper(void);
4940 enum kern_feature_result {
4946 typedef int (*feature_probe_fn)(void);
4948 static struct kern_feature_desc {
4950 feature_probe_fn probe;
4951 enum kern_feature_result res;
4952 } feature_probes[__FEAT_CNT] = {
4953 [FEAT_PROG_NAME] = {
4954 "BPF program name", probe_kern_prog_name,
4956 [FEAT_GLOBAL_DATA] = {
4957 "global variables", probe_kern_global_data,
4960 "minimal BTF", probe_kern_btf,
4963 "BTF functions", probe_kern_btf_func,
4965 [FEAT_BTF_GLOBAL_FUNC] = {
4966 "BTF global function", probe_kern_btf_func_global,
4968 [FEAT_BTF_DATASEC] = {
4969 "BTF data section and variable", probe_kern_btf_datasec,
4971 [FEAT_ARRAY_MMAP] = {
4972 "ARRAY map mmap()", probe_kern_array_mmap,
4974 [FEAT_EXP_ATTACH_TYPE] = {
4975 "BPF_PROG_LOAD expected_attach_type attribute",
4976 probe_kern_exp_attach_type,
4978 [FEAT_PROBE_READ_KERN] = {
4979 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4981 [FEAT_PROG_BIND_MAP] = {
4982 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4984 [FEAT_MODULE_BTF] = {
4985 "module BTF support", probe_module_btf,
4987 [FEAT_BTF_FLOAT] = {
4988 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4990 [FEAT_PERF_LINK] = {
4991 "BPF perf link support", probe_perf_link,
4993 [FEAT_BTF_DECL_TAG] = {
4994 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4996 [FEAT_BTF_TYPE_TAG] = {
4997 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4999 [FEAT_MEMCG_ACCOUNT] = {
5000 "memcg-based memory accounting", probe_memcg_account,
5002 [FEAT_BPF_COOKIE] = {
5003 "BPF cookie support", probe_kern_bpf_cookie,
5005 [FEAT_BTF_ENUM64] = {
5006 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5008 [FEAT_SYSCALL_WRAPPER] = {
5009 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5011 [FEAT_UPROBE_MULTI_LINK] = {
5012 "BPF multi-uprobe link support", probe_uprobe_multi_link,
5016 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5018 struct kern_feature_desc *feat = &feature_probes[feat_id];
5021 if (obj && obj->gen_loader)
5022 /* To generate loader program assume the latest kernel
5023 * to avoid doing extra prog_load, map_create syscalls.
5027 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5028 ret = feat->probe();
5030 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5031 } else if (ret == 0) {
5032 WRITE_ONCE(feat->res, FEAT_MISSING);
5034 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5035 WRITE_ONCE(feat->res, FEAT_MISSING);
5039 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5042 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5044 struct bpf_map_info map_info;
5045 char msg[STRERR_BUFSIZE];
5046 __u32 map_info_len = sizeof(map_info);
5049 memset(&map_info, 0, map_info_len);
5050 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5051 if (err && errno == EINVAL)
5052 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5054 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5055 libbpf_strerror_r(errno, msg, sizeof(msg)));
5059 return (map_info.type == map->def.type &&
5060 map_info.key_size == map->def.key_size &&
5061 map_info.value_size == map->def.value_size &&
5062 map_info.max_entries == map->def.max_entries &&
5063 map_info.map_flags == map->def.map_flags &&
5064 map_info.map_extra == map->map_extra);
5068 bpf_object__reuse_map(struct bpf_map *map)
5070 char *cp, errmsg[STRERR_BUFSIZE];
5073 pin_fd = bpf_obj_get(map->pin_path);
5076 if (err == -ENOENT) {
5077 pr_debug("found no pinned map to reuse at '%s'\n",
5082 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5083 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5088 if (!map_is_reuse_compat(map, pin_fd)) {
5089 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5095 err = bpf_map__reuse_fd(map, pin_fd);
5101 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5107 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5109 enum libbpf_map_type map_type = map->libbpf_type;
5110 char *cp, errmsg[STRERR_BUFSIZE];
5113 if (obj->gen_loader) {
5114 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5115 map->mmaped, map->def.value_size);
5116 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5117 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5120 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5123 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5124 pr_warn("Error setting initial map(%s) contents: %s\n",
5129 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5130 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5131 err = bpf_map_freeze(map->fd);
5134 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5135 pr_warn("Error freezing map(%s) as read-only: %s\n",
5143 static void bpf_map__destroy(struct bpf_map *map);
5145 static bool map_is_created(const struct bpf_map *map)
5147 return map->obj->loaded || map->reused;
5150 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5152 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5153 struct bpf_map_def *def = &map->def;
5154 const char *map_name = NULL;
5155 int err = 0, map_fd;
5157 if (kernel_supports(obj, FEAT_PROG_NAME))
5158 map_name = map->name;
5159 create_attr.map_ifindex = map->map_ifindex;
5160 create_attr.map_flags = def->map_flags;
5161 create_attr.numa_node = map->numa_node;
5162 create_attr.map_extra = map->map_extra;
5164 if (bpf_map__is_struct_ops(map))
5165 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5167 if (obj->btf && btf__fd(obj->btf) >= 0) {
5168 create_attr.btf_fd = btf__fd(obj->btf);
5169 create_attr.btf_key_type_id = map->btf_key_type_id;
5170 create_attr.btf_value_type_id = map->btf_value_type_id;
5173 if (bpf_map_type__is_map_in_map(def->type)) {
5174 if (map->inner_map) {
5175 err = bpf_object__create_map(obj, map->inner_map, true);
5177 pr_warn("map '%s': failed to create inner map: %d\n",
5181 map->inner_map_fd = map->inner_map->fd;
5183 if (map->inner_map_fd >= 0)
5184 create_attr.inner_map_fd = map->inner_map_fd;
5187 switch (def->type) {
5188 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5189 case BPF_MAP_TYPE_CGROUP_ARRAY:
5190 case BPF_MAP_TYPE_STACK_TRACE:
5191 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5192 case BPF_MAP_TYPE_HASH_OF_MAPS:
5193 case BPF_MAP_TYPE_DEVMAP:
5194 case BPF_MAP_TYPE_DEVMAP_HASH:
5195 case BPF_MAP_TYPE_CPUMAP:
5196 case BPF_MAP_TYPE_XSKMAP:
5197 case BPF_MAP_TYPE_SOCKMAP:
5198 case BPF_MAP_TYPE_SOCKHASH:
5199 case BPF_MAP_TYPE_QUEUE:
5200 case BPF_MAP_TYPE_STACK:
5201 create_attr.btf_fd = 0;
5202 create_attr.btf_key_type_id = 0;
5203 create_attr.btf_value_type_id = 0;
5204 map->btf_key_type_id = 0;
5205 map->btf_value_type_id = 0;
5210 if (obj->gen_loader) {
5211 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5212 def->key_size, def->value_size, def->max_entries,
5213 &create_attr, is_inner ? -1 : map - obj->maps);
5214 /* We keep pretenting we have valid FD to pass various fd >= 0
5215 * checks by just keeping original placeholder FDs in place.
5216 * See bpf_object__add_map() comment.
5217 * This placeholder fd will not be used with any syscall and
5218 * will be reset to -1 eventually.
5222 map_fd = bpf_map_create(def->type, map_name,
5223 def->key_size, def->value_size,
5224 def->max_entries, &create_attr);
5226 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5227 char *cp, errmsg[STRERR_BUFSIZE];
5230 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5231 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5232 map->name, cp, err);
5233 create_attr.btf_fd = 0;
5234 create_attr.btf_key_type_id = 0;
5235 create_attr.btf_value_type_id = 0;
5236 map->btf_key_type_id = 0;
5237 map->btf_value_type_id = 0;
5238 map_fd = bpf_map_create(def->type, map_name,
5239 def->key_size, def->value_size,
5240 def->max_entries, &create_attr);
5243 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5244 if (obj->gen_loader)
5245 map->inner_map->fd = -1;
5246 bpf_map__destroy(map->inner_map);
5247 zfree(&map->inner_map);
5253 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5254 if (map->fd == map_fd)
5257 /* Keep placeholder FD value but now point it to the BPF map object.
5258 * This way everything that relied on this map's FD (e.g., relocated
5259 * ldimm64 instructions) will stay valid and won't need adjustments.
5260 * map->fd stays valid but now point to what map_fd points to.
5262 return reuse_fd(map->fd, map_fd);
5265 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5267 const struct bpf_map *targ_map;
5271 for (i = 0; i < map->init_slots_sz; i++) {
5272 if (!map->init_slots[i])
5275 targ_map = map->init_slots[i];
5278 if (obj->gen_loader) {
5279 bpf_gen__populate_outer_map(obj->gen_loader,
5281 targ_map - obj->maps);
5283 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5287 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5288 map->name, i, targ_map->name, fd, err);
5291 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5292 map->name, i, targ_map->name, fd);
5295 zfree(&map->init_slots);
5296 map->init_slots_sz = 0;
5301 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5303 const struct bpf_program *targ_prog;
5307 if (obj->gen_loader)
5310 for (i = 0; i < map->init_slots_sz; i++) {
5311 if (!map->init_slots[i])
5314 targ_prog = map->init_slots[i];
5315 fd = bpf_program__fd(targ_prog);
5317 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5320 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5321 map->name, i, targ_prog->name, fd, err);
5324 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5325 map->name, i, targ_prog->name, fd);
5328 zfree(&map->init_slots);
5329 map->init_slots_sz = 0;
5334 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5336 struct bpf_map *map;
5339 for (i = 0; i < obj->nr_maps; i++) {
5340 map = &obj->maps[i];
5342 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5345 err = init_prog_array_slots(obj, map);
5352 static int map_set_def_max_entries(struct bpf_map *map)
5354 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5357 nr_cpus = libbpf_num_possible_cpus();
5359 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5360 map->name, nr_cpus);
5363 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5364 map->def.max_entries = nr_cpus;
5371 bpf_object__create_maps(struct bpf_object *obj)
5373 struct bpf_map *map;
5374 char *cp, errmsg[STRERR_BUFSIZE];
5379 for (i = 0; i < obj->nr_maps; i++) {
5380 map = &obj->maps[i];
5382 /* To support old kernels, we skip creating global data maps
5383 * (.rodata, .data, .kconfig, etc); later on, during program
5384 * loading, if we detect that at least one of the to-be-loaded
5385 * programs is referencing any global data map, we'll error
5386 * out with program name and relocation index logged.
5387 * This approach allows to accommodate Clang emitting
5388 * unnecessary .rodata.str1.1 sections for string literals,
5389 * but also it allows to have CO-RE applications that use
5390 * global variables in some of BPF programs, but not others.
5391 * If those global variable-using programs are not loaded at
5392 * runtime due to bpf_program__set_autoload(prog, false),
5393 * bpf_object loading will succeed just fine even on old
5396 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5397 map->autocreate = false;
5399 if (!map->autocreate) {
5400 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5404 err = map_set_def_max_entries(map);
5410 if (map->pin_path) {
5411 err = bpf_object__reuse_map(map);
5413 pr_warn("map '%s': error reusing pinned map\n",
5417 if (retried && map->fd < 0) {
5418 pr_warn("map '%s': cannot find pinned map\n",
5426 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5427 map->name, map->fd);
5429 err = bpf_object__create_map(obj, map, false);
5433 pr_debug("map '%s': created successfully, fd=%d\n",
5434 map->name, map->fd);
5436 if (bpf_map__is_internal(map)) {
5437 err = bpf_object__populate_internal_map(obj, map);
5442 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5443 err = init_map_in_map_slots(obj, map);
5449 if (map->pin_path && !map->pinned) {
5450 err = bpf_map__pin(map, NULL);
5452 if (!retried && err == -EEXIST) {
5456 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5457 map->name, map->pin_path, err);
5466 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5467 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5469 for (j = 0; j < i; j++)
5470 zclose(obj->maps[j].fd);
5474 static bool bpf_core_is_flavor_sep(const char *s)
5476 /* check X___Y name pattern, where X and Y are not underscores */
5477 return s[0] != '_' && /* X */
5478 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5479 s[4] != '_'; /* Y */
5482 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5483 * before last triple underscore. Struct name part after last triple
5484 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5486 size_t bpf_core_essential_name_len(const char *name)
5488 size_t n = strlen(name);
5491 for (i = n - 5; i >= 0; i--) {
5492 if (bpf_core_is_flavor_sep(name + i))
5498 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5507 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5508 size_t local_essent_len,
5509 const struct btf *targ_btf,
5510 const char *targ_btf_name,
5512 struct bpf_core_cand_list *cands)
5514 struct bpf_core_cand *new_cands, *cand;
5515 const struct btf_type *t, *local_t;
5516 const char *targ_name, *local_name;
5517 size_t targ_essent_len;
5520 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5521 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5523 n = btf__type_cnt(targ_btf);
5524 for (i = targ_start_id; i < n; i++) {
5525 t = btf__type_by_id(targ_btf, i);
5526 if (!btf_kind_core_compat(t, local_t))
5529 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5530 if (str_is_empty(targ_name))
5533 targ_essent_len = bpf_core_essential_name_len(targ_name);
5534 if (targ_essent_len != local_essent_len)
5537 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5540 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5541 local_cand->id, btf_kind_str(local_t),
5542 local_name, i, btf_kind_str(t), targ_name,
5544 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5545 sizeof(*cands->cands));
5549 cand = &new_cands[cands->len];
5550 cand->btf = targ_btf;
5553 cands->cands = new_cands;
5559 static int load_module_btfs(struct bpf_object *obj)
5561 struct bpf_btf_info info;
5562 struct module_btf *mod_btf;
5568 if (obj->btf_modules_loaded)
5571 if (obj->gen_loader)
5574 /* don't do this again, even if we find no module BTFs */
5575 obj->btf_modules_loaded = true;
5577 /* kernel too old to support module BTFs */
5578 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5582 err = bpf_btf_get_next_id(id, &id);
5583 if (err && errno == ENOENT)
5585 if (err && errno == EPERM) {
5586 pr_debug("skipping module BTFs loading, missing privileges\n");
5591 pr_warn("failed to iterate BTF objects: %d\n", err);
5595 fd = bpf_btf_get_fd_by_id(id);
5597 if (errno == ENOENT)
5598 continue; /* expected race: BTF was unloaded */
5600 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5605 memset(&info, 0, sizeof(info));
5606 info.name = ptr_to_u64(name);
5607 info.name_len = sizeof(name);
5609 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5612 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5616 /* ignore non-module BTFs */
5617 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5622 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5623 err = libbpf_get_error(btf);
5625 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5630 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5631 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5635 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5640 mod_btf->name = strdup(name);
5641 if (!mod_btf->name) {
5655 static struct bpf_core_cand_list *
5656 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5658 struct bpf_core_cand local_cand = {};
5659 struct bpf_core_cand_list *cands;
5660 const struct btf *main_btf;
5661 const struct btf_type *local_t;
5662 const char *local_name;
5663 size_t local_essent_len;
5666 local_cand.btf = local_btf;
5667 local_cand.id = local_type_id;
5668 local_t = btf__type_by_id(local_btf, local_type_id);
5670 return ERR_PTR(-EINVAL);
5672 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5673 if (str_is_empty(local_name))
5674 return ERR_PTR(-EINVAL);
5675 local_essent_len = bpf_core_essential_name_len(local_name);
5677 cands = calloc(1, sizeof(*cands));
5679 return ERR_PTR(-ENOMEM);
5681 /* Attempt to find target candidates in vmlinux BTF first */
5682 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5683 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5687 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5691 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5692 if (obj->btf_vmlinux_override)
5695 /* now look through module BTFs, trying to still find candidates */
5696 err = load_module_btfs(obj);
5700 for (i = 0; i < obj->btf_module_cnt; i++) {
5701 err = bpf_core_add_cands(&local_cand, local_essent_len,
5702 obj->btf_modules[i].btf,
5703 obj->btf_modules[i].name,
5704 btf__type_cnt(obj->btf_vmlinux),
5712 bpf_core_free_cands(cands);
5713 return ERR_PTR(err);
5716 /* Check local and target types for compatibility. This check is used for
5717 * type-based CO-RE relocations and follow slightly different rules than
5718 * field-based relocations. This function assumes that root types were already
5719 * checked for name match. Beyond that initial root-level name check, names
5720 * are completely ignored. Compatibility rules are as follows:
5721 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5722 * kind should match for local and target types (i.e., STRUCT is not
5723 * compatible with UNION);
5724 * - for ENUMs, the size is ignored;
5725 * - for INT, size and signedness are ignored;
5726 * - for ARRAY, dimensionality is ignored, element types are checked for
5727 * compatibility recursively;
5728 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5729 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5730 * - FUNC_PROTOs are compatible if they have compatible signature: same
5731 * number of input args and compatible return and argument types.
5732 * These rules are not set in stone and probably will be adjusted as we get
5733 * more experience with using BPF CO-RE relocations.
5735 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5736 const struct btf *targ_btf, __u32 targ_id)
5738 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5741 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5742 const struct btf *targ_btf, __u32 targ_id)
5744 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5747 static size_t bpf_core_hash_fn(const long key, void *ctx)
5752 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5757 static int record_relo_core(struct bpf_program *prog,
5758 const struct bpf_core_relo *core_relo, int insn_idx)
5760 struct reloc_desc *relos, *relo;
5762 relos = libbpf_reallocarray(prog->reloc_desc,
5763 prog->nr_reloc + 1, sizeof(*relos));
5766 relo = &relos[prog->nr_reloc];
5767 relo->type = RELO_CORE;
5768 relo->insn_idx = insn_idx;
5769 relo->core_relo = core_relo;
5770 prog->reloc_desc = relos;
5775 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5777 struct reloc_desc *relo;
5780 for (i = 0; i < prog->nr_reloc; i++) {
5781 relo = &prog->reloc_desc[i];
5782 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5785 return relo->core_relo;
5791 static int bpf_core_resolve_relo(struct bpf_program *prog,
5792 const struct bpf_core_relo *relo,
5794 const struct btf *local_btf,
5795 struct hashmap *cand_cache,
5796 struct bpf_core_relo_res *targ_res)
5798 struct bpf_core_spec specs_scratch[3] = {};
5799 struct bpf_core_cand_list *cands = NULL;
5800 const char *prog_name = prog->name;
5801 const struct btf_type *local_type;
5802 const char *local_name;
5803 __u32 local_id = relo->type_id;
5806 local_type = btf__type_by_id(local_btf, local_id);
5810 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5814 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5815 !hashmap__find(cand_cache, local_id, &cands)) {
5816 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5817 if (IS_ERR(cands)) {
5818 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5819 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5820 local_name, PTR_ERR(cands));
5821 return PTR_ERR(cands);
5823 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5825 bpf_core_free_cands(cands);
5830 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5835 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5837 const struct btf_ext_info_sec *sec;
5838 struct bpf_core_relo_res targ_res;
5839 const struct bpf_core_relo *rec;
5840 const struct btf_ext_info *seg;
5841 struct hashmap_entry *entry;
5842 struct hashmap *cand_cache = NULL;
5843 struct bpf_program *prog;
5844 struct bpf_insn *insn;
5845 const char *sec_name;
5846 int i, err = 0, insn_idx, sec_idx, sec_num;
5848 if (obj->btf_ext->core_relo_info.len == 0)
5851 if (targ_btf_path) {
5852 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5853 err = libbpf_get_error(obj->btf_vmlinux_override);
5855 pr_warn("failed to parse target BTF: %d\n", err);
5860 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5861 if (IS_ERR(cand_cache)) {
5862 err = PTR_ERR(cand_cache);
5866 seg = &obj->btf_ext->core_relo_info;
5868 for_each_btf_ext_sec(seg, sec) {
5869 sec_idx = seg->sec_idxs[sec_num];
5872 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5873 if (str_is_empty(sec_name)) {
5878 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5880 for_each_btf_ext_rec(seg, sec, i, rec) {
5881 if (rec->insn_off % BPF_INSN_SZ)
5883 insn_idx = rec->insn_off / BPF_INSN_SZ;
5884 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5886 /* When __weak subprog is "overridden" by another instance
5887 * of the subprog from a different object file, linker still
5888 * appends all the .BTF.ext info that used to belong to that
5889 * eliminated subprogram.
5890 * This is similar to what x86-64 linker does for relocations.
5891 * So just ignore such relocations just like we ignore
5892 * subprog instructions when discovering subprograms.
5894 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5895 sec_name, i, insn_idx);
5898 /* no need to apply CO-RE relocation if the program is
5899 * not going to be loaded
5901 if (!prog->autoload)
5904 /* adjust insn_idx from section frame of reference to the local
5905 * program's frame of reference; (sub-)program code is not yet
5906 * relocated, so it's enough to just subtract in-section offset
5908 insn_idx = insn_idx - prog->sec_insn_off;
5909 if (insn_idx >= prog->insns_cnt)
5911 insn = &prog->insns[insn_idx];
5913 err = record_relo_core(prog, rec, insn_idx);
5915 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5916 prog->name, i, err);
5920 if (prog->obj->gen_loader)
5923 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5925 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5926 prog->name, i, err);
5930 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5932 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5933 prog->name, i, insn_idx, err);
5940 /* obj->btf_vmlinux and module BTFs are freed after object load */
5941 btf__free(obj->btf_vmlinux_override);
5942 obj->btf_vmlinux_override = NULL;
5944 if (!IS_ERR_OR_NULL(cand_cache)) {
5945 hashmap__for_each_entry(cand_cache, entry, i) {
5946 bpf_core_free_cands(entry->pvalue);
5948 hashmap__free(cand_cache);
5953 /* base map load ldimm64 special constant, used also for log fixup logic */
5954 #define POISON_LDIMM64_MAP_BASE 2001000000
5955 #define POISON_LDIMM64_MAP_PFX "200100"
5957 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5958 int insn_idx, struct bpf_insn *insn,
5959 int map_idx, const struct bpf_map *map)
5963 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5964 prog->name, relo_idx, insn_idx, map_idx, map->name);
5966 /* we turn single ldimm64 into two identical invalid calls */
5967 for (i = 0; i < 2; i++) {
5968 insn->code = BPF_JMP | BPF_CALL;
5972 /* if this instruction is reachable (not a dead code),
5973 * verifier will complain with something like:
5974 * invalid func unknown#2001000123
5975 * where lower 123 is map index into obj->maps[] array
5977 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5983 /* unresolved kfunc call special constant, used also for log fixup logic */
5984 #define POISON_CALL_KFUNC_BASE 2002000000
5985 #define POISON_CALL_KFUNC_PFX "2002"
5987 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5988 int insn_idx, struct bpf_insn *insn,
5989 int ext_idx, const struct extern_desc *ext)
5991 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5992 prog->name, relo_idx, insn_idx, ext->name);
5994 /* we turn kfunc call into invalid helper call with identifiable constant */
5995 insn->code = BPF_JMP | BPF_CALL;
5999 /* if this instruction is reachable (not a dead code),
6000 * verifier will complain with something like:
6001 * invalid func unknown#2001000123
6002 * where lower 123 is extern index into obj->externs[] array
6004 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6007 /* Relocate data references within program code:
6009 * - global variable references;
6010 * - extern references.
6013 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6017 for (i = 0; i < prog->nr_reloc; i++) {
6018 struct reloc_desc *relo = &prog->reloc_desc[i];
6019 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6020 const struct bpf_map *map;
6021 struct extern_desc *ext;
6023 switch (relo->type) {
6025 map = &obj->maps[relo->map_idx];
6026 if (obj->gen_loader) {
6027 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6028 insn[0].imm = relo->map_idx;
6029 } else if (map->autocreate) {
6030 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6031 insn[0].imm = map->fd;
6033 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6034 relo->map_idx, map);
6038 map = &obj->maps[relo->map_idx];
6039 insn[1].imm = insn[0].imm + relo->sym_off;
6040 if (obj->gen_loader) {
6041 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6042 insn[0].imm = relo->map_idx;
6043 } else if (map->autocreate) {
6044 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6045 insn[0].imm = map->fd;
6047 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6048 relo->map_idx, map);
6051 case RELO_EXTERN_LD64:
6052 ext = &obj->externs[relo->ext_idx];
6053 if (ext->type == EXT_KCFG) {
6054 if (obj->gen_loader) {
6055 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6056 insn[0].imm = obj->kconfig_map_idx;
6058 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6059 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6061 insn[1].imm = ext->kcfg.data_off;
6062 } else /* EXT_KSYM */ {
6063 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6064 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6065 insn[0].imm = ext->ksym.kernel_btf_id;
6066 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6067 } else { /* typeless ksyms or unresolved typed ksyms */
6068 insn[0].imm = (__u32)ext->ksym.addr;
6069 insn[1].imm = ext->ksym.addr >> 32;
6073 case RELO_EXTERN_CALL:
6074 ext = &obj->externs[relo->ext_idx];
6075 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6077 insn[0].imm = ext->ksym.kernel_btf_id;
6078 insn[0].off = ext->ksym.btf_fd_idx;
6079 } else { /* unresolved weak kfunc call */
6080 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6081 relo->ext_idx, ext);
6084 case RELO_SUBPROG_ADDR:
6085 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6086 pr_warn("prog '%s': relo #%d: bad insn\n",
6090 /* handled already */
6093 /* handled already */
6096 /* will be handled by bpf_program_record_relos() */
6099 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6100 prog->name, i, relo->type);
6108 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6109 const struct bpf_program *prog,
6110 const struct btf_ext_info *ext_info,
6111 void **prog_info, __u32 *prog_rec_cnt,
6114 void *copy_start = NULL, *copy_end = NULL;
6115 void *rec, *rec_end, *new_prog_info;
6116 const struct btf_ext_info_sec *sec;
6117 size_t old_sz, new_sz;
6118 int i, sec_num, sec_idx, off_adj;
6121 for_each_btf_ext_sec(ext_info, sec) {
6122 sec_idx = ext_info->sec_idxs[sec_num];
6124 if (prog->sec_idx != sec_idx)
6127 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6128 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6130 if (insn_off < prog->sec_insn_off)
6132 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6137 copy_end = rec + ext_info->rec_size;
6143 /* append func/line info of a given (sub-)program to the main
6144 * program func/line info
6146 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6147 new_sz = old_sz + (copy_end - copy_start);
6148 new_prog_info = realloc(*prog_info, new_sz);
6151 *prog_info = new_prog_info;
6152 *prog_rec_cnt = new_sz / ext_info->rec_size;
6153 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6155 /* Kernel instruction offsets are in units of 8-byte
6156 * instructions, while .BTF.ext instruction offsets generated
6157 * by Clang are in units of bytes. So convert Clang offsets
6158 * into kernel offsets and adjust offset according to program
6159 * relocated position.
6161 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6162 rec = new_prog_info + old_sz;
6163 rec_end = new_prog_info + new_sz;
6164 for (; rec < rec_end; rec += ext_info->rec_size) {
6165 __u32 *insn_off = rec;
6167 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6169 *prog_rec_sz = ext_info->rec_size;
6177 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6178 struct bpf_program *main_prog,
6179 const struct bpf_program *prog)
6183 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6184 * support func/line info
6186 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6189 /* only attempt func info relocation if main program's func_info
6190 * relocation was successful
6192 if (main_prog != prog && !main_prog->func_info)
6195 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6196 &main_prog->func_info,
6197 &main_prog->func_info_cnt,
6198 &main_prog->func_info_rec_size);
6200 if (err != -ENOENT) {
6201 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6205 if (main_prog->func_info) {
6207 * Some info has already been found but has problem
6208 * in the last btf_ext reloc. Must have to error out.
6210 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6213 /* Have problem loading the very first info. Ignore the rest. */
6214 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6219 /* don't relocate line info if main program's relocation failed */
6220 if (main_prog != prog && !main_prog->line_info)
6223 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6224 &main_prog->line_info,
6225 &main_prog->line_info_cnt,
6226 &main_prog->line_info_rec_size);
6228 if (err != -ENOENT) {
6229 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6233 if (main_prog->line_info) {
6235 * Some info has already been found but has problem
6236 * in the last btf_ext reloc. Must have to error out.
6238 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6241 /* Have problem loading the very first info. Ignore the rest. */
6242 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6248 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6250 size_t insn_idx = *(const size_t *)key;
6251 const struct reloc_desc *relo = elem;
6253 if (insn_idx == relo->insn_idx)
6255 return insn_idx < relo->insn_idx ? -1 : 1;
6258 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6260 if (!prog->nr_reloc)
6262 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6263 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6266 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6268 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6269 struct reloc_desc *relos;
6272 if (main_prog == subprog)
6274 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6275 /* if new count is zero, reallocarray can return a valid NULL result;
6276 * in this case the previous pointer will be freed, so we *have to*
6277 * reassign old pointer to the new value (even if it's NULL)
6279 if (!relos && new_cnt)
6281 if (subprog->nr_reloc)
6282 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6283 sizeof(*relos) * subprog->nr_reloc);
6285 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6286 relos[i].insn_idx += subprog->sub_insn_off;
6287 /* After insn_idx adjustment the 'relos' array is still sorted
6288 * by insn_idx and doesn't break bsearch.
6290 main_prog->reloc_desc = relos;
6291 main_prog->nr_reloc = new_cnt;
6296 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6297 struct bpf_program *subprog)
6299 struct bpf_insn *insns;
6303 subprog->sub_insn_off = main_prog->insns_cnt;
6305 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6306 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6308 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6311 main_prog->insns = insns;
6312 main_prog->insns_cnt = new_cnt;
6314 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6315 subprog->insns_cnt * sizeof(*insns));
6317 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6318 main_prog->name, subprog->insns_cnt, subprog->name);
6320 /* The subprog insns are now appended. Append its relos too. */
6321 err = append_subprog_relos(main_prog, subprog);
6328 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6329 struct bpf_program *prog)
6331 size_t sub_insn_idx, insn_idx;
6332 struct bpf_program *subprog;
6333 struct reloc_desc *relo;
6334 struct bpf_insn *insn;
6337 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6341 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6342 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6343 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6346 relo = find_prog_insn_relo(prog, insn_idx);
6347 if (relo && relo->type == RELO_EXTERN_CALL)
6348 /* kfunc relocations will be handled later
6349 * in bpf_object__relocate_data()
6352 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6353 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6354 prog->name, insn_idx, relo->type);
6355 return -LIBBPF_ERRNO__RELOC;
6358 /* sub-program instruction index is a combination of
6359 * an offset of a symbol pointed to by relocation and
6360 * call instruction's imm field; for global functions,
6361 * call always has imm = -1, but for static functions
6362 * relocation is against STT_SECTION and insn->imm
6363 * points to a start of a static function
6365 * for subprog addr relocation, the relo->sym_off + insn->imm is
6366 * the byte offset in the corresponding section.
6368 if (relo->type == RELO_CALL)
6369 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6371 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6372 } else if (insn_is_pseudo_func(insn)) {
6374 * RELO_SUBPROG_ADDR relo is always emitted even if both
6375 * functions are in the same section, so it shouldn't reach here.
6377 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6378 prog->name, insn_idx);
6379 return -LIBBPF_ERRNO__RELOC;
6381 /* if subprogram call is to a static function within
6382 * the same ELF section, there won't be any relocation
6383 * emitted, but it also means there is no additional
6384 * offset necessary, insns->imm is relative to
6385 * instruction's original position within the section
6387 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6390 /* we enforce that sub-programs should be in .text section */
6391 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6393 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6395 return -LIBBPF_ERRNO__RELOC;
6398 /* if it's the first call instruction calling into this
6399 * subprogram (meaning this subprog hasn't been processed
6400 * yet) within the context of current main program:
6401 * - append it at the end of main program's instructions blog;
6402 * - process is recursively, while current program is put on hold;
6403 * - if that subprogram calls some other not yet processes
6404 * subprogram, same thing will happen recursively until
6405 * there are no more unprocesses subprograms left to append
6408 if (subprog->sub_insn_off == 0) {
6409 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6412 err = bpf_object__reloc_code(obj, main_prog, subprog);
6417 /* main_prog->insns memory could have been re-allocated, so
6418 * calculate pointer again
6420 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6421 /* calculate correct instruction position within current main
6422 * prog; each main prog can have a different set of
6423 * subprograms appended (potentially in different order as
6424 * well), so position of any subprog can be different for
6425 * different main programs
6427 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6429 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6430 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6437 * Relocate sub-program calls.
6439 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6440 * main prog) is processed separately. For each subprog (non-entry functions,
6441 * that can be called from either entry progs or other subprogs) gets their
6442 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6443 * hasn't been yet appended and relocated within current main prog. Once its
6444 * relocated, sub_insn_off will point at the position within current main prog
6445 * where given subprog was appended. This will further be used to relocate all
6446 * the call instructions jumping into this subprog.
6448 * We start with main program and process all call instructions. If the call
6449 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6450 * is zero), subprog instructions are appended at the end of main program's
6451 * instruction array. Then main program is "put on hold" while we recursively
6452 * process newly appended subprogram. If that subprogram calls into another
6453 * subprogram that hasn't been appended, new subprogram is appended again to
6454 * the *main* prog's instructions (subprog's instructions are always left
6455 * untouched, as they need to be in unmodified state for subsequent main progs
6456 * and subprog instructions are always sent only as part of a main prog) and
6457 * the process continues recursively. Once all the subprogs called from a main
6458 * prog or any of its subprogs are appended (and relocated), all their
6459 * positions within finalized instructions array are known, so it's easy to
6460 * rewrite call instructions with correct relative offsets, corresponding to
6461 * desired target subprog.
6463 * Its important to realize that some subprogs might not be called from some
6464 * main prog and any of its called/used subprogs. Those will keep their
6465 * subprog->sub_insn_off as zero at all times and won't be appended to current
6466 * main prog and won't be relocated within the context of current main prog.
6467 * They might still be used from other main progs later.
6469 * Visually this process can be shown as below. Suppose we have two main
6470 * programs mainA and mainB and BPF object contains three subprogs: subA,
6471 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6472 * subC both call subB:
6474 * +--------+ +-------+
6476 * +--+---+ +--+-+-+ +---+--+
6477 * | subA | | subB | | subC |
6478 * +--+---+ +------+ +---+--+
6481 * +---+-------+ +------+----+
6482 * | mainA | | mainB |
6483 * +-----------+ +-----------+
6485 * We'll start relocating mainA, will find subA, append it and start
6486 * processing sub A recursively:
6488 * +-----------+------+
6490 * +-----------+------+
6492 * At this point we notice that subB is used from subA, so we append it and
6493 * relocate (there are no further subcalls from subB):
6495 * +-----------+------+------+
6496 * | mainA | subA | subB |
6497 * +-----------+------+------+
6499 * At this point, we relocate subA calls, then go one level up and finish with
6500 * relocatin mainA calls. mainA is done.
6502 * For mainB process is similar but results in different order. We start with
6503 * mainB and skip subA and subB, as mainB never calls them (at least
6504 * directly), but we see subC is needed, so we append and start processing it:
6506 * +-----------+------+
6508 * +-----------+------+
6509 * Now we see subC needs subB, so we go back to it, append and relocate it:
6511 * +-----------+------+------+
6512 * | mainB | subC | subB |
6513 * +-----------+------+------+
6515 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6518 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6520 struct bpf_program *subprog;
6523 /* mark all subprogs as not relocated (yet) within the context of
6524 * current main program
6526 for (i = 0; i < obj->nr_programs; i++) {
6527 subprog = &obj->programs[i];
6528 if (!prog_is_subprog(obj, subprog))
6531 subprog->sub_insn_off = 0;
6534 err = bpf_object__reloc_code(obj, prog, prog);
6542 bpf_object__free_relocs(struct bpf_object *obj)
6544 struct bpf_program *prog;
6547 /* free up relocation descriptors */
6548 for (i = 0; i < obj->nr_programs; i++) {
6549 prog = &obj->programs[i];
6550 zfree(&prog->reloc_desc);
6555 static int cmp_relocs(const void *_a, const void *_b)
6557 const struct reloc_desc *a = _a;
6558 const struct reloc_desc *b = _b;
6560 if (a->insn_idx != b->insn_idx)
6561 return a->insn_idx < b->insn_idx ? -1 : 1;
6563 /* no two relocations should have the same insn_idx, but ... */
6564 if (a->type != b->type)
6565 return a->type < b->type ? -1 : 1;
6570 static void bpf_object__sort_relos(struct bpf_object *obj)
6574 for (i = 0; i < obj->nr_programs; i++) {
6575 struct bpf_program *p = &obj->programs[i];
6580 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6584 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6586 const char *str = "exception_callback:";
6587 size_t pfx_len = strlen(str);
6590 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6593 n = btf__type_cnt(obj->btf);
6594 for (i = 1; i < n; i++) {
6598 t = btf_type_by_id(obj->btf, i);
6599 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6602 name = btf__str_by_offset(obj->btf, t->name_off);
6603 if (strncmp(name, str, pfx_len) != 0)
6606 t = btf_type_by_id(obj->btf, t->type);
6607 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6608 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6612 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6614 /* Multiple callbacks are specified for the same prog,
6615 * the verifier will eventually return an error for this
6616 * case, hence simply skip appending a subprog.
6618 if (prog->exception_cb_idx >= 0) {
6619 prog->exception_cb_idx = -1;
6624 if (str_is_empty(name)) {
6625 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6630 for (j = 0; j < obj->nr_programs; j++) {
6631 struct bpf_program *subprog = &obj->programs[j];
6633 if (!prog_is_subprog(obj, subprog))
6635 if (strcmp(name, subprog->name) != 0)
6637 /* Enforce non-hidden, as from verifier point of
6638 * view it expects global functions, whereas the
6639 * mark_btf_static fixes up linkage as static.
6641 if (!subprog->sym_global || subprog->mark_btf_static) {
6642 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6643 prog->name, subprog->name);
6646 /* Let's see if we already saw a static exception callback with the same name */
6647 if (prog->exception_cb_idx >= 0) {
6648 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6649 prog->name, subprog->name);
6652 prog->exception_cb_idx = j;
6656 if (prog->exception_cb_idx >= 0)
6659 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6667 enum bpf_prog_type prog_type;
6668 const char *ctx_name;
6669 } global_ctx_map[] = {
6670 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6671 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6672 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6673 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6674 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6675 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6676 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6677 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6678 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6679 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6680 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6681 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6682 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6683 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6684 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6685 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6686 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6687 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6688 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6689 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6690 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6691 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6692 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6693 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6694 { BPF_PROG_TYPE_XDP, "xdp_md" },
6695 /* all other program types don't have "named" context structs */
6698 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6699 const char *subprog_name, int arg_idx,
6700 int arg_type_id, const char *ctx_name)
6702 const struct btf_type *t;
6705 /* check if existing parameter already matches verifier expectations */
6706 t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6710 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6711 * and perf_event programs, so check this case early on and forget
6712 * about it for subsequent checks
6714 while (btf_is_mod(t))
6715 t = btf__type_by_id(btf, t->type);
6716 if (btf_is_typedef(t) &&
6717 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6718 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6719 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6720 return false; /* canonical type for kprobe/perf_event */
6723 /* now we can ignore typedefs moving forward */
6724 t = skip_mods_and_typedefs(btf, t->type, NULL);
6726 /* if it's `void *`, definitely fix up BTF info */
6730 /* if it's already proper canonical type, no need to fix up */
6731 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6732 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6736 switch (prog->type) {
6737 case BPF_PROG_TYPE_KPROBE:
6738 case BPF_PROG_TYPE_PERF_EVENT:
6739 /* `struct pt_regs *` is expected, but we need to fix up */
6740 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6743 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6744 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6745 /* allow u64* as ctx */
6746 if (btf_is_int(t) && t->size == 8)
6754 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6755 prog->name, subprog_name, arg_idx, ctx_name);
6759 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6761 int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6762 int i, err, arg_cnt, fn_name_off, linkage;
6763 struct btf_type *fn_t, *fn_proto_t, *t;
6764 struct btf_param *p;
6766 /* caller already validated FUNC -> FUNC_PROTO validity */
6767 fn_t = btf_type_by_id(btf, orig_fn_id);
6768 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6770 /* Note that each btf__add_xxx() operation invalidates
6771 * all btf_type and string pointers, so we need to be
6772 * very careful when cloning BTF types. BTF type
6773 * pointers have to be always refetched. And to avoid
6774 * problems with invalidated string pointers, we
6775 * add empty strings initially, then just fix up
6776 * name_off offsets in place. Offsets are stable for
6777 * existing strings, so that works out.
6779 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6780 linkage = btf_func_linkage(fn_t);
6781 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6782 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6783 arg_cnt = btf_vlen(fn_proto_t);
6785 /* clone FUNC_PROTO and its params */
6786 fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6787 if (fn_proto_id < 0)
6790 for (i = 0; i < arg_cnt; i++) {
6793 /* copy original parameter data */
6794 t = btf_type_by_id(btf, orig_proto_id);
6795 p = &btf_params(t)[i];
6796 name_off = p->name_off;
6798 err = btf__add_func_param(btf, "", p->type);
6802 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6803 p = &btf_params(fn_proto_t)[i];
6804 p->name_off = name_off; /* use remembered str offset */
6807 /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6808 * entry program's name as a placeholder, which we replace immediately
6809 * with original name_off
6811 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6815 fn_t = btf_type_by_id(btf, fn_id);
6816 fn_t->name_off = fn_name_off; /* reuse original string */
6821 static int probe_kern_arg_ctx_tag(void)
6823 /* To minimize merge conflicts with BPF token series that refactors
6824 * feature detection code a lot, we don't integrate
6825 * probe_kern_arg_ctx_tag() into kernel_supports() feature-detection
6826 * framework yet, doing our own caching internally.
6827 * This will be cleaned up a bit later when bpf/bpf-next trees settle.
6829 static int cached_result = -1;
6830 static const char strs[] = "\0a\0b\0arg:ctx\0";
6831 const __u32 types[] = {
6833 BTF_TYPE_INT_ENC(1 /* "a" */, BTF_INT_SIGNED, 0, 32, 4),
6834 /* [2] PTR -> VOID */
6835 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 0),
6836 /* [3] FUNC_PROTO `int(void *a)` */
6837 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1),
6838 BTF_PARAM_ENC(1 /* "a" */, 2),
6839 /* [4] FUNC 'a' -> FUNC_PROTO (main prog) */
6840 BTF_TYPE_ENC(1 /* "a" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 3),
6841 /* [5] FUNC_PROTO `int(void *b __arg_ctx)` */
6842 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1),
6843 BTF_PARAM_ENC(3 /* "b" */, 2),
6844 /* [6] FUNC 'b' -> FUNC_PROTO (subprog) */
6845 BTF_TYPE_ENC(3 /* "b" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 5),
6846 /* [7] DECL_TAG 'arg:ctx' -> func 'b' arg 'b' */
6847 BTF_TYPE_DECL_TAG_ENC(5 /* "arg:ctx" */, 6, 0),
6849 const struct bpf_insn insns[] = {
6853 /* global subprog */
6854 BPF_EMIT_CALL(BPF_FUNC_get_func_ip), /* needs PTR_TO_CTX */
6857 const struct bpf_func_info_min func_infos[] = {
6858 { 0, 4 }, /* main prog -> FUNC 'a' */
6859 { 2, 6 }, /* subprog -> FUNC 'b' */
6861 LIBBPF_OPTS(bpf_prog_load_opts, opts);
6862 int prog_fd, btf_fd, insn_cnt = ARRAY_SIZE(insns);
6864 if (cached_result >= 0)
6865 return cached_result;
6867 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
6871 opts.prog_btf_fd = btf_fd;
6872 opts.func_info = &func_infos;
6873 opts.func_info_cnt = ARRAY_SIZE(func_infos);
6874 opts.func_info_rec_size = sizeof(func_infos[0]);
6876 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, "det_arg_ctx",
6877 "GPL", insns, insn_cnt, &opts);
6880 cached_result = probe_fd(prog_fd);
6881 return cached_result;
6884 /* Check if main program or global subprog's function prototype has `arg:ctx`
6885 * argument tags, and, if necessary, substitute correct type to match what BPF
6886 * verifier would expect, taking into account specific program type. This
6887 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6888 * have a native support for it in the verifier, making user's life much
6891 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6893 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6894 struct bpf_func_info_min *func_rec;
6895 struct btf_type *fn_t, *fn_proto_t;
6896 struct btf *btf = obj->btf;
6897 const struct btf_type *t;
6898 struct btf_param *p;
6899 int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6900 int i, n, arg_idx, arg_cnt, err, rec_idx;
6903 /* no .BTF.ext, no problem */
6904 if (!obj->btf_ext || !prog->func_info)
6907 /* don't do any fix ups if kernel natively supports __arg_ctx */
6908 if (probe_kern_arg_ctx_tag() > 0)
6911 /* some BPF program types just don't have named context structs, so
6912 * this fallback mechanism doesn't work for them
6914 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6915 if (global_ctx_map[i].prog_type != prog->type)
6917 ctx_name = global_ctx_map[i].ctx_name;
6923 /* remember original func BTF IDs to detect if we already cloned them */
6924 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6927 for (i = 0; i < prog->func_info_cnt; i++) {
6928 func_rec = prog->func_info + prog->func_info_rec_size * i;
6929 orig_ids[i] = func_rec->type_id;
6932 /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6933 * of our subprogs; if yes and subprog is global and needs adjustment,
6934 * clone and adjust FUNC -> FUNC_PROTO combo
6936 for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6937 /* only DECL_TAG with "arg:ctx" value are interesting */
6938 t = btf__type_by_id(btf, i);
6939 if (!btf_is_decl_tag(t))
6941 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6944 /* only global funcs need adjustment, if at all */
6945 orig_fn_id = t->type;
6946 fn_t = btf_type_by_id(btf, orig_fn_id);
6947 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6950 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6951 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6952 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6955 /* find corresponding func_info record */
6957 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6958 if (orig_ids[rec_idx] == t->type) {
6959 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6963 /* current main program doesn't call into this subprog */
6967 /* some more sanity checking of DECL_TAG */
6968 arg_cnt = btf_vlen(fn_proto_t);
6969 arg_idx = btf_decl_tag(t)->component_idx;
6970 if (arg_idx < 0 || arg_idx >= arg_cnt)
6973 /* check if we should fix up argument type */
6974 p = &btf_params(fn_proto_t)[arg_idx];
6975 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6976 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6979 /* clone fn/fn_proto, unless we already did it for another arg */
6980 if (func_rec->type_id == orig_fn_id) {
6983 fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6989 /* point func_info record to a cloned FUNC type */
6990 func_rec->type_id = fn_id;
6993 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6994 * we do it just once per main BPF program, as all global
6995 * funcs share the same program type, so need only PTR ->
6999 struct_id = btf__add_struct(btf, ctx_name, 0);
7000 ptr_id = btf__add_ptr(btf, struct_id);
7001 if (ptr_id < 0 || struct_id < 0) {
7007 /* for completeness, clone DECL_TAG and point it to cloned param */
7008 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7014 /* all the BTF manipulations invalidated pointers, refetch them */
7015 fn_t = btf_type_by_id(btf, func_rec->type_id);
7016 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7018 /* fix up type ID pointed to by param */
7019 p = &btf_params(fn_proto_t)[arg_idx];
7030 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7032 struct bpf_program *prog;
7037 err = bpf_object__relocate_core(obj, targ_btf_path);
7039 pr_warn("failed to perform CO-RE relocations: %d\n",
7043 bpf_object__sort_relos(obj);
7046 /* Before relocating calls pre-process relocations and mark
7047 * few ld_imm64 instructions that points to subprogs.
7048 * Otherwise bpf_object__reloc_code() later would have to consider
7049 * all ld_imm64 insns as relocation candidates. That would
7050 * reduce relocation speed, since amount of find_prog_insn_relo()
7051 * would increase and most of them will fail to find a relo.
7053 for (i = 0; i < obj->nr_programs; i++) {
7054 prog = &obj->programs[i];
7055 for (j = 0; j < prog->nr_reloc; j++) {
7056 struct reloc_desc *relo = &prog->reloc_desc[j];
7057 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7059 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7060 if (relo->type == RELO_SUBPROG_ADDR)
7061 insn[0].src_reg = BPF_PSEUDO_FUNC;
7065 /* relocate subprogram calls and append used subprograms to main
7066 * programs; each copy of subprogram code needs to be relocated
7067 * differently for each main program, because its code location might
7069 * Append subprog relos to main programs to allow data relos to be
7070 * processed after text is completely relocated.
7072 for (i = 0; i < obj->nr_programs; i++) {
7073 prog = &obj->programs[i];
7074 /* sub-program's sub-calls are relocated within the context of
7075 * its main program only
7077 if (prog_is_subprog(obj, prog))
7079 if (!prog->autoload)
7082 err = bpf_object__relocate_calls(obj, prog);
7084 pr_warn("prog '%s': failed to relocate calls: %d\n",
7089 err = bpf_prog_assign_exc_cb(obj, prog);
7092 /* Now, also append exception callback if it has not been done already. */
7093 if (prog->exception_cb_idx >= 0) {
7094 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7096 /* Calling exception callback directly is disallowed, which the
7097 * verifier will reject later. In case it was processed already,
7098 * we can skip this step, otherwise for all other valid cases we
7099 * have to append exception callback now.
7101 if (subprog->sub_insn_off == 0) {
7102 err = bpf_object__append_subprog_code(obj, prog, subprog);
7105 err = bpf_object__reloc_code(obj, prog, subprog);
7111 for (i = 0; i < obj->nr_programs; i++) {
7112 prog = &obj->programs[i];
7113 if (prog_is_subprog(obj, prog))
7115 if (!prog->autoload)
7118 /* Process data relos for main programs */
7119 err = bpf_object__relocate_data(obj, prog);
7121 pr_warn("prog '%s': failed to relocate data references: %d\n",
7126 /* Fix up .BTF.ext information, if necessary */
7127 err = bpf_program_fixup_func_info(obj, prog);
7129 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7138 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7139 Elf64_Shdr *shdr, Elf_Data *data);
7141 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7142 Elf64_Shdr *shdr, Elf_Data *data)
7144 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7145 int i, j, nrels, new_sz;
7146 const struct btf_var_secinfo *vi = NULL;
7147 const struct btf_type *sec, *var, *def;
7148 struct bpf_map *map = NULL, *targ_map = NULL;
7149 struct bpf_program *targ_prog = NULL;
7150 bool is_prog_array, is_map_in_map;
7151 const struct btf_member *member;
7152 const char *name, *mname, *type;
7158 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7160 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7164 nrels = shdr->sh_size / shdr->sh_entsize;
7165 for (i = 0; i < nrels; i++) {
7166 rel = elf_rel_by_idx(data, i);
7168 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7169 return -LIBBPF_ERRNO__FORMAT;
7172 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7174 pr_warn(".maps relo #%d: symbol %zx not found\n",
7175 i, (size_t)ELF64_R_SYM(rel->r_info));
7176 return -LIBBPF_ERRNO__FORMAT;
7178 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7180 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7181 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7182 (size_t)rel->r_offset, sym->st_name, name);
7184 for (j = 0; j < obj->nr_maps; j++) {
7185 map = &obj->maps[j];
7186 if (map->sec_idx != obj->efile.btf_maps_shndx)
7189 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7190 if (vi->offset <= rel->r_offset &&
7191 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7194 if (j == obj->nr_maps) {
7195 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7196 i, name, (size_t)rel->r_offset);
7200 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7201 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7202 type = is_map_in_map ? "map" : "prog";
7203 if (is_map_in_map) {
7204 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7205 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7207 return -LIBBPF_ERRNO__RELOC;
7209 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7210 map->def.key_size != sizeof(int)) {
7211 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7212 i, map->name, sizeof(int));
7215 targ_map = bpf_object__find_map_by_name(obj, name);
7217 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7221 } else if (is_prog_array) {
7222 targ_prog = bpf_object__find_program_by_name(obj, name);
7224 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7228 if (targ_prog->sec_idx != sym->st_shndx ||
7229 targ_prog->sec_insn_off * 8 != sym->st_value ||
7230 prog_is_subprog(obj, targ_prog)) {
7231 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7233 return -LIBBPF_ERRNO__RELOC;
7239 var = btf__type_by_id(obj->btf, vi->type);
7240 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7241 if (btf_vlen(def) == 0)
7243 member = btf_members(def) + btf_vlen(def) - 1;
7244 mname = btf__name_by_offset(obj->btf, member->name_off);
7245 if (strcmp(mname, "values"))
7248 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7249 if (rel->r_offset - vi->offset < moff)
7252 moff = rel->r_offset - vi->offset - moff;
7253 /* here we use BPF pointer size, which is always 64 bit, as we
7254 * are parsing ELF that was built for BPF target
7256 if (moff % bpf_ptr_sz)
7259 if (moff >= map->init_slots_sz) {
7261 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7264 map->init_slots = tmp;
7265 memset(map->init_slots + map->init_slots_sz, 0,
7266 (new_sz - map->init_slots_sz) * host_ptr_sz);
7267 map->init_slots_sz = new_sz;
7269 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7271 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7272 i, map->name, moff, type, name);
7278 static int bpf_object__collect_relos(struct bpf_object *obj)
7282 for (i = 0; i < obj->efile.sec_cnt; i++) {
7283 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7288 if (sec_desc->sec_type != SEC_RELO)
7291 shdr = sec_desc->shdr;
7292 data = sec_desc->data;
7293 idx = shdr->sh_info;
7295 if (shdr->sh_type != SHT_REL) {
7296 pr_warn("internal error at %d\n", __LINE__);
7297 return -LIBBPF_ERRNO__INTERNAL;
7300 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
7301 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7302 else if (idx == obj->efile.btf_maps_shndx)
7303 err = bpf_object__collect_map_relos(obj, shdr, data);
7305 err = bpf_object__collect_prog_relos(obj, shdr, data);
7310 bpf_object__sort_relos(obj);
7314 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7316 if (BPF_CLASS(insn->code) == BPF_JMP &&
7317 BPF_OP(insn->code) == BPF_CALL &&
7318 BPF_SRC(insn->code) == BPF_K &&
7319 insn->src_reg == 0 &&
7320 insn->dst_reg == 0) {
7321 *func_id = insn->imm;
7327 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7329 struct bpf_insn *insn = prog->insns;
7330 enum bpf_func_id func_id;
7333 if (obj->gen_loader)
7336 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7337 if (!insn_is_helper_call(insn, &func_id))
7340 /* on kernels that don't yet support
7341 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7342 * to bpf_probe_read() which works well for old kernels
7345 case BPF_FUNC_probe_read_kernel:
7346 case BPF_FUNC_probe_read_user:
7347 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7348 insn->imm = BPF_FUNC_probe_read;
7350 case BPF_FUNC_probe_read_kernel_str:
7351 case BPF_FUNC_probe_read_user_str:
7352 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7353 insn->imm = BPF_FUNC_probe_read_str;
7362 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7363 int *btf_obj_fd, int *btf_type_id);
7365 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7366 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7367 struct bpf_prog_load_opts *opts, long cookie)
7369 enum sec_def_flags def = cookie;
7371 /* old kernels might not support specifying expected_attach_type */
7372 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7373 opts->expected_attach_type = 0;
7375 if (def & SEC_SLEEPABLE)
7376 opts->prog_flags |= BPF_F_SLEEPABLE;
7378 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7379 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7381 /* special check for usdt to use uprobe_multi link */
7382 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7383 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7385 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7386 int btf_obj_fd = 0, btf_type_id = 0, err;
7387 const char *attach_name;
7389 attach_name = strchr(prog->sec_name, '/');
7391 /* if BPF program is annotated with just SEC("fentry")
7392 * (or similar) without declaratively specifying
7393 * target, then it is expected that target will be
7394 * specified with bpf_program__set_attach_target() at
7395 * runtime before BPF object load step. If not, then
7396 * there is nothing to load into the kernel as BPF
7397 * verifier won't be able to validate BPF program
7398 * correctness anyways.
7400 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7404 attach_name++; /* skip over / */
7406 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7410 /* cache resolved BTF FD and BTF type ID in the prog */
7411 prog->attach_btf_obj_fd = btf_obj_fd;
7412 prog->attach_btf_id = btf_type_id;
7414 /* but by now libbpf common logic is not utilizing
7415 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7416 * this callback is called after opts were populated by
7417 * libbpf, so this callback has to update opts explicitly here
7419 opts->attach_btf_obj_fd = btf_obj_fd;
7420 opts->attach_btf_id = btf_type_id;
7425 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7427 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7428 struct bpf_insn *insns, int insns_cnt,
7429 const char *license, __u32 kern_version, int *prog_fd)
7431 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7432 const char *prog_name = NULL;
7433 char *cp, errmsg[STRERR_BUFSIZE];
7434 size_t log_buf_size = 0;
7435 char *log_buf = NULL, *tmp;
7436 int btf_fd, ret, err;
7437 bool own_log_buf = true;
7438 __u32 log_level = prog->log_level;
7440 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7442 * The program type must be set. Most likely we couldn't find a proper
7443 * section definition at load time, and thus we didn't infer the type.
7445 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7446 prog->name, prog->sec_name);
7450 if (!insns || !insns_cnt)
7453 if (kernel_supports(obj, FEAT_PROG_NAME))
7454 prog_name = prog->name;
7455 load_attr.attach_prog_fd = prog->attach_prog_fd;
7456 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7457 load_attr.attach_btf_id = prog->attach_btf_id;
7458 load_attr.kern_version = kern_version;
7459 load_attr.prog_ifindex = prog->prog_ifindex;
7461 /* specify func_info/line_info only if kernel supports them */
7462 btf_fd = btf__fd(obj->btf);
7463 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7464 load_attr.prog_btf_fd = btf_fd;
7465 load_attr.func_info = prog->func_info;
7466 load_attr.func_info_rec_size = prog->func_info_rec_size;
7467 load_attr.func_info_cnt = prog->func_info_cnt;
7468 load_attr.line_info = prog->line_info;
7469 load_attr.line_info_rec_size = prog->line_info_rec_size;
7470 load_attr.line_info_cnt = prog->line_info_cnt;
7472 load_attr.log_level = log_level;
7473 load_attr.prog_flags = prog->prog_flags;
7474 load_attr.fd_array = obj->fd_array;
7476 /* adjust load_attr if sec_def provides custom preload callback */
7477 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7478 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7480 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7484 insns = prog->insns;
7485 insns_cnt = prog->insns_cnt;
7488 /* allow prog_prepare_load_fn to change expected_attach_type */
7489 load_attr.expected_attach_type = prog->expected_attach_type;
7491 if (obj->gen_loader) {
7492 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7493 license, insns, insns_cnt, &load_attr,
7494 prog - obj->programs);
7500 /* if log_level is zero, we don't request logs initially even if
7501 * custom log_buf is specified; if the program load fails, then we'll
7502 * bump log_level to 1 and use either custom log_buf or we'll allocate
7503 * our own and retry the load to get details on what failed
7506 if (prog->log_buf) {
7507 log_buf = prog->log_buf;
7508 log_buf_size = prog->log_size;
7509 own_log_buf = false;
7510 } else if (obj->log_buf) {
7511 log_buf = obj->log_buf;
7512 log_buf_size = obj->log_size;
7513 own_log_buf = false;
7515 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7516 tmp = realloc(log_buf, log_buf_size);
7527 load_attr.log_buf = log_buf;
7528 load_attr.log_size = log_buf_size;
7529 load_attr.log_level = log_level;
7531 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7533 if (log_level && own_log_buf) {
7534 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7535 prog->name, log_buf);
7538 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7539 struct bpf_map *map;
7542 for (i = 0; i < obj->nr_maps; i++) {
7543 map = &prog->obj->maps[i];
7544 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7547 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7548 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7549 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7550 prog->name, map->real_name, cp);
7551 /* Don't fail hard if can't bind rodata. */
7561 if (log_level == 0) {
7565 /* On ENOSPC, increase log buffer size and retry, unless custom
7566 * log_buf is specified.
7567 * Be careful to not overflow u32, though. Kernel's log buf size limit
7568 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7569 * multiply by 2 unless we are sure we'll fit within 32 bits.
7570 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7572 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7577 /* post-process verifier log to improve error descriptions */
7578 fixup_verifier_log(prog, log_buf, log_buf_size);
7580 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7581 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7584 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7585 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7586 prog->name, log_buf);
7595 static char *find_prev_line(char *buf, char *cur)
7599 if (cur == buf) /* end of a log buf */
7603 while (p - 1 >= buf && *(p - 1) != '\n')
7609 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7610 char *orig, size_t orig_sz, const char *patch)
7612 /* size of the remaining log content to the right from the to-be-replaced part */
7613 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7614 size_t patch_sz = strlen(patch);
7616 if (patch_sz != orig_sz) {
7617 /* If patch line(s) are longer than original piece of verifier log,
7618 * shift log contents by (patch_sz - orig_sz) bytes to the right
7619 * starting from after to-be-replaced part of the log.
7621 * If patch line(s) are shorter than original piece of verifier log,
7622 * shift log contents by (orig_sz - patch_sz) bytes to the left
7623 * starting from after to-be-replaced part of the log
7625 * We need to be careful about not overflowing available
7626 * buf_sz capacity. If that's the case, we'll truncate the end
7627 * of the original log, as necessary.
7629 if (patch_sz > orig_sz) {
7630 if (orig + patch_sz >= buf + buf_sz) {
7631 /* patch is big enough to cover remaining space completely */
7632 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7634 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7635 /* patch causes part of remaining log to be truncated */
7636 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7639 /* shift remaining log to the right by calculated amount */
7640 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7643 memcpy(orig, patch, patch_sz);
7646 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7647 char *buf, size_t buf_sz, size_t log_sz,
7648 char *line1, char *line2, char *line3)
7650 /* Expected log for failed and not properly guarded CO-RE relocation:
7651 * line1 -> 123: (85) call unknown#195896080
7652 * line2 -> invalid func unknown#195896080
7653 * line3 -> <anything else or end of buffer>
7655 * "123" is the index of the instruction that was poisoned. We extract
7656 * instruction index to find corresponding CO-RE relocation and
7657 * replace this part of the log with more relevant information about
7658 * failed CO-RE relocation.
7660 const struct bpf_core_relo *relo;
7661 struct bpf_core_spec spec;
7662 char patch[512], spec_buf[256];
7663 int insn_idx, err, spec_len;
7665 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7668 relo = find_relo_core(prog, insn_idx);
7672 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7676 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7677 snprintf(patch, sizeof(patch),
7678 "%d: <invalid CO-RE relocation>\n"
7679 "failed to resolve CO-RE relocation %s%s\n",
7680 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7682 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7685 static void fixup_log_missing_map_load(struct bpf_program *prog,
7686 char *buf, size_t buf_sz, size_t log_sz,
7687 char *line1, char *line2, char *line3)
7689 /* Expected log for failed and not properly guarded map reference:
7690 * line1 -> 123: (85) call unknown#2001000345
7691 * line2 -> invalid func unknown#2001000345
7692 * line3 -> <anything else or end of buffer>
7694 * "123" is the index of the instruction that was poisoned.
7695 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7697 struct bpf_object *obj = prog->obj;
7698 const struct bpf_map *map;
7699 int insn_idx, map_idx;
7702 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7705 map_idx -= POISON_LDIMM64_MAP_BASE;
7706 if (map_idx < 0 || map_idx >= obj->nr_maps)
7708 map = &obj->maps[map_idx];
7710 snprintf(patch, sizeof(patch),
7711 "%d: <invalid BPF map reference>\n"
7712 "BPF map '%s' is referenced but wasn't created\n",
7713 insn_idx, map->name);
7715 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7718 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7719 char *buf, size_t buf_sz, size_t log_sz,
7720 char *line1, char *line2, char *line3)
7722 /* Expected log for failed and not properly guarded kfunc call:
7723 * line1 -> 123: (85) call unknown#2002000345
7724 * line2 -> invalid func unknown#2002000345
7725 * line3 -> <anything else or end of buffer>
7727 * "123" is the index of the instruction that was poisoned.
7728 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7730 struct bpf_object *obj = prog->obj;
7731 const struct extern_desc *ext;
7732 int insn_idx, ext_idx;
7735 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7738 ext_idx -= POISON_CALL_KFUNC_BASE;
7739 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7741 ext = &obj->externs[ext_idx];
7743 snprintf(patch, sizeof(patch),
7744 "%d: <invalid kfunc call>\n"
7745 "kfunc '%s' is referenced but wasn't resolved\n",
7746 insn_idx, ext->name);
7748 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7751 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7753 /* look for familiar error patterns in last N lines of the log */
7754 const size_t max_last_line_cnt = 10;
7755 char *prev_line, *cur_line, *next_line;
7762 log_sz = strlen(buf) + 1;
7763 next_line = buf + log_sz - 1;
7765 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7766 cur_line = find_prev_line(buf, next_line);
7770 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7771 prev_line = find_prev_line(buf, cur_line);
7775 /* failed CO-RE relocation case */
7776 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7777 prev_line, cur_line, next_line);
7779 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7780 prev_line = find_prev_line(buf, cur_line);
7784 /* reference to uncreated BPF map */
7785 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7786 prev_line, cur_line, next_line);
7788 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7789 prev_line = find_prev_line(buf, cur_line);
7793 /* reference to unresolved kfunc */
7794 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7795 prev_line, cur_line, next_line);
7801 static int bpf_program_record_relos(struct bpf_program *prog)
7803 struct bpf_object *obj = prog->obj;
7806 for (i = 0; i < prog->nr_reloc; i++) {
7807 struct reloc_desc *relo = &prog->reloc_desc[i];
7808 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7811 switch (relo->type) {
7812 case RELO_EXTERN_LD64:
7813 if (ext->type != EXT_KSYM)
7815 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7816 BTF_KIND_VAR : BTF_KIND_FUNC;
7817 bpf_gen__record_extern(obj->gen_loader, ext->name,
7818 ext->is_weak, !ext->ksym.type_id,
7819 true, kind, relo->insn_idx);
7821 case RELO_EXTERN_CALL:
7822 bpf_gen__record_extern(obj->gen_loader, ext->name,
7823 ext->is_weak, false, false, BTF_KIND_FUNC,
7827 struct bpf_core_relo cr = {
7828 .insn_off = relo->insn_idx * 8,
7829 .type_id = relo->core_relo->type_id,
7830 .access_str_off = relo->core_relo->access_str_off,
7831 .kind = relo->core_relo->kind,
7834 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7845 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7847 struct bpf_program *prog;
7851 for (i = 0; i < obj->nr_programs; i++) {
7852 prog = &obj->programs[i];
7853 err = bpf_object__sanitize_prog(obj, prog);
7858 for (i = 0; i < obj->nr_programs; i++) {
7859 prog = &obj->programs[i];
7860 if (prog_is_subprog(obj, prog))
7862 if (!prog->autoload) {
7863 pr_debug("prog '%s': skipped loading\n", prog->name);
7866 prog->log_level |= log_level;
7868 if (obj->gen_loader)
7869 bpf_program_record_relos(prog);
7871 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7872 obj->license, obj->kern_version, &prog->fd);
7874 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7879 bpf_object__free_relocs(obj);
7883 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7885 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7887 struct bpf_program *prog;
7890 bpf_object__for_each_program(prog, obj) {
7891 prog->sec_def = find_sec_def(prog->sec_name);
7892 if (!prog->sec_def) {
7893 /* couldn't guess, but user might manually specify */
7894 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7895 prog->name, prog->sec_name);
7899 prog->type = prog->sec_def->prog_type;
7900 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7902 /* sec_def can have custom callback which should be called
7903 * after bpf_program is initialized to adjust its properties
7905 if (prog->sec_def->prog_setup_fn) {
7906 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7908 pr_warn("prog '%s': failed to initialize: %d\n",
7918 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7919 const struct bpf_object_open_opts *opts)
7921 const char *obj_name, *kconfig, *btf_tmp_path;
7922 struct bpf_object *obj;
7929 if (elf_version(EV_CURRENT) == EV_NONE) {
7930 pr_warn("failed to init libelf for %s\n",
7931 path ? : "(mem buf)");
7932 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7935 if (!OPTS_VALID(opts, bpf_object_open_opts))
7936 return ERR_PTR(-EINVAL);
7938 obj_name = OPTS_GET(opts, object_name, NULL);
7941 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7942 (unsigned long)obj_buf,
7943 (unsigned long)obj_buf_sz);
7944 obj_name = tmp_name;
7947 pr_debug("loading object '%s' from buffer\n", obj_name);
7950 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7951 log_size = OPTS_GET(opts, kernel_log_size, 0);
7952 log_level = OPTS_GET(opts, kernel_log_level, 0);
7953 if (log_size > UINT_MAX)
7954 return ERR_PTR(-EINVAL);
7955 if (log_size && !log_buf)
7956 return ERR_PTR(-EINVAL);
7958 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7962 obj->log_buf = log_buf;
7963 obj->log_size = log_size;
7964 obj->log_level = log_level;
7966 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7968 if (strlen(btf_tmp_path) >= PATH_MAX) {
7969 err = -ENAMETOOLONG;
7972 obj->btf_custom_path = strdup(btf_tmp_path);
7973 if (!obj->btf_custom_path) {
7979 kconfig = OPTS_GET(opts, kconfig, NULL);
7981 obj->kconfig = strdup(kconfig);
7982 if (!obj->kconfig) {
7988 err = bpf_object__elf_init(obj);
7989 err = err ? : bpf_object__check_endianness(obj);
7990 err = err ? : bpf_object__elf_collect(obj);
7991 err = err ? : bpf_object__collect_externs(obj);
7992 err = err ? : bpf_object_fixup_btf(obj);
7993 err = err ? : bpf_object__init_maps(obj, opts);
7994 err = err ? : bpf_object_init_progs(obj, opts);
7995 err = err ? : bpf_object__collect_relos(obj);
7999 bpf_object__elf_finish(obj);
8003 bpf_object__close(obj);
8004 return ERR_PTR(err);
8008 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8011 return libbpf_err_ptr(-EINVAL);
8013 pr_debug("loading %s\n", path);
8015 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
8018 struct bpf_object *bpf_object__open(const char *path)
8020 return bpf_object__open_file(path, NULL);
8024 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8025 const struct bpf_object_open_opts *opts)
8027 if (!obj_buf || obj_buf_sz == 0)
8028 return libbpf_err_ptr(-EINVAL);
8030 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
8033 static int bpf_object_unload(struct bpf_object *obj)
8038 return libbpf_err(-EINVAL);
8040 for (i = 0; i < obj->nr_maps; i++) {
8041 zclose(obj->maps[i].fd);
8042 if (obj->maps[i].st_ops)
8043 zfree(&obj->maps[i].st_ops->kern_vdata);
8046 for (i = 0; i < obj->nr_programs; i++)
8047 bpf_program__unload(&obj->programs[i]);
8052 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8056 bpf_object__for_each_map(m, obj) {
8057 if (!bpf_map__is_internal(m))
8059 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8060 m->def.map_flags &= ~BPF_F_MMAPABLE;
8066 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8068 char sym_type, sym_name[500];
8069 unsigned long long sym_addr;
8073 f = fopen("/proc/kallsyms", "re");
8076 pr_warn("failed to open /proc/kallsyms: %d\n", err);
8081 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8082 &sym_addr, &sym_type, sym_name);
8083 if (ret == EOF && feof(f))
8086 pr_warn("failed to read kallsyms entry: %d\n", ret);
8091 err = cb(sym_addr, sym_type, sym_name, ctx);
8100 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8101 const char *sym_name, void *ctx)
8103 struct bpf_object *obj = ctx;
8104 const struct btf_type *t;
8105 struct extern_desc *ext;
8107 ext = find_extern_by_name(obj, sym_name);
8108 if (!ext || ext->type != EXT_KSYM)
8111 t = btf__type_by_id(obj->btf, ext->btf_id);
8115 if (ext->is_set && ext->ksym.addr != sym_addr) {
8116 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8117 sym_name, ext->ksym.addr, sym_addr);
8122 ext->ksym.addr = sym_addr;
8123 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8128 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8130 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8133 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8134 __u16 kind, struct btf **res_btf,
8135 struct module_btf **res_mod_btf)
8137 struct module_btf *mod_btf;
8141 btf = obj->btf_vmlinux;
8143 id = btf__find_by_name_kind(btf, ksym_name, kind);
8145 if (id == -ENOENT) {
8146 err = load_module_btfs(obj);
8150 for (i = 0; i < obj->btf_module_cnt; i++) {
8151 /* we assume module_btf's BTF FD is always >0 */
8152 mod_btf = &obj->btf_modules[i];
8154 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8163 *res_mod_btf = mod_btf;
8167 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8168 struct extern_desc *ext)
8170 const struct btf_type *targ_var, *targ_type;
8171 __u32 targ_type_id, local_type_id;
8172 struct module_btf *mod_btf = NULL;
8173 const char *targ_var_name;
8174 struct btf *btf = NULL;
8177 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8179 if (id == -ESRCH && ext->is_weak)
8181 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8186 /* find local type_id */
8187 local_type_id = ext->ksym.type_id;
8189 /* find target type_id */
8190 targ_var = btf__type_by_id(btf, id);
8191 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8192 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8194 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8197 const struct btf_type *local_type;
8198 const char *targ_name, *local_name;
8200 local_type = btf__type_by_id(obj->btf, local_type_id);
8201 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8202 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8204 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8205 ext->name, local_type_id,
8206 btf_kind_str(local_type), local_name, targ_type_id,
8207 btf_kind_str(targ_type), targ_name);
8212 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8213 ext->ksym.kernel_btf_id = id;
8214 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8215 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8220 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8221 struct extern_desc *ext)
8223 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8224 struct module_btf *mod_btf = NULL;
8225 const struct btf_type *kern_func;
8226 struct btf *kern_btf = NULL;
8229 local_func_proto_id = ext->ksym.type_id;
8231 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8234 if (kfunc_id == -ESRCH && ext->is_weak)
8236 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8241 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8242 kfunc_proto_id = kern_func->type;
8244 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8245 kern_btf, kfunc_proto_id);
8250 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8251 ext->name, local_func_proto_id,
8252 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8256 /* set index for module BTF fd in fd_array, if unset */
8257 if (mod_btf && !mod_btf->fd_array_idx) {
8258 /* insn->off is s16 */
8259 if (obj->fd_array_cnt == INT16_MAX) {
8260 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8261 ext->name, mod_btf->fd_array_idx);
8264 /* Cannot use index 0 for module BTF fd */
8265 if (!obj->fd_array_cnt)
8266 obj->fd_array_cnt = 1;
8268 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8269 obj->fd_array_cnt + 1);
8272 mod_btf->fd_array_idx = obj->fd_array_cnt;
8273 /* we assume module BTF FD is always >0 */
8274 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8278 ext->ksym.kernel_btf_id = kfunc_id;
8279 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8280 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8281 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8282 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8283 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8285 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8286 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8287 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8292 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8294 const struct btf_type *t;
8295 struct extern_desc *ext;
8298 for (i = 0; i < obj->nr_extern; i++) {
8299 ext = &obj->externs[i];
8300 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8303 if (obj->gen_loader) {
8305 ext->ksym.kernel_btf_obj_fd = 0;
8306 ext->ksym.kernel_btf_id = 0;
8309 t = btf__type_by_id(obj->btf, ext->btf_id);
8311 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8313 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8320 static int bpf_object__resolve_externs(struct bpf_object *obj,
8321 const char *extra_kconfig)
8323 bool need_config = false, need_kallsyms = false;
8324 bool need_vmlinux_btf = false;
8325 struct extern_desc *ext;
8326 void *kcfg_data = NULL;
8329 if (obj->nr_extern == 0)
8332 if (obj->kconfig_map_idx >= 0)
8333 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8335 for (i = 0; i < obj->nr_extern; i++) {
8336 ext = &obj->externs[i];
8338 if (ext->type == EXT_KSYM) {
8339 if (ext->ksym.type_id)
8340 need_vmlinux_btf = true;
8342 need_kallsyms = true;
8344 } else if (ext->type == EXT_KCFG) {
8345 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8348 /* Kconfig externs need actual /proc/config.gz */
8349 if (str_has_pfx(ext->name, "CONFIG_")) {
8354 /* Virtual kcfg externs are customly handled by libbpf */
8355 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8356 value = get_kernel_version();
8358 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8361 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8362 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8363 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8364 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8365 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8366 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8367 * __kconfig externs, where LINUX_ ones are virtual and filled out
8368 * customly by libbpf (their values don't come from Kconfig).
8369 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8370 * __weak, it defaults to zero value, just like for CONFIG_xxx
8373 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8377 err = set_kcfg_value_num(ext, ext_ptr, value);
8380 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8381 ext->name, (long long)value);
8383 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8387 if (need_config && extra_kconfig) {
8388 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8391 need_config = false;
8392 for (i = 0; i < obj->nr_extern; i++) {
8393 ext = &obj->externs[i];
8394 if (ext->type == EXT_KCFG && !ext->is_set) {
8401 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8405 if (need_kallsyms) {
8406 err = bpf_object__read_kallsyms_file(obj);
8410 if (need_vmlinux_btf) {
8411 err = bpf_object__resolve_ksyms_btf_id(obj);
8415 for (i = 0; i < obj->nr_extern; i++) {
8416 ext = &obj->externs[i];
8418 if (!ext->is_set && !ext->is_weak) {
8419 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8421 } else if (!ext->is_set) {
8422 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8430 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8432 struct bpf_struct_ops *st_ops;
8435 st_ops = map->st_ops;
8436 for (i = 0; i < btf_vlen(st_ops->type); i++) {
8437 struct bpf_program *prog = st_ops->progs[i];
8444 prog_fd = bpf_program__fd(prog);
8445 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8446 *(unsigned long *)kern_data = prog_fd;
8450 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8454 for (i = 0; i < obj->nr_maps; i++)
8455 if (bpf_map__is_struct_ops(&obj->maps[i]))
8456 bpf_map_prepare_vdata(&obj->maps[i]);
8461 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8466 return libbpf_err(-EINVAL);
8469 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8470 return libbpf_err(-EINVAL);
8473 if (obj->gen_loader)
8474 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8476 err = bpf_object__probe_loading(obj);
8477 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8478 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8479 err = err ? : bpf_object__sanitize_maps(obj);
8480 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8481 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8482 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8483 err = err ? : bpf_object__create_maps(obj);
8484 err = err ? : bpf_object__load_progs(obj, extra_log_level);
8485 err = err ? : bpf_object_init_prog_arrays(obj);
8486 err = err ? : bpf_object_prepare_struct_ops(obj);
8488 if (obj->gen_loader) {
8491 btf__set_fd(obj->btf, -1);
8493 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8496 /* clean up fd_array */
8497 zfree(&obj->fd_array);
8499 /* clean up module BTFs */
8500 for (i = 0; i < obj->btf_module_cnt; i++) {
8501 close(obj->btf_modules[i].fd);
8502 btf__free(obj->btf_modules[i].btf);
8503 free(obj->btf_modules[i].name);
8505 free(obj->btf_modules);
8507 /* clean up vmlinux BTF */
8508 btf__free(obj->btf_vmlinux);
8509 obj->btf_vmlinux = NULL;
8511 obj->loaded = true; /* doesn't matter if successfully or not */
8518 /* unpin any maps that were auto-pinned during load */
8519 for (i = 0; i < obj->nr_maps; i++)
8520 if (obj->maps[i].pinned && !obj->maps[i].reused)
8521 bpf_map__unpin(&obj->maps[i], NULL);
8523 bpf_object_unload(obj);
8524 pr_warn("failed to load object '%s'\n", obj->path);
8525 return libbpf_err(err);
8528 int bpf_object__load(struct bpf_object *obj)
8530 return bpf_object_load(obj, 0, NULL);
8533 static int make_parent_dir(const char *path)
8535 char *cp, errmsg[STRERR_BUFSIZE];
8539 dname = strdup(path);
8543 dir = dirname(dname);
8544 if (mkdir(dir, 0700) && errno != EEXIST)
8549 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8550 pr_warn("failed to mkdir %s: %s\n", path, cp);
8555 static int check_path(const char *path)
8557 char *cp, errmsg[STRERR_BUFSIZE];
8558 struct statfs st_fs;
8565 dname = strdup(path);
8569 dir = dirname(dname);
8570 if (statfs(dir, &st_fs)) {
8571 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8572 pr_warn("failed to statfs %s: %s\n", dir, cp);
8577 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8578 pr_warn("specified path %s is not on BPF FS\n", path);
8585 int bpf_program__pin(struct bpf_program *prog, const char *path)
8587 char *cp, errmsg[STRERR_BUFSIZE];
8591 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8592 return libbpf_err(-EINVAL);
8595 err = make_parent_dir(path);
8597 return libbpf_err(err);
8599 err = check_path(path);
8601 return libbpf_err(err);
8603 if (bpf_obj_pin(prog->fd, path)) {
8605 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8606 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8607 return libbpf_err(err);
8610 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8614 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8619 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8620 return libbpf_err(-EINVAL);
8623 err = check_path(path);
8625 return libbpf_err(err);
8629 return libbpf_err(-errno);
8631 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8635 int bpf_map__pin(struct bpf_map *map, const char *path)
8637 char *cp, errmsg[STRERR_BUFSIZE];
8641 pr_warn("invalid map pointer\n");
8642 return libbpf_err(-EINVAL);
8645 if (map->pin_path) {
8646 if (path && strcmp(path, map->pin_path)) {
8647 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8648 bpf_map__name(map), map->pin_path, path);
8649 return libbpf_err(-EINVAL);
8650 } else if (map->pinned) {
8651 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8652 bpf_map__name(map), map->pin_path);
8657 pr_warn("missing a path to pin map '%s' at\n",
8658 bpf_map__name(map));
8659 return libbpf_err(-EINVAL);
8660 } else if (map->pinned) {
8661 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8662 return libbpf_err(-EEXIST);
8665 map->pin_path = strdup(path);
8666 if (!map->pin_path) {
8672 err = make_parent_dir(map->pin_path);
8674 return libbpf_err(err);
8676 err = check_path(map->pin_path);
8678 return libbpf_err(err);
8680 if (bpf_obj_pin(map->fd, map->pin_path)) {
8686 pr_debug("pinned map '%s'\n", map->pin_path);
8691 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8692 pr_warn("failed to pin map: %s\n", cp);
8693 return libbpf_err(err);
8696 int bpf_map__unpin(struct bpf_map *map, const char *path)
8701 pr_warn("invalid map pointer\n");
8702 return libbpf_err(-EINVAL);
8705 if (map->pin_path) {
8706 if (path && strcmp(path, map->pin_path)) {
8707 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8708 bpf_map__name(map), map->pin_path, path);
8709 return libbpf_err(-EINVAL);
8711 path = map->pin_path;
8713 pr_warn("no path to unpin map '%s' from\n",
8714 bpf_map__name(map));
8715 return libbpf_err(-EINVAL);
8718 err = check_path(path);
8720 return libbpf_err(err);
8724 return libbpf_err(-errno);
8726 map->pinned = false;
8727 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8732 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8739 return libbpf_err(-errno);
8742 free(map->pin_path);
8743 map->pin_path = new;
8747 __alias(bpf_map__pin_path)
8748 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8750 const char *bpf_map__pin_path(const struct bpf_map *map)
8752 return map->pin_path;
8755 bool bpf_map__is_pinned(const struct bpf_map *map)
8760 static void sanitize_pin_path(char *s)
8762 /* bpffs disallows periods in path names */
8770 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8772 struct bpf_map *map;
8776 return libbpf_err(-ENOENT);
8779 pr_warn("object not yet loaded; load it first\n");
8780 return libbpf_err(-ENOENT);
8783 bpf_object__for_each_map(map, obj) {
8784 char *pin_path = NULL;
8787 if (!map->autocreate)
8791 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8793 goto err_unpin_maps;
8794 sanitize_pin_path(buf);
8796 } else if (!map->pin_path) {
8800 err = bpf_map__pin(map, pin_path);
8802 goto err_unpin_maps;
8808 while ((map = bpf_object__prev_map(obj, map))) {
8812 bpf_map__unpin(map, NULL);
8815 return libbpf_err(err);
8818 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8820 struct bpf_map *map;
8824 return libbpf_err(-ENOENT);
8826 bpf_object__for_each_map(map, obj) {
8827 char *pin_path = NULL;
8831 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8833 return libbpf_err(err);
8834 sanitize_pin_path(buf);
8836 } else if (!map->pin_path) {
8840 err = bpf_map__unpin(map, pin_path);
8842 return libbpf_err(err);
8848 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8850 struct bpf_program *prog;
8855 return libbpf_err(-ENOENT);
8858 pr_warn("object not yet loaded; load it first\n");
8859 return libbpf_err(-ENOENT);
8862 bpf_object__for_each_program(prog, obj) {
8863 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8865 goto err_unpin_programs;
8867 err = bpf_program__pin(prog, buf);
8869 goto err_unpin_programs;
8875 while ((prog = bpf_object__prev_program(obj, prog))) {
8876 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8879 bpf_program__unpin(prog, buf);
8882 return libbpf_err(err);
8885 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8887 struct bpf_program *prog;
8891 return libbpf_err(-ENOENT);
8893 bpf_object__for_each_program(prog, obj) {
8896 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8898 return libbpf_err(err);
8900 err = bpf_program__unpin(prog, buf);
8902 return libbpf_err(err);
8908 int bpf_object__pin(struct bpf_object *obj, const char *path)
8912 err = bpf_object__pin_maps(obj, path);
8914 return libbpf_err(err);
8916 err = bpf_object__pin_programs(obj, path);
8918 bpf_object__unpin_maps(obj, path);
8919 return libbpf_err(err);
8925 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8929 err = bpf_object__unpin_programs(obj, path);
8931 return libbpf_err(err);
8933 err = bpf_object__unpin_maps(obj, path);
8935 return libbpf_err(err);
8940 static void bpf_map__destroy(struct bpf_map *map)
8942 if (map->inner_map) {
8943 bpf_map__destroy(map->inner_map);
8944 zfree(&map->inner_map);
8947 zfree(&map->init_slots);
8948 map->init_slots_sz = 0;
8953 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8954 munmap(map->mmaped, mmap_sz);
8959 zfree(&map->st_ops->data);
8960 zfree(&map->st_ops->progs);
8961 zfree(&map->st_ops->kern_func_off);
8962 zfree(&map->st_ops);
8966 zfree(&map->real_name);
8967 zfree(&map->pin_path);
8973 void bpf_object__close(struct bpf_object *obj)
8977 if (IS_ERR_OR_NULL(obj))
8980 usdt_manager_free(obj->usdt_man);
8981 obj->usdt_man = NULL;
8983 bpf_gen__free(obj->gen_loader);
8984 bpf_object__elf_finish(obj);
8985 bpf_object_unload(obj);
8986 btf__free(obj->btf);
8987 btf__free(obj->btf_vmlinux);
8988 btf_ext__free(obj->btf_ext);
8990 for (i = 0; i < obj->nr_maps; i++)
8991 bpf_map__destroy(&obj->maps[i]);
8993 zfree(&obj->btf_custom_path);
8994 zfree(&obj->kconfig);
8996 for (i = 0; i < obj->nr_extern; i++)
8997 zfree(&obj->externs[i].essent_name);
8999 zfree(&obj->externs);
9005 if (obj->programs && obj->nr_programs) {
9006 for (i = 0; i < obj->nr_programs; i++)
9007 bpf_program__exit(&obj->programs[i]);
9009 zfree(&obj->programs);
9014 const char *bpf_object__name(const struct bpf_object *obj)
9016 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9019 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9021 return obj ? obj->kern_version : 0;
9024 struct btf *bpf_object__btf(const struct bpf_object *obj)
9026 return obj ? obj->btf : NULL;
9029 int bpf_object__btf_fd(const struct bpf_object *obj)
9031 return obj->btf ? btf__fd(obj->btf) : -1;
9034 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9037 return libbpf_err(-EINVAL);
9039 obj->kern_version = kern_version;
9044 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9046 struct bpf_gen *gen;
9050 if (!OPTS_VALID(opts, gen_loader_opts))
9052 gen = calloc(sizeof(*gen), 1);
9056 obj->gen_loader = gen;
9060 static struct bpf_program *
9061 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9064 size_t nr_programs = obj->nr_programs;
9071 /* Iter from the beginning */
9072 return forward ? &obj->programs[0] :
9073 &obj->programs[nr_programs - 1];
9075 if (p->obj != obj) {
9076 pr_warn("error: program handler doesn't match object\n");
9077 return errno = EINVAL, NULL;
9080 idx = (p - obj->programs) + (forward ? 1 : -1);
9081 if (idx >= obj->nr_programs || idx < 0)
9083 return &obj->programs[idx];
9086 struct bpf_program *
9087 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9089 struct bpf_program *prog = prev;
9092 prog = __bpf_program__iter(prog, obj, true);
9093 } while (prog && prog_is_subprog(obj, prog));
9098 struct bpf_program *
9099 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9101 struct bpf_program *prog = next;
9104 prog = __bpf_program__iter(prog, obj, false);
9105 } while (prog && prog_is_subprog(obj, prog));
9110 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9112 prog->prog_ifindex = ifindex;
9115 const char *bpf_program__name(const struct bpf_program *prog)
9120 const char *bpf_program__section_name(const struct bpf_program *prog)
9122 return prog->sec_name;
9125 bool bpf_program__autoload(const struct bpf_program *prog)
9127 return prog->autoload;
9130 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9132 if (prog->obj->loaded)
9133 return libbpf_err(-EINVAL);
9135 prog->autoload = autoload;
9139 bool bpf_program__autoattach(const struct bpf_program *prog)
9141 return prog->autoattach;
9144 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9146 prog->autoattach = autoattach;
9149 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9154 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9156 return prog->insns_cnt;
9159 int bpf_program__set_insns(struct bpf_program *prog,
9160 struct bpf_insn *new_insns, size_t new_insn_cnt)
9162 struct bpf_insn *insns;
9164 if (prog->obj->loaded)
9167 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9168 /* NULL is a valid return from reallocarray if the new count is zero */
9169 if (!insns && new_insn_cnt) {
9170 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9173 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9175 prog->insns = insns;
9176 prog->insns_cnt = new_insn_cnt;
9180 int bpf_program__fd(const struct bpf_program *prog)
9183 return libbpf_err(-EINVAL);
9186 return libbpf_err(-ENOENT);
9191 __alias(bpf_program__type)
9192 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9194 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9199 static size_t custom_sec_def_cnt;
9200 static struct bpf_sec_def *custom_sec_defs;
9201 static struct bpf_sec_def custom_fallback_def;
9202 static bool has_custom_fallback_def;
9203 static int last_custom_sec_def_handler_id;
9205 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9207 if (prog->obj->loaded)
9208 return libbpf_err(-EBUSY);
9210 /* if type is not changed, do nothing */
9211 if (prog->type == type)
9216 /* If a program type was changed, we need to reset associated SEC()
9217 * handler, as it will be invalid now. The only exception is a generic
9218 * fallback handler, which by definition is program type-agnostic and
9219 * is a catch-all custom handler, optionally set by the application,
9220 * so should be able to handle any type of BPF program.
9222 if (prog->sec_def != &custom_fallback_def)
9223 prog->sec_def = NULL;
9227 __alias(bpf_program__expected_attach_type)
9228 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9230 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9232 return prog->expected_attach_type;
9235 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9236 enum bpf_attach_type type)
9238 if (prog->obj->loaded)
9239 return libbpf_err(-EBUSY);
9241 prog->expected_attach_type = type;
9245 __u32 bpf_program__flags(const struct bpf_program *prog)
9247 return prog->prog_flags;
9250 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9252 if (prog->obj->loaded)
9253 return libbpf_err(-EBUSY);
9255 prog->prog_flags = flags;
9259 __u32 bpf_program__log_level(const struct bpf_program *prog)
9261 return prog->log_level;
9264 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9266 if (prog->obj->loaded)
9267 return libbpf_err(-EBUSY);
9269 prog->log_level = log_level;
9273 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9275 *log_size = prog->log_size;
9276 return prog->log_buf;
9279 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9281 if (log_size && !log_buf)
9283 if (prog->log_size > UINT_MAX)
9285 if (prog->obj->loaded)
9288 prog->log_buf = log_buf;
9289 prog->log_size = log_size;
9293 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9294 .sec = (char *)sec_pfx, \
9295 .prog_type = BPF_PROG_TYPE_##ptype, \
9296 .expected_attach_type = atype, \
9297 .cookie = (long)(flags), \
9298 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9302 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9303 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9304 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9305 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9306 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9307 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9308 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9309 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9310 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9311 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9312 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9314 static const struct bpf_sec_def section_defs[] = {
9315 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9316 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9317 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9318 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9319 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9320 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9321 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9322 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9323 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9324 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9325 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9326 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9327 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9328 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9329 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9330 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9331 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9332 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9333 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9334 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9335 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9336 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9337 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9338 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9339 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9340 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9341 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9342 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9343 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9344 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9345 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9346 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9347 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9348 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9349 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9350 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9351 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9352 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9353 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9354 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9355 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9356 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9357 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9358 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9359 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9360 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9361 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9362 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9363 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9364 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9365 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9366 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9367 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9368 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9369 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9370 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9371 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9372 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9373 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9374 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9375 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9376 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9377 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9378 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9379 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9380 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9381 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9382 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9383 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9384 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9385 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9386 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9387 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9388 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9389 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9390 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9391 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9392 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9393 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9394 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9395 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9396 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9397 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9398 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9399 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9400 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9401 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9402 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9403 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9404 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9405 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9406 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9407 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9408 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9409 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9410 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9411 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9412 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9413 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9416 int libbpf_register_prog_handler(const char *sec,
9417 enum bpf_prog_type prog_type,
9418 enum bpf_attach_type exp_attach_type,
9419 const struct libbpf_prog_handler_opts *opts)
9421 struct bpf_sec_def *sec_def;
9423 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9424 return libbpf_err(-EINVAL);
9426 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9427 return libbpf_err(-E2BIG);
9430 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9433 return libbpf_err(-ENOMEM);
9435 custom_sec_defs = sec_def;
9436 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9438 if (has_custom_fallback_def)
9439 return libbpf_err(-EBUSY);
9441 sec_def = &custom_fallback_def;
9444 sec_def->sec = sec ? strdup(sec) : NULL;
9445 if (sec && !sec_def->sec)
9446 return libbpf_err(-ENOMEM);
9448 sec_def->prog_type = prog_type;
9449 sec_def->expected_attach_type = exp_attach_type;
9450 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9452 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9453 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9454 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9456 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9459 custom_sec_def_cnt++;
9461 has_custom_fallback_def = true;
9463 return sec_def->handler_id;
9466 int libbpf_unregister_prog_handler(int handler_id)
9468 struct bpf_sec_def *sec_defs;
9471 if (handler_id <= 0)
9472 return libbpf_err(-EINVAL);
9474 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9475 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9476 has_custom_fallback_def = false;
9480 for (i = 0; i < custom_sec_def_cnt; i++) {
9481 if (custom_sec_defs[i].handler_id == handler_id)
9485 if (i == custom_sec_def_cnt)
9486 return libbpf_err(-ENOENT);
9488 free(custom_sec_defs[i].sec);
9489 for (i = i + 1; i < custom_sec_def_cnt; i++)
9490 custom_sec_defs[i - 1] = custom_sec_defs[i];
9491 custom_sec_def_cnt--;
9493 /* try to shrink the array, but it's ok if we couldn't */
9494 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9495 /* if new count is zero, reallocarray can return a valid NULL result;
9496 * in this case the previous pointer will be freed, so we *have to*
9497 * reassign old pointer to the new value (even if it's NULL)
9499 if (sec_defs || custom_sec_def_cnt == 0)
9500 custom_sec_defs = sec_defs;
9505 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9507 size_t len = strlen(sec_def->sec);
9509 /* "type/" always has to have proper SEC("type/extras") form */
9510 if (sec_def->sec[len - 1] == '/') {
9511 if (str_has_pfx(sec_name, sec_def->sec))
9516 /* "type+" means it can be either exact SEC("type") or
9517 * well-formed SEC("type/extras") with proper '/' separator
9519 if (sec_def->sec[len - 1] == '+') {
9521 /* not even a prefix */
9522 if (strncmp(sec_name, sec_def->sec, len) != 0)
9524 /* exact match or has '/' separator */
9525 if (sec_name[len] == '\0' || sec_name[len] == '/')
9530 return strcmp(sec_name, sec_def->sec) == 0;
9533 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9535 const struct bpf_sec_def *sec_def;
9538 n = custom_sec_def_cnt;
9539 for (i = 0; i < n; i++) {
9540 sec_def = &custom_sec_defs[i];
9541 if (sec_def_matches(sec_def, sec_name))
9545 n = ARRAY_SIZE(section_defs);
9546 for (i = 0; i < n; i++) {
9547 sec_def = §ion_defs[i];
9548 if (sec_def_matches(sec_def, sec_name))
9552 if (has_custom_fallback_def)
9553 return &custom_fallback_def;
9558 #define MAX_TYPE_NAME_SIZE 32
9560 static char *libbpf_get_type_names(bool attach_type)
9562 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9570 /* Forge string buf with all available names */
9571 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9572 const struct bpf_sec_def *sec_def = §ion_defs[i];
9575 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9578 if (!(sec_def->cookie & SEC_ATTACHABLE))
9582 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9587 strcat(buf, section_defs[i].sec);
9593 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9594 enum bpf_attach_type *expected_attach_type)
9596 const struct bpf_sec_def *sec_def;
9600 return libbpf_err(-EINVAL);
9602 sec_def = find_sec_def(name);
9604 *prog_type = sec_def->prog_type;
9605 *expected_attach_type = sec_def->expected_attach_type;
9609 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9610 type_names = libbpf_get_type_names(false);
9611 if (type_names != NULL) {
9612 pr_debug("supported section(type) names are:%s\n", type_names);
9616 return libbpf_err(-ESRCH);
9619 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9621 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9624 return attach_type_name[t];
9627 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9629 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9632 return link_type_name[t];
9635 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9637 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9640 return map_type_name[t];
9643 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9645 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9648 return prog_type_name[t];
9651 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9655 struct bpf_map *map;
9658 for (i = 0; i < obj->nr_maps; i++) {
9659 map = &obj->maps[i];
9660 if (!bpf_map__is_struct_ops(map))
9662 if (map->sec_idx == sec_idx &&
9663 map->sec_offset <= offset &&
9664 offset - map->sec_offset < map->def.value_size)
9671 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9672 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9673 Elf64_Shdr *shdr, Elf_Data *data)
9675 const struct btf_member *member;
9676 struct bpf_struct_ops *st_ops;
9677 struct bpf_program *prog;
9678 unsigned int shdr_idx;
9679 const struct btf *btf;
9680 struct bpf_map *map;
9681 unsigned int moff, insn_idx;
9689 nrels = shdr->sh_size / shdr->sh_entsize;
9690 for (i = 0; i < nrels; i++) {
9691 rel = elf_rel_by_idx(data, i);
9693 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9694 return -LIBBPF_ERRNO__FORMAT;
9697 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9699 pr_warn("struct_ops reloc: symbol %zx not found\n",
9700 (size_t)ELF64_R_SYM(rel->r_info));
9701 return -LIBBPF_ERRNO__FORMAT;
9704 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9705 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9707 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9708 (size_t)rel->r_offset);
9712 moff = rel->r_offset - map->sec_offset;
9713 shdr_idx = sym->st_shndx;
9714 st_ops = map->st_ops;
9715 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9717 (long long)(rel->r_info >> 32),
9718 (long long)sym->st_value,
9719 shdr_idx, (size_t)rel->r_offset,
9720 map->sec_offset, sym->st_name, name);
9722 if (shdr_idx >= SHN_LORESERVE) {
9723 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9724 map->name, (size_t)rel->r_offset, shdr_idx);
9725 return -LIBBPF_ERRNO__RELOC;
9727 if (sym->st_value % BPF_INSN_SZ) {
9728 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9729 map->name, (unsigned long long)sym->st_value);
9730 return -LIBBPF_ERRNO__FORMAT;
9732 insn_idx = sym->st_value / BPF_INSN_SZ;
9734 member = find_member_by_offset(st_ops->type, moff * 8);
9736 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9740 member_idx = member - btf_members(st_ops->type);
9741 name = btf__name_by_offset(btf, member->name_off);
9743 if (!resolve_func_ptr(btf, member->type, NULL)) {
9744 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9749 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9751 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9752 map->name, shdr_idx, name);
9756 /* prevent the use of BPF prog with invalid type */
9757 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9758 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9759 map->name, prog->name);
9763 /* if we haven't yet processed this BPF program, record proper
9764 * attach_btf_id and member_idx
9766 if (!prog->attach_btf_id) {
9767 prog->attach_btf_id = st_ops->type_id;
9768 prog->expected_attach_type = member_idx;
9771 /* struct_ops BPF prog can be re-used between multiple
9772 * .struct_ops & .struct_ops.link as long as it's the
9773 * same struct_ops struct definition and the same
9774 * function pointer field
9776 if (prog->attach_btf_id != st_ops->type_id ||
9777 prog->expected_attach_type != member_idx) {
9778 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9779 map->name, prog->name, prog->sec_name, prog->type,
9780 prog->attach_btf_id, prog->expected_attach_type, name);
9784 st_ops->progs[member_idx] = prog;
9790 #define BTF_TRACE_PREFIX "btf_trace_"
9791 #define BTF_LSM_PREFIX "bpf_lsm_"
9792 #define BTF_ITER_PREFIX "bpf_iter_"
9793 #define BTF_MAX_NAME_SIZE 128
9795 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9796 const char **prefix, int *kind)
9798 switch (attach_type) {
9799 case BPF_TRACE_RAW_TP:
9800 *prefix = BTF_TRACE_PREFIX;
9801 *kind = BTF_KIND_TYPEDEF;
9804 case BPF_LSM_CGROUP:
9805 *prefix = BTF_LSM_PREFIX;
9806 *kind = BTF_KIND_FUNC;
9808 case BPF_TRACE_ITER:
9809 *prefix = BTF_ITER_PREFIX;
9810 *kind = BTF_KIND_FUNC;
9814 *kind = BTF_KIND_FUNC;
9818 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9819 const char *name, __u32 kind)
9821 char btf_type_name[BTF_MAX_NAME_SIZE];
9824 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9825 "%s%s", prefix, name);
9826 /* snprintf returns the number of characters written excluding the
9827 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9828 * indicates truncation.
9830 if (ret < 0 || ret >= sizeof(btf_type_name))
9831 return -ENAMETOOLONG;
9832 return btf__find_by_name_kind(btf, btf_type_name, kind);
9835 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9836 enum bpf_attach_type attach_type)
9841 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9842 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9845 int libbpf_find_vmlinux_btf_id(const char *name,
9846 enum bpf_attach_type attach_type)
9851 btf = btf__load_vmlinux_btf();
9852 err = libbpf_get_error(btf);
9854 pr_warn("vmlinux BTF is not found\n");
9855 return libbpf_err(err);
9858 err = find_attach_btf_id(btf, name, attach_type);
9860 pr_warn("%s is not found in vmlinux BTF\n", name);
9863 return libbpf_err(err);
9866 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9868 struct bpf_prog_info info;
9869 __u32 info_len = sizeof(info);
9873 memset(&info, 0, info_len);
9874 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9876 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9877 attach_prog_fd, err);
9883 pr_warn("The target program doesn't have BTF\n");
9886 btf = btf__load_from_kernel_by_id(info.btf_id);
9887 err = libbpf_get_error(btf);
9889 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9892 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9895 pr_warn("%s is not found in prog's BTF\n", name);
9902 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9903 enum bpf_attach_type attach_type,
9904 int *btf_obj_fd, int *btf_type_id)
9908 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9910 *btf_obj_fd = 0; /* vmlinux BTF */
9917 ret = load_module_btfs(obj);
9921 for (i = 0; i < obj->btf_module_cnt; i++) {
9922 const struct module_btf *mod = &obj->btf_modules[i];
9924 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9926 *btf_obj_fd = mod->fd;
9939 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9940 int *btf_obj_fd, int *btf_type_id)
9942 enum bpf_attach_type attach_type = prog->expected_attach_type;
9943 __u32 attach_prog_fd = prog->attach_prog_fd;
9946 /* BPF program's BTF ID */
9947 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9948 if (!attach_prog_fd) {
9949 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9952 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9954 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9955 prog->name, attach_prog_fd, attach_name, err);
9963 /* kernel/module BTF ID */
9964 if (prog->obj->gen_loader) {
9965 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9969 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9972 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9973 prog->name, attach_name, err);
9979 int libbpf_attach_type_by_name(const char *name,
9980 enum bpf_attach_type *attach_type)
9983 const struct bpf_sec_def *sec_def;
9986 return libbpf_err(-EINVAL);
9988 sec_def = find_sec_def(name);
9990 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9991 type_names = libbpf_get_type_names(true);
9992 if (type_names != NULL) {
9993 pr_debug("attachable section(type) names are:%s\n", type_names);
9997 return libbpf_err(-EINVAL);
10000 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10001 return libbpf_err(-EINVAL);
10002 if (!(sec_def->cookie & SEC_ATTACHABLE))
10003 return libbpf_err(-EINVAL);
10005 *attach_type = sec_def->expected_attach_type;
10009 int bpf_map__fd(const struct bpf_map *map)
10012 return libbpf_err(-EINVAL);
10013 if (!map_is_created(map))
10018 static bool map_uses_real_name(const struct bpf_map *map)
10020 /* Since libbpf started to support custom .data.* and .rodata.* maps,
10021 * their user-visible name differs from kernel-visible name. Users see
10022 * such map's corresponding ELF section name as a map name.
10023 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10024 * maps to know which name has to be returned to the user.
10026 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10028 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10033 const char *bpf_map__name(const struct bpf_map *map)
10038 if (map_uses_real_name(map))
10039 return map->real_name;
10044 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10046 return map->def.type;
10049 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10051 if (map_is_created(map))
10052 return libbpf_err(-EBUSY);
10053 map->def.type = type;
10057 __u32 bpf_map__map_flags(const struct bpf_map *map)
10059 return map->def.map_flags;
10062 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10064 if (map_is_created(map))
10065 return libbpf_err(-EBUSY);
10066 map->def.map_flags = flags;
10070 __u64 bpf_map__map_extra(const struct bpf_map *map)
10072 return map->map_extra;
10075 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10077 if (map_is_created(map))
10078 return libbpf_err(-EBUSY);
10079 map->map_extra = map_extra;
10083 __u32 bpf_map__numa_node(const struct bpf_map *map)
10085 return map->numa_node;
10088 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10090 if (map_is_created(map))
10091 return libbpf_err(-EBUSY);
10092 map->numa_node = numa_node;
10096 __u32 bpf_map__key_size(const struct bpf_map *map)
10098 return map->def.key_size;
10101 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10103 if (map_is_created(map))
10104 return libbpf_err(-EBUSY);
10105 map->def.key_size = size;
10109 __u32 bpf_map__value_size(const struct bpf_map *map)
10111 return map->def.value_size;
10114 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10117 struct btf_type *datasec_type, *var_type;
10118 struct btf_var_secinfo *var;
10119 const struct btf_type *array_type;
10120 const struct btf_array *array;
10121 int vlen, element_sz, new_array_id;
10124 /* check btf existence */
10125 btf = bpf_object__btf(map->obj);
10129 /* verify map is datasec */
10130 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10131 if (!btf_is_datasec(datasec_type)) {
10132 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10133 bpf_map__name(map));
10137 /* verify datasec has at least one var */
10138 vlen = btf_vlen(datasec_type);
10140 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10141 bpf_map__name(map));
10145 /* verify last var in the datasec is an array */
10146 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10147 var_type = btf_type_by_id(btf, var->type);
10148 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10149 if (!btf_is_array(array_type)) {
10150 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10151 bpf_map__name(map));
10155 /* verify request size aligns with array */
10156 array = btf_array(array_type);
10157 element_sz = btf__resolve_size(btf, array->type);
10158 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10159 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10160 bpf_map__name(map), element_sz, size);
10164 /* create a new array based on the existing array, but with new length */
10165 nr_elements = (size - var->offset) / element_sz;
10166 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10167 if (new_array_id < 0)
10168 return new_array_id;
10170 /* adding a new btf type invalidates existing pointers to btf objects,
10171 * so refresh pointers before proceeding
10173 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10174 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10175 var_type = btf_type_by_id(btf, var->type);
10177 /* finally update btf info */
10178 datasec_type->size = size;
10179 var->size = size - var->offset;
10180 var_type->type = new_array_id;
10185 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10187 if (map->obj->loaded || map->reused)
10188 return libbpf_err(-EBUSY);
10192 size_t mmap_old_sz, mmap_new_sz;
10194 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
10195 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
10196 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10198 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10199 bpf_map__name(map), err);
10202 err = map_btf_datasec_resize(map, size);
10203 if (err && err != -ENOENT) {
10204 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10205 bpf_map__name(map), err);
10206 map->btf_value_type_id = 0;
10207 map->btf_key_type_id = 0;
10211 map->def.value_size = size;
10215 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10217 return map ? map->btf_key_type_id : 0;
10220 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10222 return map ? map->btf_value_type_id : 0;
10225 int bpf_map__set_initial_value(struct bpf_map *map,
10226 const void *data, size_t size)
10228 if (map->obj->loaded || map->reused)
10229 return libbpf_err(-EBUSY);
10231 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
10232 size != map->def.value_size)
10233 return libbpf_err(-EINVAL);
10235 memcpy(map->mmaped, data, size);
10239 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
10243 *psize = map->def.value_size;
10244 return map->mmaped;
10247 bool bpf_map__is_internal(const struct bpf_map *map)
10249 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10252 __u32 bpf_map__ifindex(const struct bpf_map *map)
10254 return map->map_ifindex;
10257 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10259 if (map_is_created(map))
10260 return libbpf_err(-EBUSY);
10261 map->map_ifindex = ifindex;
10265 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10267 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10268 pr_warn("error: unsupported map type\n");
10269 return libbpf_err(-EINVAL);
10271 if (map->inner_map_fd != -1) {
10272 pr_warn("error: inner_map_fd already specified\n");
10273 return libbpf_err(-EINVAL);
10275 if (map->inner_map) {
10276 bpf_map__destroy(map->inner_map);
10277 zfree(&map->inner_map);
10279 map->inner_map_fd = fd;
10283 static struct bpf_map *
10284 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10287 struct bpf_map *s, *e;
10289 if (!obj || !obj->maps)
10290 return errno = EINVAL, NULL;
10293 e = obj->maps + obj->nr_maps;
10295 if ((m < s) || (m >= e)) {
10296 pr_warn("error in %s: map handler doesn't belong to object\n",
10298 return errno = EINVAL, NULL;
10301 idx = (m - obj->maps) + i;
10302 if (idx >= obj->nr_maps || idx < 0)
10304 return &obj->maps[idx];
10308 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10313 return __bpf_map__iter(prev, obj, 1);
10317 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10319 if (next == NULL) {
10322 return obj->maps + obj->nr_maps - 1;
10325 return __bpf_map__iter(next, obj, -1);
10329 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10331 struct bpf_map *pos;
10333 bpf_object__for_each_map(pos, obj) {
10334 /* if it's a special internal map name (which always starts
10335 * with dot) then check if that special name matches the
10336 * real map name (ELF section name)
10338 if (name[0] == '.') {
10339 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10343 /* otherwise map name has to be an exact match */
10344 if (map_uses_real_name(pos)) {
10345 if (strcmp(pos->real_name, name) == 0)
10349 if (strcmp(pos->name, name) == 0)
10352 return errno = ENOENT, NULL;
10356 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10358 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10361 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10362 size_t value_sz, bool check_value_sz)
10364 if (!map_is_created(map)) /* map is not yet created */
10367 if (map->def.key_size != key_sz) {
10368 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10369 map->name, key_sz, map->def.key_size);
10373 if (!check_value_sz)
10376 switch (map->def.type) {
10377 case BPF_MAP_TYPE_PERCPU_ARRAY:
10378 case BPF_MAP_TYPE_PERCPU_HASH:
10379 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10380 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10381 int num_cpu = libbpf_num_possible_cpus();
10382 size_t elem_sz = roundup(map->def.value_size, 8);
10384 if (value_sz != num_cpu * elem_sz) {
10385 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10386 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10392 if (map->def.value_size != value_sz) {
10393 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10394 map->name, value_sz, map->def.value_size);
10402 int bpf_map__lookup_elem(const struct bpf_map *map,
10403 const void *key, size_t key_sz,
10404 void *value, size_t value_sz, __u64 flags)
10408 err = validate_map_op(map, key_sz, value_sz, true);
10410 return libbpf_err(err);
10412 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10415 int bpf_map__update_elem(const struct bpf_map *map,
10416 const void *key, size_t key_sz,
10417 const void *value, size_t value_sz, __u64 flags)
10421 err = validate_map_op(map, key_sz, value_sz, true);
10423 return libbpf_err(err);
10425 return bpf_map_update_elem(map->fd, key, value, flags);
10428 int bpf_map__delete_elem(const struct bpf_map *map,
10429 const void *key, size_t key_sz, __u64 flags)
10433 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10435 return libbpf_err(err);
10437 return bpf_map_delete_elem_flags(map->fd, key, flags);
10440 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10441 const void *key, size_t key_sz,
10442 void *value, size_t value_sz, __u64 flags)
10446 err = validate_map_op(map, key_sz, value_sz, true);
10448 return libbpf_err(err);
10450 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10453 int bpf_map__get_next_key(const struct bpf_map *map,
10454 const void *cur_key, void *next_key, size_t key_sz)
10458 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10460 return libbpf_err(err);
10462 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10465 long libbpf_get_error(const void *ptr)
10467 if (!IS_ERR_OR_NULL(ptr))
10471 errno = -PTR_ERR(ptr);
10473 /* If ptr == NULL, then errno should be already set by the failing
10474 * API, because libbpf never returns NULL on success and it now always
10475 * sets errno on error. So no extra errno handling for ptr == NULL
10481 /* Replace link's underlying BPF program with the new one */
10482 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10486 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10487 return libbpf_err_errno(ret);
10490 /* Release "ownership" of underlying BPF resource (typically, BPF program
10491 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10492 * link, when destructed through bpf_link__destroy() call won't attempt to
10493 * detach/unregisted that BPF resource. This is useful in situations where,
10494 * say, attached BPF program has to outlive userspace program that attached it
10495 * in the system. Depending on type of BPF program, though, there might be
10496 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10497 * exit of userspace program doesn't trigger automatic detachment and clean up
10498 * inside the kernel.
10500 void bpf_link__disconnect(struct bpf_link *link)
10502 link->disconnected = true;
10505 int bpf_link__destroy(struct bpf_link *link)
10509 if (IS_ERR_OR_NULL(link))
10512 if (!link->disconnected && link->detach)
10513 err = link->detach(link);
10514 if (link->pin_path)
10515 free(link->pin_path);
10517 link->dealloc(link);
10521 return libbpf_err(err);
10524 int bpf_link__fd(const struct bpf_link *link)
10529 const char *bpf_link__pin_path(const struct bpf_link *link)
10531 return link->pin_path;
10534 static int bpf_link__detach_fd(struct bpf_link *link)
10536 return libbpf_err_errno(close(link->fd));
10539 struct bpf_link *bpf_link__open(const char *path)
10541 struct bpf_link *link;
10544 fd = bpf_obj_get(path);
10547 pr_warn("failed to open link at %s: %d\n", path, fd);
10548 return libbpf_err_ptr(fd);
10551 link = calloc(1, sizeof(*link));
10554 return libbpf_err_ptr(-ENOMEM);
10556 link->detach = &bpf_link__detach_fd;
10559 link->pin_path = strdup(path);
10560 if (!link->pin_path) {
10561 bpf_link__destroy(link);
10562 return libbpf_err_ptr(-ENOMEM);
10568 int bpf_link__detach(struct bpf_link *link)
10570 return bpf_link_detach(link->fd) ? -errno : 0;
10573 int bpf_link__pin(struct bpf_link *link, const char *path)
10577 if (link->pin_path)
10578 return libbpf_err(-EBUSY);
10579 err = make_parent_dir(path);
10581 return libbpf_err(err);
10582 err = check_path(path);
10584 return libbpf_err(err);
10586 link->pin_path = strdup(path);
10587 if (!link->pin_path)
10588 return libbpf_err(-ENOMEM);
10590 if (bpf_obj_pin(link->fd, link->pin_path)) {
10592 zfree(&link->pin_path);
10593 return libbpf_err(err);
10596 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10600 int bpf_link__unpin(struct bpf_link *link)
10604 if (!link->pin_path)
10605 return libbpf_err(-EINVAL);
10607 err = unlink(link->pin_path);
10611 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10612 zfree(&link->pin_path);
10616 struct bpf_link_perf {
10617 struct bpf_link link;
10619 /* legacy kprobe support: keep track of probe identifier and type */
10620 char *legacy_probe_name;
10621 bool legacy_is_kprobe;
10622 bool legacy_is_retprobe;
10625 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10626 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10628 static int bpf_link_perf_detach(struct bpf_link *link)
10630 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10633 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10636 if (perf_link->perf_event_fd != link->fd)
10637 close(perf_link->perf_event_fd);
10640 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10641 if (perf_link->legacy_probe_name) {
10642 if (perf_link->legacy_is_kprobe) {
10643 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10644 perf_link->legacy_is_retprobe);
10646 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10647 perf_link->legacy_is_retprobe);
10654 static void bpf_link_perf_dealloc(struct bpf_link *link)
10656 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10658 free(perf_link->legacy_probe_name);
10662 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10663 const struct bpf_perf_event_opts *opts)
10665 char errmsg[STRERR_BUFSIZE];
10666 struct bpf_link_perf *link;
10667 int prog_fd, link_fd = -1, err;
10668 bool force_ioctl_attach;
10670 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10671 return libbpf_err_ptr(-EINVAL);
10674 pr_warn("prog '%s': invalid perf event FD %d\n",
10676 return libbpf_err_ptr(-EINVAL);
10678 prog_fd = bpf_program__fd(prog);
10680 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10682 return libbpf_err_ptr(-EINVAL);
10685 link = calloc(1, sizeof(*link));
10687 return libbpf_err_ptr(-ENOMEM);
10688 link->link.detach = &bpf_link_perf_detach;
10689 link->link.dealloc = &bpf_link_perf_dealloc;
10690 link->perf_event_fd = pfd;
10692 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10693 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10694 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10695 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10697 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10700 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10702 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10705 link->link.fd = link_fd;
10707 if (OPTS_GET(opts, bpf_cookie, 0)) {
10708 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10713 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10715 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10716 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10717 if (err == -EPROTO)
10718 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10722 link->link.fd = pfd;
10724 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10726 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10727 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10731 return &link->link;
10736 return libbpf_err_ptr(err);
10739 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10741 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10745 * this function is expected to parse integer in the range of [0, 2^31-1] from
10746 * given file using scanf format string fmt. If actual parsed value is
10747 * negative, the result might be indistinguishable from error
10749 static int parse_uint_from_file(const char *file, const char *fmt)
10751 char buf[STRERR_BUFSIZE];
10755 f = fopen(file, "re");
10758 pr_debug("failed to open '%s': %s\n", file,
10759 libbpf_strerror_r(err, buf, sizeof(buf)));
10762 err = fscanf(f, fmt, &ret);
10764 err = err == EOF ? -EIO : -errno;
10765 pr_debug("failed to parse '%s': %s\n", file,
10766 libbpf_strerror_r(err, buf, sizeof(buf)));
10774 static int determine_kprobe_perf_type(void)
10776 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10778 return parse_uint_from_file(file, "%d\n");
10781 static int determine_uprobe_perf_type(void)
10783 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10785 return parse_uint_from_file(file, "%d\n");
10788 static int determine_kprobe_retprobe_bit(void)
10790 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10792 return parse_uint_from_file(file, "config:%d\n");
10795 static int determine_uprobe_retprobe_bit(void)
10797 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10799 return parse_uint_from_file(file, "config:%d\n");
10802 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10803 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10805 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10806 uint64_t offset, int pid, size_t ref_ctr_off)
10808 const size_t attr_sz = sizeof(struct perf_event_attr);
10809 struct perf_event_attr attr;
10810 char errmsg[STRERR_BUFSIZE];
10813 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10816 memset(&attr, 0, attr_sz);
10818 type = uprobe ? determine_uprobe_perf_type()
10819 : determine_kprobe_perf_type();
10821 pr_warn("failed to determine %s perf type: %s\n",
10822 uprobe ? "uprobe" : "kprobe",
10823 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10827 int bit = uprobe ? determine_uprobe_retprobe_bit()
10828 : determine_kprobe_retprobe_bit();
10831 pr_warn("failed to determine %s retprobe bit: %s\n",
10832 uprobe ? "uprobe" : "kprobe",
10833 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10836 attr.config |= 1 << bit;
10838 attr.size = attr_sz;
10840 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10841 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10842 attr.config2 = offset; /* kprobe_addr or probe_offset */
10844 /* pid filter is meaningful only for uprobes */
10845 pfd = syscall(__NR_perf_event_open, &attr,
10846 pid < 0 ? -1 : pid /* pid */,
10847 pid == -1 ? 0 : -1 /* cpu */,
10848 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10849 return pfd >= 0 ? pfd : -errno;
10852 static int append_to_file(const char *file, const char *fmt, ...)
10854 int fd, n, err = 0;
10859 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10862 if (n < 0 || n >= sizeof(buf))
10865 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10869 if (write(fd, buf, n) < 0)
10876 #define DEBUGFS "/sys/kernel/debug/tracing"
10877 #define TRACEFS "/sys/kernel/tracing"
10879 static bool use_debugfs(void)
10881 static int has_debugfs = -1;
10883 if (has_debugfs < 0)
10884 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10886 return has_debugfs == 1;
10889 static const char *tracefs_path(void)
10891 return use_debugfs() ? DEBUGFS : TRACEFS;
10894 static const char *tracefs_kprobe_events(void)
10896 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10899 static const char *tracefs_uprobe_events(void)
10901 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10904 static const char *tracefs_available_filter_functions(void)
10906 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10907 : TRACEFS"/available_filter_functions";
10910 static const char *tracefs_available_filter_functions_addrs(void)
10912 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10913 : TRACEFS"/available_filter_functions_addrs";
10916 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10917 const char *kfunc_name, size_t offset)
10919 static int index = 0;
10922 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10923 __sync_fetch_and_add(&index, 1));
10925 /* sanitize binary_path in the probe name */
10926 for (i = 0; buf[i]; i++) {
10927 if (!isalnum(buf[i]))
10932 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10933 const char *kfunc_name, size_t offset)
10935 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10936 retprobe ? 'r' : 'p',
10937 retprobe ? "kretprobes" : "kprobes",
10938 probe_name, kfunc_name, offset);
10941 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10943 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10944 retprobe ? "kretprobes" : "kprobes", probe_name);
10947 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10951 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10952 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10954 return parse_uint_from_file(file, "%d\n");
10957 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10958 const char *kfunc_name, size_t offset, int pid)
10960 const size_t attr_sz = sizeof(struct perf_event_attr);
10961 struct perf_event_attr attr;
10962 char errmsg[STRERR_BUFSIZE];
10963 int type, pfd, err;
10965 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10967 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10968 kfunc_name, offset,
10969 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10972 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10975 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10976 kfunc_name, offset,
10977 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10978 goto err_clean_legacy;
10981 memset(&attr, 0, attr_sz);
10982 attr.size = attr_sz;
10983 attr.config = type;
10984 attr.type = PERF_TYPE_TRACEPOINT;
10986 pfd = syscall(__NR_perf_event_open, &attr,
10987 pid < 0 ? -1 : pid, /* pid */
10988 pid == -1 ? 0 : -1, /* cpu */
10989 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10992 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10993 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10994 goto err_clean_legacy;
10999 /* Clear the newly added legacy kprobe_event */
11000 remove_kprobe_event_legacy(probe_name, retprobe);
11004 static const char *arch_specific_syscall_pfx(void)
11006 #if defined(__x86_64__)
11008 #elif defined(__i386__)
11010 #elif defined(__s390x__)
11012 #elif defined(__s390__)
11014 #elif defined(__arm__)
11016 #elif defined(__aarch64__)
11018 #elif defined(__mips__)
11020 #elif defined(__riscv)
11022 #elif defined(__powerpc__)
11024 #elif defined(__powerpc64__)
11025 return "powerpc64";
11031 static int probe_kern_syscall_wrapper(void)
11033 char syscall_name[64];
11034 const char *ksys_pfx;
11036 ksys_pfx = arch_specific_syscall_pfx();
11040 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11042 if (determine_kprobe_perf_type() >= 0) {
11045 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11049 return pfd >= 0 ? 1 : 0;
11050 } else { /* legacy mode */
11051 char probe_name[128];
11053 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11054 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11057 (void)remove_kprobe_event_legacy(probe_name, false);
11063 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11064 const char *func_name,
11065 const struct bpf_kprobe_opts *opts)
11067 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11068 enum probe_attach_mode attach_mode;
11069 char errmsg[STRERR_BUFSIZE];
11070 char *legacy_probe = NULL;
11071 struct bpf_link *link;
11073 bool retprobe, legacy;
11076 if (!OPTS_VALID(opts, bpf_kprobe_opts))
11077 return libbpf_err_ptr(-EINVAL);
11079 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11080 retprobe = OPTS_GET(opts, retprobe, false);
11081 offset = OPTS_GET(opts, offset, 0);
11082 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11084 legacy = determine_kprobe_perf_type() < 0;
11085 switch (attach_mode) {
11086 case PROBE_ATTACH_MODE_LEGACY:
11088 pe_opts.force_ioctl_attach = true;
11090 case PROBE_ATTACH_MODE_PERF:
11092 return libbpf_err_ptr(-ENOTSUP);
11093 pe_opts.force_ioctl_attach = true;
11095 case PROBE_ATTACH_MODE_LINK:
11096 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11097 return libbpf_err_ptr(-ENOTSUP);
11099 case PROBE_ATTACH_MODE_DEFAULT:
11102 return libbpf_err_ptr(-EINVAL);
11106 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11108 -1 /* pid */, 0 /* ref_ctr_off */);
11110 char probe_name[256];
11112 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11113 func_name, offset);
11115 legacy_probe = strdup(probe_name);
11117 return libbpf_err_ptr(-ENOMEM);
11119 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11120 offset, -1 /* pid */);
11124 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11125 prog->name, retprobe ? "kretprobe" : "kprobe",
11127 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11130 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11131 err = libbpf_get_error(link);
11134 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11135 prog->name, retprobe ? "kretprobe" : "kprobe",
11137 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11138 goto err_clean_legacy;
11141 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11143 perf_link->legacy_probe_name = legacy_probe;
11144 perf_link->legacy_is_kprobe = true;
11145 perf_link->legacy_is_retprobe = retprobe;
11152 remove_kprobe_event_legacy(legacy_probe, retprobe);
11154 free(legacy_probe);
11155 return libbpf_err_ptr(err);
11158 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11160 const char *func_name)
11162 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11163 .retprobe = retprobe,
11166 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11169 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11170 const char *syscall_name,
11171 const struct bpf_ksyscall_opts *opts)
11173 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11174 char func_name[128];
11176 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11177 return libbpf_err_ptr(-EINVAL);
11179 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11180 /* arch_specific_syscall_pfx() should never return NULL here
11181 * because it is guarded by kernel_supports(). However, since
11182 * compiler does not know that we have an explicit conditional
11185 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11186 arch_specific_syscall_pfx() ? : "", syscall_name);
11188 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11191 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11192 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11194 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11197 /* Adapted from perf/util/string.c */
11198 bool glob_match(const char *str, const char *pat)
11200 while (*str && *pat && *pat != '*') {
11201 if (*pat == '?') { /* Matches any single character */
11211 /* Check wild card */
11213 while (*pat == '*')
11215 if (!*pat) /* Tail wild card matches all */
11218 if (glob_match(str++, pat))
11221 return !*str && !*pat;
11224 struct kprobe_multi_resolve {
11225 const char *pattern;
11226 unsigned long *addrs;
11231 struct avail_kallsyms_data {
11234 struct kprobe_multi_resolve *res;
11237 static int avail_func_cmp(const void *a, const void *b)
11239 return strcmp(*(const char **)a, *(const char **)b);
11242 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11243 const char *sym_name, void *ctx)
11245 struct avail_kallsyms_data *data = ctx;
11246 struct kprobe_multi_resolve *res = data->res;
11249 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11252 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11256 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11260 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11262 const char *available_functions_file = tracefs_available_filter_functions();
11263 struct avail_kallsyms_data data;
11264 char sym_name[500];
11266 int err = 0, ret, i;
11267 char **syms = NULL;
11268 size_t cap = 0, cnt = 0;
11270 f = fopen(available_functions_file, "re");
11273 pr_warn("failed to open %s: %d\n", available_functions_file, err);
11280 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11281 if (ret == EOF && feof(f))
11285 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11290 if (!glob_match(sym_name, res->pattern))
11293 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11297 name = strdup(sym_name);
11303 syms[cnt++] = name;
11306 /* no entries found, bail out */
11312 /* sort available functions */
11313 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11318 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11324 for (i = 0; i < cnt; i++)
11325 free((char *)syms[i]);
11332 static bool has_available_filter_functions_addrs(void)
11334 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11337 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11339 const char *available_path = tracefs_available_filter_functions_addrs();
11340 char sym_name[500];
11343 unsigned long long sym_addr;
11345 f = fopen(available_path, "re");
11348 pr_warn("failed to open %s: %d\n", available_path, err);
11353 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11354 if (ret == EOF && feof(f))
11358 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11364 if (!glob_match(sym_name, res->pattern))
11367 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11368 sizeof(*res->addrs), res->cnt + 1);
11372 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11384 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11385 const char *pattern,
11386 const struct bpf_kprobe_multi_opts *opts)
11388 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11389 struct kprobe_multi_resolve res = {
11390 .pattern = pattern,
11392 struct bpf_link *link = NULL;
11393 char errmsg[STRERR_BUFSIZE];
11394 const unsigned long *addrs;
11395 int err, link_fd, prog_fd;
11396 const __u64 *cookies;
11401 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11402 return libbpf_err_ptr(-EINVAL);
11404 syms = OPTS_GET(opts, syms, false);
11405 addrs = OPTS_GET(opts, addrs, false);
11406 cnt = OPTS_GET(opts, cnt, false);
11407 cookies = OPTS_GET(opts, cookies, false);
11409 if (!pattern && !addrs && !syms)
11410 return libbpf_err_ptr(-EINVAL);
11411 if (pattern && (addrs || syms || cookies || cnt))
11412 return libbpf_err_ptr(-EINVAL);
11413 if (!pattern && !cnt)
11414 return libbpf_err_ptr(-EINVAL);
11416 return libbpf_err_ptr(-EINVAL);
11419 if (has_available_filter_functions_addrs())
11420 err = libbpf_available_kprobes_parse(&res);
11422 err = libbpf_available_kallsyms_parse(&res);
11429 retprobe = OPTS_GET(opts, retprobe, false);
11431 lopts.kprobe_multi.syms = syms;
11432 lopts.kprobe_multi.addrs = addrs;
11433 lopts.kprobe_multi.cookies = cookies;
11434 lopts.kprobe_multi.cnt = cnt;
11435 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11437 link = calloc(1, sizeof(*link));
11442 link->detach = &bpf_link__detach_fd;
11444 prog_fd = bpf_program__fd(prog);
11445 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11448 pr_warn("prog '%s': failed to attach: %s\n",
11449 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11452 link->fd = link_fd;
11459 return libbpf_err_ptr(err);
11462 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11464 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11465 unsigned long offset = 0;
11466 const char *func_name;
11472 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11473 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11476 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11478 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11480 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11482 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11484 pr_warn("kprobe name is invalid: %s\n", func_name);
11487 if (opts.retprobe && offset != 0) {
11489 pr_warn("kretprobes do not support offset specification\n");
11493 opts.offset = offset;
11494 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11496 return libbpf_get_error(*link);
11499 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11501 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11502 const char *syscall_name;
11506 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11507 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11510 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11512 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11514 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11516 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11517 return *link ? 0 : -errno;
11520 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11522 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11529 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11530 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11531 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11534 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11536 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11538 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11540 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11542 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11546 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11548 return libbpf_get_error(*link);
11551 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11553 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11554 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11555 int n, ret = -EINVAL;
11559 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11560 &probe_type, &binary_path, &func_name);
11563 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11567 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11568 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11569 ret = libbpf_get_error(*link);
11572 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11582 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11583 const char *binary_path, uint64_t offset)
11587 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11589 /* sanitize binary_path in the probe name */
11590 for (i = 0; buf[i]; i++) {
11591 if (!isalnum(buf[i]))
11596 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11597 const char *binary_path, size_t offset)
11599 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11600 retprobe ? 'r' : 'p',
11601 retprobe ? "uretprobes" : "uprobes",
11602 probe_name, binary_path, offset);
11605 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11607 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11608 retprobe ? "uretprobes" : "uprobes", probe_name);
11611 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11615 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11616 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11618 return parse_uint_from_file(file, "%d\n");
11621 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11622 const char *binary_path, size_t offset, int pid)
11624 const size_t attr_sz = sizeof(struct perf_event_attr);
11625 struct perf_event_attr attr;
11626 int type, pfd, err;
11628 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11630 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11631 binary_path, (size_t)offset, err);
11634 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11637 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11638 binary_path, offset, err);
11639 goto err_clean_legacy;
11642 memset(&attr, 0, attr_sz);
11643 attr.size = attr_sz;
11644 attr.config = type;
11645 attr.type = PERF_TYPE_TRACEPOINT;
11647 pfd = syscall(__NR_perf_event_open, &attr,
11648 pid < 0 ? -1 : pid, /* pid */
11649 pid == -1 ? 0 : -1, /* cpu */
11650 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11653 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11654 goto err_clean_legacy;
11659 /* Clear the newly added legacy uprobe_event */
11660 remove_uprobe_event_legacy(probe_name, retprobe);
11664 /* Find offset of function name in archive specified by path. Currently
11665 * supported are .zip files that do not compress their contents, as used on
11666 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11667 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11668 * library functions.
11670 * An overview of the APK format specifically provided here:
11671 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11673 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11674 const char *func_name)
11676 struct zip_archive *archive;
11677 struct zip_entry entry;
11681 archive = zip_archive_open(archive_path);
11682 if (IS_ERR(archive)) {
11683 ret = PTR_ERR(archive);
11684 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11688 ret = zip_archive_find_entry(archive, file_name, &entry);
11690 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11691 archive_path, ret);
11694 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11695 (unsigned long)entry.data_offset);
11697 if (entry.compression) {
11698 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11700 ret = -LIBBPF_ERRNO__FORMAT;
11704 elf = elf_memory((void *)entry.data, entry.data_length);
11706 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11708 ret = -LIBBPF_ERRNO__LIBELF;
11712 ret = elf_find_func_offset(elf, file_name, func_name);
11714 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11715 func_name, file_name, archive_path, entry.data_offset, ret,
11716 ret + entry.data_offset);
11717 ret += entry.data_offset;
11722 zip_archive_close(archive);
11726 static const char *arch_specific_lib_paths(void)
11729 * Based on https://packages.debian.org/sid/libc6.
11731 * Assume that the traced program is built for the same architecture
11732 * as libbpf, which should cover the vast majority of cases.
11734 #if defined(__x86_64__)
11735 return "/lib/x86_64-linux-gnu";
11736 #elif defined(__i386__)
11737 return "/lib/i386-linux-gnu";
11738 #elif defined(__s390x__)
11739 return "/lib/s390x-linux-gnu";
11740 #elif defined(__s390__)
11741 return "/lib/s390-linux-gnu";
11742 #elif defined(__arm__) && defined(__SOFTFP__)
11743 return "/lib/arm-linux-gnueabi";
11744 #elif defined(__arm__) && !defined(__SOFTFP__)
11745 return "/lib/arm-linux-gnueabihf";
11746 #elif defined(__aarch64__)
11747 return "/lib/aarch64-linux-gnu";
11748 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11749 return "/lib/mips64el-linux-gnuabi64";
11750 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11751 return "/lib/mipsel-linux-gnu";
11752 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11753 return "/lib/powerpc64le-linux-gnu";
11754 #elif defined(__sparc__) && defined(__arch64__)
11755 return "/lib/sparc64-linux-gnu";
11756 #elif defined(__riscv) && __riscv_xlen == 64
11757 return "/lib/riscv64-linux-gnu";
11763 /* Get full path to program/shared library. */
11764 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11766 const char *search_paths[3] = {};
11769 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11770 search_paths[0] = getenv("LD_LIBRARY_PATH");
11771 search_paths[1] = "/usr/lib64:/usr/lib";
11772 search_paths[2] = arch_specific_lib_paths();
11775 search_paths[0] = getenv("PATH");
11776 search_paths[1] = "/usr/bin:/usr/sbin";
11777 perm = R_OK | X_OK;
11780 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11783 if (!search_paths[i])
11785 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11791 next_path = strchr(s, ':');
11792 seg_len = next_path ? next_path - s : strlen(s);
11795 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11796 /* ensure it has required permissions */
11797 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11799 pr_debug("resolved '%s' to '%s'\n", file, result);
11807 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11810 const char *func_pattern,
11811 const struct bpf_uprobe_multi_opts *opts)
11813 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11814 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11815 unsigned long *resolved_offsets = NULL;
11816 int err = 0, link_fd, prog_fd;
11817 struct bpf_link *link = NULL;
11818 char errmsg[STRERR_BUFSIZE];
11819 char full_path[PATH_MAX];
11820 const __u64 *cookies;
11824 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11825 return libbpf_err_ptr(-EINVAL);
11827 syms = OPTS_GET(opts, syms, NULL);
11828 offsets = OPTS_GET(opts, offsets, NULL);
11829 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11830 cookies = OPTS_GET(opts, cookies, NULL);
11831 cnt = OPTS_GET(opts, cnt, 0);
11834 * User can specify 2 mutually exclusive set of inputs:
11836 * 1) use only path/func_pattern/pid arguments
11838 * 2) use path/pid with allowed combinations of:
11839 * syms/offsets/ref_ctr_offsets/cookies/cnt
11841 * - syms and offsets are mutually exclusive
11842 * - ref_ctr_offsets and cookies are optional
11844 * Any other usage results in error.
11848 return libbpf_err_ptr(-EINVAL);
11849 if (!func_pattern && cnt == 0)
11850 return libbpf_err_ptr(-EINVAL);
11852 if (func_pattern) {
11853 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11854 return libbpf_err_ptr(-EINVAL);
11856 if (!!syms == !!offsets)
11857 return libbpf_err_ptr(-EINVAL);
11860 if (func_pattern) {
11861 if (!strchr(path, '/')) {
11862 err = resolve_full_path(path, full_path, sizeof(full_path));
11864 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11865 prog->name, path, err);
11866 return libbpf_err_ptr(err);
11871 err = elf_resolve_pattern_offsets(path, func_pattern,
11872 &resolved_offsets, &cnt);
11874 return libbpf_err_ptr(err);
11875 offsets = resolved_offsets;
11877 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11879 return libbpf_err_ptr(err);
11880 offsets = resolved_offsets;
11883 lopts.uprobe_multi.path = path;
11884 lopts.uprobe_multi.offsets = offsets;
11885 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11886 lopts.uprobe_multi.cookies = cookies;
11887 lopts.uprobe_multi.cnt = cnt;
11888 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11893 lopts.uprobe_multi.pid = pid;
11895 link = calloc(1, sizeof(*link));
11900 link->detach = &bpf_link__detach_fd;
11902 prog_fd = bpf_program__fd(prog);
11903 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11906 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11907 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11910 link->fd = link_fd;
11911 free(resolved_offsets);
11915 free(resolved_offsets);
11917 return libbpf_err_ptr(err);
11920 LIBBPF_API struct bpf_link *
11921 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11922 const char *binary_path, size_t func_offset,
11923 const struct bpf_uprobe_opts *opts)
11925 const char *archive_path = NULL, *archive_sep = NULL;
11926 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11927 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11928 enum probe_attach_mode attach_mode;
11929 char full_path[PATH_MAX];
11930 struct bpf_link *link;
11931 size_t ref_ctr_off;
11933 bool retprobe, legacy;
11934 const char *func_name;
11936 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11937 return libbpf_err_ptr(-EINVAL);
11939 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11940 retprobe = OPTS_GET(opts, retprobe, false);
11941 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11942 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11945 return libbpf_err_ptr(-EINVAL);
11947 /* Check if "binary_path" refers to an archive. */
11948 archive_sep = strstr(binary_path, "!/");
11950 full_path[0] = '\0';
11951 libbpf_strlcpy(full_path, binary_path,
11952 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11953 archive_path = full_path;
11954 binary_path = archive_sep + 2;
11955 } else if (!strchr(binary_path, '/')) {
11956 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11958 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11959 prog->name, binary_path, err);
11960 return libbpf_err_ptr(err);
11962 binary_path = full_path;
11964 func_name = OPTS_GET(opts, func_name, NULL);
11968 if (archive_path) {
11969 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11971 binary_path = archive_path;
11973 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11976 return libbpf_err_ptr(sym_off);
11977 func_offset += sym_off;
11980 legacy = determine_uprobe_perf_type() < 0;
11981 switch (attach_mode) {
11982 case PROBE_ATTACH_MODE_LEGACY:
11984 pe_opts.force_ioctl_attach = true;
11986 case PROBE_ATTACH_MODE_PERF:
11988 return libbpf_err_ptr(-ENOTSUP);
11989 pe_opts.force_ioctl_attach = true;
11991 case PROBE_ATTACH_MODE_LINK:
11992 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11993 return libbpf_err_ptr(-ENOTSUP);
11995 case PROBE_ATTACH_MODE_DEFAULT:
11998 return libbpf_err_ptr(-EINVAL);
12002 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12003 func_offset, pid, ref_ctr_off);
12005 char probe_name[PATH_MAX + 64];
12008 return libbpf_err_ptr(-EINVAL);
12010 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12011 binary_path, func_offset);
12013 legacy_probe = strdup(probe_name);
12015 return libbpf_err_ptr(-ENOMEM);
12017 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12018 binary_path, func_offset, pid);
12022 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12023 prog->name, retprobe ? "uretprobe" : "uprobe",
12024 binary_path, func_offset,
12025 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12029 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12030 err = libbpf_get_error(link);
12033 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12034 prog->name, retprobe ? "uretprobe" : "uprobe",
12035 binary_path, func_offset,
12036 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12037 goto err_clean_legacy;
12040 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12042 perf_link->legacy_probe_name = legacy_probe;
12043 perf_link->legacy_is_kprobe = false;
12044 perf_link->legacy_is_retprobe = retprobe;
12050 remove_uprobe_event_legacy(legacy_probe, retprobe);
12052 free(legacy_probe);
12053 return libbpf_err_ptr(err);
12056 /* Format of u[ret]probe section definition supporting auto-attach:
12057 * u[ret]probe/binary:function[+offset]
12059 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12060 * full binary path via bpf_program__attach_uprobe_opts.
12062 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12063 * specified (and auto-attach is not possible) or the above format is specified for
12066 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12068 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12069 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12070 int n, c, ret = -EINVAL;
12075 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12076 &probe_type, &binary_path, &func_name);
12079 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12083 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12084 prog->name, prog->sec_name);
12087 /* check if user specifies `+offset`, if yes, this should be
12088 * the last part of the string, make sure sscanf read to EOL
12090 func_off = strrchr(func_name, '+');
12092 n = sscanf(func_off, "+%li%n", &offset, &c);
12093 if (n == 1 && *(func_off + c) == '\0')
12094 func_off[0] = '\0';
12098 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12099 strcmp(probe_type, "uretprobe.s") == 0;
12100 if (opts.retprobe && offset != 0) {
12101 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12105 opts.func_name = func_name;
12106 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12107 ret = libbpf_get_error(*link);
12110 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12121 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12122 bool retprobe, pid_t pid,
12123 const char *binary_path,
12124 size_t func_offset)
12126 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12128 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12131 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12132 pid_t pid, const char *binary_path,
12133 const char *usdt_provider, const char *usdt_name,
12134 const struct bpf_usdt_opts *opts)
12136 char resolved_path[512];
12137 struct bpf_object *obj = prog->obj;
12138 struct bpf_link *link;
12142 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12143 return libbpf_err_ptr(-EINVAL);
12145 if (bpf_program__fd(prog) < 0) {
12146 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12148 return libbpf_err_ptr(-EINVAL);
12152 return libbpf_err_ptr(-EINVAL);
12154 if (!strchr(binary_path, '/')) {
12155 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12157 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12158 prog->name, binary_path, err);
12159 return libbpf_err_ptr(err);
12161 binary_path = resolved_path;
12164 /* USDT manager is instantiated lazily on first USDT attach. It will
12165 * be destroyed together with BPF object in bpf_object__close().
12167 if (IS_ERR(obj->usdt_man))
12168 return libbpf_ptr(obj->usdt_man);
12169 if (!obj->usdt_man) {
12170 obj->usdt_man = usdt_manager_new(obj);
12171 if (IS_ERR(obj->usdt_man))
12172 return libbpf_ptr(obj->usdt_man);
12175 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12176 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12177 usdt_provider, usdt_name, usdt_cookie);
12178 err = libbpf_get_error(link);
12180 return libbpf_err_ptr(err);
12184 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12186 char *path = NULL, *provider = NULL, *name = NULL;
12187 const char *sec_name;
12190 sec_name = bpf_program__section_name(prog);
12191 if (strcmp(sec_name, "usdt") == 0) {
12192 /* no auto-attach for just SEC("usdt") */
12197 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12199 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12203 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12204 provider, name, NULL);
12205 err = libbpf_get_error(*link);
12213 static int determine_tracepoint_id(const char *tp_category,
12214 const char *tp_name)
12216 char file[PATH_MAX];
12219 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12220 tracefs_path(), tp_category, tp_name);
12223 if (ret >= sizeof(file)) {
12224 pr_debug("tracepoint %s/%s path is too long\n",
12225 tp_category, tp_name);
12228 return parse_uint_from_file(file, "%d\n");
12231 static int perf_event_open_tracepoint(const char *tp_category,
12232 const char *tp_name)
12234 const size_t attr_sz = sizeof(struct perf_event_attr);
12235 struct perf_event_attr attr;
12236 char errmsg[STRERR_BUFSIZE];
12237 int tp_id, pfd, err;
12239 tp_id = determine_tracepoint_id(tp_category, tp_name);
12241 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12242 tp_category, tp_name,
12243 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12247 memset(&attr, 0, attr_sz);
12248 attr.type = PERF_TYPE_TRACEPOINT;
12249 attr.size = attr_sz;
12250 attr.config = tp_id;
12252 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12253 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12256 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12257 tp_category, tp_name,
12258 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12264 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12265 const char *tp_category,
12266 const char *tp_name,
12267 const struct bpf_tracepoint_opts *opts)
12269 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12270 char errmsg[STRERR_BUFSIZE];
12271 struct bpf_link *link;
12274 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12275 return libbpf_err_ptr(-EINVAL);
12277 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12279 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12281 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12282 prog->name, tp_category, tp_name,
12283 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12284 return libbpf_err_ptr(pfd);
12286 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12287 err = libbpf_get_error(link);
12290 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12291 prog->name, tp_category, tp_name,
12292 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12293 return libbpf_err_ptr(err);
12298 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12299 const char *tp_category,
12300 const char *tp_name)
12302 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12305 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12307 char *sec_name, *tp_cat, *tp_name;
12311 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12312 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12315 sec_name = strdup(prog->sec_name);
12319 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12320 if (str_has_pfx(prog->sec_name, "tp/"))
12321 tp_cat = sec_name + sizeof("tp/") - 1;
12323 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12324 tp_name = strchr(tp_cat, '/');
12332 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12334 return libbpf_get_error(*link);
12337 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12338 const char *tp_name)
12340 char errmsg[STRERR_BUFSIZE];
12341 struct bpf_link *link;
12344 prog_fd = bpf_program__fd(prog);
12346 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12347 return libbpf_err_ptr(-EINVAL);
12350 link = calloc(1, sizeof(*link));
12352 return libbpf_err_ptr(-ENOMEM);
12353 link->detach = &bpf_link__detach_fd;
12355 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12359 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12360 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12361 return libbpf_err_ptr(pfd);
12367 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12369 static const char *const prefixes[] = {
12373 "raw_tracepoint.w",
12376 const char *tp_name = NULL;
12380 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12383 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12386 pfx_len = strlen(prefixes[i]);
12387 /* no auto-attach case of, e.g., SEC("raw_tp") */
12388 if (prog->sec_name[pfx_len] == '\0')
12391 if (prog->sec_name[pfx_len] != '/')
12394 tp_name = prog->sec_name + pfx_len + 1;
12399 pr_warn("prog '%s': invalid section name '%s'\n",
12400 prog->name, prog->sec_name);
12404 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12405 return libbpf_get_error(*link);
12408 /* Common logic for all BPF program types that attach to a btf_id */
12409 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12410 const struct bpf_trace_opts *opts)
12412 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12413 char errmsg[STRERR_BUFSIZE];
12414 struct bpf_link *link;
12417 if (!OPTS_VALID(opts, bpf_trace_opts))
12418 return libbpf_err_ptr(-EINVAL);
12420 prog_fd = bpf_program__fd(prog);
12422 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12423 return libbpf_err_ptr(-EINVAL);
12426 link = calloc(1, sizeof(*link));
12428 return libbpf_err_ptr(-ENOMEM);
12429 link->detach = &bpf_link__detach_fd;
12431 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12432 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12433 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12437 pr_warn("prog '%s': failed to attach: %s\n",
12438 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12439 return libbpf_err_ptr(pfd);
12445 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12447 return bpf_program__attach_btf_id(prog, NULL);
12450 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12451 const struct bpf_trace_opts *opts)
12453 return bpf_program__attach_btf_id(prog, opts);
12456 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12458 return bpf_program__attach_btf_id(prog, NULL);
12461 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12463 *link = bpf_program__attach_trace(prog);
12464 return libbpf_get_error(*link);
12467 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12469 *link = bpf_program__attach_lsm(prog);
12470 return libbpf_get_error(*link);
12473 static struct bpf_link *
12474 bpf_program_attach_fd(const struct bpf_program *prog,
12475 int target_fd, const char *target_name,
12476 const struct bpf_link_create_opts *opts)
12478 enum bpf_attach_type attach_type;
12479 char errmsg[STRERR_BUFSIZE];
12480 struct bpf_link *link;
12481 int prog_fd, link_fd;
12483 prog_fd = bpf_program__fd(prog);
12485 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12486 return libbpf_err_ptr(-EINVAL);
12489 link = calloc(1, sizeof(*link));
12491 return libbpf_err_ptr(-ENOMEM);
12492 link->detach = &bpf_link__detach_fd;
12494 attach_type = bpf_program__expected_attach_type(prog);
12495 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12499 pr_warn("prog '%s': failed to attach to %s: %s\n",
12500 prog->name, target_name,
12501 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12502 return libbpf_err_ptr(link_fd);
12504 link->fd = link_fd;
12509 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12511 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12515 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12517 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12520 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12522 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12523 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12527 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12528 const struct bpf_tcx_opts *opts)
12530 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12534 if (!OPTS_VALID(opts, bpf_tcx_opts))
12535 return libbpf_err_ptr(-EINVAL);
12537 relative_id = OPTS_GET(opts, relative_id, 0);
12538 relative_fd = OPTS_GET(opts, relative_fd, 0);
12540 /* validate we don't have unexpected combinations of non-zero fields */
12542 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12544 return libbpf_err_ptr(-EINVAL);
12546 if (relative_fd && relative_id) {
12547 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12549 return libbpf_err_ptr(-EINVAL);
12552 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12553 link_create_opts.tcx.relative_fd = relative_fd;
12554 link_create_opts.tcx.relative_id = relative_id;
12555 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12557 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12558 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12562 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12563 const struct bpf_netkit_opts *opts)
12565 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12569 if (!OPTS_VALID(opts, bpf_netkit_opts))
12570 return libbpf_err_ptr(-EINVAL);
12572 relative_id = OPTS_GET(opts, relative_id, 0);
12573 relative_fd = OPTS_GET(opts, relative_fd, 0);
12575 /* validate we don't have unexpected combinations of non-zero fields */
12577 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12579 return libbpf_err_ptr(-EINVAL);
12581 if (relative_fd && relative_id) {
12582 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12584 return libbpf_err_ptr(-EINVAL);
12587 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12588 link_create_opts.netkit.relative_fd = relative_fd;
12589 link_create_opts.netkit.relative_id = relative_id;
12590 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12592 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12595 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12597 const char *attach_func_name)
12601 if (!!target_fd != !!attach_func_name) {
12602 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12604 return libbpf_err_ptr(-EINVAL);
12607 if (prog->type != BPF_PROG_TYPE_EXT) {
12608 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12610 return libbpf_err_ptr(-EINVAL);
12614 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12616 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12618 return libbpf_err_ptr(btf_id);
12620 target_opts.target_btf_id = btf_id;
12622 return bpf_program_attach_fd(prog, target_fd, "freplace",
12625 /* no target, so use raw_tracepoint_open for compatibility
12628 return bpf_program__attach_trace(prog);
12633 bpf_program__attach_iter(const struct bpf_program *prog,
12634 const struct bpf_iter_attach_opts *opts)
12636 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12637 char errmsg[STRERR_BUFSIZE];
12638 struct bpf_link *link;
12639 int prog_fd, link_fd;
12640 __u32 target_fd = 0;
12642 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12643 return libbpf_err_ptr(-EINVAL);
12645 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12646 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12648 prog_fd = bpf_program__fd(prog);
12650 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12651 return libbpf_err_ptr(-EINVAL);
12654 link = calloc(1, sizeof(*link));
12656 return libbpf_err_ptr(-ENOMEM);
12657 link->detach = &bpf_link__detach_fd;
12659 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12660 &link_create_opts);
12664 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12665 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12666 return libbpf_err_ptr(link_fd);
12668 link->fd = link_fd;
12672 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12674 *link = bpf_program__attach_iter(prog, NULL);
12675 return libbpf_get_error(*link);
12678 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12679 const struct bpf_netfilter_opts *opts)
12681 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12682 struct bpf_link *link;
12683 int prog_fd, link_fd;
12685 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12686 return libbpf_err_ptr(-EINVAL);
12688 prog_fd = bpf_program__fd(prog);
12690 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12691 return libbpf_err_ptr(-EINVAL);
12694 link = calloc(1, sizeof(*link));
12696 return libbpf_err_ptr(-ENOMEM);
12698 link->detach = &bpf_link__detach_fd;
12700 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12701 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12702 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12703 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12705 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12707 char errmsg[STRERR_BUFSIZE];
12711 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12712 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12713 return libbpf_err_ptr(link_fd);
12715 link->fd = link_fd;
12720 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12722 struct bpf_link *link = NULL;
12725 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12726 return libbpf_err_ptr(-EOPNOTSUPP);
12728 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12730 return libbpf_err_ptr(err);
12732 /* When calling bpf_program__attach() explicitly, auto-attach support
12733 * is expected to work, so NULL returned link is considered an error.
12734 * This is different for skeleton's attach, see comment in
12735 * bpf_object__attach_skeleton().
12738 return libbpf_err_ptr(-EOPNOTSUPP);
12743 struct bpf_link_struct_ops {
12744 struct bpf_link link;
12748 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12750 struct bpf_link_struct_ops *st_link;
12753 st_link = container_of(link, struct bpf_link_struct_ops, link);
12755 if (st_link->map_fd < 0)
12756 /* w/o a real link */
12757 return bpf_map_delete_elem(link->fd, &zero);
12759 return close(link->fd);
12762 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12764 struct bpf_link_struct_ops *link;
12768 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12769 return libbpf_err_ptr(-EINVAL);
12771 link = calloc(1, sizeof(*link));
12773 return libbpf_err_ptr(-EINVAL);
12775 /* kern_vdata should be prepared during the loading phase. */
12776 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12777 /* It can be EBUSY if the map has been used to create or
12778 * update a link before. We don't allow updating the value of
12779 * a struct_ops once it is set. That ensures that the value
12780 * never changed. So, it is safe to skip EBUSY.
12782 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12784 return libbpf_err_ptr(err);
12787 link->link.detach = bpf_link__detach_struct_ops;
12789 if (!(map->def.map_flags & BPF_F_LINK)) {
12790 /* w/o a real link */
12791 link->link.fd = map->fd;
12793 return &link->link;
12796 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12799 return libbpf_err_ptr(fd);
12802 link->link.fd = fd;
12803 link->map_fd = map->fd;
12805 return &link->link;
12809 * Swap the back struct_ops of a link with a new struct_ops map.
12811 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12813 struct bpf_link_struct_ops *st_ops_link;
12817 if (!bpf_map__is_struct_ops(map) || !map_is_created(map))
12820 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12821 /* Ensure the type of a link is correct */
12822 if (st_ops_link->map_fd < 0)
12825 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12826 /* It can be EBUSY if the map has been used to create or
12827 * update a link before. We don't allow updating the value of
12828 * a struct_ops once it is set. That ensures that the value
12829 * never changed. So, it is safe to skip EBUSY.
12831 if (err && err != -EBUSY)
12834 err = bpf_link_update(link->fd, map->fd, NULL);
12838 st_ops_link->map_fd = map->fd;
12843 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12844 void *private_data);
12846 static enum bpf_perf_event_ret
12847 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12848 void **copy_mem, size_t *copy_size,
12849 bpf_perf_event_print_t fn, void *private_data)
12851 struct perf_event_mmap_page *header = mmap_mem;
12852 __u64 data_head = ring_buffer_read_head(header);
12853 __u64 data_tail = header->data_tail;
12854 void *base = ((__u8 *)header) + page_size;
12855 int ret = LIBBPF_PERF_EVENT_CONT;
12856 struct perf_event_header *ehdr;
12859 while (data_head != data_tail) {
12860 ehdr = base + (data_tail & (mmap_size - 1));
12861 ehdr_size = ehdr->size;
12863 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12864 void *copy_start = ehdr;
12865 size_t len_first = base + mmap_size - copy_start;
12866 size_t len_secnd = ehdr_size - len_first;
12868 if (*copy_size < ehdr_size) {
12870 *copy_mem = malloc(ehdr_size);
12873 ret = LIBBPF_PERF_EVENT_ERROR;
12876 *copy_size = ehdr_size;
12879 memcpy(*copy_mem, copy_start, len_first);
12880 memcpy(*copy_mem + len_first, base, len_secnd);
12884 ret = fn(ehdr, private_data);
12885 data_tail += ehdr_size;
12886 if (ret != LIBBPF_PERF_EVENT_CONT)
12890 ring_buffer_write_tail(header, data_tail);
12891 return libbpf_err(ret);
12894 struct perf_buffer;
12896 struct perf_buffer_params {
12897 struct perf_event_attr *attr;
12898 /* if event_cb is specified, it takes precendence */
12899 perf_buffer_event_fn event_cb;
12900 /* sample_cb and lost_cb are higher-level common-case callbacks */
12901 perf_buffer_sample_fn sample_cb;
12902 perf_buffer_lost_fn lost_cb;
12909 struct perf_cpu_buf {
12910 struct perf_buffer *pb;
12911 void *base; /* mmap()'ed memory */
12912 void *buf; /* for reconstructing segmented data */
12919 struct perf_buffer {
12920 perf_buffer_event_fn event_cb;
12921 perf_buffer_sample_fn sample_cb;
12922 perf_buffer_lost_fn lost_cb;
12923 void *ctx; /* passed into callbacks */
12927 struct perf_cpu_buf **cpu_bufs;
12928 struct epoll_event *events;
12929 int cpu_cnt; /* number of allocated CPU buffers */
12930 int epoll_fd; /* perf event FD */
12931 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12934 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12935 struct perf_cpu_buf *cpu_buf)
12939 if (cpu_buf->base &&
12940 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12941 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12942 if (cpu_buf->fd >= 0) {
12943 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12944 close(cpu_buf->fd);
12946 free(cpu_buf->buf);
12950 void perf_buffer__free(struct perf_buffer *pb)
12954 if (IS_ERR_OR_NULL(pb))
12956 if (pb->cpu_bufs) {
12957 for (i = 0; i < pb->cpu_cnt; i++) {
12958 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12963 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12964 perf_buffer__free_cpu_buf(pb, cpu_buf);
12966 free(pb->cpu_bufs);
12968 if (pb->epoll_fd >= 0)
12969 close(pb->epoll_fd);
12974 static struct perf_cpu_buf *
12975 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12976 int cpu, int map_key)
12978 struct perf_cpu_buf *cpu_buf;
12979 char msg[STRERR_BUFSIZE];
12982 cpu_buf = calloc(1, sizeof(*cpu_buf));
12984 return ERR_PTR(-ENOMEM);
12987 cpu_buf->cpu = cpu;
12988 cpu_buf->map_key = map_key;
12990 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12991 -1, PERF_FLAG_FD_CLOEXEC);
12992 if (cpu_buf->fd < 0) {
12994 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12995 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12999 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13000 PROT_READ | PROT_WRITE, MAP_SHARED,
13002 if (cpu_buf->base == MAP_FAILED) {
13003 cpu_buf->base = NULL;
13005 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13006 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13010 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13012 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13013 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
13020 perf_buffer__free_cpu_buf(pb, cpu_buf);
13021 return (struct perf_cpu_buf *)ERR_PTR(err);
13024 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13025 struct perf_buffer_params *p);
13027 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13028 perf_buffer_sample_fn sample_cb,
13029 perf_buffer_lost_fn lost_cb,
13031 const struct perf_buffer_opts *opts)
13033 const size_t attr_sz = sizeof(struct perf_event_attr);
13034 struct perf_buffer_params p = {};
13035 struct perf_event_attr attr;
13036 __u32 sample_period;
13038 if (!OPTS_VALID(opts, perf_buffer_opts))
13039 return libbpf_err_ptr(-EINVAL);
13041 sample_period = OPTS_GET(opts, sample_period, 1);
13042 if (!sample_period)
13045 memset(&attr, 0, attr_sz);
13046 attr.size = attr_sz;
13047 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13048 attr.type = PERF_TYPE_SOFTWARE;
13049 attr.sample_type = PERF_SAMPLE_RAW;
13050 attr.sample_period = sample_period;
13051 attr.wakeup_events = sample_period;
13054 p.sample_cb = sample_cb;
13055 p.lost_cb = lost_cb;
13058 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13061 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13062 struct perf_event_attr *attr,
13063 perf_buffer_event_fn event_cb, void *ctx,
13064 const struct perf_buffer_raw_opts *opts)
13066 struct perf_buffer_params p = {};
13069 return libbpf_err_ptr(-EINVAL);
13071 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13072 return libbpf_err_ptr(-EINVAL);
13075 p.event_cb = event_cb;
13077 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13078 p.cpus = OPTS_GET(opts, cpus, NULL);
13079 p.map_keys = OPTS_GET(opts, map_keys, NULL);
13081 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13084 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13085 struct perf_buffer_params *p)
13087 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13088 struct bpf_map_info map;
13089 char msg[STRERR_BUFSIZE];
13090 struct perf_buffer *pb;
13091 bool *online = NULL;
13092 __u32 map_info_len;
13095 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13096 pr_warn("page count should be power of two, but is %zu\n",
13098 return ERR_PTR(-EINVAL);
13101 /* best-effort sanity checks */
13102 memset(&map, 0, sizeof(map));
13103 map_info_len = sizeof(map);
13104 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13107 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13108 * -EBADFD, -EFAULT, or -E2BIG on real error
13110 if (err != -EINVAL) {
13111 pr_warn("failed to get map info for map FD %d: %s\n",
13112 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13113 return ERR_PTR(err);
13115 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13118 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13119 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13121 return ERR_PTR(-EINVAL);
13125 pb = calloc(1, sizeof(*pb));
13127 return ERR_PTR(-ENOMEM);
13129 pb->event_cb = p->event_cb;
13130 pb->sample_cb = p->sample_cb;
13131 pb->lost_cb = p->lost_cb;
13134 pb->page_size = getpagesize();
13135 pb->mmap_size = pb->page_size * page_cnt;
13136 pb->map_fd = map_fd;
13138 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13139 if (pb->epoll_fd < 0) {
13141 pr_warn("failed to create epoll instance: %s\n",
13142 libbpf_strerror_r(err, msg, sizeof(msg)));
13146 if (p->cpu_cnt > 0) {
13147 pb->cpu_cnt = p->cpu_cnt;
13149 pb->cpu_cnt = libbpf_num_possible_cpus();
13150 if (pb->cpu_cnt < 0) {
13154 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13155 pb->cpu_cnt = map.max_entries;
13158 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13161 pr_warn("failed to allocate events: out of memory\n");
13164 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13165 if (!pb->cpu_bufs) {
13167 pr_warn("failed to allocate buffers: out of memory\n");
13171 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13173 pr_warn("failed to get online CPU mask: %d\n", err);
13177 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13178 struct perf_cpu_buf *cpu_buf;
13181 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13182 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13184 /* in case user didn't explicitly requested particular CPUs to
13185 * be attached to, skip offline/not present CPUs
13187 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13190 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13191 if (IS_ERR(cpu_buf)) {
13192 err = PTR_ERR(cpu_buf);
13196 pb->cpu_bufs[j] = cpu_buf;
13198 err = bpf_map_update_elem(pb->map_fd, &map_key,
13202 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13203 cpu, map_key, cpu_buf->fd,
13204 libbpf_strerror_r(err, msg, sizeof(msg)));
13208 pb->events[j].events = EPOLLIN;
13209 pb->events[j].data.ptr = cpu_buf;
13210 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13211 &pb->events[j]) < 0) {
13213 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13215 libbpf_strerror_r(err, msg, sizeof(msg)));
13228 perf_buffer__free(pb);
13229 return ERR_PTR(err);
13232 struct perf_sample_raw {
13233 struct perf_event_header header;
13238 struct perf_sample_lost {
13239 struct perf_event_header header;
13242 uint64_t sample_id;
13245 static enum bpf_perf_event_ret
13246 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13248 struct perf_cpu_buf *cpu_buf = ctx;
13249 struct perf_buffer *pb = cpu_buf->pb;
13252 /* user wants full control over parsing perf event */
13254 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13257 case PERF_RECORD_SAMPLE: {
13258 struct perf_sample_raw *s = data;
13261 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13264 case PERF_RECORD_LOST: {
13265 struct perf_sample_lost *s = data;
13268 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13272 pr_warn("unknown perf sample type %d\n", e->type);
13273 return LIBBPF_PERF_EVENT_ERROR;
13275 return LIBBPF_PERF_EVENT_CONT;
13278 static int perf_buffer__process_records(struct perf_buffer *pb,
13279 struct perf_cpu_buf *cpu_buf)
13281 enum bpf_perf_event_ret ret;
13283 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13284 pb->page_size, &cpu_buf->buf,
13285 &cpu_buf->buf_size,
13286 perf_buffer__process_record, cpu_buf);
13287 if (ret != LIBBPF_PERF_EVENT_CONT)
13292 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13294 return pb->epoll_fd;
13297 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13301 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13305 for (i = 0; i < cnt; i++) {
13306 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13308 err = perf_buffer__process_records(pb, cpu_buf);
13310 pr_warn("error while processing records: %d\n", err);
13311 return libbpf_err(err);
13317 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13320 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13322 return pb->cpu_cnt;
13326 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13327 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13328 * select()/poll()/epoll() Linux syscalls.
13330 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13332 struct perf_cpu_buf *cpu_buf;
13334 if (buf_idx >= pb->cpu_cnt)
13335 return libbpf_err(-EINVAL);
13337 cpu_buf = pb->cpu_bufs[buf_idx];
13339 return libbpf_err(-ENOENT);
13341 return cpu_buf->fd;
13344 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13346 struct perf_cpu_buf *cpu_buf;
13348 if (buf_idx >= pb->cpu_cnt)
13349 return libbpf_err(-EINVAL);
13351 cpu_buf = pb->cpu_bufs[buf_idx];
13353 return libbpf_err(-ENOENT);
13355 *buf = cpu_buf->base;
13356 *buf_size = pb->mmap_size;
13361 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13362 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13363 * consume, do nothing and return success.
13368 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13370 struct perf_cpu_buf *cpu_buf;
13372 if (buf_idx >= pb->cpu_cnt)
13373 return libbpf_err(-EINVAL);
13375 cpu_buf = pb->cpu_bufs[buf_idx];
13377 return libbpf_err(-ENOENT);
13379 return perf_buffer__process_records(pb, cpu_buf);
13382 int perf_buffer__consume(struct perf_buffer *pb)
13386 for (i = 0; i < pb->cpu_cnt; i++) {
13387 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13392 err = perf_buffer__process_records(pb, cpu_buf);
13394 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13395 return libbpf_err(err);
13401 int bpf_program__set_attach_target(struct bpf_program *prog,
13402 int attach_prog_fd,
13403 const char *attach_func_name)
13405 int btf_obj_fd = 0, btf_id = 0, err;
13407 if (!prog || attach_prog_fd < 0)
13408 return libbpf_err(-EINVAL);
13410 if (prog->obj->loaded)
13411 return libbpf_err(-EINVAL);
13413 if (attach_prog_fd && !attach_func_name) {
13414 /* remember attach_prog_fd and let bpf_program__load() find
13415 * BTF ID during the program load
13417 prog->attach_prog_fd = attach_prog_fd;
13421 if (attach_prog_fd) {
13422 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13425 return libbpf_err(btf_id);
13427 if (!attach_func_name)
13428 return libbpf_err(-EINVAL);
13430 /* load btf_vmlinux, if not yet */
13431 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13433 return libbpf_err(err);
13434 err = find_kernel_btf_id(prog->obj, attach_func_name,
13435 prog->expected_attach_type,
13436 &btf_obj_fd, &btf_id);
13438 return libbpf_err(err);
13441 prog->attach_btf_id = btf_id;
13442 prog->attach_btf_obj_fd = btf_obj_fd;
13443 prog->attach_prog_fd = attach_prog_fd;
13447 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13449 int err = 0, n, len, start, end = -1;
13455 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13457 if (*s == ',' || *s == '\n') {
13461 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13462 if (n <= 0 || n > 2) {
13463 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13466 } else if (n == 1) {
13469 if (start < 0 || start > end) {
13470 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13475 tmp = realloc(*mask, end + 1);
13481 memset(tmp + *mask_sz, 0, start - *mask_sz);
13482 memset(tmp + start, 1, end - start + 1);
13483 *mask_sz = end + 1;
13487 pr_warn("Empty CPU range\n");
13497 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13499 int fd, err = 0, len;
13502 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13505 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13508 len = read(fd, buf, sizeof(buf));
13511 err = len ? -errno : -EINVAL;
13512 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13515 if (len >= sizeof(buf)) {
13516 pr_warn("CPU mask is too big in file %s\n", fcpu);
13521 return parse_cpu_mask_str(buf, mask, mask_sz);
13524 int libbpf_num_possible_cpus(void)
13526 static const char *fcpu = "/sys/devices/system/cpu/possible";
13528 int err, n, i, tmp_cpus;
13531 tmp_cpus = READ_ONCE(cpus);
13535 err = parse_cpu_mask_file(fcpu, &mask, &n);
13537 return libbpf_err(err);
13540 for (i = 0; i < n; i++) {
13546 WRITE_ONCE(cpus, tmp_cpus);
13550 static int populate_skeleton_maps(const struct bpf_object *obj,
13551 struct bpf_map_skeleton *maps,
13556 for (i = 0; i < map_cnt; i++) {
13557 struct bpf_map **map = maps[i].map;
13558 const char *name = maps[i].name;
13559 void **mmaped = maps[i].mmaped;
13561 *map = bpf_object__find_map_by_name(obj, name);
13563 pr_warn("failed to find skeleton map '%s'\n", name);
13567 /* externs shouldn't be pre-setup from user code */
13568 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13569 *mmaped = (*map)->mmaped;
13574 static int populate_skeleton_progs(const struct bpf_object *obj,
13575 struct bpf_prog_skeleton *progs,
13580 for (i = 0; i < prog_cnt; i++) {
13581 struct bpf_program **prog = progs[i].prog;
13582 const char *name = progs[i].name;
13584 *prog = bpf_object__find_program_by_name(obj, name);
13586 pr_warn("failed to find skeleton program '%s'\n", name);
13593 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13594 const struct bpf_object_open_opts *opts)
13596 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13597 .object_name = s->name,
13599 struct bpf_object *obj;
13602 /* Attempt to preserve opts->object_name, unless overriden by user
13603 * explicitly. Overwriting object name for skeletons is discouraged,
13604 * as it breaks global data maps, because they contain object name
13605 * prefix as their own map name prefix. When skeleton is generated,
13606 * bpftool is making an assumption that this name will stay the same.
13609 memcpy(&skel_opts, opts, sizeof(*opts));
13610 if (!opts->object_name)
13611 skel_opts.object_name = s->name;
13614 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13615 err = libbpf_get_error(obj);
13617 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13619 return libbpf_err(err);
13623 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13625 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13626 return libbpf_err(err);
13629 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13631 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13632 return libbpf_err(err);
13638 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13640 int err, len, var_idx, i;
13641 const char *var_name;
13642 const struct bpf_map *map;
13645 const struct btf_type *map_type, *var_type;
13646 const struct bpf_var_skeleton *var_skel;
13647 struct btf_var_secinfo *var;
13650 return libbpf_err(-EINVAL);
13652 btf = bpf_object__btf(s->obj);
13654 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13655 bpf_object__name(s->obj));
13656 return libbpf_err(-errno);
13659 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13661 pr_warn("failed to populate subskeleton maps: %d\n", err);
13662 return libbpf_err(err);
13665 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13667 pr_warn("failed to populate subskeleton maps: %d\n", err);
13668 return libbpf_err(err);
13671 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13672 var_skel = &s->vars[var_idx];
13673 map = *var_skel->map;
13674 map_type_id = bpf_map__btf_value_type_id(map);
13675 map_type = btf__type_by_id(btf, map_type_id);
13677 if (!btf_is_datasec(map_type)) {
13678 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13679 bpf_map__name(map),
13680 __btf_kind_str(btf_kind(map_type)));
13681 return libbpf_err(-EINVAL);
13684 len = btf_vlen(map_type);
13685 var = btf_var_secinfos(map_type);
13686 for (i = 0; i < len; i++, var++) {
13687 var_type = btf__type_by_id(btf, var->type);
13688 var_name = btf__name_by_offset(btf, var_type->name_off);
13689 if (strcmp(var_name, var_skel->name) == 0) {
13690 *var_skel->addr = map->mmaped + var->offset;
13698 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13708 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13712 err = bpf_object__load(*s->obj);
13714 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13715 return libbpf_err(err);
13718 for (i = 0; i < s->map_cnt; i++) {
13719 struct bpf_map *map = *s->maps[i].map;
13720 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13721 int prot, map_fd = map->fd;
13722 void **mmaped = s->maps[i].mmaped;
13727 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13732 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13735 prot = PROT_READ | PROT_WRITE;
13737 /* Remap anonymous mmap()-ed "map initialization image" as
13738 * a BPF map-backed mmap()-ed memory, but preserving the same
13739 * memory address. This will cause kernel to change process'
13740 * page table to point to a different piece of kernel memory,
13741 * but from userspace point of view memory address (and its
13742 * contents, being identical at this point) will stay the
13743 * same. This mapping will be released by bpf_object__close()
13744 * as per normal clean up procedure, so we don't need to worry
13745 * about it from skeleton's clean up perspective.
13747 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13748 if (*mmaped == MAP_FAILED) {
13751 pr_warn("failed to re-mmap() map '%s': %d\n",
13752 bpf_map__name(map), err);
13753 return libbpf_err(err);
13760 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13764 for (i = 0; i < s->prog_cnt; i++) {
13765 struct bpf_program *prog = *s->progs[i].prog;
13766 struct bpf_link **link = s->progs[i].link;
13768 if (!prog->autoload || !prog->autoattach)
13771 /* auto-attaching not supported for this program */
13772 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13775 /* if user already set the link manually, don't attempt auto-attach */
13779 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13781 pr_warn("prog '%s': failed to auto-attach: %d\n",
13782 bpf_program__name(prog), err);
13783 return libbpf_err(err);
13786 /* It's possible that for some SEC() definitions auto-attach
13787 * is supported in some cases (e.g., if definition completely
13788 * specifies target information), but is not in other cases.
13789 * SEC("uprobe") is one such case. If user specified target
13790 * binary and function name, such BPF program can be
13791 * auto-attached. But if not, it shouldn't trigger skeleton's
13792 * attach to fail. It should just be skipped.
13793 * attach_fn signals such case with returning 0 (no error) and
13794 * setting link to NULL.
13801 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13805 for (i = 0; i < s->prog_cnt; i++) {
13806 struct bpf_link **link = s->progs[i].link;
13808 bpf_link__destroy(*link);
13813 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13819 bpf_object__detach_skeleton(s);
13821 bpf_object__close(*s->obj);