1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
33 * Return the folio with ref appropriately incremented,
34 * or NULL if that failed.
36 static inline struct folio *try_get_folio(struct page *page, int refs)
41 folio = page_folio(page);
42 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
44 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
48 * At this point we have a stable reference to the folio; but it
49 * could be that between calling page_folio() and the refcount
50 * increment, the folio was split, in which case we'd end up
51 * holding a reference on a folio that has nothing to do with the page
52 * we were given anymore.
53 * So now that the folio is stable, recheck that the page still
54 * belongs to this folio.
56 if (unlikely(page_folio(page) != folio)) {
57 folio_put_refs(folio, refs);
65 * try_grab_folio() - Attempt to get or pin a folio.
66 * @page: pointer to page to be grabbed
67 * @refs: the value to (effectively) add to the folio's refcount
68 * @flags: gup flags: these are the FOLL_* flag values.
70 * "grab" names in this file mean, "look at flags to decide whether to use
71 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
73 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
74 * same time. (That's true throughout the get_user_pages*() and
75 * pin_user_pages*() APIs.) Cases:
77 * FOLL_GET: folio's refcount will be incremented by @refs.
79 * FOLL_PIN on large folios: folio's refcount will be incremented by
80 * @refs, and its compound_pincount will be incremented by @refs.
82 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
83 * @refs * GUP_PIN_COUNTING_BIAS.
85 * Return: The folio containing @page (with refcount appropriately
86 * incremented) for success, or NULL upon failure. If neither FOLL_GET
87 * nor FOLL_PIN was set, that's considered failure, and furthermore,
88 * a likely bug in the caller, so a warning is also emitted.
90 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
93 return try_get_folio(page, refs);
94 else if (flags & FOLL_PIN) {
98 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
99 * right zone, so fail and let the caller fall back to the slow
102 if (unlikely((flags & FOLL_LONGTERM) &&
103 !is_pinnable_page(page)))
107 * CAUTION: Don't use compound_head() on the page before this
108 * point, the result won't be stable.
110 folio = try_get_folio(page, refs);
115 * When pinning a large folio, use an exact count to track it.
117 * However, be sure to *also* increment the normal folio
118 * refcount field at least once, so that the folio really
119 * is pinned. That's why the refcount from the earlier
120 * try_get_folio() is left intact.
122 if (folio_test_large(folio))
123 atomic_add(refs, folio_pincount_ptr(folio));
126 refs * (GUP_PIN_COUNTING_BIAS - 1));
127 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
136 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
138 if (flags & FOLL_PIN) {
139 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
140 if (folio_test_large(folio))
141 atomic_sub(refs, folio_pincount_ptr(folio));
143 refs *= GUP_PIN_COUNTING_BIAS;
146 folio_put_refs(folio, refs);
150 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
151 * @page: pointer to page to be grabbed
152 * @flags: gup flags: these are the FOLL_* flag values.
154 * This might not do anything at all, depending on the flags argument.
156 * "grab" names in this file mean, "look at flags to decide whether to use
157 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
160 * time. Cases: please see the try_grab_folio() documentation, with
163 * Return: true for success, or if no action was required (if neither FOLL_PIN
164 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
165 * FOLL_PIN was set, but the page could not be grabbed.
167 bool __must_check try_grab_page(struct page *page, unsigned int flags)
169 struct folio *folio = page_folio(page);
171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
172 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
175 if (flags & FOLL_GET)
176 folio_ref_inc(folio);
177 else if (flags & FOLL_PIN) {
179 * Similar to try_grab_folio(): be sure to *also*
180 * increment the normal page refcount field at least once,
181 * so that the page really is pinned.
183 if (folio_test_large(folio)) {
184 folio_ref_add(folio, 1);
185 atomic_add(1, folio_pincount_ptr(folio));
187 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
190 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
197 * unpin_user_page() - release a dma-pinned page
198 * @page: pointer to page to be released
200 * Pages that were pinned via pin_user_pages*() must be released via either
201 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
202 * that such pages can be separately tracked and uniquely handled. In
203 * particular, interactions with RDMA and filesystems need special handling.
205 void unpin_user_page(struct page *page)
207 gup_put_folio(page_folio(page), 1, FOLL_PIN);
209 EXPORT_SYMBOL(unpin_user_page);
211 static inline struct folio *gup_folio_range_next(struct page *start,
212 unsigned long npages, unsigned long i, unsigned int *ntails)
214 struct page *next = nth_page(start, i);
215 struct folio *folio = page_folio(next);
218 if (folio_test_large(folio))
219 nr = min_t(unsigned int, npages - i,
220 folio_nr_pages(folio) - folio_page_idx(folio, next));
226 static inline struct folio *gup_folio_next(struct page **list,
227 unsigned long npages, unsigned long i, unsigned int *ntails)
229 struct folio *folio = page_folio(list[i]);
232 for (nr = i + 1; nr < npages; nr++) {
233 if (page_folio(list[nr]) != folio)
242 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
243 * @pages: array of pages to be maybe marked dirty, and definitely released.
244 * @npages: number of pages in the @pages array.
245 * @make_dirty: whether to mark the pages dirty
247 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
248 * variants called on that page.
250 * For each page in the @pages array, make that page (or its head page, if a
251 * compound page) dirty, if @make_dirty is true, and if the page was previously
252 * listed as clean. In any case, releases all pages using unpin_user_page(),
253 * possibly via unpin_user_pages(), for the non-dirty case.
255 * Please see the unpin_user_page() documentation for details.
257 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
258 * required, then the caller should a) verify that this is really correct,
259 * because _lock() is usually required, and b) hand code it:
260 * set_page_dirty_lock(), unpin_user_page().
263 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
271 unpin_user_pages(pages, npages);
275 for (i = 0; i < npages; i += nr) {
276 folio = gup_folio_next(pages, npages, i, &nr);
278 * Checking PageDirty at this point may race with
279 * clear_page_dirty_for_io(), but that's OK. Two key
282 * 1) This code sees the page as already dirty, so it
283 * skips the call to set_page_dirty(). That could happen
284 * because clear_page_dirty_for_io() called
285 * page_mkclean(), followed by set_page_dirty().
286 * However, now the page is going to get written back,
287 * which meets the original intention of setting it
288 * dirty, so all is well: clear_page_dirty_for_io() goes
289 * on to call TestClearPageDirty(), and write the page
292 * 2) This code sees the page as clean, so it calls
293 * set_page_dirty(). The page stays dirty, despite being
294 * written back, so it gets written back again in the
295 * next writeback cycle. This is harmless.
297 if (!folio_test_dirty(folio)) {
299 folio_mark_dirty(folio);
302 gup_put_folio(folio, nr, FOLL_PIN);
305 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
308 * unpin_user_page_range_dirty_lock() - release and optionally dirty
309 * gup-pinned page range
311 * @page: the starting page of a range maybe marked dirty, and definitely released.
312 * @npages: number of consecutive pages to release.
313 * @make_dirty: whether to mark the pages dirty
315 * "gup-pinned page range" refers to a range of pages that has had one of the
316 * pin_user_pages() variants called on that page.
318 * For the page ranges defined by [page .. page+npages], make that range (or
319 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
320 * page range was previously listed as clean.
322 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
323 * required, then the caller should a) verify that this is really correct,
324 * because _lock() is usually required, and b) hand code it:
325 * set_page_dirty_lock(), unpin_user_page().
328 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
335 for (i = 0; i < npages; i += nr) {
336 folio = gup_folio_range_next(page, npages, i, &nr);
337 if (make_dirty && !folio_test_dirty(folio)) {
339 folio_mark_dirty(folio);
342 gup_put_folio(folio, nr, FOLL_PIN);
345 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
348 * unpin_user_pages() - release an array of gup-pinned pages.
349 * @pages: array of pages to be marked dirty and released.
350 * @npages: number of pages in the @pages array.
352 * For each page in the @pages array, release the page using unpin_user_page().
354 * Please see the unpin_user_page() documentation for details.
356 void unpin_user_pages(struct page **pages, unsigned long npages)
363 * If this WARN_ON() fires, then the system *might* be leaking pages (by
364 * leaving them pinned), but probably not. More likely, gup/pup returned
365 * a hard -ERRNO error to the caller, who erroneously passed it here.
367 if (WARN_ON(IS_ERR_VALUE(npages)))
370 for (i = 0; i < npages; i += nr) {
371 folio = gup_folio_next(pages, npages, i, &nr);
372 gup_put_folio(folio, nr, FOLL_PIN);
375 EXPORT_SYMBOL(unpin_user_pages);
378 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
379 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
380 * cache bouncing on large SMP machines for concurrent pinned gups.
382 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
384 if (!test_bit(MMF_HAS_PINNED, mm_flags))
385 set_bit(MMF_HAS_PINNED, mm_flags);
389 static struct page *no_page_table(struct vm_area_struct *vma,
393 * When core dumping an enormous anonymous area that nobody
394 * has touched so far, we don't want to allocate unnecessary pages or
395 * page tables. Return error instead of NULL to skip handle_mm_fault,
396 * then get_dump_page() will return NULL to leave a hole in the dump.
397 * But we can only make this optimization where a hole would surely
398 * be zero-filled if handle_mm_fault() actually did handle it.
400 if ((flags & FOLL_DUMP) &&
401 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
402 return ERR_PTR(-EFAULT);
406 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
407 pte_t *pte, unsigned int flags)
409 if (flags & FOLL_TOUCH) {
412 if (flags & FOLL_WRITE)
413 entry = pte_mkdirty(entry);
414 entry = pte_mkyoung(entry);
416 if (!pte_same(*pte, entry)) {
417 set_pte_at(vma->vm_mm, address, pte, entry);
418 update_mmu_cache(vma, address, pte);
422 /* Proper page table entry exists, but no corresponding struct page */
427 * FOLL_FORCE can write to even unwritable pte's, but only
428 * after we've gone through a COW cycle and they are dirty.
430 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
432 return pte_write(pte) ||
433 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
436 static struct page *follow_page_pte(struct vm_area_struct *vma,
437 unsigned long address, pmd_t *pmd, unsigned int flags,
438 struct dev_pagemap **pgmap)
440 struct mm_struct *mm = vma->vm_mm;
446 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
447 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
448 (FOLL_PIN | FOLL_GET)))
449 return ERR_PTR(-EINVAL);
451 if (unlikely(pmd_bad(*pmd)))
452 return no_page_table(vma, flags);
454 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
456 if (!pte_present(pte)) {
459 * KSM's break_ksm() relies upon recognizing a ksm page
460 * even while it is being migrated, so for that case we
461 * need migration_entry_wait().
463 if (likely(!(flags & FOLL_MIGRATION)))
467 entry = pte_to_swp_entry(pte);
468 if (!is_migration_entry(entry))
470 pte_unmap_unlock(ptep, ptl);
471 migration_entry_wait(mm, pmd, address);
474 if ((flags & FOLL_NUMA) && pte_protnone(pte))
476 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
477 pte_unmap_unlock(ptep, ptl);
481 page = vm_normal_page(vma, address, pte);
482 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
484 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
485 * case since they are only valid while holding the pgmap
488 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
490 page = pte_page(pte);
493 } else if (unlikely(!page)) {
494 if (flags & FOLL_DUMP) {
495 /* Avoid special (like zero) pages in core dumps */
496 page = ERR_PTR(-EFAULT);
500 if (is_zero_pfn(pte_pfn(pte))) {
501 page = pte_page(pte);
503 ret = follow_pfn_pte(vma, address, ptep, flags);
509 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
510 page = ERR_PTR(-EMLINK);
513 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
514 if (unlikely(!try_grab_page(page, flags))) {
515 page = ERR_PTR(-ENOMEM);
519 * We need to make the page accessible if and only if we are going
520 * to access its content (the FOLL_PIN case). Please see
521 * Documentation/core-api/pin_user_pages.rst for details.
523 if (flags & FOLL_PIN) {
524 ret = arch_make_page_accessible(page);
526 unpin_user_page(page);
531 if (flags & FOLL_TOUCH) {
532 if ((flags & FOLL_WRITE) &&
533 !pte_dirty(pte) && !PageDirty(page))
534 set_page_dirty(page);
536 * pte_mkyoung() would be more correct here, but atomic care
537 * is needed to avoid losing the dirty bit: it is easier to use
538 * mark_page_accessed().
540 mark_page_accessed(page);
543 pte_unmap_unlock(ptep, ptl);
546 pte_unmap_unlock(ptep, ptl);
549 return no_page_table(vma, flags);
552 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553 unsigned long address, pud_t *pudp,
555 struct follow_page_context *ctx)
560 struct mm_struct *mm = vma->vm_mm;
562 pmd = pmd_offset(pudp, address);
564 * The READ_ONCE() will stabilize the pmdval in a register or
565 * on the stack so that it will stop changing under the code.
567 pmdval = READ_ONCE(*pmd);
568 if (pmd_none(pmdval))
569 return no_page_table(vma, flags);
570 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
571 page = follow_huge_pmd(mm, address, pmd, flags);
574 return no_page_table(vma, flags);
576 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
577 page = follow_huge_pd(vma, address,
578 __hugepd(pmd_val(pmdval)), flags,
582 return no_page_table(vma, flags);
585 if (!pmd_present(pmdval)) {
587 * Should never reach here, if thp migration is not supported;
588 * Otherwise, it must be a thp migration entry.
590 VM_BUG_ON(!thp_migration_supported() ||
591 !is_pmd_migration_entry(pmdval));
593 if (likely(!(flags & FOLL_MIGRATION)))
594 return no_page_table(vma, flags);
596 pmd_migration_entry_wait(mm, pmd);
597 pmdval = READ_ONCE(*pmd);
599 * MADV_DONTNEED may convert the pmd to null because
600 * mmap_lock is held in read mode
602 if (pmd_none(pmdval))
603 return no_page_table(vma, flags);
606 if (pmd_devmap(pmdval)) {
607 ptl = pmd_lock(mm, pmd);
608 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
613 if (likely(!pmd_trans_huge(pmdval)))
614 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
616 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
617 return no_page_table(vma, flags);
620 ptl = pmd_lock(mm, pmd);
621 if (unlikely(pmd_none(*pmd))) {
623 return no_page_table(vma, flags);
625 if (unlikely(!pmd_present(*pmd))) {
627 if (likely(!(flags & FOLL_MIGRATION)))
628 return no_page_table(vma, flags);
629 pmd_migration_entry_wait(mm, pmd);
632 if (unlikely(!pmd_trans_huge(*pmd))) {
634 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
636 if (flags & FOLL_SPLIT_PMD) {
638 page = pmd_page(*pmd);
639 if (is_huge_zero_page(page)) {
642 split_huge_pmd(vma, pmd, address);
643 if (pmd_trans_unstable(pmd))
647 split_huge_pmd(vma, pmd, address);
648 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
651 return ret ? ERR_PTR(ret) :
652 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
654 page = follow_trans_huge_pmd(vma, address, pmd, flags);
656 ctx->page_mask = HPAGE_PMD_NR - 1;
660 static struct page *follow_pud_mask(struct vm_area_struct *vma,
661 unsigned long address, p4d_t *p4dp,
663 struct follow_page_context *ctx)
668 struct mm_struct *mm = vma->vm_mm;
670 pud = pud_offset(p4dp, address);
672 return no_page_table(vma, flags);
673 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
674 page = follow_huge_pud(mm, address, pud, flags);
677 return no_page_table(vma, flags);
679 if (is_hugepd(__hugepd(pud_val(*pud)))) {
680 page = follow_huge_pd(vma, address,
681 __hugepd(pud_val(*pud)), flags,
685 return no_page_table(vma, flags);
687 if (pud_devmap(*pud)) {
688 ptl = pud_lock(mm, pud);
689 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
694 if (unlikely(pud_bad(*pud)))
695 return no_page_table(vma, flags);
697 return follow_pmd_mask(vma, address, pud, flags, ctx);
700 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
701 unsigned long address, pgd_t *pgdp,
703 struct follow_page_context *ctx)
708 p4d = p4d_offset(pgdp, address);
710 return no_page_table(vma, flags);
711 BUILD_BUG_ON(p4d_huge(*p4d));
712 if (unlikely(p4d_bad(*p4d)))
713 return no_page_table(vma, flags);
715 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
716 page = follow_huge_pd(vma, address,
717 __hugepd(p4d_val(*p4d)), flags,
721 return no_page_table(vma, flags);
723 return follow_pud_mask(vma, address, p4d, flags, ctx);
727 * follow_page_mask - look up a page descriptor from a user-virtual address
728 * @vma: vm_area_struct mapping @address
729 * @address: virtual address to look up
730 * @flags: flags modifying lookup behaviour
731 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
732 * pointer to output page_mask
734 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
736 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
737 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
739 * When getting an anonymous page and the caller has to trigger unsharing
740 * of a shared anonymous page first, -EMLINK is returned. The caller should
741 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
742 * relevant with FOLL_PIN and !FOLL_WRITE.
744 * On output, the @ctx->page_mask is set according to the size of the page.
746 * Return: the mapped (struct page *), %NULL if no mapping exists, or
747 * an error pointer if there is a mapping to something not represented
748 * by a page descriptor (see also vm_normal_page()).
750 static struct page *follow_page_mask(struct vm_area_struct *vma,
751 unsigned long address, unsigned int flags,
752 struct follow_page_context *ctx)
756 struct mm_struct *mm = vma->vm_mm;
760 /* make this handle hugepd */
761 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
763 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
767 pgd = pgd_offset(mm, address);
769 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
770 return no_page_table(vma, flags);
772 if (pgd_huge(*pgd)) {
773 page = follow_huge_pgd(mm, address, pgd, flags);
776 return no_page_table(vma, flags);
778 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
779 page = follow_huge_pd(vma, address,
780 __hugepd(pgd_val(*pgd)), flags,
784 return no_page_table(vma, flags);
787 return follow_p4d_mask(vma, address, pgd, flags, ctx);
790 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
791 unsigned int foll_flags)
793 struct follow_page_context ctx = { NULL };
796 if (vma_is_secretmem(vma))
799 if (foll_flags & FOLL_PIN)
802 page = follow_page_mask(vma, address, foll_flags, &ctx);
804 put_dev_pagemap(ctx.pgmap);
808 static int get_gate_page(struct mm_struct *mm, unsigned long address,
809 unsigned int gup_flags, struct vm_area_struct **vma,
819 /* user gate pages are read-only */
820 if (gup_flags & FOLL_WRITE)
822 if (address > TASK_SIZE)
823 pgd = pgd_offset_k(address);
825 pgd = pgd_offset_gate(mm, address);
828 p4d = p4d_offset(pgd, address);
831 pud = pud_offset(p4d, address);
834 pmd = pmd_offset(pud, address);
835 if (!pmd_present(*pmd))
837 VM_BUG_ON(pmd_trans_huge(*pmd));
838 pte = pte_offset_map(pmd, address);
841 *vma = get_gate_vma(mm);
844 *page = vm_normal_page(*vma, address, *pte);
846 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
848 *page = pte_page(*pte);
850 if (unlikely(!try_grab_page(*page, gup_flags))) {
862 * mmap_lock must be held on entry. If @locked != NULL and *@flags
863 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
864 * is, *@locked will be set to 0 and -EBUSY returned.
866 static int faultin_page(struct vm_area_struct *vma,
867 unsigned long address, unsigned int *flags, bool unshare,
870 unsigned int fault_flags = 0;
873 if (*flags & FOLL_NOFAULT)
875 if (*flags & FOLL_WRITE)
876 fault_flags |= FAULT_FLAG_WRITE;
877 if (*flags & FOLL_REMOTE)
878 fault_flags |= FAULT_FLAG_REMOTE;
880 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
881 if (*flags & FOLL_NOWAIT)
882 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
883 if (*flags & FOLL_TRIED) {
885 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
888 fault_flags |= FAULT_FLAG_TRIED;
891 fault_flags |= FAULT_FLAG_UNSHARE;
892 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
893 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
896 ret = handle_mm_fault(vma, address, fault_flags, NULL);
897 if (ret & VM_FAULT_ERROR) {
898 int err = vm_fault_to_errno(ret, *flags);
905 if (ret & VM_FAULT_RETRY) {
906 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
912 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
913 * necessary, even if maybe_mkwrite decided not to set pte_write. We
914 * can thus safely do subsequent page lookups as if they were reads.
915 * But only do so when looping for pte_write is futile: in some cases
916 * userspace may also be wanting to write to the gotten user page,
917 * which a read fault here might prevent (a readonly page might get
918 * reCOWed by userspace write).
920 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
925 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
927 vm_flags_t vm_flags = vma->vm_flags;
928 int write = (gup_flags & FOLL_WRITE);
929 int foreign = (gup_flags & FOLL_REMOTE);
931 if (vm_flags & (VM_IO | VM_PFNMAP))
934 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
937 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
940 if (vma_is_secretmem(vma))
944 if (!(vm_flags & VM_WRITE)) {
945 if (!(gup_flags & FOLL_FORCE))
948 * We used to let the write,force case do COW in a
949 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
950 * set a breakpoint in a read-only mapping of an
951 * executable, without corrupting the file (yet only
952 * when that file had been opened for writing!).
953 * Anon pages in shared mappings are surprising: now
956 if (!is_cow_mapping(vm_flags))
959 } else if (!(vm_flags & VM_READ)) {
960 if (!(gup_flags & FOLL_FORCE))
963 * Is there actually any vma we can reach here which does not
964 * have VM_MAYREAD set?
966 if (!(vm_flags & VM_MAYREAD))
970 * gups are always data accesses, not instruction
971 * fetches, so execute=false here
973 if (!arch_vma_access_permitted(vma, write, false, foreign))
979 * __get_user_pages() - pin user pages in memory
980 * @mm: mm_struct of target mm
981 * @start: starting user address
982 * @nr_pages: number of pages from start to pin
983 * @gup_flags: flags modifying pin behaviour
984 * @pages: array that receives pointers to the pages pinned.
985 * Should be at least nr_pages long. Or NULL, if caller
986 * only intends to ensure the pages are faulted in.
987 * @vmas: array of pointers to vmas corresponding to each page.
988 * Or NULL if the caller does not require them.
989 * @locked: whether we're still with the mmap_lock held
991 * Returns either number of pages pinned (which may be less than the
992 * number requested), or an error. Details about the return value:
994 * -- If nr_pages is 0, returns 0.
995 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
996 * -- If nr_pages is >0, and some pages were pinned, returns the number of
997 * pages pinned. Again, this may be less than nr_pages.
998 * -- 0 return value is possible when the fault would need to be retried.
1000 * The caller is responsible for releasing returned @pages, via put_page().
1002 * @vmas are valid only as long as mmap_lock is held.
1004 * Must be called with mmap_lock held. It may be released. See below.
1006 * __get_user_pages walks a process's page tables and takes a reference to
1007 * each struct page that each user address corresponds to at a given
1008 * instant. That is, it takes the page that would be accessed if a user
1009 * thread accesses the given user virtual address at that instant.
1011 * This does not guarantee that the page exists in the user mappings when
1012 * __get_user_pages returns, and there may even be a completely different
1013 * page there in some cases (eg. if mmapped pagecache has been invalidated
1014 * and subsequently re faulted). However it does guarantee that the page
1015 * won't be freed completely. And mostly callers simply care that the page
1016 * contains data that was valid *at some point in time*. Typically, an IO
1017 * or similar operation cannot guarantee anything stronger anyway because
1018 * locks can't be held over the syscall boundary.
1020 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1021 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1022 * appropriate) must be called after the page is finished with, and
1023 * before put_page is called.
1025 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1026 * released by an up_read(). That can happen if @gup_flags does not
1029 * A caller using such a combination of @locked and @gup_flags
1030 * must therefore hold the mmap_lock for reading only, and recognize
1031 * when it's been released. Otherwise, it must be held for either
1032 * reading or writing and will not be released.
1034 * In most cases, get_user_pages or get_user_pages_fast should be used
1035 * instead of __get_user_pages. __get_user_pages should be used only if
1036 * you need some special @gup_flags.
1038 static long __get_user_pages(struct mm_struct *mm,
1039 unsigned long start, unsigned long nr_pages,
1040 unsigned int gup_flags, struct page **pages,
1041 struct vm_area_struct **vmas, int *locked)
1043 long ret = 0, i = 0;
1044 struct vm_area_struct *vma = NULL;
1045 struct follow_page_context ctx = { NULL };
1050 start = untagged_addr(start);
1052 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1055 * If FOLL_FORCE is set then do not force a full fault as the hinting
1056 * fault information is unrelated to the reference behaviour of a task
1057 * using the address space
1059 if (!(gup_flags & FOLL_FORCE))
1060 gup_flags |= FOLL_NUMA;
1064 unsigned int foll_flags = gup_flags;
1065 unsigned int page_increm;
1067 /* first iteration or cross vma bound */
1068 if (!vma || start >= vma->vm_end) {
1069 vma = find_extend_vma(mm, start);
1070 if (!vma && in_gate_area(mm, start)) {
1071 ret = get_gate_page(mm, start & PAGE_MASK,
1073 pages ? &pages[i] : NULL);
1084 ret = check_vma_flags(vma, gup_flags);
1088 if (is_vm_hugetlb_page(vma)) {
1089 i = follow_hugetlb_page(mm, vma, pages, vmas,
1090 &start, &nr_pages, i,
1092 if (locked && *locked == 0) {
1094 * We've got a VM_FAULT_RETRY
1095 * and we've lost mmap_lock.
1096 * We must stop here.
1098 BUG_ON(gup_flags & FOLL_NOWAIT);
1106 * If we have a pending SIGKILL, don't keep faulting pages and
1107 * potentially allocating memory.
1109 if (fatal_signal_pending(current)) {
1115 page = follow_page_mask(vma, start, foll_flags, &ctx);
1116 if (!page || PTR_ERR(page) == -EMLINK) {
1117 ret = faultin_page(vma, start, &foll_flags,
1118 PTR_ERR(page) == -EMLINK, locked);
1131 } else if (PTR_ERR(page) == -EEXIST) {
1133 * Proper page table entry exists, but no corresponding
1134 * struct page. If the caller expects **pages to be
1135 * filled in, bail out now, because that can't be done
1139 ret = PTR_ERR(page);
1144 } else if (IS_ERR(page)) {
1145 ret = PTR_ERR(page);
1150 flush_anon_page(vma, page, start);
1151 flush_dcache_page(page);
1159 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1160 if (page_increm > nr_pages)
1161 page_increm = nr_pages;
1163 start += page_increm * PAGE_SIZE;
1164 nr_pages -= page_increm;
1168 put_dev_pagemap(ctx.pgmap);
1172 static bool vma_permits_fault(struct vm_area_struct *vma,
1173 unsigned int fault_flags)
1175 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1176 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1177 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1179 if (!(vm_flags & vma->vm_flags))
1183 * The architecture might have a hardware protection
1184 * mechanism other than read/write that can deny access.
1186 * gup always represents data access, not instruction
1187 * fetches, so execute=false here:
1189 if (!arch_vma_access_permitted(vma, write, false, foreign))
1196 * fixup_user_fault() - manually resolve a user page fault
1197 * @mm: mm_struct of target mm
1198 * @address: user address
1199 * @fault_flags:flags to pass down to handle_mm_fault()
1200 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1201 * does not allow retry. If NULL, the caller must guarantee
1202 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1204 * This is meant to be called in the specific scenario where for locking reasons
1205 * we try to access user memory in atomic context (within a pagefault_disable()
1206 * section), this returns -EFAULT, and we want to resolve the user fault before
1209 * Typically this is meant to be used by the futex code.
1211 * The main difference with get_user_pages() is that this function will
1212 * unconditionally call handle_mm_fault() which will in turn perform all the
1213 * necessary SW fixup of the dirty and young bits in the PTE, while
1214 * get_user_pages() only guarantees to update these in the struct page.
1216 * This is important for some architectures where those bits also gate the
1217 * access permission to the page because they are maintained in software. On
1218 * such architectures, gup() will not be enough to make a subsequent access
1221 * This function will not return with an unlocked mmap_lock. So it has not the
1222 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1224 int fixup_user_fault(struct mm_struct *mm,
1225 unsigned long address, unsigned int fault_flags,
1228 struct vm_area_struct *vma;
1231 address = untagged_addr(address);
1234 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1237 vma = find_extend_vma(mm, address);
1238 if (!vma || address < vma->vm_start)
1241 if (!vma_permits_fault(vma, fault_flags))
1244 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1245 fatal_signal_pending(current))
1248 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1249 if (ret & VM_FAULT_ERROR) {
1250 int err = vm_fault_to_errno(ret, 0);
1257 if (ret & VM_FAULT_RETRY) {
1260 fault_flags |= FAULT_FLAG_TRIED;
1266 EXPORT_SYMBOL_GPL(fixup_user_fault);
1269 * Please note that this function, unlike __get_user_pages will not
1270 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1272 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1273 unsigned long start,
1274 unsigned long nr_pages,
1275 struct page **pages,
1276 struct vm_area_struct **vmas,
1280 long ret, pages_done;
1284 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1286 /* check caller initialized locked */
1287 BUG_ON(*locked != 1);
1290 if (flags & FOLL_PIN)
1291 mm_set_has_pinned_flag(&mm->flags);
1294 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1295 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1296 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1297 * for FOLL_GET, not for the newer FOLL_PIN.
1299 * FOLL_PIN always expects pages to be non-null, but no need to assert
1300 * that here, as any failures will be obvious enough.
1302 if (pages && !(flags & FOLL_PIN))
1306 lock_dropped = false;
1308 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1311 /* VM_FAULT_RETRY couldn't trigger, bypass */
1314 /* VM_FAULT_RETRY cannot return errors */
1317 BUG_ON(ret >= nr_pages);
1328 * VM_FAULT_RETRY didn't trigger or it was a
1336 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1337 * For the prefault case (!pages) we only update counts.
1341 start += ret << PAGE_SHIFT;
1342 lock_dropped = true;
1346 * Repeat on the address that fired VM_FAULT_RETRY
1347 * with both FAULT_FLAG_ALLOW_RETRY and
1348 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1349 * by fatal signals, so we need to check it before we
1350 * start trying again otherwise it can loop forever.
1353 if (fatal_signal_pending(current)) {
1355 pages_done = -EINTR;
1359 ret = mmap_read_lock_killable(mm);
1368 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1369 pages, NULL, locked);
1371 /* Continue to retry until we succeeded */
1389 if (lock_dropped && *locked) {
1391 * We must let the caller know we temporarily dropped the lock
1392 * and so the critical section protected by it was lost.
1394 mmap_read_unlock(mm);
1401 * populate_vma_page_range() - populate a range of pages in the vma.
1403 * @start: start address
1405 * @locked: whether the mmap_lock is still held
1407 * This takes care of mlocking the pages too if VM_LOCKED is set.
1409 * Return either number of pages pinned in the vma, or a negative error
1412 * vma->vm_mm->mmap_lock must be held.
1414 * If @locked is NULL, it may be held for read or write and will
1417 * If @locked is non-NULL, it must held for read only and may be
1418 * released. If it's released, *@locked will be set to 0.
1420 long populate_vma_page_range(struct vm_area_struct *vma,
1421 unsigned long start, unsigned long end, int *locked)
1423 struct mm_struct *mm = vma->vm_mm;
1424 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1428 VM_BUG_ON(!PAGE_ALIGNED(start));
1429 VM_BUG_ON(!PAGE_ALIGNED(end));
1430 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1431 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1432 mmap_assert_locked(mm);
1435 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1436 * faultin_page() to break COW, so it has no work to do here.
1438 if (vma->vm_flags & VM_LOCKONFAULT)
1441 gup_flags = FOLL_TOUCH;
1443 * We want to touch writable mappings with a write fault in order
1444 * to break COW, except for shared mappings because these don't COW
1445 * and we would not want to dirty them for nothing.
1447 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1448 gup_flags |= FOLL_WRITE;
1451 * We want mlock to succeed for regions that have any permissions
1452 * other than PROT_NONE.
1454 if (vma_is_accessible(vma))
1455 gup_flags |= FOLL_FORCE;
1458 * We made sure addr is within a VMA, so the following will
1459 * not result in a stack expansion that recurses back here.
1461 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1462 NULL, NULL, locked);
1468 * faultin_vma_page_range() - populate (prefault) page tables inside the
1469 * given VMA range readable/writable
1471 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1474 * @start: start address
1476 * @write: whether to prefault readable or writable
1477 * @locked: whether the mmap_lock is still held
1479 * Returns either number of processed pages in the vma, or a negative error
1480 * code on error (see __get_user_pages()).
1482 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1483 * covered by the VMA.
1485 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1487 * If @locked is non-NULL, it must held for read only and may be released. If
1488 * it's released, *@locked will be set to 0.
1490 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1491 unsigned long end, bool write, int *locked)
1493 struct mm_struct *mm = vma->vm_mm;
1494 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1498 VM_BUG_ON(!PAGE_ALIGNED(start));
1499 VM_BUG_ON(!PAGE_ALIGNED(end));
1500 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1501 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1502 mmap_assert_locked(mm);
1505 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1506 * the page dirty with FOLL_WRITE -- which doesn't make a
1507 * difference with !FOLL_FORCE, because the page is writable
1508 * in the page table.
1509 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1511 * !FOLL_FORCE: Require proper access permissions.
1513 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1515 gup_flags |= FOLL_WRITE;
1518 * We want to report -EINVAL instead of -EFAULT for any permission
1519 * problems or incompatible mappings.
1521 if (check_vma_flags(vma, gup_flags))
1524 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1525 NULL, NULL, locked);
1531 * __mm_populate - populate and/or mlock pages within a range of address space.
1533 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1534 * flags. VMAs must be already marked with the desired vm_flags, and
1535 * mmap_lock must not be held.
1537 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1539 struct mm_struct *mm = current->mm;
1540 unsigned long end, nstart, nend;
1541 struct vm_area_struct *vma = NULL;
1547 for (nstart = start; nstart < end; nstart = nend) {
1549 * We want to fault in pages for [nstart; end) address range.
1550 * Find first corresponding VMA.
1555 vma = find_vma(mm, nstart);
1556 } else if (nstart >= vma->vm_end)
1558 if (!vma || vma->vm_start >= end)
1561 * Set [nstart; nend) to intersection of desired address
1562 * range with the first VMA. Also, skip undesirable VMA types.
1564 nend = min(end, vma->vm_end);
1565 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1567 if (nstart < vma->vm_start)
1568 nstart = vma->vm_start;
1570 * Now fault in a range of pages. populate_vma_page_range()
1571 * double checks the vma flags, so that it won't mlock pages
1572 * if the vma was already munlocked.
1574 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1576 if (ignore_errors) {
1578 continue; /* continue at next VMA */
1582 nend = nstart + ret * PAGE_SIZE;
1586 mmap_read_unlock(mm);
1587 return ret; /* 0 or negative error code */
1589 #else /* CONFIG_MMU */
1590 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1591 unsigned long nr_pages, struct page **pages,
1592 struct vm_area_struct **vmas, int *locked,
1593 unsigned int foll_flags)
1595 struct vm_area_struct *vma;
1596 unsigned long vm_flags;
1599 /* calculate required read or write permissions.
1600 * If FOLL_FORCE is set, we only require the "MAY" flags.
1602 vm_flags = (foll_flags & FOLL_WRITE) ?
1603 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1604 vm_flags &= (foll_flags & FOLL_FORCE) ?
1605 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1607 for (i = 0; i < nr_pages; i++) {
1608 vma = find_vma(mm, start);
1610 goto finish_or_fault;
1612 /* protect what we can, including chardevs */
1613 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1614 !(vm_flags & vma->vm_flags))
1615 goto finish_or_fault;
1618 pages[i] = virt_to_page(start);
1624 start = (start + PAGE_SIZE) & PAGE_MASK;
1630 return i ? : -EFAULT;
1632 #endif /* !CONFIG_MMU */
1635 * fault_in_writeable - fault in userspace address range for writing
1636 * @uaddr: start of address range
1637 * @size: size of address range
1639 * Returns the number of bytes not faulted in (like copy_to_user() and
1640 * copy_from_user()).
1642 size_t fault_in_writeable(char __user *uaddr, size_t size)
1644 char __user *start = uaddr, *end;
1646 if (unlikely(size == 0))
1648 if (!user_write_access_begin(uaddr, size))
1650 if (!PAGE_ALIGNED(uaddr)) {
1651 unsafe_put_user(0, uaddr, out);
1652 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1654 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1655 if (unlikely(end < start))
1657 while (uaddr != end) {
1658 unsafe_put_user(0, uaddr, out);
1663 user_write_access_end();
1664 if (size > uaddr - start)
1665 return size - (uaddr - start);
1668 EXPORT_SYMBOL(fault_in_writeable);
1671 * fault_in_safe_writeable - fault in an address range for writing
1672 * @uaddr: start of address range
1673 * @size: length of address range
1675 * Faults in an address range for writing. This is primarily useful when we
1676 * already know that some or all of the pages in the address range aren't in
1679 * Unlike fault_in_writeable(), this function is non-destructive.
1681 * Note that we don't pin or otherwise hold the pages referenced that we fault
1682 * in. There's no guarantee that they'll stay in memory for any duration of
1685 * Returns the number of bytes not faulted in, like copy_to_user() and
1688 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1690 unsigned long start = (unsigned long)uaddr, end;
1691 struct mm_struct *mm = current->mm;
1692 bool unlocked = false;
1694 if (unlikely(size == 0))
1696 end = PAGE_ALIGN(start + size);
1702 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1704 start = (start + PAGE_SIZE) & PAGE_MASK;
1705 } while (start != end);
1706 mmap_read_unlock(mm);
1708 if (size > (unsigned long)uaddr - start)
1709 return size - ((unsigned long)uaddr - start);
1712 EXPORT_SYMBOL(fault_in_safe_writeable);
1715 * fault_in_readable - fault in userspace address range for reading
1716 * @uaddr: start of user address range
1717 * @size: size of user address range
1719 * Returns the number of bytes not faulted in (like copy_to_user() and
1720 * copy_from_user()).
1722 size_t fault_in_readable(const char __user *uaddr, size_t size)
1724 const char __user *start = uaddr, *end;
1727 if (unlikely(size == 0))
1729 if (!user_read_access_begin(uaddr, size))
1731 if (!PAGE_ALIGNED(uaddr)) {
1732 unsafe_get_user(c, uaddr, out);
1733 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1735 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1736 if (unlikely(end < start))
1738 while (uaddr != end) {
1739 unsafe_get_user(c, uaddr, out);
1744 user_read_access_end();
1746 if (size > uaddr - start)
1747 return size - (uaddr - start);
1750 EXPORT_SYMBOL(fault_in_readable);
1753 * get_dump_page() - pin user page in memory while writing it to core dump
1754 * @addr: user address
1756 * Returns struct page pointer of user page pinned for dump,
1757 * to be freed afterwards by put_page().
1759 * Returns NULL on any kind of failure - a hole must then be inserted into
1760 * the corefile, to preserve alignment with its headers; and also returns
1761 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1762 * allowing a hole to be left in the corefile to save disk space.
1764 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1766 #ifdef CONFIG_ELF_CORE
1767 struct page *get_dump_page(unsigned long addr)
1769 struct mm_struct *mm = current->mm;
1774 if (mmap_read_lock_killable(mm))
1776 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1777 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1779 mmap_read_unlock(mm);
1780 return (ret == 1) ? page : NULL;
1782 #endif /* CONFIG_ELF_CORE */
1784 #ifdef CONFIG_MIGRATION
1786 * Check whether all pages are pinnable, if so return number of pages. If some
1787 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1788 * pages were migrated, or if some pages were not successfully isolated.
1789 * Return negative error if migration fails.
1791 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1792 struct page **pages,
1793 unsigned int gup_flags)
1795 unsigned long isolation_error_count = 0, i;
1796 struct folio *prev_folio = NULL;
1797 LIST_HEAD(movable_page_list);
1798 bool drain_allow = true;
1801 for (i = 0; i < nr_pages; i++) {
1802 struct folio *folio = page_folio(pages[i]);
1804 if (folio == prev_folio)
1808 if (folio_is_pinnable(folio))
1812 * Try to move out any movable page before pinning the range.
1814 if (folio_test_hugetlb(folio)) {
1815 if (!isolate_huge_page(&folio->page,
1816 &movable_page_list))
1817 isolation_error_count++;
1821 if (!folio_test_lru(folio) && drain_allow) {
1822 lru_add_drain_all();
1823 drain_allow = false;
1826 if (folio_isolate_lru(folio)) {
1827 isolation_error_count++;
1830 list_add_tail(&folio->lru, &movable_page_list);
1831 node_stat_mod_folio(folio,
1832 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1833 folio_nr_pages(folio));
1836 if (!list_empty(&movable_page_list) || isolation_error_count)
1840 * If list is empty, and no isolation errors, means that all pages are
1841 * in the correct zone.
1846 if (gup_flags & FOLL_PIN) {
1847 unpin_user_pages(pages, nr_pages);
1849 for (i = 0; i < nr_pages; i++)
1853 if (!list_empty(&movable_page_list)) {
1854 struct migration_target_control mtc = {
1855 .nid = NUMA_NO_NODE,
1856 .gfp_mask = GFP_USER | __GFP_NOWARN,
1859 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1860 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1861 MR_LONGTERM_PIN, NULL);
1862 if (ret > 0) /* number of pages not migrated */
1866 if (ret && !list_empty(&movable_page_list))
1867 putback_movable_pages(&movable_page_list);
1871 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1872 struct page **pages,
1873 unsigned int gup_flags)
1877 #endif /* CONFIG_MIGRATION */
1880 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1881 * allows us to process the FOLL_LONGTERM flag.
1883 static long __gup_longterm_locked(struct mm_struct *mm,
1884 unsigned long start,
1885 unsigned long nr_pages,
1886 struct page **pages,
1887 struct vm_area_struct **vmas,
1888 unsigned int gup_flags)
1893 if (!(gup_flags & FOLL_LONGTERM))
1894 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1896 flags = memalloc_pin_save();
1898 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1902 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1904 memalloc_pin_restore(flags);
1909 static bool is_valid_gup_flags(unsigned int gup_flags)
1912 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1913 * never directly by the caller, so enforce that with an assertion:
1915 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1918 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1919 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1922 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1929 static long __get_user_pages_remote(struct mm_struct *mm,
1930 unsigned long start, unsigned long nr_pages,
1931 unsigned int gup_flags, struct page **pages,
1932 struct vm_area_struct **vmas, int *locked)
1935 * Parts of FOLL_LONGTERM behavior are incompatible with
1936 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1937 * vmas. However, this only comes up if locked is set, and there are
1938 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1939 * allow what we can.
1941 if (gup_flags & FOLL_LONGTERM) {
1942 if (WARN_ON_ONCE(locked))
1945 * This will check the vmas (even if our vmas arg is NULL)
1946 * and return -ENOTSUPP if DAX isn't allowed in this case:
1948 return __gup_longterm_locked(mm, start, nr_pages, pages,
1949 vmas, gup_flags | FOLL_TOUCH |
1953 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1955 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1959 * get_user_pages_remote() - pin user pages in memory
1960 * @mm: mm_struct of target mm
1961 * @start: starting user address
1962 * @nr_pages: number of pages from start to pin
1963 * @gup_flags: flags modifying lookup behaviour
1964 * @pages: array that receives pointers to the pages pinned.
1965 * Should be at least nr_pages long. Or NULL, if caller
1966 * only intends to ensure the pages are faulted in.
1967 * @vmas: array of pointers to vmas corresponding to each page.
1968 * Or NULL if the caller does not require them.
1969 * @locked: pointer to lock flag indicating whether lock is held and
1970 * subsequently whether VM_FAULT_RETRY functionality can be
1971 * utilised. Lock must initially be held.
1973 * Returns either number of pages pinned (which may be less than the
1974 * number requested), or an error. Details about the return value:
1976 * -- If nr_pages is 0, returns 0.
1977 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1978 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1979 * pages pinned. Again, this may be less than nr_pages.
1981 * The caller is responsible for releasing returned @pages, via put_page().
1983 * @vmas are valid only as long as mmap_lock is held.
1985 * Must be called with mmap_lock held for read or write.
1987 * get_user_pages_remote walks a process's page tables and takes a reference
1988 * to each struct page that each user address corresponds to at a given
1989 * instant. That is, it takes the page that would be accessed if a user
1990 * thread accesses the given user virtual address at that instant.
1992 * This does not guarantee that the page exists in the user mappings when
1993 * get_user_pages_remote returns, and there may even be a completely different
1994 * page there in some cases (eg. if mmapped pagecache has been invalidated
1995 * and subsequently re faulted). However it does guarantee that the page
1996 * won't be freed completely. And mostly callers simply care that the page
1997 * contains data that was valid *at some point in time*. Typically, an IO
1998 * or similar operation cannot guarantee anything stronger anyway because
1999 * locks can't be held over the syscall boundary.
2001 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2002 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2003 * be called after the page is finished with, and before put_page is called.
2005 * get_user_pages_remote is typically used for fewer-copy IO operations,
2006 * to get a handle on the memory by some means other than accesses
2007 * via the user virtual addresses. The pages may be submitted for
2008 * DMA to devices or accessed via their kernel linear mapping (via the
2009 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2011 * See also get_user_pages_fast, for performance critical applications.
2013 * get_user_pages_remote should be phased out in favor of
2014 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2015 * should use get_user_pages_remote because it cannot pass
2016 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2018 long get_user_pages_remote(struct mm_struct *mm,
2019 unsigned long start, unsigned long nr_pages,
2020 unsigned int gup_flags, struct page **pages,
2021 struct vm_area_struct **vmas, int *locked)
2023 if (!is_valid_gup_flags(gup_flags))
2026 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2027 pages, vmas, locked);
2029 EXPORT_SYMBOL(get_user_pages_remote);
2031 #else /* CONFIG_MMU */
2032 long get_user_pages_remote(struct mm_struct *mm,
2033 unsigned long start, unsigned long nr_pages,
2034 unsigned int gup_flags, struct page **pages,
2035 struct vm_area_struct **vmas, int *locked)
2040 static long __get_user_pages_remote(struct mm_struct *mm,
2041 unsigned long start, unsigned long nr_pages,
2042 unsigned int gup_flags, struct page **pages,
2043 struct vm_area_struct **vmas, int *locked)
2047 #endif /* !CONFIG_MMU */
2050 * get_user_pages() - pin user pages in memory
2051 * @start: starting user address
2052 * @nr_pages: number of pages from start to pin
2053 * @gup_flags: flags modifying lookup behaviour
2054 * @pages: array that receives pointers to the pages pinned.
2055 * Should be at least nr_pages long. Or NULL, if caller
2056 * only intends to ensure the pages are faulted in.
2057 * @vmas: array of pointers to vmas corresponding to each page.
2058 * Or NULL if the caller does not require them.
2060 * This is the same as get_user_pages_remote(), just with a less-flexible
2061 * calling convention where we assume that the mm being operated on belongs to
2062 * the current task, and doesn't allow passing of a locked parameter. We also
2063 * obviously don't pass FOLL_REMOTE in here.
2065 long get_user_pages(unsigned long start, unsigned long nr_pages,
2066 unsigned int gup_flags, struct page **pages,
2067 struct vm_area_struct **vmas)
2069 if (!is_valid_gup_flags(gup_flags))
2072 return __gup_longterm_locked(current->mm, start, nr_pages,
2073 pages, vmas, gup_flags | FOLL_TOUCH);
2075 EXPORT_SYMBOL(get_user_pages);
2078 * get_user_pages_unlocked() is suitable to replace the form:
2080 * mmap_read_lock(mm);
2081 * get_user_pages(mm, ..., pages, NULL);
2082 * mmap_read_unlock(mm);
2086 * get_user_pages_unlocked(mm, ..., pages);
2088 * It is functionally equivalent to get_user_pages_fast so
2089 * get_user_pages_fast should be used instead if specific gup_flags
2090 * (e.g. FOLL_FORCE) are not required.
2092 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2093 struct page **pages, unsigned int gup_flags)
2095 struct mm_struct *mm = current->mm;
2100 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2101 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2102 * vmas. As there are no users of this flag in this call we simply
2103 * disallow this option for now.
2105 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2109 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2110 &locked, gup_flags | FOLL_TOUCH);
2112 mmap_read_unlock(mm);
2115 EXPORT_SYMBOL(get_user_pages_unlocked);
2120 * get_user_pages_fast attempts to pin user pages by walking the page
2121 * tables directly and avoids taking locks. Thus the walker needs to be
2122 * protected from page table pages being freed from under it, and should
2123 * block any THP splits.
2125 * One way to achieve this is to have the walker disable interrupts, and
2126 * rely on IPIs from the TLB flushing code blocking before the page table
2127 * pages are freed. This is unsuitable for architectures that do not need
2128 * to broadcast an IPI when invalidating TLBs.
2130 * Another way to achieve this is to batch up page table containing pages
2131 * belonging to more than one mm_user, then rcu_sched a callback to free those
2132 * pages. Disabling interrupts will allow the fast_gup walker to both block
2133 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2134 * (which is a relatively rare event). The code below adopts this strategy.
2136 * Before activating this code, please be aware that the following assumptions
2137 * are currently made:
2139 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2140 * free pages containing page tables or TLB flushing requires IPI broadcast.
2142 * *) ptes can be read atomically by the architecture.
2144 * *) access_ok is sufficient to validate userspace address ranges.
2146 * The last two assumptions can be relaxed by the addition of helper functions.
2148 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2150 #ifdef CONFIG_HAVE_FAST_GUP
2152 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2154 struct page **pages)
2156 while ((*nr) - nr_start) {
2157 struct page *page = pages[--(*nr)];
2159 ClearPageReferenced(page);
2160 if (flags & FOLL_PIN)
2161 unpin_user_page(page);
2167 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2168 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2169 unsigned int flags, struct page **pages, int *nr)
2171 struct dev_pagemap *pgmap = NULL;
2172 int nr_start = *nr, ret = 0;
2175 ptem = ptep = pte_offset_map(&pmd, addr);
2177 pte_t pte = ptep_get_lockless(ptep);
2179 struct folio *folio;
2182 * Similar to the PMD case below, NUMA hinting must take slow
2183 * path using the pte_protnone check.
2185 if (pte_protnone(pte))
2188 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2191 if (pte_devmap(pte)) {
2192 if (unlikely(flags & FOLL_LONGTERM))
2195 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2196 if (unlikely(!pgmap)) {
2197 undo_dev_pagemap(nr, nr_start, flags, pages);
2200 } else if (pte_special(pte))
2203 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2204 page = pte_page(pte);
2206 folio = try_grab_folio(page, 1, flags);
2210 if (unlikely(page_is_secretmem(page))) {
2211 gup_put_folio(folio, 1, flags);
2215 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2216 gup_put_folio(folio, 1, flags);
2220 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2221 gup_put_folio(folio, 1, flags);
2226 * We need to make the page accessible if and only if we are
2227 * going to access its content (the FOLL_PIN case). Please
2228 * see Documentation/core-api/pin_user_pages.rst for
2231 if (flags & FOLL_PIN) {
2232 ret = arch_make_page_accessible(page);
2234 gup_put_folio(folio, 1, flags);
2238 folio_set_referenced(folio);
2241 } while (ptep++, addr += PAGE_SIZE, addr != end);
2247 put_dev_pagemap(pgmap);
2254 * If we can't determine whether or not a pte is special, then fail immediately
2255 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2258 * For a futex to be placed on a THP tail page, get_futex_key requires a
2259 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2260 * useful to have gup_huge_pmd even if we can't operate on ptes.
2262 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2263 unsigned int flags, struct page **pages, int *nr)
2267 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2269 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2270 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2271 unsigned long end, unsigned int flags,
2272 struct page **pages, int *nr)
2275 struct dev_pagemap *pgmap = NULL;
2278 struct page *page = pfn_to_page(pfn);
2280 pgmap = get_dev_pagemap(pfn, pgmap);
2281 if (unlikely(!pgmap)) {
2282 undo_dev_pagemap(nr, nr_start, flags, pages);
2285 SetPageReferenced(page);
2287 if (unlikely(!try_grab_page(page, flags))) {
2288 undo_dev_pagemap(nr, nr_start, flags, pages);
2293 } while (addr += PAGE_SIZE, addr != end);
2295 put_dev_pagemap(pgmap);
2299 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2300 unsigned long end, unsigned int flags,
2301 struct page **pages, int *nr)
2303 unsigned long fault_pfn;
2306 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2307 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2310 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2311 undo_dev_pagemap(nr, nr_start, flags, pages);
2317 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2318 unsigned long end, unsigned int flags,
2319 struct page **pages, int *nr)
2321 unsigned long fault_pfn;
2324 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2325 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2328 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2329 undo_dev_pagemap(nr, nr_start, flags, pages);
2335 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2336 unsigned long end, unsigned int flags,
2337 struct page **pages, int *nr)
2343 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2344 unsigned long end, unsigned int flags,
2345 struct page **pages, int *nr)
2352 static int record_subpages(struct page *page, unsigned long addr,
2353 unsigned long end, struct page **pages)
2357 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2358 pages[nr] = nth_page(page, nr);
2363 #ifdef CONFIG_ARCH_HAS_HUGEPD
2364 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2367 unsigned long __boundary = (addr + sz) & ~(sz-1);
2368 return (__boundary - 1 < end - 1) ? __boundary : end;
2371 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2372 unsigned long end, unsigned int flags,
2373 struct page **pages, int *nr)
2375 unsigned long pte_end;
2377 struct folio *folio;
2381 pte_end = (addr + sz) & ~(sz-1);
2385 pte = huge_ptep_get(ptep);
2387 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2390 /* hugepages are never "special" */
2391 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2393 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2394 refs = record_subpages(page, addr, end, pages + *nr);
2396 folio = try_grab_folio(page, refs, flags);
2400 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2401 gup_put_folio(folio, refs, flags);
2405 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2406 gup_put_folio(folio, refs, flags);
2411 folio_set_referenced(folio);
2415 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2416 unsigned int pdshift, unsigned long end, unsigned int flags,
2417 struct page **pages, int *nr)
2420 unsigned long sz = 1UL << hugepd_shift(hugepd);
2423 ptep = hugepte_offset(hugepd, addr, pdshift);
2425 next = hugepte_addr_end(addr, end, sz);
2426 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2428 } while (ptep++, addr = next, addr != end);
2433 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2434 unsigned int pdshift, unsigned long end, unsigned int flags,
2435 struct page **pages, int *nr)
2439 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2441 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2442 unsigned long end, unsigned int flags,
2443 struct page **pages, int *nr)
2446 struct folio *folio;
2449 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2452 if (pmd_devmap(orig)) {
2453 if (unlikely(flags & FOLL_LONGTERM))
2455 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2459 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2460 refs = record_subpages(page, addr, end, pages + *nr);
2462 folio = try_grab_folio(page, refs, flags);
2466 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2467 gup_put_folio(folio, refs, flags);
2471 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2472 gup_put_folio(folio, refs, flags);
2477 folio_set_referenced(folio);
2481 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2482 unsigned long end, unsigned int flags,
2483 struct page **pages, int *nr)
2486 struct folio *folio;
2489 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2492 if (pud_devmap(orig)) {
2493 if (unlikely(flags & FOLL_LONGTERM))
2495 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2499 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2500 refs = record_subpages(page, addr, end, pages + *nr);
2502 folio = try_grab_folio(page, refs, flags);
2506 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2507 gup_put_folio(folio, refs, flags);
2511 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2512 gup_put_folio(folio, refs, flags);
2517 folio_set_referenced(folio);
2521 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2522 unsigned long end, unsigned int flags,
2523 struct page **pages, int *nr)
2527 struct folio *folio;
2529 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2532 BUILD_BUG_ON(pgd_devmap(orig));
2534 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2535 refs = record_subpages(page, addr, end, pages + *nr);
2537 folio = try_grab_folio(page, refs, flags);
2541 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2542 gup_put_folio(folio, refs, flags);
2547 folio_set_referenced(folio);
2551 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2552 unsigned int flags, struct page **pages, int *nr)
2557 pmdp = pmd_offset_lockless(pudp, pud, addr);
2559 pmd_t pmd = READ_ONCE(*pmdp);
2561 next = pmd_addr_end(addr, end);
2562 if (!pmd_present(pmd))
2565 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2568 * NUMA hinting faults need to be handled in the GUP
2569 * slowpath for accounting purposes and so that they
2570 * can be serialised against THP migration.
2572 if (pmd_protnone(pmd))
2575 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2579 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2581 * architecture have different format for hugetlbfs
2582 * pmd format and THP pmd format
2584 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2585 PMD_SHIFT, next, flags, pages, nr))
2587 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2589 } while (pmdp++, addr = next, addr != end);
2594 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2595 unsigned int flags, struct page **pages, int *nr)
2600 pudp = pud_offset_lockless(p4dp, p4d, addr);
2602 pud_t pud = READ_ONCE(*pudp);
2604 next = pud_addr_end(addr, end);
2605 if (unlikely(!pud_present(pud)))
2607 if (unlikely(pud_huge(pud))) {
2608 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2611 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2612 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2613 PUD_SHIFT, next, flags, pages, nr))
2615 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2617 } while (pudp++, addr = next, addr != end);
2622 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2623 unsigned int flags, struct page **pages, int *nr)
2628 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2630 p4d_t p4d = READ_ONCE(*p4dp);
2632 next = p4d_addr_end(addr, end);
2635 BUILD_BUG_ON(p4d_huge(p4d));
2636 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2637 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2638 P4D_SHIFT, next, flags, pages, nr))
2640 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2642 } while (p4dp++, addr = next, addr != end);
2647 static void gup_pgd_range(unsigned long addr, unsigned long end,
2648 unsigned int flags, struct page **pages, int *nr)
2653 pgdp = pgd_offset(current->mm, addr);
2655 pgd_t pgd = READ_ONCE(*pgdp);
2657 next = pgd_addr_end(addr, end);
2660 if (unlikely(pgd_huge(pgd))) {
2661 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2664 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2665 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2666 PGDIR_SHIFT, next, flags, pages, nr))
2668 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2670 } while (pgdp++, addr = next, addr != end);
2673 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2674 unsigned int flags, struct page **pages, int *nr)
2677 #endif /* CONFIG_HAVE_FAST_GUP */
2679 #ifndef gup_fast_permitted
2681 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2682 * we need to fall back to the slow version:
2684 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2690 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2691 unsigned int gup_flags, struct page **pages)
2696 * FIXME: FOLL_LONGTERM does not work with
2697 * get_user_pages_unlocked() (see comments in that function)
2699 if (gup_flags & FOLL_LONGTERM) {
2700 mmap_read_lock(current->mm);
2701 ret = __gup_longterm_locked(current->mm,
2703 pages, NULL, gup_flags);
2704 mmap_read_unlock(current->mm);
2706 ret = get_user_pages_unlocked(start, nr_pages,
2713 static unsigned long lockless_pages_from_mm(unsigned long start,
2715 unsigned int gup_flags,
2716 struct page **pages)
2718 unsigned long flags;
2722 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2723 !gup_fast_permitted(start, end))
2726 if (gup_flags & FOLL_PIN) {
2727 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2733 * Disable interrupts. The nested form is used, in order to allow full,
2734 * general purpose use of this routine.
2736 * With interrupts disabled, we block page table pages from being freed
2737 * from under us. See struct mmu_table_batch comments in
2738 * include/asm-generic/tlb.h for more details.
2740 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2741 * that come from THPs splitting.
2743 local_irq_save(flags);
2744 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2745 local_irq_restore(flags);
2748 * When pinning pages for DMA there could be a concurrent write protect
2749 * from fork() via copy_page_range(), in this case always fail fast GUP.
2751 if (gup_flags & FOLL_PIN) {
2752 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2753 unpin_user_pages(pages, nr_pinned);
2760 static int internal_get_user_pages_fast(unsigned long start,
2761 unsigned long nr_pages,
2762 unsigned int gup_flags,
2763 struct page **pages)
2765 unsigned long len, end;
2766 unsigned long nr_pinned;
2769 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2770 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2771 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2774 if (gup_flags & FOLL_PIN)
2775 mm_set_has_pinned_flag(¤t->mm->flags);
2777 if (!(gup_flags & FOLL_FAST_ONLY))
2778 might_lock_read(¤t->mm->mmap_lock);
2780 start = untagged_addr(start) & PAGE_MASK;
2781 len = nr_pages << PAGE_SHIFT;
2782 if (check_add_overflow(start, len, &end))
2784 if (unlikely(!access_ok((void __user *)start, len)))
2787 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2788 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2791 /* Slow path: try to get the remaining pages with get_user_pages */
2792 start += nr_pinned << PAGE_SHIFT;
2794 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2798 * The caller has to unpin the pages we already pinned so
2799 * returning -errno is not an option
2805 return ret + nr_pinned;
2809 * get_user_pages_fast_only() - pin user pages in memory
2810 * @start: starting user address
2811 * @nr_pages: number of pages from start to pin
2812 * @gup_flags: flags modifying pin behaviour
2813 * @pages: array that receives pointers to the pages pinned.
2814 * Should be at least nr_pages long.
2816 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2818 * Note a difference with get_user_pages_fast: this always returns the
2819 * number of pages pinned, 0 if no pages were pinned.
2821 * If the architecture does not support this function, simply return with no
2824 * Careful, careful! COW breaking can go either way, so a non-write
2825 * access can get ambiguous page results. If you call this function without
2826 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2828 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2829 unsigned int gup_flags, struct page **pages)
2833 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2834 * because gup fast is always a "pin with a +1 page refcount" request.
2836 * FOLL_FAST_ONLY is required in order to match the API description of
2837 * this routine: no fall back to regular ("slow") GUP.
2839 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2841 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2845 * As specified in the API description above, this routine is not
2846 * allowed to return negative values. However, the common core
2847 * routine internal_get_user_pages_fast() *can* return -errno.
2848 * Therefore, correct for that here:
2855 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2858 * get_user_pages_fast() - pin user pages in memory
2859 * @start: starting user address
2860 * @nr_pages: number of pages from start to pin
2861 * @gup_flags: flags modifying pin behaviour
2862 * @pages: array that receives pointers to the pages pinned.
2863 * Should be at least nr_pages long.
2865 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2866 * If not successful, it will fall back to taking the lock and
2867 * calling get_user_pages().
2869 * Returns number of pages pinned. This may be fewer than the number requested.
2870 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2873 int get_user_pages_fast(unsigned long start, int nr_pages,
2874 unsigned int gup_flags, struct page **pages)
2876 if (!is_valid_gup_flags(gup_flags))
2880 * The caller may or may not have explicitly set FOLL_GET; either way is
2881 * OK. However, internally (within mm/gup.c), gup fast variants must set
2882 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2885 gup_flags |= FOLL_GET;
2886 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2888 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2891 * pin_user_pages_fast() - pin user pages in memory without taking locks
2893 * @start: starting user address
2894 * @nr_pages: number of pages from start to pin
2895 * @gup_flags: flags modifying pin behaviour
2896 * @pages: array that receives pointers to the pages pinned.
2897 * Should be at least nr_pages long.
2899 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2900 * get_user_pages_fast() for documentation on the function arguments, because
2901 * the arguments here are identical.
2903 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2904 * see Documentation/core-api/pin_user_pages.rst for further details.
2906 int pin_user_pages_fast(unsigned long start, int nr_pages,
2907 unsigned int gup_flags, struct page **pages)
2909 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2910 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2913 gup_flags |= FOLL_PIN;
2914 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2916 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2919 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2920 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2922 * The API rules are the same, too: no negative values may be returned.
2924 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2925 unsigned int gup_flags, struct page **pages)
2930 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2931 * rules require returning 0, rather than -errno:
2933 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2936 * FOLL_FAST_ONLY is required in order to match the API description of
2937 * this routine: no fall back to regular ("slow") GUP.
2939 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2940 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2943 * This routine is not allowed to return negative values. However,
2944 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2945 * correct for that here:
2952 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2955 * pin_user_pages_remote() - pin pages of a remote process
2957 * @mm: mm_struct of target mm
2958 * @start: starting user address
2959 * @nr_pages: number of pages from start to pin
2960 * @gup_flags: flags modifying lookup behaviour
2961 * @pages: array that receives pointers to the pages pinned.
2962 * Should be at least nr_pages long. Or NULL, if caller
2963 * only intends to ensure the pages are faulted in.
2964 * @vmas: array of pointers to vmas corresponding to each page.
2965 * Or NULL if the caller does not require them.
2966 * @locked: pointer to lock flag indicating whether lock is held and
2967 * subsequently whether VM_FAULT_RETRY functionality can be
2968 * utilised. Lock must initially be held.
2970 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2971 * get_user_pages_remote() for documentation on the function arguments, because
2972 * the arguments here are identical.
2974 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2975 * see Documentation/core-api/pin_user_pages.rst for details.
2977 long pin_user_pages_remote(struct mm_struct *mm,
2978 unsigned long start, unsigned long nr_pages,
2979 unsigned int gup_flags, struct page **pages,
2980 struct vm_area_struct **vmas, int *locked)
2982 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2983 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2986 gup_flags |= FOLL_PIN;
2987 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2988 pages, vmas, locked);
2990 EXPORT_SYMBOL(pin_user_pages_remote);
2993 * pin_user_pages() - pin user pages in memory for use by other devices
2995 * @start: starting user address
2996 * @nr_pages: number of pages from start to pin
2997 * @gup_flags: flags modifying lookup behaviour
2998 * @pages: array that receives pointers to the pages pinned.
2999 * Should be at least nr_pages long. Or NULL, if caller
3000 * only intends to ensure the pages are faulted in.
3001 * @vmas: array of pointers to vmas corresponding to each page.
3002 * Or NULL if the caller does not require them.
3004 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3007 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3008 * see Documentation/core-api/pin_user_pages.rst for details.
3010 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3011 unsigned int gup_flags, struct page **pages,
3012 struct vm_area_struct **vmas)
3014 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3015 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3018 gup_flags |= FOLL_PIN;
3019 return __gup_longterm_locked(current->mm, start, nr_pages,
3020 pages, vmas, gup_flags);
3022 EXPORT_SYMBOL(pin_user_pages);
3025 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3026 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3027 * FOLL_PIN and rejects FOLL_GET.
3029 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3030 struct page **pages, unsigned int gup_flags)
3032 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3033 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3036 gup_flags |= FOLL_PIN;
3037 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3039 EXPORT_SYMBOL(pin_user_pages_unlocked);