2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
54 #include <asm/virtext.h>
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
84 #define SVM_AVIC_DOORBELL 0xc001011b
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
121 static bool erratum_383_found __read_mostly;
123 static const u32 host_save_user_msrs[] = {
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
146 /* Struct members for AVIC */
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
153 struct kvm_sev_info sev_info;
158 struct nested_state {
164 /* These are the merged vectors */
167 /* gpa pointers to the real vectors */
171 /* A VMEXIT is required but not yet emulated */
174 /* cache for intercepts of the guest */
177 u32 intercept_exceptions;
180 /* Nested Paging related state */
184 #define MSRPM_OFFSETS 16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
191 static uint64_t osvw_len = 4, osvw_status;
194 struct kvm_vcpu vcpu;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
227 struct nested_state nested;
230 u64 nmi_singlestep_guest_rflags;
232 unsigned int3_injected;
233 unsigned long int3_rip;
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
257 * This is a wrapper of struct amd_iommu_ir_data.
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT 0x0100000000ULL
275 #define MSR_INVALID 0xffffffffU
277 static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
304 static bool npt_enabled;
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
363 /* enable / disable AVIC */
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
416 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
424 struct list_head list;
425 unsigned long npages;
432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
434 return container_of(kvm, struct kvm_svm, kvm);
437 static inline bool svm_sev_enabled(void)
439 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
442 static inline bool sev_guest(struct kvm *kvm)
444 #ifdef CONFIG_KVM_AMD_SEV
445 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
453 static inline int sev_get_asid(struct kvm *kvm)
455 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
460 static inline void mark_all_dirty(struct vmcb *vmcb)
462 vmcb->control.clean = 0;
465 static inline void mark_all_clean(struct vmcb *vmcb)
467 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468 & ~VMCB_ALWAYS_DIRTY_MASK;
471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
473 vmcb->control.clean &= ~(1 << bit);
476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
478 return container_of(vcpu, struct vcpu_svm, vcpu);
481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
483 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484 mark_dirty(svm->vmcb, VMCB_AVIC);
487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
489 struct vcpu_svm *svm = to_svm(vcpu);
490 u64 *entry = svm->avic_physical_id_cache;
495 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
498 static void recalc_intercepts(struct vcpu_svm *svm)
500 struct vmcb_control_area *c, *h;
501 struct nested_state *g;
503 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
505 if (!is_guest_mode(&svm->vcpu))
508 c = &svm->vmcb->control;
509 h = &svm->nested.hsave->control;
512 c->intercept_cr = h->intercept_cr | g->intercept_cr;
513 c->intercept_dr = h->intercept_dr | g->intercept_dr;
514 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515 c->intercept = h->intercept | g->intercept;
518 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
520 if (is_guest_mode(&svm->vcpu))
521 return svm->nested.hsave;
526 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
528 struct vmcb *vmcb = get_host_vmcb(svm);
530 vmcb->control.intercept_cr |= (1U << bit);
532 recalc_intercepts(svm);
535 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
537 struct vmcb *vmcb = get_host_vmcb(svm);
539 vmcb->control.intercept_cr &= ~(1U << bit);
541 recalc_intercepts(svm);
544 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
546 struct vmcb *vmcb = get_host_vmcb(svm);
548 return vmcb->control.intercept_cr & (1U << bit);
551 static inline void set_dr_intercepts(struct vcpu_svm *svm)
553 struct vmcb *vmcb = get_host_vmcb(svm);
555 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
556 | (1 << INTERCEPT_DR1_READ)
557 | (1 << INTERCEPT_DR2_READ)
558 | (1 << INTERCEPT_DR3_READ)
559 | (1 << INTERCEPT_DR4_READ)
560 | (1 << INTERCEPT_DR5_READ)
561 | (1 << INTERCEPT_DR6_READ)
562 | (1 << INTERCEPT_DR7_READ)
563 | (1 << INTERCEPT_DR0_WRITE)
564 | (1 << INTERCEPT_DR1_WRITE)
565 | (1 << INTERCEPT_DR2_WRITE)
566 | (1 << INTERCEPT_DR3_WRITE)
567 | (1 << INTERCEPT_DR4_WRITE)
568 | (1 << INTERCEPT_DR5_WRITE)
569 | (1 << INTERCEPT_DR6_WRITE)
570 | (1 << INTERCEPT_DR7_WRITE);
572 recalc_intercepts(svm);
575 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
577 struct vmcb *vmcb = get_host_vmcb(svm);
579 vmcb->control.intercept_dr = 0;
581 recalc_intercepts(svm);
584 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
586 struct vmcb *vmcb = get_host_vmcb(svm);
588 vmcb->control.intercept_exceptions |= (1U << bit);
590 recalc_intercepts(svm);
593 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
595 struct vmcb *vmcb = get_host_vmcb(svm);
597 vmcb->control.intercept_exceptions &= ~(1U << bit);
599 recalc_intercepts(svm);
602 static inline void set_intercept(struct vcpu_svm *svm, int bit)
604 struct vmcb *vmcb = get_host_vmcb(svm);
606 vmcb->control.intercept |= (1ULL << bit);
608 recalc_intercepts(svm);
611 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
613 struct vmcb *vmcb = get_host_vmcb(svm);
615 vmcb->control.intercept &= ~(1ULL << bit);
617 recalc_intercepts(svm);
620 static inline bool vgif_enabled(struct vcpu_svm *svm)
622 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
625 static inline void enable_gif(struct vcpu_svm *svm)
627 if (vgif_enabled(svm))
628 svm->vmcb->control.int_ctl |= V_GIF_MASK;
630 svm->vcpu.arch.hflags |= HF_GIF_MASK;
633 static inline void disable_gif(struct vcpu_svm *svm)
635 if (vgif_enabled(svm))
636 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
638 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
641 static inline bool gif_set(struct vcpu_svm *svm)
643 if (vgif_enabled(svm))
644 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
646 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
649 static unsigned long iopm_base;
651 struct kvm_ldttss_desc {
654 unsigned base1:8, type:5, dpl:2, p:1;
655 unsigned limit1:4, zero0:3, g:1, base2:8;
658 } __attribute__((packed));
660 struct svm_cpu_data {
667 struct kvm_ldttss_desc *tss_desc;
669 struct page *save_area;
670 struct vmcb *current_vmcb;
672 /* index = sev_asid, value = vmcb pointer */
673 struct vmcb **sev_vmcbs;
676 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
678 struct svm_init_data {
683 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
685 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
686 #define MSRS_RANGE_SIZE 2048
687 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
689 static u32 svm_msrpm_offset(u32 msr)
694 for (i = 0; i < NUM_MSR_MAPS; i++) {
695 if (msr < msrpm_ranges[i] ||
696 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
699 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
700 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
702 /* Now we have the u8 offset - but need the u32 offset */
706 /* MSR not in any range */
710 #define MAX_INST_SIZE 15
712 static inline void clgi(void)
714 asm volatile (__ex(SVM_CLGI));
717 static inline void stgi(void)
719 asm volatile (__ex(SVM_STGI));
722 static inline void invlpga(unsigned long addr, u32 asid)
724 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
727 static int get_npt_level(struct kvm_vcpu *vcpu)
730 return PT64_ROOT_4LEVEL;
732 return PT32E_ROOT_LEVEL;
736 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
738 vcpu->arch.efer = efer;
739 if (!npt_enabled && !(efer & EFER_LMA))
742 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
743 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
746 static int is_external_interrupt(u32 info)
748 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
749 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
752 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
754 struct vcpu_svm *svm = to_svm(vcpu);
757 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
758 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
762 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
764 struct vcpu_svm *svm = to_svm(vcpu);
767 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
769 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
773 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
775 struct vcpu_svm *svm = to_svm(vcpu);
777 if (svm->vmcb->control.next_rip != 0) {
778 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
779 svm->next_rip = svm->vmcb->control.next_rip;
782 if (!svm->next_rip) {
783 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
785 printk(KERN_DEBUG "%s: NOP\n", __func__);
788 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
789 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
790 __func__, kvm_rip_read(vcpu), svm->next_rip);
792 kvm_rip_write(vcpu, svm->next_rip);
793 svm_set_interrupt_shadow(vcpu, 0);
796 static void svm_queue_exception(struct kvm_vcpu *vcpu)
798 struct vcpu_svm *svm = to_svm(vcpu);
799 unsigned nr = vcpu->arch.exception.nr;
800 bool has_error_code = vcpu->arch.exception.has_error_code;
801 bool reinject = vcpu->arch.exception.injected;
802 u32 error_code = vcpu->arch.exception.error_code;
805 * If we are within a nested VM we'd better #VMEXIT and let the guest
806 * handle the exception
809 nested_svm_check_exception(svm, nr, has_error_code, error_code))
812 kvm_deliver_exception_payload(&svm->vcpu);
814 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
815 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
818 * For guest debugging where we have to reinject #BP if some
819 * INT3 is guest-owned:
820 * Emulate nRIP by moving RIP forward. Will fail if injection
821 * raises a fault that is not intercepted. Still better than
822 * failing in all cases.
824 skip_emulated_instruction(&svm->vcpu);
825 rip = kvm_rip_read(&svm->vcpu);
826 svm->int3_rip = rip + svm->vmcb->save.cs.base;
827 svm->int3_injected = rip - old_rip;
830 svm->vmcb->control.event_inj = nr
832 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
833 | SVM_EVTINJ_TYPE_EXEPT;
834 svm->vmcb->control.event_inj_err = error_code;
837 static void svm_init_erratum_383(void)
843 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
846 /* Use _safe variants to not break nested virtualization */
847 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
853 low = lower_32_bits(val);
854 high = upper_32_bits(val);
856 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
858 erratum_383_found = true;
861 static void svm_init_osvw(struct kvm_vcpu *vcpu)
864 * Guests should see errata 400 and 415 as fixed (assuming that
865 * HLT and IO instructions are intercepted).
867 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
868 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
871 * By increasing VCPU's osvw.length to 3 we are telling the guest that
872 * all osvw.status bits inside that length, including bit 0 (which is
873 * reserved for erratum 298), are valid. However, if host processor's
874 * osvw_len is 0 then osvw_status[0] carries no information. We need to
875 * be conservative here and therefore we tell the guest that erratum 298
876 * is present (because we really don't know).
878 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
879 vcpu->arch.osvw.status |= 1;
882 static int has_svm(void)
886 if (!cpu_has_svm(&msg)) {
887 printk(KERN_INFO "has_svm: %s\n", msg);
894 static void svm_hardware_disable(void)
896 /* Make sure we clean up behind us */
897 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
898 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
902 amd_pmu_disable_virt();
905 static int svm_hardware_enable(void)
908 struct svm_cpu_data *sd;
910 struct desc_struct *gdt;
911 int me = raw_smp_processor_id();
913 rdmsrl(MSR_EFER, efer);
914 if (efer & EFER_SVME)
918 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
921 sd = per_cpu(svm_data, me);
923 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
927 sd->asid_generation = 1;
928 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
929 sd->next_asid = sd->max_asid + 1;
930 sd->min_asid = max_sev_asid + 1;
932 gdt = get_current_gdt_rw();
933 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
935 wrmsrl(MSR_EFER, efer | EFER_SVME);
937 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
939 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
940 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
941 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
948 * Note that it is possible to have a system with mixed processor
949 * revisions and therefore different OSVW bits. If bits are not the same
950 * on different processors then choose the worst case (i.e. if erratum
951 * is present on one processor and not on another then assume that the
952 * erratum is present everywhere).
954 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
955 uint64_t len, status = 0;
958 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
960 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
964 osvw_status = osvw_len = 0;
968 osvw_status |= status;
969 osvw_status &= (1ULL << osvw_len) - 1;
972 osvw_status = osvw_len = 0;
974 svm_init_erratum_383();
976 amd_pmu_enable_virt();
981 static void svm_cpu_uninit(int cpu)
983 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
988 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
989 kfree(sd->sev_vmcbs);
990 __free_page(sd->save_area);
994 static int svm_cpu_init(int cpu)
996 struct svm_cpu_data *sd;
999 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1004 sd->save_area = alloc_page(GFP_KERNEL);
1008 if (svm_sev_enabled()) {
1010 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1017 per_cpu(svm_data, cpu) = sd;
1027 static bool valid_msr_intercept(u32 index)
1031 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1032 if (direct_access_msrs[i].index == index)
1038 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1045 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1046 to_svm(vcpu)->msrpm;
1048 offset = svm_msrpm_offset(msr);
1049 bit_write = 2 * (msr & 0x0f) + 1;
1050 tmp = msrpm[offset];
1052 BUG_ON(offset == MSR_INVALID);
1054 return !!test_bit(bit_write, &tmp);
1057 static void set_msr_interception(u32 *msrpm, unsigned msr,
1058 int read, int write)
1060 u8 bit_read, bit_write;
1065 * If this warning triggers extend the direct_access_msrs list at the
1066 * beginning of the file
1068 WARN_ON(!valid_msr_intercept(msr));
1070 offset = svm_msrpm_offset(msr);
1071 bit_read = 2 * (msr & 0x0f);
1072 bit_write = 2 * (msr & 0x0f) + 1;
1073 tmp = msrpm[offset];
1075 BUG_ON(offset == MSR_INVALID);
1077 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1078 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1080 msrpm[offset] = tmp;
1083 static void svm_vcpu_init_msrpm(u32 *msrpm)
1087 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1089 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1090 if (!direct_access_msrs[i].always)
1093 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1097 static void add_msr_offset(u32 offset)
1101 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1103 /* Offset already in list? */
1104 if (msrpm_offsets[i] == offset)
1107 /* Slot used by another offset? */
1108 if (msrpm_offsets[i] != MSR_INVALID)
1111 /* Add offset to list */
1112 msrpm_offsets[i] = offset;
1118 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1119 * increase MSRPM_OFFSETS in this case.
1124 static void init_msrpm_offsets(void)
1128 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1130 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1133 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1134 BUG_ON(offset == MSR_INVALID);
1136 add_msr_offset(offset);
1140 static void svm_enable_lbrv(struct vcpu_svm *svm)
1142 u32 *msrpm = svm->msrpm;
1144 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1145 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1146 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1147 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1148 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1151 static void svm_disable_lbrv(struct vcpu_svm *svm)
1153 u32 *msrpm = svm->msrpm;
1155 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1156 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1157 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1158 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1159 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1162 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1164 svm->nmi_singlestep = false;
1166 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1167 /* Clear our flags if they were not set by the guest */
1168 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1169 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1170 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1171 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1176 * This hash table is used to map VM_ID to a struct kvm_svm,
1177 * when handling AMD IOMMU GALOG notification to schedule in
1178 * a particular vCPU.
1180 #define SVM_VM_DATA_HASH_BITS 8
1181 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1182 static u32 next_vm_id = 0;
1183 static bool next_vm_id_wrapped = 0;
1184 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1187 * This function is called from IOMMU driver to notify
1188 * SVM to schedule in a particular vCPU of a particular VM.
1190 static int avic_ga_log_notifier(u32 ga_tag)
1192 unsigned long flags;
1193 struct kvm_svm *kvm_svm;
1194 struct kvm_vcpu *vcpu = NULL;
1195 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1196 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1198 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1200 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1201 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1202 if (kvm_svm->avic_vm_id != vm_id)
1204 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1207 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1210 * At this point, the IOMMU should have already set the pending
1211 * bit in the vAPIC backing page. So, we just need to schedule
1215 kvm_vcpu_wake_up(vcpu);
1220 static __init int sev_hardware_setup(void)
1222 struct sev_user_data_status *status;
1225 /* Maximum number of encrypted guests supported simultaneously */
1226 max_sev_asid = cpuid_ecx(0x8000001F);
1231 /* Minimum ASID value that should be used for SEV guest */
1232 min_sev_asid = cpuid_edx(0x8000001F);
1234 /* Initialize SEV ASID bitmap */
1235 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1236 if (!sev_asid_bitmap)
1239 status = kmalloc(sizeof(*status), GFP_KERNEL);
1244 * Check SEV platform status.
1246 * PLATFORM_STATUS can be called in any state, if we failed to query
1247 * the PLATFORM status then either PSP firmware does not support SEV
1248 * feature or SEV firmware is dead.
1250 rc = sev_platform_status(status, NULL);
1254 pr_info("SEV supported\n");
1261 static void grow_ple_window(struct kvm_vcpu *vcpu)
1263 struct vcpu_svm *svm = to_svm(vcpu);
1264 struct vmcb_control_area *control = &svm->vmcb->control;
1265 int old = control->pause_filter_count;
1267 control->pause_filter_count = __grow_ple_window(old,
1269 pause_filter_count_grow,
1270 pause_filter_count_max);
1272 if (control->pause_filter_count != old)
1273 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1275 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1276 control->pause_filter_count, old);
1279 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1281 struct vcpu_svm *svm = to_svm(vcpu);
1282 struct vmcb_control_area *control = &svm->vmcb->control;
1283 int old = control->pause_filter_count;
1285 control->pause_filter_count =
1286 __shrink_ple_window(old,
1288 pause_filter_count_shrink,
1289 pause_filter_count);
1290 if (control->pause_filter_count != old)
1291 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1293 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1294 control->pause_filter_count, old);
1297 static __init int svm_hardware_setup(void)
1300 struct page *iopm_pages;
1304 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1309 iopm_va = page_address(iopm_pages);
1310 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1311 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1313 init_msrpm_offsets();
1315 if (boot_cpu_has(X86_FEATURE_NX))
1316 kvm_enable_efer_bits(EFER_NX);
1318 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1319 kvm_enable_efer_bits(EFER_FFXSR);
1321 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1322 kvm_has_tsc_control = true;
1323 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1324 kvm_tsc_scaling_ratio_frac_bits = 32;
1327 /* Check for pause filtering support */
1328 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1329 pause_filter_count = 0;
1330 pause_filter_thresh = 0;
1331 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1332 pause_filter_thresh = 0;
1336 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1337 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1341 if (boot_cpu_has(X86_FEATURE_SEV) &&
1342 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1343 r = sev_hardware_setup();
1351 for_each_possible_cpu(cpu) {
1352 r = svm_cpu_init(cpu);
1357 if (!boot_cpu_has(X86_FEATURE_NPT))
1358 npt_enabled = false;
1360 if (npt_enabled && !npt) {
1361 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1362 npt_enabled = false;
1366 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1373 !boot_cpu_has(X86_FEATURE_AVIC) ||
1374 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1377 pr_info("AVIC enabled\n");
1379 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1385 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1386 !IS_ENABLED(CONFIG_X86_64)) {
1389 pr_info("Virtual VMLOAD VMSAVE supported\n");
1394 if (!boot_cpu_has(X86_FEATURE_VGIF))
1397 pr_info("Virtual GIF supported\n");
1403 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1408 static __exit void svm_hardware_unsetup(void)
1412 if (svm_sev_enabled())
1413 bitmap_free(sev_asid_bitmap);
1415 for_each_possible_cpu(cpu)
1416 svm_cpu_uninit(cpu);
1418 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1422 static void init_seg(struct vmcb_seg *seg)
1425 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1426 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1427 seg->limit = 0xffff;
1431 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1434 seg->attrib = SVM_SELECTOR_P_MASK | type;
1435 seg->limit = 0xffff;
1439 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1441 struct vcpu_svm *svm = to_svm(vcpu);
1443 if (is_guest_mode(vcpu))
1444 return svm->nested.hsave->control.tsc_offset;
1446 return vcpu->arch.tsc_offset;
1449 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1451 struct vcpu_svm *svm = to_svm(vcpu);
1452 u64 g_tsc_offset = 0;
1454 if (is_guest_mode(vcpu)) {
1455 /* Write L1's TSC offset. */
1456 g_tsc_offset = svm->vmcb->control.tsc_offset -
1457 svm->nested.hsave->control.tsc_offset;
1458 svm->nested.hsave->control.tsc_offset = offset;
1460 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1461 svm->vmcb->control.tsc_offset,
1464 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1466 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1469 static void avic_init_vmcb(struct vcpu_svm *svm)
1471 struct vmcb *vmcb = svm->vmcb;
1472 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1473 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1474 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1475 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1477 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1478 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1479 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1480 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1481 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1484 static void init_vmcb(struct vcpu_svm *svm)
1486 struct vmcb_control_area *control = &svm->vmcb->control;
1487 struct vmcb_save_area *save = &svm->vmcb->save;
1489 svm->vcpu.arch.hflags = 0;
1491 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1492 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1493 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1494 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1495 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1496 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1497 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1498 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1500 set_dr_intercepts(svm);
1502 set_exception_intercept(svm, PF_VECTOR);
1503 set_exception_intercept(svm, UD_VECTOR);
1504 set_exception_intercept(svm, MC_VECTOR);
1505 set_exception_intercept(svm, AC_VECTOR);
1506 set_exception_intercept(svm, DB_VECTOR);
1508 * Guest access to VMware backdoor ports could legitimately
1509 * trigger #GP because of TSS I/O permission bitmap.
1510 * We intercept those #GP and allow access to them anyway
1513 if (enable_vmware_backdoor)
1514 set_exception_intercept(svm, GP_VECTOR);
1516 set_intercept(svm, INTERCEPT_INTR);
1517 set_intercept(svm, INTERCEPT_NMI);
1518 set_intercept(svm, INTERCEPT_SMI);
1519 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1520 set_intercept(svm, INTERCEPT_RDPMC);
1521 set_intercept(svm, INTERCEPT_CPUID);
1522 set_intercept(svm, INTERCEPT_INVD);
1523 set_intercept(svm, INTERCEPT_INVLPG);
1524 set_intercept(svm, INTERCEPT_INVLPGA);
1525 set_intercept(svm, INTERCEPT_IOIO_PROT);
1526 set_intercept(svm, INTERCEPT_MSR_PROT);
1527 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1528 set_intercept(svm, INTERCEPT_SHUTDOWN);
1529 set_intercept(svm, INTERCEPT_VMRUN);
1530 set_intercept(svm, INTERCEPT_VMMCALL);
1531 set_intercept(svm, INTERCEPT_VMLOAD);
1532 set_intercept(svm, INTERCEPT_VMSAVE);
1533 set_intercept(svm, INTERCEPT_STGI);
1534 set_intercept(svm, INTERCEPT_CLGI);
1535 set_intercept(svm, INTERCEPT_SKINIT);
1536 set_intercept(svm, INTERCEPT_WBINVD);
1537 set_intercept(svm, INTERCEPT_XSETBV);
1538 set_intercept(svm, INTERCEPT_RSM);
1540 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1541 set_intercept(svm, INTERCEPT_MONITOR);
1542 set_intercept(svm, INTERCEPT_MWAIT);
1545 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1546 set_intercept(svm, INTERCEPT_HLT);
1548 control->iopm_base_pa = __sme_set(iopm_base);
1549 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1550 control->int_ctl = V_INTR_MASKING_MASK;
1552 init_seg(&save->es);
1553 init_seg(&save->ss);
1554 init_seg(&save->ds);
1555 init_seg(&save->fs);
1556 init_seg(&save->gs);
1558 save->cs.selector = 0xf000;
1559 save->cs.base = 0xffff0000;
1560 /* Executable/Readable Code Segment */
1561 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1562 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1563 save->cs.limit = 0xffff;
1565 save->gdtr.limit = 0xffff;
1566 save->idtr.limit = 0xffff;
1568 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1569 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1571 svm_set_efer(&svm->vcpu, 0);
1572 save->dr6 = 0xffff0ff0;
1573 kvm_set_rflags(&svm->vcpu, 2);
1574 save->rip = 0x0000fff0;
1575 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1578 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1579 * It also updates the guest-visible cr0 value.
1581 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1582 kvm_mmu_reset_context(&svm->vcpu);
1584 save->cr4 = X86_CR4_PAE;
1588 /* Setup VMCB for Nested Paging */
1589 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1590 clr_intercept(svm, INTERCEPT_INVLPG);
1591 clr_exception_intercept(svm, PF_VECTOR);
1592 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1593 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1594 save->g_pat = svm->vcpu.arch.pat;
1598 svm->asid_generation = 0;
1600 svm->nested.vmcb = 0;
1601 svm->vcpu.arch.hflags = 0;
1603 if (pause_filter_count) {
1604 control->pause_filter_count = pause_filter_count;
1605 if (pause_filter_thresh)
1606 control->pause_filter_thresh = pause_filter_thresh;
1607 set_intercept(svm, INTERCEPT_PAUSE);
1609 clr_intercept(svm, INTERCEPT_PAUSE);
1612 if (kvm_vcpu_apicv_active(&svm->vcpu))
1613 avic_init_vmcb(svm);
1616 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1617 * in VMCB and clear intercepts to avoid #VMEXIT.
1620 clr_intercept(svm, INTERCEPT_VMLOAD);
1621 clr_intercept(svm, INTERCEPT_VMSAVE);
1622 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1626 clr_intercept(svm, INTERCEPT_STGI);
1627 clr_intercept(svm, INTERCEPT_CLGI);
1628 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1631 if (sev_guest(svm->vcpu.kvm)) {
1632 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1633 clr_exception_intercept(svm, UD_VECTOR);
1636 mark_all_dirty(svm->vmcb);
1642 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1645 u64 *avic_physical_id_table;
1646 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1648 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1651 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1653 return &avic_physical_id_table[index];
1658 * AVIC hardware walks the nested page table to check permissions,
1659 * but does not use the SPA address specified in the leaf page
1660 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1661 * field of the VMCB. Therefore, we set up the
1662 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1664 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1666 struct kvm *kvm = vcpu->kvm;
1669 if (kvm->arch.apic_access_page_done)
1672 ret = x86_set_memory_region(kvm,
1673 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1674 APIC_DEFAULT_PHYS_BASE,
1679 kvm->arch.apic_access_page_done = true;
1683 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1686 u64 *entry, new_entry;
1687 int id = vcpu->vcpu_id;
1688 struct vcpu_svm *svm = to_svm(vcpu);
1690 ret = avic_init_access_page(vcpu);
1694 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1697 if (!svm->vcpu.arch.apic->regs)
1700 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1702 /* Setting AVIC backing page address in the phy APIC ID table */
1703 entry = avic_get_physical_id_entry(vcpu, id);
1707 new_entry = READ_ONCE(*entry);
1708 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1709 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1710 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1711 WRITE_ONCE(*entry, new_entry);
1713 svm->avic_physical_id_cache = entry;
1718 static void __sev_asid_free(int asid)
1720 struct svm_cpu_data *sd;
1724 clear_bit(pos, sev_asid_bitmap);
1726 for_each_possible_cpu(cpu) {
1727 sd = per_cpu(svm_data, cpu);
1728 sd->sev_vmcbs[pos] = NULL;
1732 static void sev_asid_free(struct kvm *kvm)
1734 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1736 __sev_asid_free(sev->asid);
1739 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1741 struct sev_data_decommission *decommission;
1742 struct sev_data_deactivate *data;
1747 data = kzalloc(sizeof(*data), GFP_KERNEL);
1751 /* deactivate handle */
1752 data->handle = handle;
1753 sev_guest_deactivate(data, NULL);
1755 wbinvd_on_all_cpus();
1756 sev_guest_df_flush(NULL);
1759 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1763 /* decommission handle */
1764 decommission->handle = handle;
1765 sev_guest_decommission(decommission, NULL);
1767 kfree(decommission);
1770 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1771 unsigned long ulen, unsigned long *n,
1774 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1775 unsigned long npages, npinned, size;
1776 unsigned long locked, lock_limit;
1777 struct page **pages;
1778 unsigned long first, last;
1780 if (ulen == 0 || uaddr + ulen < uaddr)
1783 /* Calculate number of pages. */
1784 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1785 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1786 npages = (last - first + 1);
1788 locked = sev->pages_locked + npages;
1789 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1790 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1791 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1795 /* Avoid using vmalloc for smaller buffers. */
1796 size = npages * sizeof(struct page *);
1797 if (size > PAGE_SIZE)
1798 pages = vmalloc(size);
1800 pages = kmalloc(size, GFP_KERNEL);
1805 /* Pin the user virtual address. */
1806 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1807 if (npinned != npages) {
1808 pr_err("SEV: Failure locking %lu pages.\n", npages);
1813 sev->pages_locked = locked;
1819 release_pages(pages, npinned);
1825 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1826 unsigned long npages)
1828 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1830 release_pages(pages, npages);
1832 sev->pages_locked -= npages;
1835 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1837 uint8_t *page_virtual;
1840 if (npages == 0 || pages == NULL)
1843 for (i = 0; i < npages; i++) {
1844 page_virtual = kmap_atomic(pages[i]);
1845 clflush_cache_range(page_virtual, PAGE_SIZE);
1846 kunmap_atomic(page_virtual);
1850 static void __unregister_enc_region_locked(struct kvm *kvm,
1851 struct enc_region *region)
1854 * The guest may change the memory encryption attribute from C=0 -> C=1
1855 * or vice versa for this memory range. Lets make sure caches are
1856 * flushed to ensure that guest data gets written into memory with
1859 sev_clflush_pages(region->pages, region->npages);
1861 sev_unpin_memory(kvm, region->pages, region->npages);
1862 list_del(®ion->list);
1866 static struct kvm *svm_vm_alloc(void)
1868 struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1869 return &kvm_svm->kvm;
1872 static void svm_vm_free(struct kvm *kvm)
1874 vfree(to_kvm_svm(kvm));
1877 static void sev_vm_destroy(struct kvm *kvm)
1879 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1880 struct list_head *head = &sev->regions_list;
1881 struct list_head *pos, *q;
1883 if (!sev_guest(kvm))
1886 mutex_lock(&kvm->lock);
1889 * if userspace was terminated before unregistering the memory regions
1890 * then lets unpin all the registered memory.
1892 if (!list_empty(head)) {
1893 list_for_each_safe(pos, q, head) {
1894 __unregister_enc_region_locked(kvm,
1895 list_entry(pos, struct enc_region, list));
1899 mutex_unlock(&kvm->lock);
1901 sev_unbind_asid(kvm, sev->handle);
1905 static void avic_vm_destroy(struct kvm *kvm)
1907 unsigned long flags;
1908 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1913 if (kvm_svm->avic_logical_id_table_page)
1914 __free_page(kvm_svm->avic_logical_id_table_page);
1915 if (kvm_svm->avic_physical_id_table_page)
1916 __free_page(kvm_svm->avic_physical_id_table_page);
1918 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1919 hash_del(&kvm_svm->hnode);
1920 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1923 static void svm_vm_destroy(struct kvm *kvm)
1925 avic_vm_destroy(kvm);
1926 sev_vm_destroy(kvm);
1929 static int avic_vm_init(struct kvm *kvm)
1931 unsigned long flags;
1933 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1935 struct page *p_page;
1936 struct page *l_page;
1942 /* Allocating physical APIC ID table (4KB) */
1943 p_page = alloc_page(GFP_KERNEL);
1947 kvm_svm->avic_physical_id_table_page = p_page;
1948 clear_page(page_address(p_page));
1950 /* Allocating logical APIC ID table (4KB) */
1951 l_page = alloc_page(GFP_KERNEL);
1955 kvm_svm->avic_logical_id_table_page = l_page;
1956 clear_page(page_address(l_page));
1958 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1960 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1961 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1962 next_vm_id_wrapped = 1;
1965 /* Is it still in use? Only possible if wrapped at least once */
1966 if (next_vm_id_wrapped) {
1967 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1968 if (k2->avic_vm_id == vm_id)
1972 kvm_svm->avic_vm_id = vm_id;
1973 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1974 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1979 avic_vm_destroy(kvm);
1984 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1987 unsigned long flags;
1988 struct amd_svm_iommu_ir *ir;
1989 struct vcpu_svm *svm = to_svm(vcpu);
1991 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1995 * Here, we go through the per-vcpu ir_list to update all existing
1996 * interrupt remapping table entry targeting this vcpu.
1998 spin_lock_irqsave(&svm->ir_list_lock, flags);
2000 if (list_empty(&svm->ir_list))
2003 list_for_each_entry(ir, &svm->ir_list, node) {
2004 ret = amd_iommu_update_ga(cpu, r, ir->data);
2009 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2013 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2016 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2017 int h_physical_id = kvm_cpu_get_apicid(cpu);
2018 struct vcpu_svm *svm = to_svm(vcpu);
2020 if (!kvm_vcpu_apicv_active(vcpu))
2023 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2026 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2027 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2029 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2030 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2032 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2033 if (svm->avic_is_running)
2034 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2036 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2037 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2038 svm->avic_is_running);
2041 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2044 struct vcpu_svm *svm = to_svm(vcpu);
2046 if (!kvm_vcpu_apicv_active(vcpu))
2049 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2050 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2051 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2053 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2058 * This function is called during VCPU halt/unhalt.
2060 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2062 struct vcpu_svm *svm = to_svm(vcpu);
2064 svm->avic_is_running = is_run;
2066 avic_vcpu_load(vcpu, vcpu->cpu);
2068 avic_vcpu_put(vcpu);
2071 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2073 struct vcpu_svm *svm = to_svm(vcpu);
2077 vcpu->arch.microcode_version = 0x01000065;
2079 svm->virt_spec_ctrl = 0;
2082 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2083 MSR_IA32_APICBASE_ENABLE;
2084 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2085 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2089 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2090 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2092 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2093 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2096 static int avic_init_vcpu(struct vcpu_svm *svm)
2100 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2103 ret = avic_init_backing_page(&svm->vcpu);
2107 INIT_LIST_HEAD(&svm->ir_list);
2108 spin_lock_init(&svm->ir_list_lock);
2113 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2115 struct vcpu_svm *svm;
2117 struct page *msrpm_pages;
2118 struct page *hsave_page;
2119 struct page *nested_msrpm_pages;
2122 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2128 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2133 page = alloc_page(GFP_KERNEL);
2137 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2141 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2142 if (!nested_msrpm_pages)
2145 hsave_page = alloc_page(GFP_KERNEL);
2149 err = avic_init_vcpu(svm);
2153 /* We initialize this flag to true to make sure that the is_running
2154 * bit would be set the first time the vcpu is loaded.
2156 svm->avic_is_running = true;
2158 svm->nested.hsave = page_address(hsave_page);
2160 svm->msrpm = page_address(msrpm_pages);
2161 svm_vcpu_init_msrpm(svm->msrpm);
2163 svm->nested.msrpm = page_address(nested_msrpm_pages);
2164 svm_vcpu_init_msrpm(svm->nested.msrpm);
2166 svm->vmcb = page_address(page);
2167 clear_page(svm->vmcb);
2168 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2169 svm->asid_generation = 0;
2172 svm_init_osvw(&svm->vcpu);
2177 __free_page(hsave_page);
2179 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2181 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2185 kvm_vcpu_uninit(&svm->vcpu);
2187 kmem_cache_free(kvm_vcpu_cache, svm);
2189 return ERR_PTR(err);
2192 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2194 struct vcpu_svm *svm = to_svm(vcpu);
2196 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2197 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2198 __free_page(virt_to_page(svm->nested.hsave));
2199 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2200 kvm_vcpu_uninit(vcpu);
2201 kmem_cache_free(kvm_vcpu_cache, svm);
2203 * The vmcb page can be recycled, causing a false negative in
2204 * svm_vcpu_load(). So do a full IBPB now.
2206 indirect_branch_prediction_barrier();
2209 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2211 struct vcpu_svm *svm = to_svm(vcpu);
2212 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2215 if (unlikely(cpu != vcpu->cpu)) {
2216 svm->asid_generation = 0;
2217 mark_all_dirty(svm->vmcb);
2220 #ifdef CONFIG_X86_64
2221 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2223 savesegment(fs, svm->host.fs);
2224 savesegment(gs, svm->host.gs);
2225 svm->host.ldt = kvm_read_ldt();
2227 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2228 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2230 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2231 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2232 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2233 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2234 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2237 /* This assumes that the kernel never uses MSR_TSC_AUX */
2238 if (static_cpu_has(X86_FEATURE_RDTSCP))
2239 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2241 if (sd->current_vmcb != svm->vmcb) {
2242 sd->current_vmcb = svm->vmcb;
2243 indirect_branch_prediction_barrier();
2245 avic_vcpu_load(vcpu, cpu);
2248 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2250 struct vcpu_svm *svm = to_svm(vcpu);
2253 avic_vcpu_put(vcpu);
2255 ++vcpu->stat.host_state_reload;
2256 kvm_load_ldt(svm->host.ldt);
2257 #ifdef CONFIG_X86_64
2258 loadsegment(fs, svm->host.fs);
2259 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2260 load_gs_index(svm->host.gs);
2262 #ifdef CONFIG_X86_32_LAZY_GS
2263 loadsegment(gs, svm->host.gs);
2266 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2267 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2270 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2272 avic_set_running(vcpu, false);
2275 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2277 avic_set_running(vcpu, true);
2280 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2282 struct vcpu_svm *svm = to_svm(vcpu);
2283 unsigned long rflags = svm->vmcb->save.rflags;
2285 if (svm->nmi_singlestep) {
2286 /* Hide our flags if they were not set by the guest */
2287 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2288 rflags &= ~X86_EFLAGS_TF;
2289 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2290 rflags &= ~X86_EFLAGS_RF;
2295 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2297 if (to_svm(vcpu)->nmi_singlestep)
2298 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2301 * Any change of EFLAGS.VM is accompanied by a reload of SS
2302 * (caused by either a task switch or an inter-privilege IRET),
2303 * so we do not need to update the CPL here.
2305 to_svm(vcpu)->vmcb->save.rflags = rflags;
2308 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2311 case VCPU_EXREG_PDPTR:
2312 BUG_ON(!npt_enabled);
2313 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2320 static void svm_set_vintr(struct vcpu_svm *svm)
2322 set_intercept(svm, INTERCEPT_VINTR);
2325 static void svm_clear_vintr(struct vcpu_svm *svm)
2327 clr_intercept(svm, INTERCEPT_VINTR);
2330 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2332 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2335 case VCPU_SREG_CS: return &save->cs;
2336 case VCPU_SREG_DS: return &save->ds;
2337 case VCPU_SREG_ES: return &save->es;
2338 case VCPU_SREG_FS: return &save->fs;
2339 case VCPU_SREG_GS: return &save->gs;
2340 case VCPU_SREG_SS: return &save->ss;
2341 case VCPU_SREG_TR: return &save->tr;
2342 case VCPU_SREG_LDTR: return &save->ldtr;
2348 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2350 struct vmcb_seg *s = svm_seg(vcpu, seg);
2355 static void svm_get_segment(struct kvm_vcpu *vcpu,
2356 struct kvm_segment *var, int seg)
2358 struct vmcb_seg *s = svm_seg(vcpu, seg);
2360 var->base = s->base;
2361 var->limit = s->limit;
2362 var->selector = s->selector;
2363 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2364 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2365 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2366 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2367 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2368 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2369 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2372 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2373 * However, the SVM spec states that the G bit is not observed by the
2374 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2375 * So let's synthesize a legal G bit for all segments, this helps
2376 * running KVM nested. It also helps cross-vendor migration, because
2377 * Intel's vmentry has a check on the 'G' bit.
2379 var->g = s->limit > 0xfffff;
2382 * AMD's VMCB does not have an explicit unusable field, so emulate it
2383 * for cross vendor migration purposes by "not present"
2385 var->unusable = !var->present;
2390 * Work around a bug where the busy flag in the tr selector
2400 * The accessed bit must always be set in the segment
2401 * descriptor cache, although it can be cleared in the
2402 * descriptor, the cached bit always remains at 1. Since
2403 * Intel has a check on this, set it here to support
2404 * cross-vendor migration.
2411 * On AMD CPUs sometimes the DB bit in the segment
2412 * descriptor is left as 1, although the whole segment has
2413 * been made unusable. Clear it here to pass an Intel VMX
2414 * entry check when cross vendor migrating.
2418 /* This is symmetric with svm_set_segment() */
2419 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2424 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2426 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2431 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2433 struct vcpu_svm *svm = to_svm(vcpu);
2435 dt->size = svm->vmcb->save.idtr.limit;
2436 dt->address = svm->vmcb->save.idtr.base;
2439 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2441 struct vcpu_svm *svm = to_svm(vcpu);
2443 svm->vmcb->save.idtr.limit = dt->size;
2444 svm->vmcb->save.idtr.base = dt->address ;
2445 mark_dirty(svm->vmcb, VMCB_DT);
2448 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2450 struct vcpu_svm *svm = to_svm(vcpu);
2452 dt->size = svm->vmcb->save.gdtr.limit;
2453 dt->address = svm->vmcb->save.gdtr.base;
2456 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2458 struct vcpu_svm *svm = to_svm(vcpu);
2460 svm->vmcb->save.gdtr.limit = dt->size;
2461 svm->vmcb->save.gdtr.base = dt->address ;
2462 mark_dirty(svm->vmcb, VMCB_DT);
2465 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2469 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2473 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2477 static void update_cr0_intercept(struct vcpu_svm *svm)
2479 ulong gcr0 = svm->vcpu.arch.cr0;
2480 u64 *hcr0 = &svm->vmcb->save.cr0;
2482 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2483 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2485 mark_dirty(svm->vmcb, VMCB_CR);
2487 if (gcr0 == *hcr0) {
2488 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2489 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2491 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2492 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2496 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2498 struct vcpu_svm *svm = to_svm(vcpu);
2500 #ifdef CONFIG_X86_64
2501 if (vcpu->arch.efer & EFER_LME) {
2502 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2503 vcpu->arch.efer |= EFER_LMA;
2504 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2507 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2508 vcpu->arch.efer &= ~EFER_LMA;
2509 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2513 vcpu->arch.cr0 = cr0;
2516 cr0 |= X86_CR0_PG | X86_CR0_WP;
2519 * re-enable caching here because the QEMU bios
2520 * does not do it - this results in some delay at
2523 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2524 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2525 svm->vmcb->save.cr0 = cr0;
2526 mark_dirty(svm->vmcb, VMCB_CR);
2527 update_cr0_intercept(svm);
2530 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2532 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2533 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2535 if (cr4 & X86_CR4_VMXE)
2538 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2539 svm_flush_tlb(vcpu, true);
2541 vcpu->arch.cr4 = cr4;
2544 cr4 |= host_cr4_mce;
2545 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2546 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2550 static void svm_set_segment(struct kvm_vcpu *vcpu,
2551 struct kvm_segment *var, int seg)
2553 struct vcpu_svm *svm = to_svm(vcpu);
2554 struct vmcb_seg *s = svm_seg(vcpu, seg);
2556 s->base = var->base;
2557 s->limit = var->limit;
2558 s->selector = var->selector;
2559 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2560 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2561 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2562 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2563 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2564 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2565 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2566 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2569 * This is always accurate, except if SYSRET returned to a segment
2570 * with SS.DPL != 3. Intel does not have this quirk, and always
2571 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2572 * would entail passing the CPL to userspace and back.
2574 if (seg == VCPU_SREG_SS)
2575 /* This is symmetric with svm_get_segment() */
2576 svm->vmcb->save.cpl = (var->dpl & 3);
2578 mark_dirty(svm->vmcb, VMCB_SEG);
2581 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2583 struct vcpu_svm *svm = to_svm(vcpu);
2585 clr_exception_intercept(svm, BP_VECTOR);
2587 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2588 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2589 set_exception_intercept(svm, BP_VECTOR);
2591 vcpu->guest_debug = 0;
2594 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2596 if (sd->next_asid > sd->max_asid) {
2597 ++sd->asid_generation;
2598 sd->next_asid = sd->min_asid;
2599 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2602 svm->asid_generation = sd->asid_generation;
2603 svm->vmcb->control.asid = sd->next_asid++;
2605 mark_dirty(svm->vmcb, VMCB_ASID);
2608 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2610 return to_svm(vcpu)->vmcb->save.dr6;
2613 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2615 struct vcpu_svm *svm = to_svm(vcpu);
2617 svm->vmcb->save.dr6 = value;
2618 mark_dirty(svm->vmcb, VMCB_DR);
2621 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2623 struct vcpu_svm *svm = to_svm(vcpu);
2625 get_debugreg(vcpu->arch.db[0], 0);
2626 get_debugreg(vcpu->arch.db[1], 1);
2627 get_debugreg(vcpu->arch.db[2], 2);
2628 get_debugreg(vcpu->arch.db[3], 3);
2629 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2630 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2632 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2633 set_dr_intercepts(svm);
2636 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2638 struct vcpu_svm *svm = to_svm(vcpu);
2640 svm->vmcb->save.dr7 = value;
2641 mark_dirty(svm->vmcb, VMCB_DR);
2644 static int pf_interception(struct vcpu_svm *svm)
2646 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2647 u64 error_code = svm->vmcb->control.exit_info_1;
2649 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2650 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2651 svm->vmcb->control.insn_bytes : NULL,
2652 svm->vmcb->control.insn_len);
2655 static int npf_interception(struct vcpu_svm *svm)
2657 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2658 u64 error_code = svm->vmcb->control.exit_info_1;
2660 trace_kvm_page_fault(fault_address, error_code);
2661 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2662 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2663 svm->vmcb->control.insn_bytes : NULL,
2664 svm->vmcb->control.insn_len);
2667 static int db_interception(struct vcpu_svm *svm)
2669 struct kvm_run *kvm_run = svm->vcpu.run;
2671 if (!(svm->vcpu.guest_debug &
2672 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2673 !svm->nmi_singlestep) {
2674 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2678 if (svm->nmi_singlestep) {
2679 disable_nmi_singlestep(svm);
2682 if (svm->vcpu.guest_debug &
2683 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2684 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2685 kvm_run->debug.arch.pc =
2686 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2687 kvm_run->debug.arch.exception = DB_VECTOR;
2694 static int bp_interception(struct vcpu_svm *svm)
2696 struct kvm_run *kvm_run = svm->vcpu.run;
2698 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2699 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2700 kvm_run->debug.arch.exception = BP_VECTOR;
2704 static int ud_interception(struct vcpu_svm *svm)
2706 return handle_ud(&svm->vcpu);
2709 static int ac_interception(struct vcpu_svm *svm)
2711 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2715 static int gp_interception(struct vcpu_svm *svm)
2717 struct kvm_vcpu *vcpu = &svm->vcpu;
2718 u32 error_code = svm->vmcb->control.exit_info_1;
2721 WARN_ON_ONCE(!enable_vmware_backdoor);
2723 er = kvm_emulate_instruction(vcpu,
2724 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2725 if (er == EMULATE_USER_EXIT)
2727 else if (er != EMULATE_DONE)
2728 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2732 static bool is_erratum_383(void)
2737 if (!erratum_383_found)
2740 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2744 /* Bit 62 may or may not be set for this mce */
2745 value &= ~(1ULL << 62);
2747 if (value != 0xb600000000010015ULL)
2750 /* Clear MCi_STATUS registers */
2751 for (i = 0; i < 6; ++i)
2752 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2754 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2758 value &= ~(1ULL << 2);
2759 low = lower_32_bits(value);
2760 high = upper_32_bits(value);
2762 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2765 /* Flush tlb to evict multi-match entries */
2771 static void svm_handle_mce(struct vcpu_svm *svm)
2773 if (is_erratum_383()) {
2775 * Erratum 383 triggered. Guest state is corrupt so kill the
2778 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2780 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2786 * On an #MC intercept the MCE handler is not called automatically in
2787 * the host. So do it by hand here.
2791 /* not sure if we ever come back to this point */
2796 static int mc_interception(struct vcpu_svm *svm)
2801 static int shutdown_interception(struct vcpu_svm *svm)
2803 struct kvm_run *kvm_run = svm->vcpu.run;
2806 * VMCB is undefined after a SHUTDOWN intercept
2807 * so reinitialize it.
2809 clear_page(svm->vmcb);
2812 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2816 static int io_interception(struct vcpu_svm *svm)
2818 struct kvm_vcpu *vcpu = &svm->vcpu;
2819 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2820 int size, in, string;
2823 ++svm->vcpu.stat.io_exits;
2824 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2825 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2827 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2829 port = io_info >> 16;
2830 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2831 svm->next_rip = svm->vmcb->control.exit_info_2;
2833 return kvm_fast_pio(&svm->vcpu, size, port, in);
2836 static int nmi_interception(struct vcpu_svm *svm)
2841 static int intr_interception(struct vcpu_svm *svm)
2843 ++svm->vcpu.stat.irq_exits;
2847 static int nop_on_interception(struct vcpu_svm *svm)
2852 static int halt_interception(struct vcpu_svm *svm)
2854 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2855 return kvm_emulate_halt(&svm->vcpu);
2858 static int vmmcall_interception(struct vcpu_svm *svm)
2860 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2861 return kvm_emulate_hypercall(&svm->vcpu);
2864 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2866 struct vcpu_svm *svm = to_svm(vcpu);
2868 return svm->nested.nested_cr3;
2871 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2873 struct vcpu_svm *svm = to_svm(vcpu);
2874 u64 cr3 = svm->nested.nested_cr3;
2878 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2879 offset_in_page(cr3) + index * 8, 8);
2885 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2888 struct vcpu_svm *svm = to_svm(vcpu);
2890 svm->vmcb->control.nested_cr3 = __sme_set(root);
2891 mark_dirty(svm->vmcb, VMCB_NPT);
2894 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2895 struct x86_exception *fault)
2897 struct vcpu_svm *svm = to_svm(vcpu);
2899 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2901 * TODO: track the cause of the nested page fault, and
2902 * correctly fill in the high bits of exit_info_1.
2904 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2905 svm->vmcb->control.exit_code_hi = 0;
2906 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2907 svm->vmcb->control.exit_info_2 = fault->address;
2910 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2911 svm->vmcb->control.exit_info_1 |= fault->error_code;
2914 * The present bit is always zero for page structure faults on real
2917 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2918 svm->vmcb->control.exit_info_1 &= ~1;
2920 nested_svm_vmexit(svm);
2923 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2925 WARN_ON(mmu_is_nested(vcpu));
2926 kvm_init_shadow_mmu(vcpu);
2927 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
2928 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
2929 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
2930 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2931 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2932 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2933 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2936 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2938 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
2941 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2943 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2944 !is_paging(&svm->vcpu)) {
2945 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2949 if (svm->vmcb->save.cpl) {
2950 kvm_inject_gp(&svm->vcpu, 0);
2957 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2958 bool has_error_code, u32 error_code)
2962 if (!is_guest_mode(&svm->vcpu))
2965 vmexit = nested_svm_intercept(svm);
2966 if (vmexit != NESTED_EXIT_DONE)
2969 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2970 svm->vmcb->control.exit_code_hi = 0;
2971 svm->vmcb->control.exit_info_1 = error_code;
2974 * EXITINFO2 is undefined for all exception intercepts other
2977 if (svm->vcpu.arch.exception.nested_apf)
2978 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2979 else if (svm->vcpu.arch.exception.has_payload)
2980 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
2982 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2984 svm->nested.exit_required = true;
2988 /* This function returns true if it is save to enable the irq window */
2989 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2991 if (!is_guest_mode(&svm->vcpu))
2994 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2997 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3001 * if vmexit was already requested (by intercepted exception
3002 * for instance) do not overwrite it with "external interrupt"
3005 if (svm->nested.exit_required)
3008 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3009 svm->vmcb->control.exit_info_1 = 0;
3010 svm->vmcb->control.exit_info_2 = 0;
3012 if (svm->nested.intercept & 1ULL) {
3014 * The #vmexit can't be emulated here directly because this
3015 * code path runs with irqs and preemption disabled. A
3016 * #vmexit emulation might sleep. Only signal request for
3019 svm->nested.exit_required = true;
3020 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3027 /* This function returns true if it is save to enable the nmi window */
3028 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3030 if (!is_guest_mode(&svm->vcpu))
3033 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3036 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3037 svm->nested.exit_required = true;
3042 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3048 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3049 if (is_error_page(page))
3057 kvm_inject_gp(&svm->vcpu, 0);
3062 static void nested_svm_unmap(struct page *page)
3065 kvm_release_page_dirty(page);
3068 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3070 unsigned port, size, iopm_len;
3075 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3076 return NESTED_EXIT_HOST;
3078 port = svm->vmcb->control.exit_info_1 >> 16;
3079 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3080 SVM_IOIO_SIZE_SHIFT;
3081 gpa = svm->nested.vmcb_iopm + (port / 8);
3082 start_bit = port % 8;
3083 iopm_len = (start_bit + size > 8) ? 2 : 1;
3084 mask = (0xf >> (4 - size)) << start_bit;
3087 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3088 return NESTED_EXIT_DONE;
3090 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3093 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3095 u32 offset, msr, value;
3098 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3099 return NESTED_EXIT_HOST;
3101 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3102 offset = svm_msrpm_offset(msr);
3103 write = svm->vmcb->control.exit_info_1 & 1;
3104 mask = 1 << ((2 * (msr & 0xf)) + write);
3106 if (offset == MSR_INVALID)
3107 return NESTED_EXIT_DONE;
3109 /* Offset is in 32 bit units but need in 8 bit units */
3112 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3113 return NESTED_EXIT_DONE;
3115 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3118 /* DB exceptions for our internal use must not cause vmexit */
3119 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3123 /* if we're not singlestepping, it's not ours */
3124 if (!svm->nmi_singlestep)
3125 return NESTED_EXIT_DONE;
3127 /* if it's not a singlestep exception, it's not ours */
3128 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3129 return NESTED_EXIT_DONE;
3130 if (!(dr6 & DR6_BS))
3131 return NESTED_EXIT_DONE;
3133 /* if the guest is singlestepping, it should get the vmexit */
3134 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3135 disable_nmi_singlestep(svm);
3136 return NESTED_EXIT_DONE;
3139 /* it's ours, the nested hypervisor must not see this one */
3140 return NESTED_EXIT_HOST;
3143 static int nested_svm_exit_special(struct vcpu_svm *svm)
3145 u32 exit_code = svm->vmcb->control.exit_code;
3147 switch (exit_code) {
3150 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3151 return NESTED_EXIT_HOST;
3153 /* For now we are always handling NPFs when using them */
3155 return NESTED_EXIT_HOST;
3157 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3158 /* When we're shadowing, trap PFs, but not async PF */
3159 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3160 return NESTED_EXIT_HOST;
3166 return NESTED_EXIT_CONTINUE;
3170 * If this function returns true, this #vmexit was already handled
3172 static int nested_svm_intercept(struct vcpu_svm *svm)
3174 u32 exit_code = svm->vmcb->control.exit_code;
3175 int vmexit = NESTED_EXIT_HOST;
3177 switch (exit_code) {
3179 vmexit = nested_svm_exit_handled_msr(svm);
3182 vmexit = nested_svm_intercept_ioio(svm);
3184 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3185 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3186 if (svm->nested.intercept_cr & bit)
3187 vmexit = NESTED_EXIT_DONE;
3190 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3191 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3192 if (svm->nested.intercept_dr & bit)
3193 vmexit = NESTED_EXIT_DONE;
3196 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3197 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3198 if (svm->nested.intercept_exceptions & excp_bits) {
3199 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3200 vmexit = nested_svm_intercept_db(svm);
3202 vmexit = NESTED_EXIT_DONE;
3204 /* async page fault always cause vmexit */
3205 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3206 svm->vcpu.arch.exception.nested_apf != 0)
3207 vmexit = NESTED_EXIT_DONE;
3210 case SVM_EXIT_ERR: {
3211 vmexit = NESTED_EXIT_DONE;
3215 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3216 if (svm->nested.intercept & exit_bits)
3217 vmexit = NESTED_EXIT_DONE;
3224 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3228 vmexit = nested_svm_intercept(svm);
3230 if (vmexit == NESTED_EXIT_DONE)
3231 nested_svm_vmexit(svm);
3236 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3238 struct vmcb_control_area *dst = &dst_vmcb->control;
3239 struct vmcb_control_area *from = &from_vmcb->control;
3241 dst->intercept_cr = from->intercept_cr;
3242 dst->intercept_dr = from->intercept_dr;
3243 dst->intercept_exceptions = from->intercept_exceptions;
3244 dst->intercept = from->intercept;
3245 dst->iopm_base_pa = from->iopm_base_pa;
3246 dst->msrpm_base_pa = from->msrpm_base_pa;
3247 dst->tsc_offset = from->tsc_offset;
3248 dst->asid = from->asid;
3249 dst->tlb_ctl = from->tlb_ctl;
3250 dst->int_ctl = from->int_ctl;
3251 dst->int_vector = from->int_vector;
3252 dst->int_state = from->int_state;
3253 dst->exit_code = from->exit_code;
3254 dst->exit_code_hi = from->exit_code_hi;
3255 dst->exit_info_1 = from->exit_info_1;
3256 dst->exit_info_2 = from->exit_info_2;
3257 dst->exit_int_info = from->exit_int_info;
3258 dst->exit_int_info_err = from->exit_int_info_err;
3259 dst->nested_ctl = from->nested_ctl;
3260 dst->event_inj = from->event_inj;
3261 dst->event_inj_err = from->event_inj_err;
3262 dst->nested_cr3 = from->nested_cr3;
3263 dst->virt_ext = from->virt_ext;
3266 static int nested_svm_vmexit(struct vcpu_svm *svm)
3268 struct vmcb *nested_vmcb;
3269 struct vmcb *hsave = svm->nested.hsave;
3270 struct vmcb *vmcb = svm->vmcb;
3273 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3274 vmcb->control.exit_info_1,
3275 vmcb->control.exit_info_2,
3276 vmcb->control.exit_int_info,
3277 vmcb->control.exit_int_info_err,
3280 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3284 /* Exit Guest-Mode */
3285 leave_guest_mode(&svm->vcpu);
3286 svm->nested.vmcb = 0;
3288 /* Give the current vmcb to the guest */
3291 nested_vmcb->save.es = vmcb->save.es;
3292 nested_vmcb->save.cs = vmcb->save.cs;
3293 nested_vmcb->save.ss = vmcb->save.ss;
3294 nested_vmcb->save.ds = vmcb->save.ds;
3295 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3296 nested_vmcb->save.idtr = vmcb->save.idtr;
3297 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3298 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3299 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3300 nested_vmcb->save.cr2 = vmcb->save.cr2;
3301 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3302 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3303 nested_vmcb->save.rip = vmcb->save.rip;
3304 nested_vmcb->save.rsp = vmcb->save.rsp;
3305 nested_vmcb->save.rax = vmcb->save.rax;
3306 nested_vmcb->save.dr7 = vmcb->save.dr7;
3307 nested_vmcb->save.dr6 = vmcb->save.dr6;
3308 nested_vmcb->save.cpl = vmcb->save.cpl;
3310 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3311 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3312 nested_vmcb->control.int_state = vmcb->control.int_state;
3313 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3314 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3315 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3316 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3317 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3318 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3320 if (svm->nrips_enabled)
3321 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3324 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3325 * to make sure that we do not lose injected events. So check event_inj
3326 * here and copy it to exit_int_info if it is valid.
3327 * Exit_int_info and event_inj can't be both valid because the case
3328 * below only happens on a VMRUN instruction intercept which has
3329 * no valid exit_int_info set.
3331 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3332 struct vmcb_control_area *nc = &nested_vmcb->control;
3334 nc->exit_int_info = vmcb->control.event_inj;
3335 nc->exit_int_info_err = vmcb->control.event_inj_err;
3338 nested_vmcb->control.tlb_ctl = 0;
3339 nested_vmcb->control.event_inj = 0;
3340 nested_vmcb->control.event_inj_err = 0;
3342 /* We always set V_INTR_MASKING and remember the old value in hflags */
3343 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3344 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3346 /* Restore the original control entries */
3347 copy_vmcb_control_area(vmcb, hsave);
3349 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3350 kvm_clear_exception_queue(&svm->vcpu);
3351 kvm_clear_interrupt_queue(&svm->vcpu);
3353 svm->nested.nested_cr3 = 0;
3355 /* Restore selected save entries */
3356 svm->vmcb->save.es = hsave->save.es;
3357 svm->vmcb->save.cs = hsave->save.cs;
3358 svm->vmcb->save.ss = hsave->save.ss;
3359 svm->vmcb->save.ds = hsave->save.ds;
3360 svm->vmcb->save.gdtr = hsave->save.gdtr;
3361 svm->vmcb->save.idtr = hsave->save.idtr;
3362 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3363 svm_set_efer(&svm->vcpu, hsave->save.efer);
3364 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3365 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3367 svm->vmcb->save.cr3 = hsave->save.cr3;
3368 svm->vcpu.arch.cr3 = hsave->save.cr3;
3370 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3372 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3373 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3374 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3375 svm->vmcb->save.dr7 = 0;
3376 svm->vmcb->save.cpl = 0;
3377 svm->vmcb->control.exit_int_info = 0;
3379 mark_all_dirty(svm->vmcb);
3381 nested_svm_unmap(page);
3383 nested_svm_uninit_mmu_context(&svm->vcpu);
3384 kvm_mmu_reset_context(&svm->vcpu);
3385 kvm_mmu_load(&svm->vcpu);
3390 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3393 * This function merges the msr permission bitmaps of kvm and the
3394 * nested vmcb. It is optimized in that it only merges the parts where
3395 * the kvm msr permission bitmap may contain zero bits
3399 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3402 for (i = 0; i < MSRPM_OFFSETS; i++) {
3406 if (msrpm_offsets[i] == 0xffffffff)
3409 p = msrpm_offsets[i];
3410 offset = svm->nested.vmcb_msrpm + (p * 4);
3412 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3415 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3418 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3423 static bool nested_vmcb_checks(struct vmcb *vmcb)
3425 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3428 if (vmcb->control.asid == 0)
3431 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3438 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3439 struct vmcb *nested_vmcb, struct page *page)
3441 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3442 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3444 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3446 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3447 kvm_mmu_unload(&svm->vcpu);
3448 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3449 nested_svm_init_mmu_context(&svm->vcpu);
3452 /* Load the nested guest state */
3453 svm->vmcb->save.es = nested_vmcb->save.es;
3454 svm->vmcb->save.cs = nested_vmcb->save.cs;
3455 svm->vmcb->save.ss = nested_vmcb->save.ss;
3456 svm->vmcb->save.ds = nested_vmcb->save.ds;
3457 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3458 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3459 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3460 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3461 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3462 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3464 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3465 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3467 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3469 /* Guest paging mode is active - reset mmu */
3470 kvm_mmu_reset_context(&svm->vcpu);
3472 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3473 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3474 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3475 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3477 /* In case we don't even reach vcpu_run, the fields are not updated */
3478 svm->vmcb->save.rax = nested_vmcb->save.rax;
3479 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3480 svm->vmcb->save.rip = nested_vmcb->save.rip;
3481 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3482 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3483 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3485 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3486 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3488 /* cache intercepts */
3489 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3490 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3491 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3492 svm->nested.intercept = nested_vmcb->control.intercept;
3494 svm_flush_tlb(&svm->vcpu, true);
3495 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3496 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3497 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3499 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3501 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3502 /* We only want the cr8 intercept bits of the guest */
3503 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3504 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3507 /* We don't want to see VMMCALLs from a nested guest */
3508 clr_intercept(svm, INTERCEPT_VMMCALL);
3510 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3511 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3513 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3514 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3515 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3516 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3517 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3519 nested_svm_unmap(page);
3521 /* Enter Guest-Mode */
3522 enter_guest_mode(&svm->vcpu);
3525 * Merge guest and host intercepts - must be called with vcpu in
3526 * guest-mode to take affect here
3528 recalc_intercepts(svm);
3530 svm->nested.vmcb = vmcb_gpa;
3534 mark_all_dirty(svm->vmcb);
3537 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3539 struct vmcb *nested_vmcb;
3540 struct vmcb *hsave = svm->nested.hsave;
3541 struct vmcb *vmcb = svm->vmcb;
3545 vmcb_gpa = svm->vmcb->save.rax;
3547 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3551 if (!nested_vmcb_checks(nested_vmcb)) {
3552 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3553 nested_vmcb->control.exit_code_hi = 0;
3554 nested_vmcb->control.exit_info_1 = 0;
3555 nested_vmcb->control.exit_info_2 = 0;
3557 nested_svm_unmap(page);
3562 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3563 nested_vmcb->save.rip,
3564 nested_vmcb->control.int_ctl,
3565 nested_vmcb->control.event_inj,
3566 nested_vmcb->control.nested_ctl);
3568 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3569 nested_vmcb->control.intercept_cr >> 16,
3570 nested_vmcb->control.intercept_exceptions,
3571 nested_vmcb->control.intercept);
3573 /* Clear internal status */
3574 kvm_clear_exception_queue(&svm->vcpu);
3575 kvm_clear_interrupt_queue(&svm->vcpu);
3578 * Save the old vmcb, so we don't need to pick what we save, but can
3579 * restore everything when a VMEXIT occurs
3581 hsave->save.es = vmcb->save.es;
3582 hsave->save.cs = vmcb->save.cs;
3583 hsave->save.ss = vmcb->save.ss;
3584 hsave->save.ds = vmcb->save.ds;
3585 hsave->save.gdtr = vmcb->save.gdtr;
3586 hsave->save.idtr = vmcb->save.idtr;
3587 hsave->save.efer = svm->vcpu.arch.efer;
3588 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3589 hsave->save.cr4 = svm->vcpu.arch.cr4;
3590 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3591 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3592 hsave->save.rsp = vmcb->save.rsp;
3593 hsave->save.rax = vmcb->save.rax;
3595 hsave->save.cr3 = vmcb->save.cr3;
3597 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3599 copy_vmcb_control_area(hsave, vmcb);
3601 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3606 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3608 to_vmcb->save.fs = from_vmcb->save.fs;
3609 to_vmcb->save.gs = from_vmcb->save.gs;
3610 to_vmcb->save.tr = from_vmcb->save.tr;
3611 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3612 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3613 to_vmcb->save.star = from_vmcb->save.star;
3614 to_vmcb->save.lstar = from_vmcb->save.lstar;
3615 to_vmcb->save.cstar = from_vmcb->save.cstar;
3616 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3617 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3618 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3619 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3622 static int vmload_interception(struct vcpu_svm *svm)
3624 struct vmcb *nested_vmcb;
3628 if (nested_svm_check_permissions(svm))
3631 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3635 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3636 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3638 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3639 nested_svm_unmap(page);
3644 static int vmsave_interception(struct vcpu_svm *svm)
3646 struct vmcb *nested_vmcb;
3650 if (nested_svm_check_permissions(svm))
3653 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3657 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3658 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3660 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3661 nested_svm_unmap(page);
3666 static int vmrun_interception(struct vcpu_svm *svm)
3668 if (nested_svm_check_permissions(svm))
3671 /* Save rip after vmrun instruction */
3672 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3674 if (!nested_svm_vmrun(svm))
3677 if (!nested_svm_vmrun_msrpm(svm))
3684 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3685 svm->vmcb->control.exit_code_hi = 0;
3686 svm->vmcb->control.exit_info_1 = 0;
3687 svm->vmcb->control.exit_info_2 = 0;
3689 nested_svm_vmexit(svm);
3694 static int stgi_interception(struct vcpu_svm *svm)
3698 if (nested_svm_check_permissions(svm))
3702 * If VGIF is enabled, the STGI intercept is only added to
3703 * detect the opening of the SMI/NMI window; remove it now.
3705 if (vgif_enabled(svm))
3706 clr_intercept(svm, INTERCEPT_STGI);
3708 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3709 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3710 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3717 static int clgi_interception(struct vcpu_svm *svm)
3721 if (nested_svm_check_permissions(svm))
3724 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3725 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3729 /* After a CLGI no interrupts should come */
3730 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3731 svm_clear_vintr(svm);
3732 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3733 mark_dirty(svm->vmcb, VMCB_INTR);
3739 static int invlpga_interception(struct vcpu_svm *svm)
3741 struct kvm_vcpu *vcpu = &svm->vcpu;
3743 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3744 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3746 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3747 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3749 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3750 return kvm_skip_emulated_instruction(&svm->vcpu);
3753 static int skinit_interception(struct vcpu_svm *svm)
3755 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3757 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3761 static int wbinvd_interception(struct vcpu_svm *svm)
3763 return kvm_emulate_wbinvd(&svm->vcpu);
3766 static int xsetbv_interception(struct vcpu_svm *svm)
3768 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3769 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3771 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3772 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3773 return kvm_skip_emulated_instruction(&svm->vcpu);
3779 static int task_switch_interception(struct vcpu_svm *svm)
3783 int int_type = svm->vmcb->control.exit_int_info &
3784 SVM_EXITINTINFO_TYPE_MASK;
3785 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3787 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3789 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3790 bool has_error_code = false;
3793 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3795 if (svm->vmcb->control.exit_info_2 &
3796 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3797 reason = TASK_SWITCH_IRET;
3798 else if (svm->vmcb->control.exit_info_2 &
3799 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3800 reason = TASK_SWITCH_JMP;
3802 reason = TASK_SWITCH_GATE;
3804 reason = TASK_SWITCH_CALL;
3806 if (reason == TASK_SWITCH_GATE) {
3808 case SVM_EXITINTINFO_TYPE_NMI:
3809 svm->vcpu.arch.nmi_injected = false;
3811 case SVM_EXITINTINFO_TYPE_EXEPT:
3812 if (svm->vmcb->control.exit_info_2 &
3813 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3814 has_error_code = true;
3816 (u32)svm->vmcb->control.exit_info_2;
3818 kvm_clear_exception_queue(&svm->vcpu);
3820 case SVM_EXITINTINFO_TYPE_INTR:
3821 kvm_clear_interrupt_queue(&svm->vcpu);
3828 if (reason != TASK_SWITCH_GATE ||
3829 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3830 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3831 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3832 skip_emulated_instruction(&svm->vcpu);
3834 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3837 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3838 has_error_code, error_code) == EMULATE_FAIL) {
3839 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3840 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3841 svm->vcpu.run->internal.ndata = 0;
3847 static int cpuid_interception(struct vcpu_svm *svm)
3849 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3850 return kvm_emulate_cpuid(&svm->vcpu);
3853 static int iret_interception(struct vcpu_svm *svm)
3855 ++svm->vcpu.stat.nmi_window_exits;
3856 clr_intercept(svm, INTERCEPT_IRET);
3857 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3858 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3859 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3863 static int invlpg_interception(struct vcpu_svm *svm)
3865 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3866 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3868 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3869 return kvm_skip_emulated_instruction(&svm->vcpu);
3872 static int emulate_on_interception(struct vcpu_svm *svm)
3874 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3877 static int rsm_interception(struct vcpu_svm *svm)
3879 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3880 rsm_ins_bytes, 2) == EMULATE_DONE;
3883 static int rdpmc_interception(struct vcpu_svm *svm)
3887 if (!static_cpu_has(X86_FEATURE_NRIPS))
3888 return emulate_on_interception(svm);
3890 err = kvm_rdpmc(&svm->vcpu);
3891 return kvm_complete_insn_gp(&svm->vcpu, err);
3894 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3897 unsigned long cr0 = svm->vcpu.arch.cr0;
3901 intercept = svm->nested.intercept;
3903 if (!is_guest_mode(&svm->vcpu) ||
3904 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3907 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3908 val &= ~SVM_CR0_SELECTIVE_MASK;
3911 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3912 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3918 #define CR_VALID (1ULL << 63)
3920 static int cr_interception(struct vcpu_svm *svm)
3926 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3927 return emulate_on_interception(svm);
3929 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3930 return emulate_on_interception(svm);
3932 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3933 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3934 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3936 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3939 if (cr >= 16) { /* mov to cr */
3941 val = kvm_register_read(&svm->vcpu, reg);
3944 if (!check_selective_cr0_intercepted(svm, val))
3945 err = kvm_set_cr0(&svm->vcpu, val);
3951 err = kvm_set_cr3(&svm->vcpu, val);
3954 err = kvm_set_cr4(&svm->vcpu, val);
3957 err = kvm_set_cr8(&svm->vcpu, val);
3960 WARN(1, "unhandled write to CR%d", cr);
3961 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3964 } else { /* mov from cr */
3967 val = kvm_read_cr0(&svm->vcpu);
3970 val = svm->vcpu.arch.cr2;
3973 val = kvm_read_cr3(&svm->vcpu);
3976 val = kvm_read_cr4(&svm->vcpu);
3979 val = kvm_get_cr8(&svm->vcpu);
3982 WARN(1, "unhandled read from CR%d", cr);
3983 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3986 kvm_register_write(&svm->vcpu, reg, val);
3988 return kvm_complete_insn_gp(&svm->vcpu, err);
3991 static int dr_interception(struct vcpu_svm *svm)
3996 if (svm->vcpu.guest_debug == 0) {
3998 * No more DR vmexits; force a reload of the debug registers
3999 * and reenter on this instruction. The next vmexit will
4000 * retrieve the full state of the debug registers.
4002 clr_dr_intercepts(svm);
4003 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4007 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4008 return emulate_on_interception(svm);
4010 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4011 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4013 if (dr >= 16) { /* mov to DRn */
4014 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4016 val = kvm_register_read(&svm->vcpu, reg);
4017 kvm_set_dr(&svm->vcpu, dr - 16, val);
4019 if (!kvm_require_dr(&svm->vcpu, dr))
4021 kvm_get_dr(&svm->vcpu, dr, &val);
4022 kvm_register_write(&svm->vcpu, reg, val);
4025 return kvm_skip_emulated_instruction(&svm->vcpu);
4028 static int cr8_write_interception(struct vcpu_svm *svm)
4030 struct kvm_run *kvm_run = svm->vcpu.run;
4033 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4034 /* instruction emulation calls kvm_set_cr8() */
4035 r = cr_interception(svm);
4036 if (lapic_in_kernel(&svm->vcpu))
4038 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4040 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4044 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4048 switch (msr->index) {
4049 case MSR_F10H_DECFG:
4050 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4051 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4060 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4062 struct vcpu_svm *svm = to_svm(vcpu);
4064 switch (msr_info->index) {
4066 msr_info->data = svm->vmcb->save.star;
4068 #ifdef CONFIG_X86_64
4070 msr_info->data = svm->vmcb->save.lstar;
4073 msr_info->data = svm->vmcb->save.cstar;
4075 case MSR_KERNEL_GS_BASE:
4076 msr_info->data = svm->vmcb->save.kernel_gs_base;
4078 case MSR_SYSCALL_MASK:
4079 msr_info->data = svm->vmcb->save.sfmask;
4082 case MSR_IA32_SYSENTER_CS:
4083 msr_info->data = svm->vmcb->save.sysenter_cs;
4085 case MSR_IA32_SYSENTER_EIP:
4086 msr_info->data = svm->sysenter_eip;
4088 case MSR_IA32_SYSENTER_ESP:
4089 msr_info->data = svm->sysenter_esp;
4092 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4094 msr_info->data = svm->tsc_aux;
4097 * Nobody will change the following 5 values in the VMCB so we can
4098 * safely return them on rdmsr. They will always be 0 until LBRV is
4101 case MSR_IA32_DEBUGCTLMSR:
4102 msr_info->data = svm->vmcb->save.dbgctl;
4104 case MSR_IA32_LASTBRANCHFROMIP:
4105 msr_info->data = svm->vmcb->save.br_from;
4107 case MSR_IA32_LASTBRANCHTOIP:
4108 msr_info->data = svm->vmcb->save.br_to;
4110 case MSR_IA32_LASTINTFROMIP:
4111 msr_info->data = svm->vmcb->save.last_excp_from;
4113 case MSR_IA32_LASTINTTOIP:
4114 msr_info->data = svm->vmcb->save.last_excp_to;
4116 case MSR_VM_HSAVE_PA:
4117 msr_info->data = svm->nested.hsave_msr;
4120 msr_info->data = svm->nested.vm_cr_msr;
4122 case MSR_IA32_SPEC_CTRL:
4123 if (!msr_info->host_initiated &&
4124 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4125 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4128 msr_info->data = svm->spec_ctrl;
4130 case MSR_AMD64_VIRT_SPEC_CTRL:
4131 if (!msr_info->host_initiated &&
4132 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4135 msr_info->data = svm->virt_spec_ctrl;
4137 case MSR_F15H_IC_CFG: {
4141 family = guest_cpuid_family(vcpu);
4142 model = guest_cpuid_model(vcpu);
4144 if (family < 0 || model < 0)
4145 return kvm_get_msr_common(vcpu, msr_info);
4149 if (family == 0x15 &&
4150 (model >= 0x2 && model < 0x20))
4151 msr_info->data = 0x1E;
4154 case MSR_F10H_DECFG:
4155 msr_info->data = svm->msr_decfg;
4158 return kvm_get_msr_common(vcpu, msr_info);
4163 static int rdmsr_interception(struct vcpu_svm *svm)
4165 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4166 struct msr_data msr_info;
4168 msr_info.index = ecx;
4169 msr_info.host_initiated = false;
4170 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4171 trace_kvm_msr_read_ex(ecx);
4172 kvm_inject_gp(&svm->vcpu, 0);
4175 trace_kvm_msr_read(ecx, msr_info.data);
4177 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4178 msr_info.data & 0xffffffff);
4179 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4180 msr_info.data >> 32);
4181 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4182 return kvm_skip_emulated_instruction(&svm->vcpu);
4186 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4188 struct vcpu_svm *svm = to_svm(vcpu);
4189 int svm_dis, chg_mask;
4191 if (data & ~SVM_VM_CR_VALID_MASK)
4194 chg_mask = SVM_VM_CR_VALID_MASK;
4196 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4197 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4199 svm->nested.vm_cr_msr &= ~chg_mask;
4200 svm->nested.vm_cr_msr |= (data & chg_mask);
4202 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4204 /* check for svm_disable while efer.svme is set */
4205 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4211 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4213 struct vcpu_svm *svm = to_svm(vcpu);
4215 u32 ecx = msr->index;
4216 u64 data = msr->data;
4218 case MSR_IA32_CR_PAT:
4219 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4221 vcpu->arch.pat = data;
4222 svm->vmcb->save.g_pat = data;
4223 mark_dirty(svm->vmcb, VMCB_NPT);
4225 case MSR_IA32_SPEC_CTRL:
4226 if (!msr->host_initiated &&
4227 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4228 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4231 /* The STIBP bit doesn't fault even if it's not advertised */
4232 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4235 svm->spec_ctrl = data;
4242 * When it's written (to non-zero) for the first time, pass
4246 * The handling of the MSR bitmap for L2 guests is done in
4247 * nested_svm_vmrun_msrpm.
4248 * We update the L1 MSR bit as well since it will end up
4249 * touching the MSR anyway now.
4251 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4253 case MSR_IA32_PRED_CMD:
4254 if (!msr->host_initiated &&
4255 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4258 if (data & ~PRED_CMD_IBPB)
4264 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4265 if (is_guest_mode(vcpu))
4267 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4269 case MSR_AMD64_VIRT_SPEC_CTRL:
4270 if (!msr->host_initiated &&
4271 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4274 if (data & ~SPEC_CTRL_SSBD)
4277 svm->virt_spec_ctrl = data;
4280 svm->vmcb->save.star = data;
4282 #ifdef CONFIG_X86_64
4284 svm->vmcb->save.lstar = data;
4287 svm->vmcb->save.cstar = data;
4289 case MSR_KERNEL_GS_BASE:
4290 svm->vmcb->save.kernel_gs_base = data;
4292 case MSR_SYSCALL_MASK:
4293 svm->vmcb->save.sfmask = data;
4296 case MSR_IA32_SYSENTER_CS:
4297 svm->vmcb->save.sysenter_cs = data;
4299 case MSR_IA32_SYSENTER_EIP:
4300 svm->sysenter_eip = data;
4301 svm->vmcb->save.sysenter_eip = data;
4303 case MSR_IA32_SYSENTER_ESP:
4304 svm->sysenter_esp = data;
4305 svm->vmcb->save.sysenter_esp = data;
4308 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4312 * This is rare, so we update the MSR here instead of using
4313 * direct_access_msrs. Doing that would require a rdmsr in
4316 svm->tsc_aux = data;
4317 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4319 case MSR_IA32_DEBUGCTLMSR:
4320 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4321 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4325 if (data & DEBUGCTL_RESERVED_BITS)
4328 svm->vmcb->save.dbgctl = data;
4329 mark_dirty(svm->vmcb, VMCB_LBR);
4330 if (data & (1ULL<<0))
4331 svm_enable_lbrv(svm);
4333 svm_disable_lbrv(svm);
4335 case MSR_VM_HSAVE_PA:
4336 svm->nested.hsave_msr = data;
4339 return svm_set_vm_cr(vcpu, data);
4341 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4343 case MSR_F10H_DECFG: {
4344 struct kvm_msr_entry msr_entry;
4346 msr_entry.index = msr->index;
4347 if (svm_get_msr_feature(&msr_entry))
4350 /* Check the supported bits */
4351 if (data & ~msr_entry.data)
4354 /* Don't allow the guest to change a bit, #GP */
4355 if (!msr->host_initiated && (data ^ msr_entry.data))
4358 svm->msr_decfg = data;
4361 case MSR_IA32_APICBASE:
4362 if (kvm_vcpu_apicv_active(vcpu))
4363 avic_update_vapic_bar(to_svm(vcpu), data);
4364 /* Follow through */
4366 return kvm_set_msr_common(vcpu, msr);
4371 static int wrmsr_interception(struct vcpu_svm *svm)
4373 struct msr_data msr;
4374 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4375 u64 data = kvm_read_edx_eax(&svm->vcpu);
4379 msr.host_initiated = false;
4381 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4382 if (kvm_set_msr(&svm->vcpu, &msr)) {
4383 trace_kvm_msr_write_ex(ecx, data);
4384 kvm_inject_gp(&svm->vcpu, 0);
4387 trace_kvm_msr_write(ecx, data);
4388 return kvm_skip_emulated_instruction(&svm->vcpu);
4392 static int msr_interception(struct vcpu_svm *svm)
4394 if (svm->vmcb->control.exit_info_1)
4395 return wrmsr_interception(svm);
4397 return rdmsr_interception(svm);
4400 static int interrupt_window_interception(struct vcpu_svm *svm)
4402 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4403 svm_clear_vintr(svm);
4404 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4405 mark_dirty(svm->vmcb, VMCB_INTR);
4406 ++svm->vcpu.stat.irq_window_exits;
4410 static int pause_interception(struct vcpu_svm *svm)
4412 struct kvm_vcpu *vcpu = &svm->vcpu;
4413 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4415 if (pause_filter_thresh)
4416 grow_ple_window(vcpu);
4418 kvm_vcpu_on_spin(vcpu, in_kernel);
4422 static int nop_interception(struct vcpu_svm *svm)
4424 return kvm_skip_emulated_instruction(&(svm->vcpu));
4427 static int monitor_interception(struct vcpu_svm *svm)
4429 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4430 return nop_interception(svm);
4433 static int mwait_interception(struct vcpu_svm *svm)
4435 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4436 return nop_interception(svm);
4439 enum avic_ipi_failure_cause {
4440 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4441 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4442 AVIC_IPI_FAILURE_INVALID_TARGET,
4443 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4446 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4448 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4449 u32 icrl = svm->vmcb->control.exit_info_1;
4450 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4451 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4452 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4454 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4457 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4459 * AVIC hardware handles the generation of
4460 * IPIs when the specified Message Type is Fixed
4461 * (also known as fixed delivery mode) and
4462 * the Trigger Mode is edge-triggered. The hardware
4463 * also supports self and broadcast delivery modes
4464 * specified via the Destination Shorthand(DSH)
4465 * field of the ICRL. Logical and physical APIC ID
4466 * formats are supported. All other IPI types cause
4467 * a #VMEXIT, which needs to emulated.
4469 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4470 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4472 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4474 struct kvm_vcpu *vcpu;
4475 struct kvm *kvm = svm->vcpu.kvm;
4476 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4479 * At this point, we expect that the AVIC HW has already
4480 * set the appropriate IRR bits on the valid target
4481 * vcpus. So, we just need to kick the appropriate vcpu.
4483 kvm_for_each_vcpu(i, vcpu, kvm) {
4484 bool m = kvm_apic_match_dest(vcpu, apic,
4485 icrl & KVM_APIC_SHORT_MASK,
4486 GET_APIC_DEST_FIELD(icrh),
4487 icrl & KVM_APIC_DEST_MASK);
4489 if (m && !avic_vcpu_is_running(vcpu))
4490 kvm_vcpu_wake_up(vcpu);
4494 case AVIC_IPI_FAILURE_INVALID_TARGET:
4496 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4497 WARN_ONCE(1, "Invalid backing page\n");
4500 pr_err("Unknown IPI interception\n");
4506 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4508 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4510 u32 *logical_apic_id_table;
4511 int dlid = GET_APIC_LOGICAL_ID(ldr);
4516 if (flat) { /* flat */
4517 index = ffs(dlid) - 1;
4520 } else { /* cluster */
4521 int cluster = (dlid & 0xf0) >> 4;
4522 int apic = ffs(dlid & 0x0f) - 1;
4524 if ((apic < 0) || (apic > 7) ||
4527 index = (cluster << 2) + apic;
4530 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4532 return &logical_apic_id_table[index];
4535 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4539 u32 *entry, new_entry;
4541 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4542 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4546 new_entry = READ_ONCE(*entry);
4547 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4548 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4550 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4552 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4553 WRITE_ONCE(*entry, new_entry);
4558 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4561 struct vcpu_svm *svm = to_svm(vcpu);
4562 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4567 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4568 if (ret && svm->ldr_reg) {
4569 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4577 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4580 struct vcpu_svm *svm = to_svm(vcpu);
4581 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4582 u32 id = (apic_id_reg >> 24) & 0xff;
4584 if (vcpu->vcpu_id == id)
4587 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4588 new = avic_get_physical_id_entry(vcpu, id);
4592 /* We need to move physical_id_entry to new offset */
4595 to_svm(vcpu)->avic_physical_id_cache = new;
4598 * Also update the guest physical APIC ID in the logical
4599 * APIC ID table entry if already setup the LDR.
4602 avic_handle_ldr_update(vcpu);
4607 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4609 struct vcpu_svm *svm = to_svm(vcpu);
4610 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4611 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4612 u32 mod = (dfr >> 28) & 0xf;
4615 * We assume that all local APICs are using the same type.
4616 * If this changes, we need to flush the AVIC logical
4619 if (kvm_svm->ldr_mode == mod)
4622 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4623 kvm_svm->ldr_mode = mod;
4626 avic_handle_ldr_update(vcpu);
4630 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4632 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4633 u32 offset = svm->vmcb->control.exit_info_1 &
4634 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4638 if (avic_handle_apic_id_update(&svm->vcpu))
4642 if (avic_handle_ldr_update(&svm->vcpu))
4646 avic_handle_dfr_update(&svm->vcpu);
4652 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4657 static bool is_avic_unaccelerated_access_trap(u32 offset)
4686 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4689 u32 offset = svm->vmcb->control.exit_info_1 &
4690 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4691 u32 vector = svm->vmcb->control.exit_info_2 &
4692 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4693 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4694 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4695 bool trap = is_avic_unaccelerated_access_trap(offset);
4697 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4698 trap, write, vector);
4701 WARN_ONCE(!write, "svm: Handling trap read.\n");
4702 ret = avic_unaccel_trap_write(svm);
4704 /* Handling Fault */
4705 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4711 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4712 [SVM_EXIT_READ_CR0] = cr_interception,
4713 [SVM_EXIT_READ_CR3] = cr_interception,
4714 [SVM_EXIT_READ_CR4] = cr_interception,
4715 [SVM_EXIT_READ_CR8] = cr_interception,
4716 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4717 [SVM_EXIT_WRITE_CR0] = cr_interception,
4718 [SVM_EXIT_WRITE_CR3] = cr_interception,
4719 [SVM_EXIT_WRITE_CR4] = cr_interception,
4720 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4721 [SVM_EXIT_READ_DR0] = dr_interception,
4722 [SVM_EXIT_READ_DR1] = dr_interception,
4723 [SVM_EXIT_READ_DR2] = dr_interception,
4724 [SVM_EXIT_READ_DR3] = dr_interception,
4725 [SVM_EXIT_READ_DR4] = dr_interception,
4726 [SVM_EXIT_READ_DR5] = dr_interception,
4727 [SVM_EXIT_READ_DR6] = dr_interception,
4728 [SVM_EXIT_READ_DR7] = dr_interception,
4729 [SVM_EXIT_WRITE_DR0] = dr_interception,
4730 [SVM_EXIT_WRITE_DR1] = dr_interception,
4731 [SVM_EXIT_WRITE_DR2] = dr_interception,
4732 [SVM_EXIT_WRITE_DR3] = dr_interception,
4733 [SVM_EXIT_WRITE_DR4] = dr_interception,
4734 [SVM_EXIT_WRITE_DR5] = dr_interception,
4735 [SVM_EXIT_WRITE_DR6] = dr_interception,
4736 [SVM_EXIT_WRITE_DR7] = dr_interception,
4737 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4738 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4739 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4740 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4741 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4742 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4743 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4744 [SVM_EXIT_INTR] = intr_interception,
4745 [SVM_EXIT_NMI] = nmi_interception,
4746 [SVM_EXIT_SMI] = nop_on_interception,
4747 [SVM_EXIT_INIT] = nop_on_interception,
4748 [SVM_EXIT_VINTR] = interrupt_window_interception,
4749 [SVM_EXIT_RDPMC] = rdpmc_interception,
4750 [SVM_EXIT_CPUID] = cpuid_interception,
4751 [SVM_EXIT_IRET] = iret_interception,
4752 [SVM_EXIT_INVD] = emulate_on_interception,
4753 [SVM_EXIT_PAUSE] = pause_interception,
4754 [SVM_EXIT_HLT] = halt_interception,
4755 [SVM_EXIT_INVLPG] = invlpg_interception,
4756 [SVM_EXIT_INVLPGA] = invlpga_interception,
4757 [SVM_EXIT_IOIO] = io_interception,
4758 [SVM_EXIT_MSR] = msr_interception,
4759 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4760 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4761 [SVM_EXIT_VMRUN] = vmrun_interception,
4762 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4763 [SVM_EXIT_VMLOAD] = vmload_interception,
4764 [SVM_EXIT_VMSAVE] = vmsave_interception,
4765 [SVM_EXIT_STGI] = stgi_interception,
4766 [SVM_EXIT_CLGI] = clgi_interception,
4767 [SVM_EXIT_SKINIT] = skinit_interception,
4768 [SVM_EXIT_WBINVD] = wbinvd_interception,
4769 [SVM_EXIT_MONITOR] = monitor_interception,
4770 [SVM_EXIT_MWAIT] = mwait_interception,
4771 [SVM_EXIT_XSETBV] = xsetbv_interception,
4772 [SVM_EXIT_NPF] = npf_interception,
4773 [SVM_EXIT_RSM] = rsm_interception,
4774 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4775 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4778 static void dump_vmcb(struct kvm_vcpu *vcpu)
4780 struct vcpu_svm *svm = to_svm(vcpu);
4781 struct vmcb_control_area *control = &svm->vmcb->control;
4782 struct vmcb_save_area *save = &svm->vmcb->save;
4784 pr_err("VMCB Control Area:\n");
4785 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4786 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4787 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4788 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4789 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4790 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4791 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4792 pr_err("%-20s%d\n", "pause filter threshold:",
4793 control->pause_filter_thresh);
4794 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4795 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4796 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4797 pr_err("%-20s%d\n", "asid:", control->asid);
4798 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4799 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4800 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4801 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4802 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4803 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4804 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4805 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4806 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4807 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4808 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4809 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4810 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4811 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4812 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4813 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4814 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4815 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4816 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4817 pr_err("VMCB State Save Area:\n");
4818 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4820 save->es.selector, save->es.attrib,
4821 save->es.limit, save->es.base);
4822 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4824 save->cs.selector, save->cs.attrib,
4825 save->cs.limit, save->cs.base);
4826 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4828 save->ss.selector, save->ss.attrib,
4829 save->ss.limit, save->ss.base);
4830 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4832 save->ds.selector, save->ds.attrib,
4833 save->ds.limit, save->ds.base);
4834 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4836 save->fs.selector, save->fs.attrib,
4837 save->fs.limit, save->fs.base);
4838 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4840 save->gs.selector, save->gs.attrib,
4841 save->gs.limit, save->gs.base);
4842 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4844 save->gdtr.selector, save->gdtr.attrib,
4845 save->gdtr.limit, save->gdtr.base);
4846 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4848 save->ldtr.selector, save->ldtr.attrib,
4849 save->ldtr.limit, save->ldtr.base);
4850 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 save->idtr.selector, save->idtr.attrib,
4853 save->idtr.limit, save->idtr.base);
4854 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856 save->tr.selector, save->tr.attrib,
4857 save->tr.limit, save->tr.base);
4858 pr_err("cpl: %d efer: %016llx\n",
4859 save->cpl, save->efer);
4860 pr_err("%-15s %016llx %-13s %016llx\n",
4861 "cr0:", save->cr0, "cr2:", save->cr2);
4862 pr_err("%-15s %016llx %-13s %016llx\n",
4863 "cr3:", save->cr3, "cr4:", save->cr4);
4864 pr_err("%-15s %016llx %-13s %016llx\n",
4865 "dr6:", save->dr6, "dr7:", save->dr7);
4866 pr_err("%-15s %016llx %-13s %016llx\n",
4867 "rip:", save->rip, "rflags:", save->rflags);
4868 pr_err("%-15s %016llx %-13s %016llx\n",
4869 "rsp:", save->rsp, "rax:", save->rax);
4870 pr_err("%-15s %016llx %-13s %016llx\n",
4871 "star:", save->star, "lstar:", save->lstar);
4872 pr_err("%-15s %016llx %-13s %016llx\n",
4873 "cstar:", save->cstar, "sfmask:", save->sfmask);
4874 pr_err("%-15s %016llx %-13s %016llx\n",
4875 "kernel_gs_base:", save->kernel_gs_base,
4876 "sysenter_cs:", save->sysenter_cs);
4877 pr_err("%-15s %016llx %-13s %016llx\n",
4878 "sysenter_esp:", save->sysenter_esp,
4879 "sysenter_eip:", save->sysenter_eip);
4880 pr_err("%-15s %016llx %-13s %016llx\n",
4881 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4882 pr_err("%-15s %016llx %-13s %016llx\n",
4883 "br_from:", save->br_from, "br_to:", save->br_to);
4884 pr_err("%-15s %016llx %-13s %016llx\n",
4885 "excp_from:", save->last_excp_from,
4886 "excp_to:", save->last_excp_to);
4889 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4891 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4893 *info1 = control->exit_info_1;
4894 *info2 = control->exit_info_2;
4897 static int handle_exit(struct kvm_vcpu *vcpu)
4899 struct vcpu_svm *svm = to_svm(vcpu);
4900 struct kvm_run *kvm_run = vcpu->run;
4901 u32 exit_code = svm->vmcb->control.exit_code;
4903 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4905 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4906 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4908 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4910 if (unlikely(svm->nested.exit_required)) {
4911 nested_svm_vmexit(svm);
4912 svm->nested.exit_required = false;
4917 if (is_guest_mode(vcpu)) {
4920 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4921 svm->vmcb->control.exit_info_1,
4922 svm->vmcb->control.exit_info_2,
4923 svm->vmcb->control.exit_int_info,
4924 svm->vmcb->control.exit_int_info_err,
4927 vmexit = nested_svm_exit_special(svm);
4929 if (vmexit == NESTED_EXIT_CONTINUE)
4930 vmexit = nested_svm_exit_handled(svm);
4932 if (vmexit == NESTED_EXIT_DONE)
4936 svm_complete_interrupts(svm);
4938 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4939 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4940 kvm_run->fail_entry.hardware_entry_failure_reason
4941 = svm->vmcb->control.exit_code;
4942 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4947 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4948 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4949 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4950 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4951 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4953 __func__, svm->vmcb->control.exit_int_info,
4956 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4957 || !svm_exit_handlers[exit_code]) {
4958 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4959 kvm_queue_exception(vcpu, UD_VECTOR);
4963 return svm_exit_handlers[exit_code](svm);
4966 static void reload_tss(struct kvm_vcpu *vcpu)
4968 int cpu = raw_smp_processor_id();
4970 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4971 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4975 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4977 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4978 int asid = sev_get_asid(svm->vcpu.kvm);
4980 /* Assign the asid allocated with this SEV guest */
4981 svm->vmcb->control.asid = asid;
4986 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4987 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4989 if (sd->sev_vmcbs[asid] == svm->vmcb &&
4990 svm->last_cpu == cpu)
4993 svm->last_cpu = cpu;
4994 sd->sev_vmcbs[asid] = svm->vmcb;
4995 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4996 mark_dirty(svm->vmcb, VMCB_ASID);
4999 static void pre_svm_run(struct vcpu_svm *svm)
5001 int cpu = raw_smp_processor_id();
5003 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5005 if (sev_guest(svm->vcpu.kvm))
5006 return pre_sev_run(svm, cpu);
5008 /* FIXME: handle wraparound of asid_generation */
5009 if (svm->asid_generation != sd->asid_generation)
5013 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5015 struct vcpu_svm *svm = to_svm(vcpu);
5017 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5018 vcpu->arch.hflags |= HF_NMI_MASK;
5019 set_intercept(svm, INTERCEPT_IRET);
5020 ++vcpu->stat.nmi_injections;
5023 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5025 struct vmcb_control_area *control;
5027 /* The following fields are ignored when AVIC is enabled */
5028 control = &svm->vmcb->control;
5029 control->int_vector = irq;
5030 control->int_ctl &= ~V_INTR_PRIO_MASK;
5031 control->int_ctl |= V_IRQ_MASK |
5032 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5033 mark_dirty(svm->vmcb, VMCB_INTR);
5036 static void svm_set_irq(struct kvm_vcpu *vcpu)
5038 struct vcpu_svm *svm = to_svm(vcpu);
5040 BUG_ON(!(gif_set(svm)));
5042 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5043 ++vcpu->stat.irq_injections;
5045 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5046 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5049 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5051 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5054 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5056 struct vcpu_svm *svm = to_svm(vcpu);
5058 if (svm_nested_virtualize_tpr(vcpu) ||
5059 kvm_vcpu_apicv_active(vcpu))
5062 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5068 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5071 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5076 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5078 return avic && irqchip_split(vcpu->kvm);
5081 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5085 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5089 /* Note: Currently only used by Hyper-V. */
5090 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5092 struct vcpu_svm *svm = to_svm(vcpu);
5093 struct vmcb *vmcb = svm->vmcb;
5095 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5098 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5099 mark_dirty(vmcb, VMCB_INTR);
5102 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5107 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5109 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5110 smp_mb__after_atomic();
5112 if (avic_vcpu_is_running(vcpu))
5113 wrmsrl(SVM_AVIC_DOORBELL,
5114 kvm_cpu_get_apicid(vcpu->cpu));
5116 kvm_vcpu_wake_up(vcpu);
5119 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5121 unsigned long flags;
5122 struct amd_svm_iommu_ir *cur;
5124 spin_lock_irqsave(&svm->ir_list_lock, flags);
5125 list_for_each_entry(cur, &svm->ir_list, node) {
5126 if (cur->data != pi->ir_data)
5128 list_del(&cur->node);
5132 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5135 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5138 unsigned long flags;
5139 struct amd_svm_iommu_ir *ir;
5142 * In some cases, the existing irte is updaed and re-set,
5143 * so we need to check here if it's already been * added
5146 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5147 struct kvm *kvm = svm->vcpu.kvm;
5148 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5149 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5150 struct vcpu_svm *prev_svm;
5157 prev_svm = to_svm(prev_vcpu);
5158 svm_ir_list_del(prev_svm, pi);
5162 * Allocating new amd_iommu_pi_data, which will get
5163 * add to the per-vcpu ir_list.
5165 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5170 ir->data = pi->ir_data;
5172 spin_lock_irqsave(&svm->ir_list_lock, flags);
5173 list_add(&ir->node, &svm->ir_list);
5174 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5181 * The HW cannot support posting multicast/broadcast
5182 * interrupts to a vCPU. So, we still use legacy interrupt
5183 * remapping for these kind of interrupts.
5185 * For lowest-priority interrupts, we only support
5186 * those with single CPU as the destination, e.g. user
5187 * configures the interrupts via /proc/irq or uses
5188 * irqbalance to make the interrupts single-CPU.
5191 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5192 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5194 struct kvm_lapic_irq irq;
5195 struct kvm_vcpu *vcpu = NULL;
5197 kvm_set_msi_irq(kvm, e, &irq);
5199 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5200 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5201 __func__, irq.vector);
5205 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5207 *svm = to_svm(vcpu);
5208 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5209 vcpu_info->vector = irq.vector;
5215 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5218 * @host_irq: host irq of the interrupt
5219 * @guest_irq: gsi of the interrupt
5220 * @set: set or unset PI
5221 * returns 0 on success, < 0 on failure
5223 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5224 uint32_t guest_irq, bool set)
5226 struct kvm_kernel_irq_routing_entry *e;
5227 struct kvm_irq_routing_table *irq_rt;
5228 int idx, ret = -EINVAL;
5230 if (!kvm_arch_has_assigned_device(kvm) ||
5231 !irq_remapping_cap(IRQ_POSTING_CAP))
5234 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5235 __func__, host_irq, guest_irq, set);
5237 idx = srcu_read_lock(&kvm->irq_srcu);
5238 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5239 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5241 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5242 struct vcpu_data vcpu_info;
5243 struct vcpu_svm *svm = NULL;
5245 if (e->type != KVM_IRQ_ROUTING_MSI)
5249 * Here, we setup with legacy mode in the following cases:
5250 * 1. When cannot target interrupt to a specific vcpu.
5251 * 2. Unsetting posted interrupt.
5252 * 3. APIC virtialization is disabled for the vcpu.
5254 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5255 kvm_vcpu_apicv_active(&svm->vcpu)) {
5256 struct amd_iommu_pi_data pi;
5258 /* Try to enable guest_mode in IRTE */
5259 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5261 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5263 pi.is_guest_mode = true;
5264 pi.vcpu_data = &vcpu_info;
5265 ret = irq_set_vcpu_affinity(host_irq, &pi);
5268 * Here, we successfully setting up vcpu affinity in
5269 * IOMMU guest mode. Now, we need to store the posted
5270 * interrupt information in a per-vcpu ir_list so that
5271 * we can reference to them directly when we update vcpu
5272 * scheduling information in IOMMU irte.
5274 if (!ret && pi.is_guest_mode)
5275 svm_ir_list_add(svm, &pi);
5277 /* Use legacy mode in IRTE */
5278 struct amd_iommu_pi_data pi;
5281 * Here, pi is used to:
5282 * - Tell IOMMU to use legacy mode for this interrupt.
5283 * - Retrieve ga_tag of prior interrupt remapping data.
5285 pi.is_guest_mode = false;
5286 ret = irq_set_vcpu_affinity(host_irq, &pi);
5289 * Check if the posted interrupt was previously
5290 * setup with the guest_mode by checking if the ga_tag
5291 * was cached. If so, we need to clean up the per-vcpu
5294 if (!ret && pi.prev_ga_tag) {
5295 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5296 struct kvm_vcpu *vcpu;
5298 vcpu = kvm_get_vcpu_by_id(kvm, id);
5300 svm_ir_list_del(to_svm(vcpu), &pi);
5305 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5306 e->gsi, vcpu_info.vector,
5307 vcpu_info.pi_desc_addr, set);
5311 pr_err("%s: failed to update PI IRTE\n", __func__);
5318 srcu_read_unlock(&kvm->irq_srcu, idx);
5322 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5324 struct vcpu_svm *svm = to_svm(vcpu);
5325 struct vmcb *vmcb = svm->vmcb;
5327 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5328 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5329 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5334 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5336 struct vcpu_svm *svm = to_svm(vcpu);
5338 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5341 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5343 struct vcpu_svm *svm = to_svm(vcpu);
5346 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5347 set_intercept(svm, INTERCEPT_IRET);
5349 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5350 clr_intercept(svm, INTERCEPT_IRET);
5354 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5356 struct vcpu_svm *svm = to_svm(vcpu);
5357 struct vmcb *vmcb = svm->vmcb;
5360 if (!gif_set(svm) ||
5361 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5364 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5366 if (is_guest_mode(vcpu))
5367 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5372 static void enable_irq_window(struct kvm_vcpu *vcpu)
5374 struct vcpu_svm *svm = to_svm(vcpu);
5376 if (kvm_vcpu_apicv_active(vcpu))
5380 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5381 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5382 * get that intercept, this function will be called again though and
5383 * we'll get the vintr intercept. However, if the vGIF feature is
5384 * enabled, the STGI interception will not occur. Enable the irq
5385 * window under the assumption that the hardware will set the GIF.
5387 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5389 svm_inject_irq(svm, 0x0);
5393 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5395 struct vcpu_svm *svm = to_svm(vcpu);
5397 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5399 return; /* IRET will cause a vm exit */
5401 if (!gif_set(svm)) {
5402 if (vgif_enabled(svm))
5403 set_intercept(svm, INTERCEPT_STGI);
5404 return; /* STGI will cause a vm exit */
5407 if (svm->nested.exit_required)
5408 return; /* we're not going to run the guest yet */
5411 * Something prevents NMI from been injected. Single step over possible
5412 * problem (IRET or exception injection or interrupt shadow)
5414 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5415 svm->nmi_singlestep = true;
5416 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5419 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5424 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5429 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5431 struct vcpu_svm *svm = to_svm(vcpu);
5433 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5434 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5436 svm->asid_generation--;
5439 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5441 struct vcpu_svm *svm = to_svm(vcpu);
5443 invlpga(gva, svm->vmcb->control.asid);
5446 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5450 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5452 struct vcpu_svm *svm = to_svm(vcpu);
5454 if (svm_nested_virtualize_tpr(vcpu))
5457 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5458 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5459 kvm_set_cr8(vcpu, cr8);
5463 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5465 struct vcpu_svm *svm = to_svm(vcpu);
5468 if (svm_nested_virtualize_tpr(vcpu) ||
5469 kvm_vcpu_apicv_active(vcpu))
5472 cr8 = kvm_get_cr8(vcpu);
5473 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5474 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5477 static void svm_complete_interrupts(struct vcpu_svm *svm)
5481 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5482 unsigned int3_injected = svm->int3_injected;
5484 svm->int3_injected = 0;
5487 * If we've made progress since setting HF_IRET_MASK, we've
5488 * executed an IRET and can allow NMI injection.
5490 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5491 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5492 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5493 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5496 svm->vcpu.arch.nmi_injected = false;
5497 kvm_clear_exception_queue(&svm->vcpu);
5498 kvm_clear_interrupt_queue(&svm->vcpu);
5500 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5503 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5505 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5506 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5509 case SVM_EXITINTINFO_TYPE_NMI:
5510 svm->vcpu.arch.nmi_injected = true;
5512 case SVM_EXITINTINFO_TYPE_EXEPT:
5514 * In case of software exceptions, do not reinject the vector,
5515 * but re-execute the instruction instead. Rewind RIP first
5516 * if we emulated INT3 before.
5518 if (kvm_exception_is_soft(vector)) {
5519 if (vector == BP_VECTOR && int3_injected &&
5520 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5521 kvm_rip_write(&svm->vcpu,
5522 kvm_rip_read(&svm->vcpu) -
5526 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5527 u32 err = svm->vmcb->control.exit_int_info_err;
5528 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5531 kvm_requeue_exception(&svm->vcpu, vector);
5533 case SVM_EXITINTINFO_TYPE_INTR:
5534 kvm_queue_interrupt(&svm->vcpu, vector, false);
5541 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5543 struct vcpu_svm *svm = to_svm(vcpu);
5544 struct vmcb_control_area *control = &svm->vmcb->control;
5546 control->exit_int_info = control->event_inj;
5547 control->exit_int_info_err = control->event_inj_err;
5548 control->event_inj = 0;
5549 svm_complete_interrupts(svm);
5552 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5554 struct vcpu_svm *svm = to_svm(vcpu);
5556 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5557 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5558 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5561 * A vmexit emulation is required before the vcpu can be executed
5564 if (unlikely(svm->nested.exit_required))
5568 * Disable singlestep if we're injecting an interrupt/exception.
5569 * We don't want our modified rflags to be pushed on the stack where
5570 * we might not be able to easily reset them if we disabled NMI
5573 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5575 * Event injection happens before external interrupts cause a
5576 * vmexit and interrupts are disabled here, so smp_send_reschedule
5577 * is enough to force an immediate vmexit.
5579 disable_nmi_singlestep(svm);
5580 smp_send_reschedule(vcpu->cpu);
5585 sync_lapic_to_cr8(vcpu);
5587 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5592 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5593 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5594 * is no need to worry about the conditional branch over the wrmsr
5595 * being speculatively taken.
5597 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5602 "push %%" _ASM_BP "; \n\t"
5603 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5604 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5605 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5606 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5607 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5608 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5609 #ifdef CONFIG_X86_64
5610 "mov %c[r8](%[svm]), %%r8 \n\t"
5611 "mov %c[r9](%[svm]), %%r9 \n\t"
5612 "mov %c[r10](%[svm]), %%r10 \n\t"
5613 "mov %c[r11](%[svm]), %%r11 \n\t"
5614 "mov %c[r12](%[svm]), %%r12 \n\t"
5615 "mov %c[r13](%[svm]), %%r13 \n\t"
5616 "mov %c[r14](%[svm]), %%r14 \n\t"
5617 "mov %c[r15](%[svm]), %%r15 \n\t"
5620 /* Enter guest mode */
5621 "push %%" _ASM_AX " \n\t"
5622 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5623 __ex(SVM_VMLOAD) "\n\t"
5624 __ex(SVM_VMRUN) "\n\t"
5625 __ex(SVM_VMSAVE) "\n\t"
5626 "pop %%" _ASM_AX " \n\t"
5628 /* Save guest registers, load host registers */
5629 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5630 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5631 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5632 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5633 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5634 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5635 #ifdef CONFIG_X86_64
5636 "mov %%r8, %c[r8](%[svm]) \n\t"
5637 "mov %%r9, %c[r9](%[svm]) \n\t"
5638 "mov %%r10, %c[r10](%[svm]) \n\t"
5639 "mov %%r11, %c[r11](%[svm]) \n\t"
5640 "mov %%r12, %c[r12](%[svm]) \n\t"
5641 "mov %%r13, %c[r13](%[svm]) \n\t"
5642 "mov %%r14, %c[r14](%[svm]) \n\t"
5643 "mov %%r15, %c[r15](%[svm]) \n\t"
5645 * Clear host registers marked as clobbered to prevent
5648 "xor %%r8d, %%r8d \n\t"
5649 "xor %%r9d, %%r9d \n\t"
5650 "xor %%r10d, %%r10d \n\t"
5651 "xor %%r11d, %%r11d \n\t"
5652 "xor %%r12d, %%r12d \n\t"
5653 "xor %%r13d, %%r13d \n\t"
5654 "xor %%r14d, %%r14d \n\t"
5655 "xor %%r15d, %%r15d \n\t"
5657 "xor %%ebx, %%ebx \n\t"
5658 "xor %%ecx, %%ecx \n\t"
5659 "xor %%edx, %%edx \n\t"
5660 "xor %%esi, %%esi \n\t"
5661 "xor %%edi, %%edi \n\t"
5665 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5666 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5667 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5668 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5669 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5670 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5671 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5672 #ifdef CONFIG_X86_64
5673 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5674 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5675 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5676 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5677 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5678 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5679 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5680 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5683 #ifdef CONFIG_X86_64
5684 , "rbx", "rcx", "rdx", "rsi", "rdi"
5685 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5687 , "ebx", "ecx", "edx", "esi", "edi"
5691 /* Eliminate branch target predictions from guest mode */
5694 #ifdef CONFIG_X86_64
5695 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5697 loadsegment(fs, svm->host.fs);
5698 #ifndef CONFIG_X86_32_LAZY_GS
5699 loadsegment(gs, svm->host.gs);
5704 * We do not use IBRS in the kernel. If this vCPU has used the
5705 * SPEC_CTRL MSR it may have left it on; save the value and
5706 * turn it off. This is much more efficient than blindly adding
5707 * it to the atomic save/restore list. Especially as the former
5708 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5710 * For non-nested case:
5711 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5715 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5718 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5719 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5723 local_irq_disable();
5725 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5727 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5728 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5729 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5730 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5732 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5733 kvm_before_interrupt(&svm->vcpu);
5737 /* Any pending NMI will happen here */
5739 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5740 kvm_after_interrupt(&svm->vcpu);
5742 sync_cr8_to_lapic(vcpu);
5746 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5748 /* if exit due to PF check for async PF */
5749 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5750 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5753 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5754 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5758 * We need to handle MC intercepts here before the vcpu has a chance to
5759 * change the physical cpu
5761 if (unlikely(svm->vmcb->control.exit_code ==
5762 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5763 svm_handle_mce(svm);
5765 mark_all_clean(svm->vmcb);
5767 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5769 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5771 struct vcpu_svm *svm = to_svm(vcpu);
5773 svm->vmcb->save.cr3 = __sme_set(root);
5774 mark_dirty(svm->vmcb, VMCB_CR);
5777 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5779 struct vcpu_svm *svm = to_svm(vcpu);
5781 svm->vmcb->control.nested_cr3 = __sme_set(root);
5782 mark_dirty(svm->vmcb, VMCB_NPT);
5784 /* Also sync guest cr3 here in case we live migrate */
5785 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5786 mark_dirty(svm->vmcb, VMCB_CR);
5789 static int is_disabled(void)
5793 rdmsrl(MSR_VM_CR, vm_cr);
5794 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5801 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5804 * Patch in the VMMCALL instruction:
5806 hypercall[0] = 0x0f;
5807 hypercall[1] = 0x01;
5808 hypercall[2] = 0xd9;
5811 static void svm_check_processor_compat(void *rtn)
5816 static bool svm_cpu_has_accelerated_tpr(void)
5821 static bool svm_has_emulated_msr(int index)
5826 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5831 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5833 struct vcpu_svm *svm = to_svm(vcpu);
5835 /* Update nrips enabled cache */
5836 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5838 if (!kvm_vcpu_apicv_active(vcpu))
5841 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5844 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5849 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5853 entry->ecx |= (1 << 2); /* Set SVM bit */
5856 entry->eax = 1; /* SVM revision 1 */
5857 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5858 ASID emulation to nested SVM */
5859 entry->ecx = 0; /* Reserved */
5860 entry->edx = 0; /* Per default do not support any
5861 additional features */
5863 /* Support next_rip if host supports it */
5864 if (boot_cpu_has(X86_FEATURE_NRIPS))
5865 entry->edx |= SVM_FEATURE_NRIP;
5867 /* Support NPT for the guest if enabled */
5869 entry->edx |= SVM_FEATURE_NPT;
5873 /* Support memory encryption cpuid if host supports it */
5874 if (boot_cpu_has(X86_FEATURE_SEV))
5875 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5876 &entry->ecx, &entry->edx);
5881 static int svm_get_lpage_level(void)
5883 return PT_PDPE_LEVEL;
5886 static bool svm_rdtscp_supported(void)
5888 return boot_cpu_has(X86_FEATURE_RDTSCP);
5891 static bool svm_invpcid_supported(void)
5896 static bool svm_mpx_supported(void)
5901 static bool svm_xsaves_supported(void)
5906 static bool svm_umip_emulated(void)
5911 static bool svm_has_wbinvd_exit(void)
5916 #define PRE_EX(exit) { .exit_code = (exit), \
5917 .stage = X86_ICPT_PRE_EXCEPT, }
5918 #define POST_EX(exit) { .exit_code = (exit), \
5919 .stage = X86_ICPT_POST_EXCEPT, }
5920 #define POST_MEM(exit) { .exit_code = (exit), \
5921 .stage = X86_ICPT_POST_MEMACCESS, }
5923 static const struct __x86_intercept {
5925 enum x86_intercept_stage stage;
5926 } x86_intercept_map[] = {
5927 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5928 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5929 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5930 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5931 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5932 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5933 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5934 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5935 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5936 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5937 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5938 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5939 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5940 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5941 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5942 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5943 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5944 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5945 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5946 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5947 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5948 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5949 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5950 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5951 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5952 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5953 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5954 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5955 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5956 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5957 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5958 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5959 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5960 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5961 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5962 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5963 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5964 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5965 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5966 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5967 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5968 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5969 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5970 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5971 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5972 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5979 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5980 struct x86_instruction_info *info,
5981 enum x86_intercept_stage stage)
5983 struct vcpu_svm *svm = to_svm(vcpu);
5984 int vmexit, ret = X86EMUL_CONTINUE;
5985 struct __x86_intercept icpt_info;
5986 struct vmcb *vmcb = svm->vmcb;
5988 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5991 icpt_info = x86_intercept_map[info->intercept];
5993 if (stage != icpt_info.stage)
5996 switch (icpt_info.exit_code) {
5997 case SVM_EXIT_READ_CR0:
5998 if (info->intercept == x86_intercept_cr_read)
5999 icpt_info.exit_code += info->modrm_reg;
6001 case SVM_EXIT_WRITE_CR0: {
6002 unsigned long cr0, val;
6005 if (info->intercept == x86_intercept_cr_write)
6006 icpt_info.exit_code += info->modrm_reg;
6008 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6009 info->intercept == x86_intercept_clts)
6012 intercept = svm->nested.intercept;
6014 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6017 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6018 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6020 if (info->intercept == x86_intercept_lmsw) {
6023 /* lmsw can't clear PE - catch this here */
6024 if (cr0 & X86_CR0_PE)
6029 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6033 case SVM_EXIT_READ_DR0:
6034 case SVM_EXIT_WRITE_DR0:
6035 icpt_info.exit_code += info->modrm_reg;
6038 if (info->intercept == x86_intercept_wrmsr)
6039 vmcb->control.exit_info_1 = 1;
6041 vmcb->control.exit_info_1 = 0;
6043 case SVM_EXIT_PAUSE:
6045 * We get this for NOP only, but pause
6046 * is rep not, check this here
6048 if (info->rep_prefix != REPE_PREFIX)
6051 case SVM_EXIT_IOIO: {
6055 if (info->intercept == x86_intercept_in ||
6056 info->intercept == x86_intercept_ins) {
6057 exit_info = ((info->src_val & 0xffff) << 16) |
6059 bytes = info->dst_bytes;
6061 exit_info = (info->dst_val & 0xffff) << 16;
6062 bytes = info->src_bytes;
6065 if (info->intercept == x86_intercept_outs ||
6066 info->intercept == x86_intercept_ins)
6067 exit_info |= SVM_IOIO_STR_MASK;
6069 if (info->rep_prefix)
6070 exit_info |= SVM_IOIO_REP_MASK;
6072 bytes = min(bytes, 4u);
6074 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6076 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6078 vmcb->control.exit_info_1 = exit_info;
6079 vmcb->control.exit_info_2 = info->next_rip;
6087 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6088 if (static_cpu_has(X86_FEATURE_NRIPS))
6089 vmcb->control.next_rip = info->next_rip;
6090 vmcb->control.exit_code = icpt_info.exit_code;
6091 vmexit = nested_svm_exit_handled(svm);
6093 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6100 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6104 * We must have an instruction with interrupts enabled, so
6105 * the timer interrupt isn't delayed by the interrupt shadow.
6108 local_irq_disable();
6111 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6113 if (pause_filter_thresh)
6114 shrink_ple_window(vcpu);
6117 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6119 if (avic_handle_apic_id_update(vcpu) != 0)
6121 if (avic_handle_dfr_update(vcpu) != 0)
6123 avic_handle_ldr_update(vcpu);
6126 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6128 /* [63:9] are reserved. */
6129 vcpu->arch.mcg_cap &= 0x1ff;
6132 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6134 struct vcpu_svm *svm = to_svm(vcpu);
6136 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6140 if (is_guest_mode(&svm->vcpu) &&
6141 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6142 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6143 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6144 svm->nested.exit_required = true;
6151 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6153 struct vcpu_svm *svm = to_svm(vcpu);
6156 if (is_guest_mode(vcpu)) {
6157 /* FED8h - SVM Guest */
6158 put_smstate(u64, smstate, 0x7ed8, 1);
6159 /* FEE0h - SVM Guest VMCB Physical Address */
6160 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6162 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6163 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6164 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6166 ret = nested_svm_vmexit(svm);
6173 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6175 struct vcpu_svm *svm = to_svm(vcpu);
6176 struct vmcb *nested_vmcb;
6184 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6185 sizeof(svm_state_save));
6189 if (svm_state_save.guest) {
6190 vcpu->arch.hflags &= ~HF_SMM_MASK;
6191 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6193 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6196 vcpu->arch.hflags |= HF_SMM_MASK;
6201 static int enable_smi_window(struct kvm_vcpu *vcpu)
6203 struct vcpu_svm *svm = to_svm(vcpu);
6205 if (!gif_set(svm)) {
6206 if (vgif_enabled(svm))
6207 set_intercept(svm, INTERCEPT_STGI);
6208 /* STGI will cause a vm exit */
6214 static int sev_asid_new(void)
6219 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6221 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6222 if (pos >= max_sev_asid)
6225 set_bit(pos, sev_asid_bitmap);
6229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6231 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6235 asid = sev_asid_new();
6239 ret = sev_platform_init(&argp->error);
6245 INIT_LIST_HEAD(&sev->regions_list);
6250 __sev_asid_free(asid);
6254 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6256 struct sev_data_activate *data;
6257 int asid = sev_get_asid(kvm);
6260 wbinvd_on_all_cpus();
6262 ret = sev_guest_df_flush(error);
6266 data = kzalloc(sizeof(*data), GFP_KERNEL);
6270 /* activate ASID on the given handle */
6271 data->handle = handle;
6273 ret = sev_guest_activate(data, error);
6279 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6288 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6294 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6296 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6298 return __sev_issue_cmd(sev->fd, id, data, error);
6301 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6303 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6304 struct sev_data_launch_start *start;
6305 struct kvm_sev_launch_start params;
6306 void *dh_blob, *session_blob;
6307 int *error = &argp->error;
6310 if (!sev_guest(kvm))
6313 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6316 start = kzalloc(sizeof(*start), GFP_KERNEL);
6321 if (params.dh_uaddr) {
6322 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6323 if (IS_ERR(dh_blob)) {
6324 ret = PTR_ERR(dh_blob);
6328 start->dh_cert_address = __sme_set(__pa(dh_blob));
6329 start->dh_cert_len = params.dh_len;
6332 session_blob = NULL;
6333 if (params.session_uaddr) {
6334 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6335 if (IS_ERR(session_blob)) {
6336 ret = PTR_ERR(session_blob);
6340 start->session_address = __sme_set(__pa(session_blob));
6341 start->session_len = params.session_len;
6344 start->handle = params.handle;
6345 start->policy = params.policy;
6347 /* create memory encryption context */
6348 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6350 goto e_free_session;
6352 /* Bind ASID to this guest */
6353 ret = sev_bind_asid(kvm, start->handle, error);
6355 goto e_free_session;
6357 /* return handle to userspace */
6358 params.handle = start->handle;
6359 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6360 sev_unbind_asid(kvm, start->handle);
6362 goto e_free_session;
6365 sev->handle = start->handle;
6366 sev->fd = argp->sev_fd;
6369 kfree(session_blob);
6377 static int get_num_contig_pages(int idx, struct page **inpages,
6378 unsigned long npages)
6380 unsigned long paddr, next_paddr;
6381 int i = idx + 1, pages = 1;
6383 /* find the number of contiguous pages starting from idx */
6384 paddr = __sme_page_pa(inpages[idx]);
6385 while (i < npages) {
6386 next_paddr = __sme_page_pa(inpages[i++]);
6387 if ((paddr + PAGE_SIZE) == next_paddr) {
6398 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6400 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6401 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6402 struct kvm_sev_launch_update_data params;
6403 struct sev_data_launch_update_data *data;
6404 struct page **inpages;
6407 if (!sev_guest(kvm))
6410 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6413 data = kzalloc(sizeof(*data), GFP_KERNEL);
6417 vaddr = params.uaddr;
6419 vaddr_end = vaddr + size;
6421 /* Lock the user memory. */
6422 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6429 * The LAUNCH_UPDATE command will perform in-place encryption of the
6430 * memory content (i.e it will write the same memory region with C=1).
6431 * It's possible that the cache may contain the data with C=0, i.e.,
6432 * unencrypted so invalidate it first.
6434 sev_clflush_pages(inpages, npages);
6436 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6440 * If the user buffer is not page-aligned, calculate the offset
6443 offset = vaddr & (PAGE_SIZE - 1);
6445 /* Calculate the number of pages that can be encrypted in one go. */
6446 pages = get_num_contig_pages(i, inpages, npages);
6448 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6450 data->handle = sev->handle;
6452 data->address = __sme_page_pa(inpages[i]) + offset;
6453 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6458 next_vaddr = vaddr + len;
6462 /* content of memory is updated, mark pages dirty */
6463 for (i = 0; i < npages; i++) {
6464 set_page_dirty_lock(inpages[i]);
6465 mark_page_accessed(inpages[i]);
6467 /* unlock the user pages */
6468 sev_unpin_memory(kvm, inpages, npages);
6474 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6476 void __user *measure = (void __user *)(uintptr_t)argp->data;
6477 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6478 struct sev_data_launch_measure *data;
6479 struct kvm_sev_launch_measure params;
6480 void __user *p = NULL;
6484 if (!sev_guest(kvm))
6487 if (copy_from_user(¶ms, measure, sizeof(params)))
6490 data = kzalloc(sizeof(*data), GFP_KERNEL);
6494 /* User wants to query the blob length */
6498 p = (void __user *)(uintptr_t)params.uaddr;
6500 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6506 blob = kmalloc(params.len, GFP_KERNEL);
6510 data->address = __psp_pa(blob);
6511 data->len = params.len;
6515 data->handle = sev->handle;
6516 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6519 * If we query the session length, FW responded with expected data.
6528 if (copy_to_user(p, blob, params.len))
6533 params.len = data->len;
6534 if (copy_to_user(measure, ¶ms, sizeof(params)))
6543 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6545 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6546 struct sev_data_launch_finish *data;
6549 if (!sev_guest(kvm))
6552 data = kzalloc(sizeof(*data), GFP_KERNEL);
6556 data->handle = sev->handle;
6557 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6563 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6565 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6566 struct kvm_sev_guest_status params;
6567 struct sev_data_guest_status *data;
6570 if (!sev_guest(kvm))
6573 data = kzalloc(sizeof(*data), GFP_KERNEL);
6577 data->handle = sev->handle;
6578 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6582 params.policy = data->policy;
6583 params.state = data->state;
6584 params.handle = data->handle;
6586 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6593 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6594 unsigned long dst, int size,
6595 int *error, bool enc)
6597 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6598 struct sev_data_dbg *data;
6601 data = kzalloc(sizeof(*data), GFP_KERNEL);
6605 data->handle = sev->handle;
6606 data->dst_addr = dst;
6607 data->src_addr = src;
6610 ret = sev_issue_cmd(kvm,
6611 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6617 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6618 unsigned long dst_paddr, int sz, int *err)
6623 * Its safe to read more than we are asked, caller should ensure that
6624 * destination has enough space.
6626 src_paddr = round_down(src_paddr, 16);
6627 offset = src_paddr & 15;
6628 sz = round_up(sz + offset, 16);
6630 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6633 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6634 unsigned long __user dst_uaddr,
6635 unsigned long dst_paddr,
6638 struct page *tpage = NULL;
6641 /* if inputs are not 16-byte then use intermediate buffer */
6642 if (!IS_ALIGNED(dst_paddr, 16) ||
6643 !IS_ALIGNED(paddr, 16) ||
6644 !IS_ALIGNED(size, 16)) {
6645 tpage = (void *)alloc_page(GFP_KERNEL);
6649 dst_paddr = __sme_page_pa(tpage);
6652 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6657 offset = paddr & 15;
6658 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6659 page_address(tpage) + offset, size))
6670 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6671 unsigned long __user vaddr,
6672 unsigned long dst_paddr,
6673 unsigned long __user dst_vaddr,
6674 int size, int *error)
6676 struct page *src_tpage = NULL;
6677 struct page *dst_tpage = NULL;
6678 int ret, len = size;
6680 /* If source buffer is not aligned then use an intermediate buffer */
6681 if (!IS_ALIGNED(vaddr, 16)) {
6682 src_tpage = alloc_page(GFP_KERNEL);
6686 if (copy_from_user(page_address(src_tpage),
6687 (void __user *)(uintptr_t)vaddr, size)) {
6688 __free_page(src_tpage);
6692 paddr = __sme_page_pa(src_tpage);
6696 * If destination buffer or length is not aligned then do read-modify-write:
6697 * - decrypt destination in an intermediate buffer
6698 * - copy the source buffer in an intermediate buffer
6699 * - use the intermediate buffer as source buffer
6701 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6704 dst_tpage = alloc_page(GFP_KERNEL);
6710 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6711 __sme_page_pa(dst_tpage), size, error);
6716 * If source is kernel buffer then use memcpy() otherwise
6719 dst_offset = dst_paddr & 15;
6722 memcpy(page_address(dst_tpage) + dst_offset,
6723 page_address(src_tpage), size);
6725 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6726 (void __user *)(uintptr_t)vaddr, size)) {
6732 paddr = __sme_page_pa(dst_tpage);
6733 dst_paddr = round_down(dst_paddr, 16);
6734 len = round_up(size, 16);
6737 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6741 __free_page(src_tpage);
6743 __free_page(dst_tpage);
6747 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6749 unsigned long vaddr, vaddr_end, next_vaddr;
6750 unsigned long dst_vaddr;
6751 struct page **src_p, **dst_p;
6752 struct kvm_sev_dbg debug;
6756 if (!sev_guest(kvm))
6759 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6762 vaddr = debug.src_uaddr;
6764 vaddr_end = vaddr + size;
6765 dst_vaddr = debug.dst_uaddr;
6767 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6768 int len, s_off, d_off;
6770 /* lock userspace source and destination page */
6771 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6775 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6777 sev_unpin_memory(kvm, src_p, n);
6782 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6783 * memory content (i.e it will write the same memory region with C=1).
6784 * It's possible that the cache may contain the data with C=0, i.e.,
6785 * unencrypted so invalidate it first.
6787 sev_clflush_pages(src_p, 1);
6788 sev_clflush_pages(dst_p, 1);
6791 * Since user buffer may not be page aligned, calculate the
6792 * offset within the page.
6794 s_off = vaddr & ~PAGE_MASK;
6795 d_off = dst_vaddr & ~PAGE_MASK;
6796 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6799 ret = __sev_dbg_decrypt_user(kvm,
6800 __sme_page_pa(src_p[0]) + s_off,
6802 __sme_page_pa(dst_p[0]) + d_off,
6805 ret = __sev_dbg_encrypt_user(kvm,
6806 __sme_page_pa(src_p[0]) + s_off,
6808 __sme_page_pa(dst_p[0]) + d_off,
6812 sev_unpin_memory(kvm, src_p, 1);
6813 sev_unpin_memory(kvm, dst_p, 1);
6818 next_vaddr = vaddr + len;
6819 dst_vaddr = dst_vaddr + len;
6826 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6828 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6829 struct sev_data_launch_secret *data;
6830 struct kvm_sev_launch_secret params;
6831 struct page **pages;
6836 if (!sev_guest(kvm))
6839 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6842 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6847 * The secret must be copied into contiguous memory region, lets verify
6848 * that userspace memory pages are contiguous before we issue command.
6850 if (get_num_contig_pages(0, pages, n) != n) {
6852 goto e_unpin_memory;
6856 data = kzalloc(sizeof(*data), GFP_KERNEL);
6858 goto e_unpin_memory;
6860 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6861 data->guest_address = __sme_page_pa(pages[0]) + offset;
6862 data->guest_len = params.guest_len;
6864 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6866 ret = PTR_ERR(blob);
6870 data->trans_address = __psp_pa(blob);
6871 data->trans_len = params.trans_len;
6873 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6878 data->hdr_address = __psp_pa(hdr);
6879 data->hdr_len = params.hdr_len;
6881 data->handle = sev->handle;
6882 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6891 sev_unpin_memory(kvm, pages, n);
6895 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6897 struct kvm_sev_cmd sev_cmd;
6900 if (!svm_sev_enabled())
6903 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6906 mutex_lock(&kvm->lock);
6908 switch (sev_cmd.id) {
6910 r = sev_guest_init(kvm, &sev_cmd);
6912 case KVM_SEV_LAUNCH_START:
6913 r = sev_launch_start(kvm, &sev_cmd);
6915 case KVM_SEV_LAUNCH_UPDATE_DATA:
6916 r = sev_launch_update_data(kvm, &sev_cmd);
6918 case KVM_SEV_LAUNCH_MEASURE:
6919 r = sev_launch_measure(kvm, &sev_cmd);
6921 case KVM_SEV_LAUNCH_FINISH:
6922 r = sev_launch_finish(kvm, &sev_cmd);
6924 case KVM_SEV_GUEST_STATUS:
6925 r = sev_guest_status(kvm, &sev_cmd);
6927 case KVM_SEV_DBG_DECRYPT:
6928 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6930 case KVM_SEV_DBG_ENCRYPT:
6931 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6933 case KVM_SEV_LAUNCH_SECRET:
6934 r = sev_launch_secret(kvm, &sev_cmd);
6941 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6945 mutex_unlock(&kvm->lock);
6949 static int svm_register_enc_region(struct kvm *kvm,
6950 struct kvm_enc_region *range)
6952 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6953 struct enc_region *region;
6956 if (!sev_guest(kvm))
6959 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
6962 region = kzalloc(sizeof(*region), GFP_KERNEL);
6966 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
6967 if (!region->pages) {
6973 * The guest may change the memory encryption attribute from C=0 -> C=1
6974 * or vice versa for this memory range. Lets make sure caches are
6975 * flushed to ensure that guest data gets written into memory with
6978 sev_clflush_pages(region->pages, region->npages);
6980 region->uaddr = range->addr;
6981 region->size = range->size;
6983 mutex_lock(&kvm->lock);
6984 list_add_tail(®ion->list, &sev->regions_list);
6985 mutex_unlock(&kvm->lock);
6994 static struct enc_region *
6995 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6997 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6998 struct list_head *head = &sev->regions_list;
6999 struct enc_region *i;
7001 list_for_each_entry(i, head, list) {
7002 if (i->uaddr == range->addr &&
7003 i->size == range->size)
7011 static int svm_unregister_enc_region(struct kvm *kvm,
7012 struct kvm_enc_region *range)
7014 struct enc_region *region;
7017 mutex_lock(&kvm->lock);
7019 if (!sev_guest(kvm)) {
7024 region = find_enc_region(kvm, range);
7030 __unregister_enc_region_locked(kvm, region);
7032 mutex_unlock(&kvm->lock);
7036 mutex_unlock(&kvm->lock);
7040 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
7041 uint16_t *vmcs_version)
7043 /* Intel-only feature */
7047 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7048 .cpu_has_kvm_support = has_svm,
7049 .disabled_by_bios = is_disabled,
7050 .hardware_setup = svm_hardware_setup,
7051 .hardware_unsetup = svm_hardware_unsetup,
7052 .check_processor_compatibility = svm_check_processor_compat,
7053 .hardware_enable = svm_hardware_enable,
7054 .hardware_disable = svm_hardware_disable,
7055 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7056 .has_emulated_msr = svm_has_emulated_msr,
7058 .vcpu_create = svm_create_vcpu,
7059 .vcpu_free = svm_free_vcpu,
7060 .vcpu_reset = svm_vcpu_reset,
7062 .vm_alloc = svm_vm_alloc,
7063 .vm_free = svm_vm_free,
7064 .vm_init = avic_vm_init,
7065 .vm_destroy = svm_vm_destroy,
7067 .prepare_guest_switch = svm_prepare_guest_switch,
7068 .vcpu_load = svm_vcpu_load,
7069 .vcpu_put = svm_vcpu_put,
7070 .vcpu_blocking = svm_vcpu_blocking,
7071 .vcpu_unblocking = svm_vcpu_unblocking,
7073 .update_bp_intercept = update_bp_intercept,
7074 .get_msr_feature = svm_get_msr_feature,
7075 .get_msr = svm_get_msr,
7076 .set_msr = svm_set_msr,
7077 .get_segment_base = svm_get_segment_base,
7078 .get_segment = svm_get_segment,
7079 .set_segment = svm_set_segment,
7080 .get_cpl = svm_get_cpl,
7081 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7082 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7083 .decache_cr3 = svm_decache_cr3,
7084 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7085 .set_cr0 = svm_set_cr0,
7086 .set_cr3 = svm_set_cr3,
7087 .set_cr4 = svm_set_cr4,
7088 .set_efer = svm_set_efer,
7089 .get_idt = svm_get_idt,
7090 .set_idt = svm_set_idt,
7091 .get_gdt = svm_get_gdt,
7092 .set_gdt = svm_set_gdt,
7093 .get_dr6 = svm_get_dr6,
7094 .set_dr6 = svm_set_dr6,
7095 .set_dr7 = svm_set_dr7,
7096 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7097 .cache_reg = svm_cache_reg,
7098 .get_rflags = svm_get_rflags,
7099 .set_rflags = svm_set_rflags,
7101 .tlb_flush = svm_flush_tlb,
7102 .tlb_flush_gva = svm_flush_tlb_gva,
7104 .run = svm_vcpu_run,
7105 .handle_exit = handle_exit,
7106 .skip_emulated_instruction = skip_emulated_instruction,
7107 .set_interrupt_shadow = svm_set_interrupt_shadow,
7108 .get_interrupt_shadow = svm_get_interrupt_shadow,
7109 .patch_hypercall = svm_patch_hypercall,
7110 .set_irq = svm_set_irq,
7111 .set_nmi = svm_inject_nmi,
7112 .queue_exception = svm_queue_exception,
7113 .cancel_injection = svm_cancel_injection,
7114 .interrupt_allowed = svm_interrupt_allowed,
7115 .nmi_allowed = svm_nmi_allowed,
7116 .get_nmi_mask = svm_get_nmi_mask,
7117 .set_nmi_mask = svm_set_nmi_mask,
7118 .enable_nmi_window = enable_nmi_window,
7119 .enable_irq_window = enable_irq_window,
7120 .update_cr8_intercept = update_cr8_intercept,
7121 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7122 .get_enable_apicv = svm_get_enable_apicv,
7123 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7124 .load_eoi_exitmap = svm_load_eoi_exitmap,
7125 .hwapic_irr_update = svm_hwapic_irr_update,
7126 .hwapic_isr_update = svm_hwapic_isr_update,
7127 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7128 .apicv_post_state_restore = avic_post_state_restore,
7130 .set_tss_addr = svm_set_tss_addr,
7131 .set_identity_map_addr = svm_set_identity_map_addr,
7132 .get_tdp_level = get_npt_level,
7133 .get_mt_mask = svm_get_mt_mask,
7135 .get_exit_info = svm_get_exit_info,
7137 .get_lpage_level = svm_get_lpage_level,
7139 .cpuid_update = svm_cpuid_update,
7141 .rdtscp_supported = svm_rdtscp_supported,
7142 .invpcid_supported = svm_invpcid_supported,
7143 .mpx_supported = svm_mpx_supported,
7144 .xsaves_supported = svm_xsaves_supported,
7145 .umip_emulated = svm_umip_emulated,
7147 .set_supported_cpuid = svm_set_supported_cpuid,
7149 .has_wbinvd_exit = svm_has_wbinvd_exit,
7151 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7152 .write_tsc_offset = svm_write_tsc_offset,
7154 .set_tdp_cr3 = set_tdp_cr3,
7156 .check_intercept = svm_check_intercept,
7157 .handle_external_intr = svm_handle_external_intr,
7159 .request_immediate_exit = __kvm_request_immediate_exit,
7161 .sched_in = svm_sched_in,
7163 .pmu_ops = &amd_pmu_ops,
7164 .deliver_posted_interrupt = svm_deliver_avic_intr,
7165 .update_pi_irte = svm_update_pi_irte,
7166 .setup_mce = svm_setup_mce,
7168 .smi_allowed = svm_smi_allowed,
7169 .pre_enter_smm = svm_pre_enter_smm,
7170 .pre_leave_smm = svm_pre_leave_smm,
7171 .enable_smi_window = enable_smi_window,
7173 .mem_enc_op = svm_mem_enc_op,
7174 .mem_enc_reg_region = svm_register_enc_region,
7175 .mem_enc_unreg_region = svm_unregister_enc_region,
7177 .nested_enable_evmcs = nested_enable_evmcs,
7180 static int __init svm_init(void)
7182 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7183 __alignof__(struct vcpu_svm), THIS_MODULE);
7186 static void __exit svm_exit(void)
7191 module_init(svm_init)
7192 module_exit(svm_exit)