2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
56 /* The 'colour' (ie low bits) within a PMD of a page offset. */
57 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
60 /* The order of a PMD entry */
61 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
65 static int __init init_dax_wait_table(void)
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
73 fs_initcall(init_dax_wait_table);
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
86 #define DAX_LOCKED (1UL << 0)
87 #define DAX_PMD (1UL << 1)
88 #define DAX_ZERO_PAGE (1UL << 2)
89 #define DAX_EMPTY (1UL << 3)
91 static unsigned long dax_to_pfn(void *entry)
93 return xa_to_value(entry) >> DAX_SHIFT;
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
101 static void *dax_make_page_entry(struct page *page)
103 pfn_t pfn = page_to_pfn_t(page);
104 return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0);
107 static bool dax_is_locked(void *entry)
109 return xa_to_value(entry) & DAX_LOCKED;
112 static unsigned int dax_entry_order(void *entry)
114 if (xa_to_value(entry) & DAX_PMD)
119 static int dax_is_pmd_entry(void *entry)
121 return xa_to_value(entry) & DAX_PMD;
124 static int dax_is_pte_entry(void *entry)
126 return !(xa_to_value(entry) & DAX_PMD);
129 static int dax_is_zero_entry(void *entry)
131 return xa_to_value(entry) & DAX_ZERO_PAGE;
134 static int dax_is_empty_entry(void *entry)
136 return xa_to_value(entry) & DAX_EMPTY;
140 * DAX page cache entry locking
142 struct exceptional_entry_key {
147 struct wait_exceptional_entry_queue {
148 wait_queue_entry_t wait;
149 struct exceptional_entry_key key;
152 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
153 void *entry, struct exceptional_entry_key *key)
156 unsigned long index = xas->xa_index;
159 * If 'entry' is a PMD, align the 'index' that we use for the wait
160 * queue to the start of that PMD. This ensures that all offsets in
161 * the range covered by the PMD map to the same bit lock.
163 if (dax_is_pmd_entry(entry))
164 index &= ~PG_PMD_COLOUR;
166 key->entry_start = index;
168 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
169 return wait_table + hash;
172 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
173 unsigned int mode, int sync, void *keyp)
175 struct exceptional_entry_key *key = keyp;
176 struct wait_exceptional_entry_queue *ewait =
177 container_of(wait, struct wait_exceptional_entry_queue, wait);
179 if (key->xa != ewait->key.xa ||
180 key->entry_start != ewait->key.entry_start)
182 return autoremove_wake_function(wait, mode, sync, NULL);
186 * @entry may no longer be the entry at the index in the mapping.
187 * The important information it's conveying is whether the entry at
188 * this index used to be a PMD entry.
190 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
192 struct exceptional_entry_key key;
193 wait_queue_head_t *wq;
195 wq = dax_entry_waitqueue(xas, entry, &key);
198 * Checking for locked entry and prepare_to_wait_exclusive() happens
199 * under the i_pages lock, ditto for entry handling in our callers.
200 * So at this point all tasks that could have seen our entry locked
201 * must be in the waitqueue and the following check will see them.
203 if (waitqueue_active(wq))
204 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
208 * Look up entry in page cache, wait for it to become unlocked if it
209 * is a DAX entry and return it. The caller must subsequently call
210 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
213 * Must be called with the i_pages lock held.
215 static void *get_unlocked_entry(struct xa_state *xas)
218 struct wait_exceptional_entry_queue ewait;
219 wait_queue_head_t *wq;
221 init_wait(&ewait.wait);
222 ewait.wait.func = wake_exceptional_entry_func;
225 entry = xas_load(xas);
226 if (!entry || xa_is_internal(entry) ||
227 WARN_ON_ONCE(!xa_is_value(entry)) ||
228 !dax_is_locked(entry))
231 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
232 prepare_to_wait_exclusive(wq, &ewait.wait,
233 TASK_UNINTERRUPTIBLE);
237 finish_wait(wq, &ewait.wait);
242 static void put_unlocked_entry(struct xa_state *xas, void *entry)
244 /* If we were the only waiter woken, wake the next one */
246 dax_wake_entry(xas, entry, false);
250 * We used the xa_state to get the entry, but then we locked the entry and
251 * dropped the xa_lock, so we know the xa_state is stale and must be reset
254 static void dax_unlock_entry(struct xa_state *xas, void *entry)
260 old = xas_store(xas, entry);
262 BUG_ON(!dax_is_locked(old));
263 dax_wake_entry(xas, entry, false);
267 * Return: The entry stored at this location before it was locked.
269 static void *dax_lock_entry(struct xa_state *xas, void *entry)
271 unsigned long v = xa_to_value(entry);
272 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
275 static unsigned long dax_entry_size(void *entry)
277 if (dax_is_zero_entry(entry))
279 else if (dax_is_empty_entry(entry))
281 else if (dax_is_pmd_entry(entry))
287 static unsigned long dax_end_pfn(void *entry)
289 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
293 * Iterate through all mapped pfns represented by an entry, i.e. skip
294 * 'empty' and 'zero' entries.
296 #define for_each_mapped_pfn(entry, pfn) \
297 for (pfn = dax_to_pfn(entry); \
298 pfn < dax_end_pfn(entry); pfn++)
301 * TODO: for reflink+dax we need a way to associate a single page with
302 * multiple address_space instances at different linear_page_index()
305 static void dax_associate_entry(void *entry, struct address_space *mapping,
306 struct vm_area_struct *vma, unsigned long address)
308 unsigned long size = dax_entry_size(entry), pfn, index;
311 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
314 index = linear_page_index(vma, address & ~(size - 1));
315 for_each_mapped_pfn(entry, pfn) {
316 struct page *page = pfn_to_page(pfn);
318 WARN_ON_ONCE(page->mapping);
319 page->mapping = mapping;
320 page->index = index + i++;
324 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
329 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
332 for_each_mapped_pfn(entry, pfn) {
333 struct page *page = pfn_to_page(pfn);
335 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
336 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
337 page->mapping = NULL;
342 static struct page *dax_busy_page(void *entry)
346 for_each_mapped_pfn(entry, pfn) {
347 struct page *page = pfn_to_page(pfn);
349 if (page_ref_count(page) > 1)
355 bool dax_lock_mapping_entry(struct page *page)
357 XA_STATE(xas, NULL, 0);
361 struct address_space *mapping = READ_ONCE(page->mapping);
363 if (!dax_mapping(mapping))
367 * In the device-dax case there's no need to lock, a
368 * struct dev_pagemap pin is sufficient to keep the
369 * inode alive, and we assume we have dev_pagemap pin
370 * otherwise we would not have a valid pfn_to_page()
373 if (S_ISCHR(mapping->host->i_mode))
376 xas.xa = &mapping->i_pages;
378 if (mapping != page->mapping) {
379 xas_unlock_irq(&xas);
382 xas_set(&xas, page->index);
383 entry = xas_load(&xas);
384 if (dax_is_locked(entry)) {
385 entry = get_unlocked_entry(&xas);
386 /* Did the page move while we slept? */
387 if (dax_to_pfn(entry) != page_to_pfn(page)) {
388 xas_unlock_irq(&xas);
392 dax_lock_entry(&xas, entry);
393 xas_unlock_irq(&xas);
398 void dax_unlock_mapping_entry(struct page *page)
400 struct address_space *mapping = page->mapping;
401 XA_STATE(xas, &mapping->i_pages, page->index);
403 if (S_ISCHR(mapping->host->i_mode))
406 dax_unlock_entry(&xas, dax_make_page_entry(page));
410 * Find page cache entry at given index. If it is a DAX entry, return it
411 * with the entry locked. If the page cache doesn't contain an entry at
412 * that index, add a locked empty entry.
414 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
415 * either return that locked entry or will return VM_FAULT_FALLBACK.
416 * This will happen if there are any PTE entries within the PMD range
417 * that we are requesting.
419 * We always favor PTE entries over PMD entries. There isn't a flow where we
420 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
421 * insertion will fail if it finds any PTE entries already in the tree, and a
422 * PTE insertion will cause an existing PMD entry to be unmapped and
423 * downgraded to PTE entries. This happens for both PMD zero pages as
424 * well as PMD empty entries.
426 * The exception to this downgrade path is for PMD entries that have
427 * real storage backing them. We will leave these real PMD entries in
428 * the tree, and PTE writes will simply dirty the entire PMD entry.
430 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
431 * persistent memory the benefit is doubtful. We can add that later if we can
434 * On error, this function does not return an ERR_PTR. Instead it returns
435 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
436 * overlap with xarray value entries.
438 static void *grab_mapping_entry(struct xa_state *xas,
439 struct address_space *mapping, unsigned long size_flag)
441 unsigned long index = xas->xa_index;
442 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
447 entry = get_unlocked_entry(xas);
448 if (xa_is_internal(entry))
452 if (WARN_ON_ONCE(!xa_is_value(entry))) {
453 xas_set_err(xas, EIO);
457 if (size_flag & DAX_PMD) {
458 if (dax_is_pte_entry(entry)) {
459 put_unlocked_entry(xas, entry);
462 } else { /* trying to grab a PTE entry */
463 if (dax_is_pmd_entry(entry) &&
464 (dax_is_zero_entry(entry) ||
465 dax_is_empty_entry(entry))) {
466 pmd_downgrade = true;
473 * Make sure 'entry' remains valid while we drop
476 dax_lock_entry(xas, entry);
479 * Besides huge zero pages the only other thing that gets
480 * downgraded are empty entries which don't need to be
483 if (dax_is_zero_entry(entry)) {
485 unmap_mapping_pages(mapping,
486 xas->xa_index & ~PG_PMD_COLOUR,
492 dax_disassociate_entry(entry, mapping, false);
493 xas_store(xas, NULL); /* undo the PMD join */
494 dax_wake_entry(xas, entry, true);
495 mapping->nrexceptional--;
501 dax_lock_entry(xas, entry);
503 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
504 dax_lock_entry(xas, entry);
507 mapping->nrexceptional++;
512 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
514 if (xas->xa_node == XA_ERROR(-ENOMEM))
515 return xa_mk_internal(VM_FAULT_OOM);
517 return xa_mk_internal(VM_FAULT_SIGBUS);
521 return xa_mk_internal(VM_FAULT_FALLBACK);
525 * dax_layout_busy_page - find first pinned page in @mapping
526 * @mapping: address space to scan for a page with ref count > 1
528 * DAX requires ZONE_DEVICE mapped pages. These pages are never
529 * 'onlined' to the page allocator so they are considered idle when
530 * page->count == 1. A filesystem uses this interface to determine if
531 * any page in the mapping is busy, i.e. for DMA, or other
532 * get_user_pages() usages.
534 * It is expected that the filesystem is holding locks to block the
535 * establishment of new mappings in this address_space. I.e. it expects
536 * to be able to run unmap_mapping_range() and subsequently not race
537 * mapping_mapped() becoming true.
539 struct page *dax_layout_busy_page(struct address_space *mapping)
541 XA_STATE(xas, &mapping->i_pages, 0);
543 unsigned int scanned = 0;
544 struct page *page = NULL;
547 * In the 'limited' case get_user_pages() for dax is disabled.
549 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
552 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
556 * If we race get_user_pages_fast() here either we'll see the
557 * elevated page count in the iteration and wait, or
558 * get_user_pages_fast() will see that the page it took a reference
559 * against is no longer mapped in the page tables and bail to the
560 * get_user_pages() slow path. The slow path is protected by
561 * pte_lock() and pmd_lock(). New references are not taken without
562 * holding those locks, and unmap_mapping_range() will not zero the
563 * pte or pmd without holding the respective lock, so we are
564 * guaranteed to either see new references or prevent new
565 * references from being established.
567 unmap_mapping_range(mapping, 0, 0, 1);
570 xas_for_each(&xas, entry, ULONG_MAX) {
571 if (WARN_ON_ONCE(!xa_is_value(entry)))
573 if (unlikely(dax_is_locked(entry)))
574 entry = get_unlocked_entry(&xas);
576 page = dax_busy_page(entry);
577 put_unlocked_entry(&xas, entry);
580 if (++scanned % XA_CHECK_SCHED)
584 xas_unlock_irq(&xas);
588 xas_unlock_irq(&xas);
591 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
593 static int __dax_invalidate_entry(struct address_space *mapping,
594 pgoff_t index, bool trunc)
596 XA_STATE(xas, &mapping->i_pages, index);
601 entry = get_unlocked_entry(&xas);
602 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
605 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
606 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
608 dax_disassociate_entry(entry, mapping, trunc);
609 xas_store(&xas, NULL);
610 mapping->nrexceptional--;
613 put_unlocked_entry(&xas, entry);
614 xas_unlock_irq(&xas);
619 * Delete DAX entry at @index from @mapping. Wait for it
620 * to be unlocked before deleting it.
622 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
624 int ret = __dax_invalidate_entry(mapping, index, true);
627 * This gets called from truncate / punch_hole path. As such, the caller
628 * must hold locks protecting against concurrent modifications of the
629 * page cache (usually fs-private i_mmap_sem for writing). Since the
630 * caller has seen a DAX entry for this index, we better find it
631 * at that index as well...
638 * Invalidate DAX entry if it is clean.
640 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
643 return __dax_invalidate_entry(mapping, index, false);
646 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
647 sector_t sector, size_t size, struct page *to,
655 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
659 id = dax_read_lock();
660 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
665 vto = kmap_atomic(to);
666 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
673 * By this point grab_mapping_entry() has ensured that we have a locked entry
674 * of the appropriate size so we don't have to worry about downgrading PMDs to
675 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
676 * already in the tree, we will skip the insertion and just dirty the PMD as
679 static void *dax_insert_entry(struct xa_state *xas,
680 struct address_space *mapping, struct vm_fault *vmf,
681 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
683 void *new_entry = dax_make_entry(pfn, flags);
686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
688 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
689 unsigned long index = xas->xa_index;
690 /* we are replacing a zero page with block mapping */
691 if (dax_is_pmd_entry(entry))
692 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
695 unmap_mapping_pages(mapping, index, 1, false);
700 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
701 dax_disassociate_entry(entry, mapping, false);
702 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
705 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
707 * Only swap our new entry into the page cache if the current
708 * entry is a zero page or an empty entry. If a normal PTE or
709 * PMD entry is already in the cache, we leave it alone. This
710 * means that if we are trying to insert a PTE and the
711 * existing entry is a PMD, we will just leave the PMD in the
712 * tree and dirty it if necessary.
714 void *old = dax_lock_entry(xas, new_entry);
715 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
719 xas_load(xas); /* Walk the xa_state */
723 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
730 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
732 unsigned long address;
734 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
735 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
739 /* Walk all mappings of a given index of a file and writeprotect them */
740 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
743 struct vm_area_struct *vma;
744 pte_t pte, *ptep = NULL;
748 i_mmap_lock_read(mapping);
749 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
750 unsigned long address, start, end;
754 if (!(vma->vm_flags & VM_SHARED))
757 address = pgoff_address(index, vma);
760 * Note because we provide start/end to follow_pte_pmd it will
761 * call mmu_notifier_invalidate_range_start() on our behalf
762 * before taking any lock.
764 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
768 * No need to call mmu_notifier_invalidate_range() as we are
769 * downgrading page table protection not changing it to point
772 * See Documentation/vm/mmu_notifier.rst
775 #ifdef CONFIG_FS_DAX_PMD
778 if (pfn != pmd_pfn(*pmdp))
780 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
783 flush_cache_page(vma, address, pfn);
784 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
785 pmd = pmd_wrprotect(pmd);
786 pmd = pmd_mkclean(pmd);
787 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
792 if (pfn != pte_pfn(*ptep))
794 if (!pte_dirty(*ptep) && !pte_write(*ptep))
797 flush_cache_page(vma, address, pfn);
798 pte = ptep_clear_flush(vma, address, ptep);
799 pte = pte_wrprotect(pte);
800 pte = pte_mkclean(pte);
801 set_pte_at(vma->vm_mm, address, ptep, pte);
803 pte_unmap_unlock(ptep, ptl);
806 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
808 i_mmap_unlock_read(mapping);
811 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
812 struct address_space *mapping, void *entry)
819 * A page got tagged dirty in DAX mapping? Something is seriously
822 if (WARN_ON(!xa_is_value(entry)))
825 if (unlikely(dax_is_locked(entry))) {
826 void *old_entry = entry;
828 entry = get_unlocked_entry(xas);
830 /* Entry got punched out / reallocated? */
831 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
834 * Entry got reallocated elsewhere? No need to writeback.
835 * We have to compare pfns as we must not bail out due to
836 * difference in lockbit or entry type.
838 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
840 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
841 dax_is_zero_entry(entry))) {
846 /* Another fsync thread may have already done this entry */
847 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
851 /* Lock the entry to serialize with page faults */
852 dax_lock_entry(xas, entry);
855 * We can clear the tag now but we have to be careful so that concurrent
856 * dax_writeback_one() calls for the same index cannot finish before we
857 * actually flush the caches. This is achieved as the calls will look
858 * at the entry only under the i_pages lock and once they do that
859 * they will see the entry locked and wait for it to unlock.
861 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
865 * Even if dax_writeback_mapping_range() was given a wbc->range_start
866 * in the middle of a PMD, the 'index' we are given will be aligned to
867 * the start index of the PMD, as will the pfn we pull from 'entry'.
868 * This allows us to flush for PMD_SIZE and not have to worry about
869 * partial PMD writebacks.
871 pfn = dax_to_pfn(entry);
872 size = PAGE_SIZE << dax_entry_order(entry);
874 dax_entry_mkclean(mapping, xas->xa_index, pfn);
875 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
877 * After we have flushed the cache, we can clear the dirty tag. There
878 * cannot be new dirty data in the pfn after the flush has completed as
879 * the pfn mappings are writeprotected and fault waits for mapping
884 xas_store(xas, entry);
885 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
886 dax_wake_entry(xas, entry, false);
888 trace_dax_writeback_one(mapping->host, xas->xa_index,
893 put_unlocked_entry(xas, entry);
898 * Flush the mapping to the persistent domain within the byte range of [start,
899 * end]. This is required by data integrity operations to ensure file data is
900 * on persistent storage prior to completion of the operation.
902 int dax_writeback_mapping_range(struct address_space *mapping,
903 struct block_device *bdev, struct writeback_control *wbc)
905 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
906 struct inode *inode = mapping->host;
907 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
908 struct dax_device *dax_dev;
911 unsigned int scanned = 0;
913 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
916 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
919 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
923 trace_dax_writeback_range(inode, xas.xa_index, end_index);
925 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
928 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
929 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
931 mapping_set_error(mapping, ret);
934 if (++scanned % XA_CHECK_SCHED)
938 xas_unlock_irq(&xas);
942 xas_unlock_irq(&xas);
944 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
947 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
949 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
951 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
954 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
957 const sector_t sector = dax_iomap_sector(iomap, pos);
962 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
965 id = dax_read_lock();
966 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
973 if (PFN_PHYS(length) < size)
975 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
977 /* For larger pages we need devmap */
978 if (length > 1 && !pfn_t_devmap(*pfnp))
987 * The user has performed a load from a hole in the file. Allocating a new
988 * page in the file would cause excessive storage usage for workloads with
989 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
990 * If this page is ever written to we will re-fault and change the mapping to
991 * point to real DAX storage instead.
993 static vm_fault_t dax_load_hole(struct xa_state *xas,
994 struct address_space *mapping, void **entry,
995 struct vm_fault *vmf)
997 struct inode *inode = mapping->host;
998 unsigned long vaddr = vmf->address;
999 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1002 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1003 DAX_ZERO_PAGE, false);
1005 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1006 trace_dax_load_hole(inode, vmf, ret);
1010 static bool dax_range_is_aligned(struct block_device *bdev,
1011 unsigned int offset, unsigned int length)
1013 unsigned short sector_size = bdev_logical_block_size(bdev);
1015 if (!IS_ALIGNED(offset, sector_size))
1017 if (!IS_ALIGNED(length, sector_size))
1023 int __dax_zero_page_range(struct block_device *bdev,
1024 struct dax_device *dax_dev, sector_t sector,
1025 unsigned int offset, unsigned int size)
1027 if (dax_range_is_aligned(bdev, offset, size)) {
1028 sector_t start_sector = sector + (offset >> 9);
1030 return blkdev_issue_zeroout(bdev, start_sector,
1031 size >> 9, GFP_NOFS, 0);
1037 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1041 id = dax_read_lock();
1042 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1044 dax_read_unlock(id);
1047 memset(kaddr + offset, 0, size);
1048 dax_flush(dax_dev, kaddr + offset, size);
1049 dax_read_unlock(id);
1053 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1056 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1057 struct iomap *iomap)
1059 struct block_device *bdev = iomap->bdev;
1060 struct dax_device *dax_dev = iomap->dax_dev;
1061 struct iov_iter *iter = data;
1062 loff_t end = pos + length, done = 0;
1067 if (iov_iter_rw(iter) == READ) {
1068 end = min(end, i_size_read(inode));
1072 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1073 return iov_iter_zero(min(length, end - pos), iter);
1076 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1080 * Write can allocate block for an area which has a hole page mapped
1081 * into page tables. We have to tear down these mappings so that data
1082 * written by write(2) is visible in mmap.
1084 if (iomap->flags & IOMAP_F_NEW) {
1085 invalidate_inode_pages2_range(inode->i_mapping,
1087 (end - 1) >> PAGE_SHIFT);
1090 id = dax_read_lock();
1092 unsigned offset = pos & (PAGE_SIZE - 1);
1093 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1094 const sector_t sector = dax_iomap_sector(iomap, pos);
1099 if (fatal_signal_pending(current)) {
1104 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1108 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1115 map_len = PFN_PHYS(map_len);
1118 if (map_len > end - pos)
1119 map_len = end - pos;
1122 * The userspace address for the memory copy has already been
1123 * validated via access_ok() in either vfs_read() or
1124 * vfs_write(), depending on which operation we are doing.
1126 if (iov_iter_rw(iter) == WRITE)
1127 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1130 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1142 dax_read_unlock(id);
1144 return done ? done : ret;
1148 * dax_iomap_rw - Perform I/O to a DAX file
1149 * @iocb: The control block for this I/O
1150 * @iter: The addresses to do I/O from or to
1151 * @ops: iomap ops passed from the file system
1153 * This function performs read and write operations to directly mapped
1154 * persistent memory. The callers needs to take care of read/write exclusion
1155 * and evicting any page cache pages in the region under I/O.
1158 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1159 const struct iomap_ops *ops)
1161 struct address_space *mapping = iocb->ki_filp->f_mapping;
1162 struct inode *inode = mapping->host;
1163 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1166 if (iov_iter_rw(iter) == WRITE) {
1167 lockdep_assert_held_exclusive(&inode->i_rwsem);
1168 flags |= IOMAP_WRITE;
1170 lockdep_assert_held(&inode->i_rwsem);
1173 while (iov_iter_count(iter)) {
1174 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1175 iter, dax_iomap_actor);
1182 iocb->ki_pos += done;
1183 return done ? done : ret;
1185 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1187 static vm_fault_t dax_fault_return(int error)
1190 return VM_FAULT_NOPAGE;
1191 if (error == -ENOMEM)
1192 return VM_FAULT_OOM;
1193 return VM_FAULT_SIGBUS;
1197 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1198 * flushed on write-faults (non-cow), but not read-faults.
1200 static bool dax_fault_is_synchronous(unsigned long flags,
1201 struct vm_area_struct *vma, struct iomap *iomap)
1203 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1204 && (iomap->flags & IOMAP_F_DIRTY);
1207 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1208 int *iomap_errp, const struct iomap_ops *ops)
1210 struct vm_area_struct *vma = vmf->vma;
1211 struct address_space *mapping = vma->vm_file->f_mapping;
1212 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1213 struct inode *inode = mapping->host;
1214 unsigned long vaddr = vmf->address;
1215 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1216 struct iomap iomap = { 0 };
1217 unsigned flags = IOMAP_FAULT;
1218 int error, major = 0;
1219 bool write = vmf->flags & FAULT_FLAG_WRITE;
1225 trace_dax_pte_fault(inode, vmf, ret);
1227 * Check whether offset isn't beyond end of file now. Caller is supposed
1228 * to hold locks serializing us with truncate / punch hole so this is
1231 if (pos >= i_size_read(inode)) {
1232 ret = VM_FAULT_SIGBUS;
1236 if (write && !vmf->cow_page)
1237 flags |= IOMAP_WRITE;
1239 entry = grab_mapping_entry(&xas, mapping, 0);
1240 if (xa_is_internal(entry)) {
1241 ret = xa_to_internal(entry);
1246 * It is possible, particularly with mixed reads & writes to private
1247 * mappings, that we have raced with a PMD fault that overlaps with
1248 * the PTE we need to set up. If so just return and the fault will be
1251 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1252 ret = VM_FAULT_NOPAGE;
1257 * Note that we don't bother to use iomap_apply here: DAX required
1258 * the file system block size to be equal the page size, which means
1259 * that we never have to deal with more than a single extent here.
1261 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1263 *iomap_errp = error;
1265 ret = dax_fault_return(error);
1268 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1269 error = -EIO; /* fs corruption? */
1270 goto error_finish_iomap;
1273 if (vmf->cow_page) {
1274 sector_t sector = dax_iomap_sector(&iomap, pos);
1276 switch (iomap.type) {
1278 case IOMAP_UNWRITTEN:
1279 clear_user_highpage(vmf->cow_page, vaddr);
1282 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1283 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1292 goto error_finish_iomap;
1294 __SetPageUptodate(vmf->cow_page);
1295 ret = finish_fault(vmf);
1297 ret = VM_FAULT_DONE_COW;
1301 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1303 switch (iomap.type) {
1305 if (iomap.flags & IOMAP_F_NEW) {
1306 count_vm_event(PGMAJFAULT);
1307 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1308 major = VM_FAULT_MAJOR;
1310 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1312 goto error_finish_iomap;
1314 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1318 * If we are doing synchronous page fault and inode needs fsync,
1319 * we can insert PTE into page tables only after that happens.
1320 * Skip insertion for now and return the pfn so that caller can
1321 * insert it after fsync is done.
1324 if (WARN_ON_ONCE(!pfnp)) {
1326 goto error_finish_iomap;
1329 ret = VM_FAULT_NEEDDSYNC | major;
1332 trace_dax_insert_mapping(inode, vmf, entry);
1334 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1336 ret = vmf_insert_mixed(vma, vaddr, pfn);
1339 case IOMAP_UNWRITTEN:
1342 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1353 ret = dax_fault_return(error);
1355 if (ops->iomap_end) {
1356 int copied = PAGE_SIZE;
1358 if (ret & VM_FAULT_ERROR)
1361 * The fault is done by now and there's no way back (other
1362 * thread may be already happily using PTE we have installed).
1363 * Just ignore error from ->iomap_end since we cannot do much
1366 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1369 dax_unlock_entry(&xas, entry);
1371 trace_dax_pte_fault_done(inode, vmf, ret);
1375 #ifdef CONFIG_FS_DAX_PMD
1376 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1377 struct iomap *iomap, void **entry)
1379 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1380 unsigned long pmd_addr = vmf->address & PMD_MASK;
1381 struct inode *inode = mapping->host;
1382 struct page *zero_page;
1387 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1389 if (unlikely(!zero_page))
1392 pfn = page_to_pfn_t(zero_page);
1393 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1394 DAX_PMD | DAX_ZERO_PAGE, false);
1396 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1397 if (!pmd_none(*(vmf->pmd))) {
1402 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1403 pmd_entry = pmd_mkhuge(pmd_entry);
1404 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1406 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1407 return VM_FAULT_NOPAGE;
1410 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1411 return VM_FAULT_FALLBACK;
1414 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1415 const struct iomap_ops *ops)
1417 struct vm_area_struct *vma = vmf->vma;
1418 struct address_space *mapping = vma->vm_file->f_mapping;
1419 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1420 unsigned long pmd_addr = vmf->address & PMD_MASK;
1421 bool write = vmf->flags & FAULT_FLAG_WRITE;
1423 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1424 struct inode *inode = mapping->host;
1425 vm_fault_t result = VM_FAULT_FALLBACK;
1426 struct iomap iomap = { 0 };
1434 * Check whether offset isn't beyond end of file now. Caller is
1435 * supposed to hold locks serializing us with truncate / punch hole so
1436 * this is a reliable test.
1438 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1440 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1443 * Make sure that the faulting address's PMD offset (color) matches
1444 * the PMD offset from the start of the file. This is necessary so
1445 * that a PMD range in the page table overlaps exactly with a PMD
1446 * range in the page cache.
1448 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1449 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1452 /* Fall back to PTEs if we're going to COW */
1453 if (write && !(vma->vm_flags & VM_SHARED))
1456 /* If the PMD would extend outside the VMA */
1457 if (pmd_addr < vma->vm_start)
1459 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1462 if (xas.xa_index >= max_pgoff) {
1463 result = VM_FAULT_SIGBUS;
1467 /* If the PMD would extend beyond the file size */
1468 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1472 * grab_mapping_entry() will make sure we get an empty PMD entry,
1473 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1474 * entry is already in the array, for instance), it will return
1475 * VM_FAULT_FALLBACK.
1477 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1478 if (xa_is_internal(entry)) {
1479 result = xa_to_internal(entry);
1484 * It is possible, particularly with mixed reads & writes to private
1485 * mappings, that we have raced with a PTE fault that overlaps with
1486 * the PMD we need to set up. If so just return and the fault will be
1489 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1490 !pmd_devmap(*vmf->pmd)) {
1496 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1497 * setting up a mapping, so really we're using iomap_begin() as a way
1498 * to look up our filesystem block.
1500 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1501 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1505 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1508 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1510 switch (iomap.type) {
1512 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1516 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1517 DAX_PMD, write && !sync);
1520 * If we are doing synchronous page fault and inode needs fsync,
1521 * we can insert PMD into page tables only after that happens.
1522 * Skip insertion for now and return the pfn so that caller can
1523 * insert it after fsync is done.
1526 if (WARN_ON_ONCE(!pfnp))
1529 result = VM_FAULT_NEEDDSYNC;
1533 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1534 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1537 case IOMAP_UNWRITTEN:
1539 if (WARN_ON_ONCE(write))
1541 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1549 if (ops->iomap_end) {
1550 int copied = PMD_SIZE;
1552 if (result == VM_FAULT_FALLBACK)
1555 * The fault is done by now and there's no way back (other
1556 * thread may be already happily using PMD we have installed).
1557 * Just ignore error from ->iomap_end since we cannot do much
1560 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1564 dax_unlock_entry(&xas, entry);
1566 if (result == VM_FAULT_FALLBACK) {
1567 split_huge_pmd(vma, vmf->pmd, vmf->address);
1568 count_vm_event(THP_FAULT_FALLBACK);
1571 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1575 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1576 const struct iomap_ops *ops)
1578 return VM_FAULT_FALLBACK;
1580 #endif /* CONFIG_FS_DAX_PMD */
1583 * dax_iomap_fault - handle a page fault on a DAX file
1584 * @vmf: The description of the fault
1585 * @pe_size: Size of the page to fault in
1586 * @pfnp: PFN to insert for synchronous faults if fsync is required
1587 * @iomap_errp: Storage for detailed error code in case of error
1588 * @ops: Iomap ops passed from the file system
1590 * When a page fault occurs, filesystems may call this helper in
1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1592 * has done all the necessary locking for page fault to proceed
1595 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1596 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1600 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1602 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1604 return VM_FAULT_FALLBACK;
1607 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1611 * @vmf: The description of the fault
1612 * @pfn: PFN to insert
1613 * @order: Order of entry to insert.
1615 * This function inserts a writeable PTE or PMD entry into the page tables
1616 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1619 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1621 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1622 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1627 entry = get_unlocked_entry(&xas);
1628 /* Did we race with someone splitting entry or so? */
1630 (order == 0 && !dax_is_pte_entry(entry)) ||
1631 (order == PMD_ORDER && (xa_is_internal(entry) ||
1632 !dax_is_pmd_entry(entry)))) {
1633 put_unlocked_entry(&xas, entry);
1634 xas_unlock_irq(&xas);
1635 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1637 return VM_FAULT_NOPAGE;
1639 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1640 dax_lock_entry(&xas, entry);
1641 xas_unlock_irq(&xas);
1643 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1644 #ifdef CONFIG_FS_DAX_PMD
1645 else if (order == PMD_ORDER)
1646 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1650 ret = VM_FAULT_FALLBACK;
1651 dax_unlock_entry(&xas, entry);
1652 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1657 * dax_finish_sync_fault - finish synchronous page fault
1658 * @vmf: The description of the fault
1659 * @pe_size: Size of entry to be inserted
1660 * @pfn: PFN to insert
1662 * This function ensures that the file range touched by the page fault is
1663 * stored persistently on the media and handles inserting of appropriate page
1666 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1667 enum page_entry_size pe_size, pfn_t pfn)
1670 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1671 unsigned int order = pe_order(pe_size);
1672 size_t len = PAGE_SIZE << order;
1674 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1676 return VM_FAULT_SIGBUS;
1677 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1679 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);