2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount *shm_mnt;
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages / 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 return sb->s_fs_info;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags, long pages)
171 if (!(flags & VM_NORESERVE))
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
192 static LIST_HEAD(shmem_swaplist);
193 static DEFINE_MUTEX(shmem_swaplist_mutex);
195 static int shmem_reserve_inode(struct super_block *sb)
197 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
198 if (sbinfo->max_inodes) {
199 spin_lock(&sbinfo->stat_lock);
200 if (!sbinfo->free_inodes) {
201 spin_unlock(&sbinfo->stat_lock);
204 sbinfo->free_inodes--;
205 spin_unlock(&sbinfo->stat_lock);
210 static void shmem_free_inode(struct super_block *sb)
212 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
213 if (sbinfo->max_inodes) {
214 spin_lock(&sbinfo->stat_lock);
215 sbinfo->free_inodes++;
216 spin_unlock(&sbinfo->stat_lock);
221 * shmem_recalc_inode - recalculate the block usage of an inode
222 * @inode: inode to recalc
224 * We have to calculate the free blocks since the mm can drop
225 * undirtied hole pages behind our back.
227 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
228 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 * It has to be called with the spinlock held.
232 static void shmem_recalc_inode(struct inode *inode)
234 struct shmem_inode_info *info = SHMEM_I(inode);
237 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
240 if (sbinfo->max_blocks)
241 percpu_counter_add(&sbinfo->used_blocks, -freed);
242 info->alloced -= freed;
243 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
244 shmem_unacct_blocks(info->flags, freed);
248 bool shmem_charge(struct inode *inode, long pages)
250 struct shmem_inode_info *info = SHMEM_I(inode);
251 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 if (shmem_acct_block(info->flags, pages))
256 spin_lock_irqsave(&info->lock, flags);
257 info->alloced += pages;
258 inode->i_blocks += pages * BLOCKS_PER_PAGE;
259 shmem_recalc_inode(inode);
260 spin_unlock_irqrestore(&info->lock, flags);
261 inode->i_mapping->nrpages += pages;
263 if (!sbinfo->max_blocks)
265 if (percpu_counter_compare(&sbinfo->used_blocks,
266 sbinfo->max_blocks - pages) > 0) {
267 inode->i_mapping->nrpages -= pages;
268 spin_lock_irqsave(&info->lock, flags);
269 info->alloced -= pages;
270 shmem_recalc_inode(inode);
271 spin_unlock_irqrestore(&info->lock, flags);
275 percpu_counter_add(&sbinfo->used_blocks, pages);
279 void shmem_uncharge(struct inode *inode, long pages)
281 struct shmem_inode_info *info = SHMEM_I(inode);
282 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
285 spin_lock_irqsave(&info->lock, flags);
286 info->alloced -= pages;
287 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
288 shmem_recalc_inode(inode);
289 spin_unlock_irqrestore(&info->lock, flags);
291 if (sbinfo->max_blocks)
292 percpu_counter_sub(&sbinfo->used_blocks, pages);
296 * Replace item expected in radix tree by a new item, while holding tree lock.
298 static int shmem_radix_tree_replace(struct address_space *mapping,
299 pgoff_t index, void *expected, void *replacement)
304 VM_BUG_ON(!expected);
305 VM_BUG_ON(!replacement);
306 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
309 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
310 if (item != expected)
312 radix_tree_replace_slot(pslot, replacement);
317 * Sometimes, before we decide whether to proceed or to fail, we must check
318 * that an entry was not already brought back from swap by a racing thread.
320 * Checking page is not enough: by the time a SwapCache page is locked, it
321 * might be reused, and again be SwapCache, using the same swap as before.
323 static bool shmem_confirm_swap(struct address_space *mapping,
324 pgoff_t index, swp_entry_t swap)
329 item = radix_tree_lookup(&mapping->page_tree, index);
331 return item == swp_to_radix_entry(swap);
335 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
338 * disables huge pages for the mount;
340 * enables huge pages for the mount;
341 * SHMEM_HUGE_WITHIN_SIZE:
342 * only allocate huge pages if the page will be fully within i_size,
343 * also respect fadvise()/madvise() hints;
345 * only allocate huge pages if requested with fadvise()/madvise();
348 #define SHMEM_HUGE_NEVER 0
349 #define SHMEM_HUGE_ALWAYS 1
350 #define SHMEM_HUGE_WITHIN_SIZE 2
351 #define SHMEM_HUGE_ADVISE 3
355 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
358 * disables huge on shm_mnt and all mounts, for emergency use;
360 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
363 #define SHMEM_HUGE_DENY (-1)
364 #define SHMEM_HUGE_FORCE (-2)
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 /* ifdef here to avoid bloating shmem.o when not necessary */
369 int shmem_huge __read_mostly;
371 static int shmem_parse_huge(const char *str)
373 if (!strcmp(str, "never"))
374 return SHMEM_HUGE_NEVER;
375 if (!strcmp(str, "always"))
376 return SHMEM_HUGE_ALWAYS;
377 if (!strcmp(str, "within_size"))
378 return SHMEM_HUGE_WITHIN_SIZE;
379 if (!strcmp(str, "advise"))
380 return SHMEM_HUGE_ADVISE;
381 if (!strcmp(str, "deny"))
382 return SHMEM_HUGE_DENY;
383 if (!strcmp(str, "force"))
384 return SHMEM_HUGE_FORCE;
388 static const char *shmem_format_huge(int huge)
391 case SHMEM_HUGE_NEVER:
393 case SHMEM_HUGE_ALWAYS:
395 case SHMEM_HUGE_WITHIN_SIZE:
396 return "within_size";
397 case SHMEM_HUGE_ADVISE:
399 case SHMEM_HUGE_DENY:
401 case SHMEM_HUGE_FORCE:
409 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
411 #define shmem_huge SHMEM_HUGE_DENY
413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
416 * Like add_to_page_cache_locked, but error if expected item has gone.
418 static int shmem_add_to_page_cache(struct page *page,
419 struct address_space *mapping,
420 pgoff_t index, void *expected)
422 int error, nr = hpage_nr_pages(page);
424 VM_BUG_ON_PAGE(PageTail(page), page);
425 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
426 VM_BUG_ON_PAGE(!PageLocked(page), page);
427 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
428 VM_BUG_ON(expected && PageTransHuge(page));
430 page_ref_add(page, nr);
431 page->mapping = mapping;
434 spin_lock_irq(&mapping->tree_lock);
435 if (PageTransHuge(page)) {
436 void __rcu **results;
441 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
442 &results, &idx, index, 1) &&
443 idx < index + HPAGE_PMD_NR) {
448 for (i = 0; i < HPAGE_PMD_NR; i++) {
449 error = radix_tree_insert(&mapping->page_tree,
450 index + i, page + i);
453 count_vm_event(THP_FILE_ALLOC);
455 } else if (!expected) {
456 error = radix_tree_insert(&mapping->page_tree, index, page);
458 error = shmem_radix_tree_replace(mapping, index, expected,
463 mapping->nrpages += nr;
464 if (PageTransHuge(page))
465 __inc_zone_page_state(page, NR_SHMEM_THPS);
466 __mod_zone_page_state(page_zone(page), NR_FILE_PAGES, nr);
467 __mod_zone_page_state(page_zone(page), NR_SHMEM, nr);
468 spin_unlock_irq(&mapping->tree_lock);
470 page->mapping = NULL;
471 spin_unlock_irq(&mapping->tree_lock);
472 page_ref_sub(page, nr);
478 * Like delete_from_page_cache, but substitutes swap for page.
480 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
482 struct address_space *mapping = page->mapping;
485 VM_BUG_ON_PAGE(PageCompound(page), page);
487 spin_lock_irq(&mapping->tree_lock);
488 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
489 page->mapping = NULL;
491 __dec_zone_page_state(page, NR_FILE_PAGES);
492 __dec_zone_page_state(page, NR_SHMEM);
493 spin_unlock_irq(&mapping->tree_lock);
499 * Remove swap entry from radix tree, free the swap and its page cache.
501 static int shmem_free_swap(struct address_space *mapping,
502 pgoff_t index, void *radswap)
506 spin_lock_irq(&mapping->tree_lock);
507 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
508 spin_unlock_irq(&mapping->tree_lock);
511 free_swap_and_cache(radix_to_swp_entry(radswap));
516 * Determine (in bytes) how many of the shmem object's pages mapped by the
517 * given offsets are swapped out.
519 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
520 * as long as the inode doesn't go away and racy results are not a problem.
522 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
523 pgoff_t start, pgoff_t end)
525 struct radix_tree_iter iter;
528 unsigned long swapped = 0;
532 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
533 if (iter.index >= end)
536 page = radix_tree_deref_slot(slot);
538 if (radix_tree_deref_retry(page)) {
539 slot = radix_tree_iter_retry(&iter);
543 if (radix_tree_exceptional_entry(page))
546 if (need_resched()) {
548 slot = radix_tree_iter_next(&iter);
554 return swapped << PAGE_SHIFT;
558 * Determine (in bytes) how many of the shmem object's pages mapped by the
559 * given vma is swapped out.
561 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
562 * as long as the inode doesn't go away and racy results are not a problem.
564 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
566 struct inode *inode = file_inode(vma->vm_file);
567 struct shmem_inode_info *info = SHMEM_I(inode);
568 struct address_space *mapping = inode->i_mapping;
569 unsigned long swapped;
571 /* Be careful as we don't hold info->lock */
572 swapped = READ_ONCE(info->swapped);
575 * The easier cases are when the shmem object has nothing in swap, or
576 * the vma maps it whole. Then we can simply use the stats that we
582 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
583 return swapped << PAGE_SHIFT;
585 /* Here comes the more involved part */
586 return shmem_partial_swap_usage(mapping,
587 linear_page_index(vma, vma->vm_start),
588 linear_page_index(vma, vma->vm_end));
592 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
594 void shmem_unlock_mapping(struct address_space *mapping)
597 pgoff_t indices[PAGEVEC_SIZE];
600 pagevec_init(&pvec, 0);
602 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
604 while (!mapping_unevictable(mapping)) {
606 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
607 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
609 pvec.nr = find_get_entries(mapping, index,
610 PAGEVEC_SIZE, pvec.pages, indices);
613 index = indices[pvec.nr - 1] + 1;
614 pagevec_remove_exceptionals(&pvec);
615 check_move_unevictable_pages(pvec.pages, pvec.nr);
616 pagevec_release(&pvec);
622 * Remove range of pages and swap entries from radix tree, and free them.
623 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
625 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
628 struct address_space *mapping = inode->i_mapping;
629 struct shmem_inode_info *info = SHMEM_I(inode);
630 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
631 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
632 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
633 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
635 pgoff_t indices[PAGEVEC_SIZE];
636 long nr_swaps_freed = 0;
641 end = -1; /* unsigned, so actually very big */
643 pagevec_init(&pvec, 0);
645 while (index < end) {
646 pvec.nr = find_get_entries(mapping, index,
647 min(end - index, (pgoff_t)PAGEVEC_SIZE),
648 pvec.pages, indices);
651 for (i = 0; i < pagevec_count(&pvec); i++) {
652 struct page *page = pvec.pages[i];
658 if (radix_tree_exceptional_entry(page)) {
661 nr_swaps_freed += !shmem_free_swap(mapping,
666 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
668 if (!trylock_page(page))
671 if (PageTransTail(page)) {
672 /* Middle of THP: zero out the page */
673 clear_highpage(page);
676 } else if (PageTransHuge(page)) {
677 if (index == round_down(end, HPAGE_PMD_NR)) {
679 * Range ends in the middle of THP:
682 clear_highpage(page);
686 index += HPAGE_PMD_NR - 1;
687 i += HPAGE_PMD_NR - 1;
690 if (!unfalloc || !PageUptodate(page)) {
691 VM_BUG_ON_PAGE(PageTail(page), page);
692 if (page_mapping(page) == mapping) {
693 VM_BUG_ON_PAGE(PageWriteback(page), page);
694 truncate_inode_page(mapping, page);
699 pagevec_remove_exceptionals(&pvec);
700 pagevec_release(&pvec);
706 struct page *page = NULL;
707 shmem_getpage(inode, start - 1, &page, SGP_READ);
709 unsigned int top = PAGE_SIZE;
714 zero_user_segment(page, partial_start, top);
715 set_page_dirty(page);
721 struct page *page = NULL;
722 shmem_getpage(inode, end, &page, SGP_READ);
724 zero_user_segment(page, 0, partial_end);
725 set_page_dirty(page);
734 while (index < end) {
737 pvec.nr = find_get_entries(mapping, index,
738 min(end - index, (pgoff_t)PAGEVEC_SIZE),
739 pvec.pages, indices);
741 /* If all gone or hole-punch or unfalloc, we're done */
742 if (index == start || end != -1)
744 /* But if truncating, restart to make sure all gone */
748 for (i = 0; i < pagevec_count(&pvec); i++) {
749 struct page *page = pvec.pages[i];
755 if (radix_tree_exceptional_entry(page)) {
758 if (shmem_free_swap(mapping, index, page)) {
759 /* Swap was replaced by page: retry */
769 if (PageTransTail(page)) {
770 /* Middle of THP: zero out the page */
771 clear_highpage(page);
774 * Partial thp truncate due 'start' in middle
775 * of THP: don't need to look on these pages
776 * again on !pvec.nr restart.
778 if (index != round_down(end, HPAGE_PMD_NR))
781 } else if (PageTransHuge(page)) {
782 if (index == round_down(end, HPAGE_PMD_NR)) {
784 * Range ends in the middle of THP:
787 clear_highpage(page);
791 index += HPAGE_PMD_NR - 1;
792 i += HPAGE_PMD_NR - 1;
795 if (!unfalloc || !PageUptodate(page)) {
796 VM_BUG_ON_PAGE(PageTail(page), page);
797 if (page_mapping(page) == mapping) {
798 VM_BUG_ON_PAGE(PageWriteback(page), page);
799 truncate_inode_page(mapping, page);
801 /* Page was replaced by swap: retry */
809 pagevec_remove_exceptionals(&pvec);
810 pagevec_release(&pvec);
814 spin_lock_irq(&info->lock);
815 info->swapped -= nr_swaps_freed;
816 shmem_recalc_inode(inode);
817 spin_unlock_irq(&info->lock);
820 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
822 shmem_undo_range(inode, lstart, lend, false);
823 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
825 EXPORT_SYMBOL_GPL(shmem_truncate_range);
827 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
830 struct inode *inode = dentry->d_inode;
831 struct shmem_inode_info *info = SHMEM_I(inode);
833 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
834 spin_lock_irq(&info->lock);
835 shmem_recalc_inode(inode);
836 spin_unlock_irq(&info->lock);
838 generic_fillattr(inode, stat);
842 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
844 struct inode *inode = d_inode(dentry);
845 struct shmem_inode_info *info = SHMEM_I(inode);
848 error = inode_change_ok(inode, attr);
852 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
853 loff_t oldsize = inode->i_size;
854 loff_t newsize = attr->ia_size;
856 /* protected by i_mutex */
857 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
858 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
861 if (newsize != oldsize) {
862 error = shmem_reacct_size(SHMEM_I(inode)->flags,
866 i_size_write(inode, newsize);
867 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
869 if (newsize <= oldsize) {
870 loff_t holebegin = round_up(newsize, PAGE_SIZE);
871 if (oldsize > holebegin)
872 unmap_mapping_range(inode->i_mapping,
875 shmem_truncate_range(inode,
876 newsize, (loff_t)-1);
877 /* unmap again to remove racily COWed private pages */
878 if (oldsize > holebegin)
879 unmap_mapping_range(inode->i_mapping,
884 setattr_copy(inode, attr);
885 if (attr->ia_valid & ATTR_MODE)
886 error = posix_acl_chmod(inode, inode->i_mode);
890 static void shmem_evict_inode(struct inode *inode)
892 struct shmem_inode_info *info = SHMEM_I(inode);
894 if (inode->i_mapping->a_ops == &shmem_aops) {
895 shmem_unacct_size(info->flags, inode->i_size);
897 shmem_truncate_range(inode, 0, (loff_t)-1);
898 if (!list_empty(&info->swaplist)) {
899 mutex_lock(&shmem_swaplist_mutex);
900 list_del_init(&info->swaplist);
901 mutex_unlock(&shmem_swaplist_mutex);
905 simple_xattrs_free(&info->xattrs);
906 WARN_ON(inode->i_blocks);
907 shmem_free_inode(inode->i_sb);
912 * If swap found in inode, free it and move page from swapcache to filecache.
914 static int shmem_unuse_inode(struct shmem_inode_info *info,
915 swp_entry_t swap, struct page **pagep)
917 struct address_space *mapping = info->vfs_inode.i_mapping;
923 radswap = swp_to_radix_entry(swap);
924 index = radix_tree_locate_item(&mapping->page_tree, radswap);
926 return -EAGAIN; /* tell shmem_unuse we found nothing */
929 * Move _head_ to start search for next from here.
930 * But be careful: shmem_evict_inode checks list_empty without taking
931 * mutex, and there's an instant in list_move_tail when info->swaplist
932 * would appear empty, if it were the only one on shmem_swaplist.
934 if (shmem_swaplist.next != &info->swaplist)
935 list_move_tail(&shmem_swaplist, &info->swaplist);
937 gfp = mapping_gfp_mask(mapping);
938 if (shmem_should_replace_page(*pagep, gfp)) {
939 mutex_unlock(&shmem_swaplist_mutex);
940 error = shmem_replace_page(pagep, gfp, info, index);
941 mutex_lock(&shmem_swaplist_mutex);
943 * We needed to drop mutex to make that restrictive page
944 * allocation, but the inode might have been freed while we
945 * dropped it: although a racing shmem_evict_inode() cannot
946 * complete without emptying the radix_tree, our page lock
947 * on this swapcache page is not enough to prevent that -
948 * free_swap_and_cache() of our swap entry will only
949 * trylock_page(), removing swap from radix_tree whatever.
951 * We must not proceed to shmem_add_to_page_cache() if the
952 * inode has been freed, but of course we cannot rely on
953 * inode or mapping or info to check that. However, we can
954 * safely check if our swap entry is still in use (and here
955 * it can't have got reused for another page): if it's still
956 * in use, then the inode cannot have been freed yet, and we
957 * can safely proceed (if it's no longer in use, that tells
958 * nothing about the inode, but we don't need to unuse swap).
960 if (!page_swapcount(*pagep))
965 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
966 * but also to hold up shmem_evict_inode(): so inode cannot be freed
967 * beneath us (pagelock doesn't help until the page is in pagecache).
970 error = shmem_add_to_page_cache(*pagep, mapping, index,
972 if (error != -ENOMEM) {
974 * Truncation and eviction use free_swap_and_cache(), which
975 * only does trylock page: if we raced, best clean up here.
977 delete_from_swap_cache(*pagep);
978 set_page_dirty(*pagep);
980 spin_lock_irq(&info->lock);
982 spin_unlock_irq(&info->lock);
990 * Search through swapped inodes to find and replace swap by page.
992 int shmem_unuse(swp_entry_t swap, struct page *page)
994 struct list_head *this, *next;
995 struct shmem_inode_info *info;
996 struct mem_cgroup *memcg;
1000 * There's a faint possibility that swap page was replaced before
1001 * caller locked it: caller will come back later with the right page.
1003 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1007 * Charge page using GFP_KERNEL while we can wait, before taking
1008 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1009 * Charged back to the user (not to caller) when swap account is used.
1011 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1015 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1018 mutex_lock(&shmem_swaplist_mutex);
1019 list_for_each_safe(this, next, &shmem_swaplist) {
1020 info = list_entry(this, struct shmem_inode_info, swaplist);
1022 error = shmem_unuse_inode(info, swap, &page);
1024 list_del_init(&info->swaplist);
1026 if (error != -EAGAIN)
1028 /* found nothing in this: move on to search the next */
1030 mutex_unlock(&shmem_swaplist_mutex);
1033 if (error != -ENOMEM)
1035 mem_cgroup_cancel_charge(page, memcg, false);
1037 mem_cgroup_commit_charge(page, memcg, true, false);
1045 * Move the page from the page cache to the swap cache.
1047 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049 struct shmem_inode_info *info;
1050 struct address_space *mapping;
1051 struct inode *inode;
1055 VM_BUG_ON_PAGE(PageCompound(page), page);
1056 BUG_ON(!PageLocked(page));
1057 mapping = page->mapping;
1058 index = page->index;
1059 inode = mapping->host;
1060 info = SHMEM_I(inode);
1061 if (info->flags & VM_LOCKED)
1063 if (!total_swap_pages)
1067 * Our capabilities prevent regular writeback or sync from ever calling
1068 * shmem_writepage; but a stacking filesystem might use ->writepage of
1069 * its underlying filesystem, in which case tmpfs should write out to
1070 * swap only in response to memory pressure, and not for the writeback
1073 if (!wbc->for_reclaim) {
1074 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1079 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1080 * value into swapfile.c, the only way we can correctly account for a
1081 * fallocated page arriving here is now to initialize it and write it.
1083 * That's okay for a page already fallocated earlier, but if we have
1084 * not yet completed the fallocation, then (a) we want to keep track
1085 * of this page in case we have to undo it, and (b) it may not be a
1086 * good idea to continue anyway, once we're pushing into swap. So
1087 * reactivate the page, and let shmem_fallocate() quit when too many.
1089 if (!PageUptodate(page)) {
1090 if (inode->i_private) {
1091 struct shmem_falloc *shmem_falloc;
1092 spin_lock(&inode->i_lock);
1093 shmem_falloc = inode->i_private;
1095 !shmem_falloc->waitq &&
1096 index >= shmem_falloc->start &&
1097 index < shmem_falloc->next)
1098 shmem_falloc->nr_unswapped++;
1100 shmem_falloc = NULL;
1101 spin_unlock(&inode->i_lock);
1105 clear_highpage(page);
1106 flush_dcache_page(page);
1107 SetPageUptodate(page);
1110 swap = get_swap_page();
1114 if (mem_cgroup_try_charge_swap(page, swap))
1118 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1119 * if it's not already there. Do it now before the page is
1120 * moved to swap cache, when its pagelock no longer protects
1121 * the inode from eviction. But don't unlock the mutex until
1122 * we've incremented swapped, because shmem_unuse_inode() will
1123 * prune a !swapped inode from the swaplist under this mutex.
1125 mutex_lock(&shmem_swaplist_mutex);
1126 if (list_empty(&info->swaplist))
1127 list_add_tail(&info->swaplist, &shmem_swaplist);
1129 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1130 spin_lock_irq(&info->lock);
1131 shmem_recalc_inode(inode);
1133 spin_unlock_irq(&info->lock);
1135 swap_shmem_alloc(swap);
1136 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1138 mutex_unlock(&shmem_swaplist_mutex);
1139 BUG_ON(page_mapped(page));
1140 swap_writepage(page, wbc);
1144 mutex_unlock(&shmem_swaplist_mutex);
1146 swapcache_free(swap);
1148 set_page_dirty(page);
1149 if (wbc->for_reclaim)
1150 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1155 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1156 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1160 if (!mpol || mpol->mode == MPOL_DEFAULT)
1161 return; /* show nothing */
1163 mpol_to_str(buffer, sizeof(buffer), mpol);
1165 seq_printf(seq, ",mpol=%s", buffer);
1168 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1170 struct mempolicy *mpol = NULL;
1172 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1173 mpol = sbinfo->mpol;
1175 spin_unlock(&sbinfo->stat_lock);
1179 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1180 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1183 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1187 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1189 #define vm_policy vm_private_data
1192 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1193 struct shmem_inode_info *info, pgoff_t index)
1195 /* Create a pseudo vma that just contains the policy */
1197 /* Bias interleave by inode number to distribute better across nodes */
1198 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1200 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1203 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1205 /* Drop reference taken by mpol_shared_policy_lookup() */
1206 mpol_cond_put(vma->vm_policy);
1209 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1210 struct shmem_inode_info *info, pgoff_t index)
1212 struct vm_area_struct pvma;
1215 shmem_pseudo_vma_init(&pvma, info, index);
1216 page = swapin_readahead(swap, gfp, &pvma, 0);
1217 shmem_pseudo_vma_destroy(&pvma);
1222 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1223 struct shmem_inode_info *info, pgoff_t index)
1225 struct vm_area_struct pvma;
1226 struct inode *inode = &info->vfs_inode;
1227 struct address_space *mapping = inode->i_mapping;
1228 pgoff_t idx, hindex = round_down(index, HPAGE_PMD_NR);
1229 void __rcu **results;
1232 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1236 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1237 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1243 shmem_pseudo_vma_init(&pvma, info, hindex);
1244 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1245 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1246 shmem_pseudo_vma_destroy(&pvma);
1248 prep_transhuge_page(page);
1252 static struct page *shmem_alloc_page(gfp_t gfp,
1253 struct shmem_inode_info *info, pgoff_t index)
1255 struct vm_area_struct pvma;
1258 shmem_pseudo_vma_init(&pvma, info, index);
1259 page = alloc_page_vma(gfp, &pvma, 0);
1260 shmem_pseudo_vma_destroy(&pvma);
1265 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1266 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1267 pgoff_t index, bool huge)
1273 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1275 nr = huge ? HPAGE_PMD_NR : 1;
1277 if (shmem_acct_block(info->flags, nr))
1279 if (sbinfo->max_blocks) {
1280 if (percpu_counter_compare(&sbinfo->used_blocks,
1281 sbinfo->max_blocks - nr) > 0)
1283 percpu_counter_add(&sbinfo->used_blocks, nr);
1287 page = shmem_alloc_hugepage(gfp, info, index);
1289 page = shmem_alloc_page(gfp, info, index);
1291 __SetPageLocked(page);
1292 __SetPageSwapBacked(page);
1297 if (sbinfo->max_blocks)
1298 percpu_counter_add(&sbinfo->used_blocks, -nr);
1300 shmem_unacct_blocks(info->flags, nr);
1302 return ERR_PTR(err);
1306 * When a page is moved from swapcache to shmem filecache (either by the
1307 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1308 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1309 * ignorance of the mapping it belongs to. If that mapping has special
1310 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1311 * we may need to copy to a suitable page before moving to filecache.
1313 * In a future release, this may well be extended to respect cpuset and
1314 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1315 * but for now it is a simple matter of zone.
1317 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1319 return page_zonenum(page) > gfp_zone(gfp);
1322 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1323 struct shmem_inode_info *info, pgoff_t index)
1325 struct page *oldpage, *newpage;
1326 struct address_space *swap_mapping;
1331 swap_index = page_private(oldpage);
1332 swap_mapping = page_mapping(oldpage);
1335 * We have arrived here because our zones are constrained, so don't
1336 * limit chance of success by further cpuset and node constraints.
1338 gfp &= ~GFP_CONSTRAINT_MASK;
1339 newpage = shmem_alloc_page(gfp, info, index);
1344 copy_highpage(newpage, oldpage);
1345 flush_dcache_page(newpage);
1347 SetPageUptodate(newpage);
1348 set_page_private(newpage, swap_index);
1349 SetPageSwapCache(newpage);
1352 * Our caller will very soon move newpage out of swapcache, but it's
1353 * a nice clean interface for us to replace oldpage by newpage there.
1355 spin_lock_irq(&swap_mapping->tree_lock);
1356 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1359 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1360 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1362 spin_unlock_irq(&swap_mapping->tree_lock);
1364 if (unlikely(error)) {
1366 * Is this possible? I think not, now that our callers check
1367 * both PageSwapCache and page_private after getting page lock;
1368 * but be defensive. Reverse old to newpage for clear and free.
1372 mem_cgroup_migrate(oldpage, newpage);
1373 lru_cache_add_anon(newpage);
1377 ClearPageSwapCache(oldpage);
1378 set_page_private(oldpage, 0);
1380 unlock_page(oldpage);
1387 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1389 * If we allocate a new one we do not mark it dirty. That's up to the
1390 * vm. If we swap it in we mark it dirty since we also free the swap
1391 * entry since a page cannot live in both the swap and page cache.
1393 * fault_mm and fault_type are only supplied by shmem_fault:
1394 * otherwise they are NULL.
1396 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1397 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1398 struct mm_struct *fault_mm, int *fault_type)
1400 struct address_space *mapping = inode->i_mapping;
1401 struct shmem_inode_info *info;
1402 struct shmem_sb_info *sbinfo;
1403 struct mm_struct *charge_mm;
1404 struct mem_cgroup *memcg;
1407 enum sgp_type sgp_huge = sgp;
1408 pgoff_t hindex = index;
1413 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1415 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1419 page = find_lock_entry(mapping, index);
1420 if (radix_tree_exceptional_entry(page)) {
1421 swap = radix_to_swp_entry(page);
1425 if (sgp <= SGP_CACHE &&
1426 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1431 if (page && sgp == SGP_WRITE)
1432 mark_page_accessed(page);
1434 /* fallocated page? */
1435 if (page && !PageUptodate(page)) {
1436 if (sgp != SGP_READ)
1442 if (page || (sgp == SGP_READ && !swap.val)) {
1448 * Fast cache lookup did not find it:
1449 * bring it back from swap or allocate.
1451 info = SHMEM_I(inode);
1452 sbinfo = SHMEM_SB(inode->i_sb);
1453 charge_mm = fault_mm ? : current->mm;
1456 /* Look it up and read it in.. */
1457 page = lookup_swap_cache(swap);
1459 /* Or update major stats only when swapin succeeds?? */
1461 *fault_type |= VM_FAULT_MAJOR;
1462 count_vm_event(PGMAJFAULT);
1463 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1465 /* Here we actually start the io */
1466 page = shmem_swapin(swap, gfp, info, index);
1473 /* We have to do this with page locked to prevent races */
1475 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1476 !shmem_confirm_swap(mapping, index, swap)) {
1477 error = -EEXIST; /* try again */
1480 if (!PageUptodate(page)) {
1484 wait_on_page_writeback(page);
1486 if (shmem_should_replace_page(page, gfp)) {
1487 error = shmem_replace_page(&page, gfp, info, index);
1492 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1495 error = shmem_add_to_page_cache(page, mapping, index,
1496 swp_to_radix_entry(swap));
1498 * We already confirmed swap under page lock, and make
1499 * no memory allocation here, so usually no possibility
1500 * of error; but free_swap_and_cache() only trylocks a
1501 * page, so it is just possible that the entry has been
1502 * truncated or holepunched since swap was confirmed.
1503 * shmem_undo_range() will have done some of the
1504 * unaccounting, now delete_from_swap_cache() will do
1506 * Reset swap.val? No, leave it so "failed" goes back to
1507 * "repeat": reading a hole and writing should succeed.
1510 mem_cgroup_cancel_charge(page, memcg, false);
1511 delete_from_swap_cache(page);
1517 mem_cgroup_commit_charge(page, memcg, true, false);
1519 spin_lock_irq(&info->lock);
1521 shmem_recalc_inode(inode);
1522 spin_unlock_irq(&info->lock);
1524 if (sgp == SGP_WRITE)
1525 mark_page_accessed(page);
1527 delete_from_swap_cache(page);
1528 set_page_dirty(page);
1532 /* shmem_symlink() */
1533 if (mapping->a_ops != &shmem_aops)
1535 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1537 if (shmem_huge == SHMEM_HUGE_FORCE)
1539 switch (sbinfo->huge) {
1542 case SHMEM_HUGE_NEVER:
1544 case SHMEM_HUGE_WITHIN_SIZE:
1545 off = round_up(index, HPAGE_PMD_NR);
1546 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1547 if (i_size >= HPAGE_PMD_SIZE &&
1548 i_size >> PAGE_SHIFT >= off)
1551 case SHMEM_HUGE_ADVISE:
1552 if (sgp_huge == SGP_HUGE)
1554 /* TODO: implement fadvise() hints */
1559 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1562 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1566 error = PTR_ERR(page);
1571 if (PageTransHuge(page))
1572 hindex = round_down(index, HPAGE_PMD_NR);
1576 if (sgp == SGP_WRITE)
1577 __SetPageReferenced(page);
1579 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1580 PageTransHuge(page));
1583 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1584 compound_order(page));
1586 error = shmem_add_to_page_cache(page, mapping, hindex,
1588 radix_tree_preload_end();
1591 mem_cgroup_cancel_charge(page, memcg,
1592 PageTransHuge(page));
1595 mem_cgroup_commit_charge(page, memcg, false,
1596 PageTransHuge(page));
1597 lru_cache_add_anon(page);
1599 spin_lock_irq(&info->lock);
1600 info->alloced += 1 << compound_order(page);
1601 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1602 shmem_recalc_inode(inode);
1603 spin_unlock_irq(&info->lock);
1607 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1609 if (sgp == SGP_FALLOC)
1613 * Let SGP_WRITE caller clear ends if write does not fill page;
1614 * but SGP_FALLOC on a page fallocated earlier must initialize
1615 * it now, lest undo on failure cancel our earlier guarantee.
1617 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1618 struct page *head = compound_head(page);
1621 for (i = 0; i < (1 << compound_order(head)); i++) {
1622 clear_highpage(head + i);
1623 flush_dcache_page(head + i);
1625 SetPageUptodate(head);
1629 /* Perhaps the file has been truncated since we checked */
1630 if (sgp <= SGP_CACHE &&
1631 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1633 ClearPageDirty(page);
1634 delete_from_page_cache(page);
1635 spin_lock_irq(&info->lock);
1636 shmem_recalc_inode(inode);
1637 spin_unlock_irq(&info->lock);
1642 *pagep = page + index - hindex;
1649 if (sbinfo->max_blocks)
1650 percpu_counter_sub(&sbinfo->used_blocks,
1651 1 << compound_order(page));
1652 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1654 if (PageTransHuge(page)) {
1660 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1667 if (error == -ENOSPC && !once++) {
1668 info = SHMEM_I(inode);
1669 spin_lock_irq(&info->lock);
1670 shmem_recalc_inode(inode);
1671 spin_unlock_irq(&info->lock);
1674 if (error == -EEXIST) /* from above or from radix_tree_insert */
1679 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1681 struct inode *inode = file_inode(vma->vm_file);
1682 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1685 int ret = VM_FAULT_LOCKED;
1688 * Trinity finds that probing a hole which tmpfs is punching can
1689 * prevent the hole-punch from ever completing: which in turn
1690 * locks writers out with its hold on i_mutex. So refrain from
1691 * faulting pages into the hole while it's being punched. Although
1692 * shmem_undo_range() does remove the additions, it may be unable to
1693 * keep up, as each new page needs its own unmap_mapping_range() call,
1694 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1696 * It does not matter if we sometimes reach this check just before the
1697 * hole-punch begins, so that one fault then races with the punch:
1698 * we just need to make racing faults a rare case.
1700 * The implementation below would be much simpler if we just used a
1701 * standard mutex or completion: but we cannot take i_mutex in fault,
1702 * and bloating every shmem inode for this unlikely case would be sad.
1704 if (unlikely(inode->i_private)) {
1705 struct shmem_falloc *shmem_falloc;
1707 spin_lock(&inode->i_lock);
1708 shmem_falloc = inode->i_private;
1710 shmem_falloc->waitq &&
1711 vmf->pgoff >= shmem_falloc->start &&
1712 vmf->pgoff < shmem_falloc->next) {
1713 wait_queue_head_t *shmem_falloc_waitq;
1714 DEFINE_WAIT(shmem_fault_wait);
1716 ret = VM_FAULT_NOPAGE;
1717 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1718 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1719 /* It's polite to up mmap_sem if we can */
1720 up_read(&vma->vm_mm->mmap_sem);
1721 ret = VM_FAULT_RETRY;
1724 shmem_falloc_waitq = shmem_falloc->waitq;
1725 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1726 TASK_UNINTERRUPTIBLE);
1727 spin_unlock(&inode->i_lock);
1731 * shmem_falloc_waitq points into the shmem_fallocate()
1732 * stack of the hole-punching task: shmem_falloc_waitq
1733 * is usually invalid by the time we reach here, but
1734 * finish_wait() does not dereference it in that case;
1735 * though i_lock needed lest racing with wake_up_all().
1737 spin_lock(&inode->i_lock);
1738 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1739 spin_unlock(&inode->i_lock);
1742 spin_unlock(&inode->i_lock);
1746 if (vma->vm_flags & VM_HUGEPAGE)
1748 else if (vma->vm_flags & VM_NOHUGEPAGE)
1751 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1752 gfp, vma->vm_mm, &ret);
1754 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1758 unsigned long shmem_get_unmapped_area(struct file *file,
1759 unsigned long uaddr, unsigned long len,
1760 unsigned long pgoff, unsigned long flags)
1762 unsigned long (*get_area)(struct file *,
1763 unsigned long, unsigned long, unsigned long, unsigned long);
1765 unsigned long offset;
1766 unsigned long inflated_len;
1767 unsigned long inflated_addr;
1768 unsigned long inflated_offset;
1770 if (len > TASK_SIZE)
1773 get_area = current->mm->get_unmapped_area;
1774 addr = get_area(file, uaddr, len, pgoff, flags);
1776 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1778 if (IS_ERR_VALUE(addr))
1780 if (addr & ~PAGE_MASK)
1782 if (addr > TASK_SIZE - len)
1785 if (shmem_huge == SHMEM_HUGE_DENY)
1787 if (len < HPAGE_PMD_SIZE)
1789 if (flags & MAP_FIXED)
1792 * Our priority is to support MAP_SHARED mapped hugely;
1793 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1794 * But if caller specified an address hint, respect that as before.
1799 if (shmem_huge != SHMEM_HUGE_FORCE) {
1800 struct super_block *sb;
1803 VM_BUG_ON(file->f_op != &shmem_file_operations);
1804 sb = file_inode(file)->i_sb;
1807 * Called directly from mm/mmap.c, or drivers/char/mem.c
1808 * for "/dev/zero", to create a shared anonymous object.
1810 if (IS_ERR(shm_mnt))
1812 sb = shm_mnt->mnt_sb;
1814 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1818 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1819 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1821 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1824 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1825 if (inflated_len > TASK_SIZE)
1827 if (inflated_len < len)
1830 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1831 if (IS_ERR_VALUE(inflated_addr))
1833 if (inflated_addr & ~PAGE_MASK)
1836 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
1837 inflated_addr += offset - inflated_offset;
1838 if (inflated_offset > offset)
1839 inflated_addr += HPAGE_PMD_SIZE;
1841 if (inflated_addr > TASK_SIZE - len)
1843 return inflated_addr;
1847 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1849 struct inode *inode = file_inode(vma->vm_file);
1850 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1853 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1856 struct inode *inode = file_inode(vma->vm_file);
1859 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1860 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1864 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1866 struct inode *inode = file_inode(file);
1867 struct shmem_inode_info *info = SHMEM_I(inode);
1868 int retval = -ENOMEM;
1870 spin_lock_irq(&info->lock);
1871 if (lock && !(info->flags & VM_LOCKED)) {
1872 if (!user_shm_lock(inode->i_size, user))
1874 info->flags |= VM_LOCKED;
1875 mapping_set_unevictable(file->f_mapping);
1877 if (!lock && (info->flags & VM_LOCKED) && user) {
1878 user_shm_unlock(inode->i_size, user);
1879 info->flags &= ~VM_LOCKED;
1880 mapping_clear_unevictable(file->f_mapping);
1885 spin_unlock_irq(&info->lock);
1889 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1891 file_accessed(file);
1892 vma->vm_ops = &shmem_vm_ops;
1893 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1894 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
1895 (vma->vm_end & HPAGE_PMD_MASK)) {
1896 khugepaged_enter(vma, vma->vm_flags);
1901 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1902 umode_t mode, dev_t dev, unsigned long flags)
1904 struct inode *inode;
1905 struct shmem_inode_info *info;
1906 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1908 if (shmem_reserve_inode(sb))
1911 inode = new_inode(sb);
1913 inode->i_ino = get_next_ino();
1914 inode_init_owner(inode, dir, mode);
1915 inode->i_blocks = 0;
1916 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1917 inode->i_generation = get_seconds();
1918 info = SHMEM_I(inode);
1919 memset(info, 0, (char *)inode - (char *)info);
1920 spin_lock_init(&info->lock);
1921 info->seals = F_SEAL_SEAL;
1922 info->flags = flags & VM_NORESERVE;
1923 INIT_LIST_HEAD(&info->swaplist);
1924 simple_xattrs_init(&info->xattrs);
1925 cache_no_acl(inode);
1927 switch (mode & S_IFMT) {
1929 inode->i_op = &shmem_special_inode_operations;
1930 init_special_inode(inode, mode, dev);
1933 inode->i_mapping->a_ops = &shmem_aops;
1934 inode->i_op = &shmem_inode_operations;
1935 inode->i_fop = &shmem_file_operations;
1936 mpol_shared_policy_init(&info->policy,
1937 shmem_get_sbmpol(sbinfo));
1941 /* Some things misbehave if size == 0 on a directory */
1942 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1943 inode->i_op = &shmem_dir_inode_operations;
1944 inode->i_fop = &simple_dir_operations;
1948 * Must not load anything in the rbtree,
1949 * mpol_free_shared_policy will not be called.
1951 mpol_shared_policy_init(&info->policy, NULL);
1955 shmem_free_inode(sb);
1959 bool shmem_mapping(struct address_space *mapping)
1964 return mapping->host->i_sb->s_op == &shmem_ops;
1968 static const struct inode_operations shmem_symlink_inode_operations;
1969 static const struct inode_operations shmem_short_symlink_operations;
1971 #ifdef CONFIG_TMPFS_XATTR
1972 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1974 #define shmem_initxattrs NULL
1978 shmem_write_begin(struct file *file, struct address_space *mapping,
1979 loff_t pos, unsigned len, unsigned flags,
1980 struct page **pagep, void **fsdata)
1982 struct inode *inode = mapping->host;
1983 struct shmem_inode_info *info = SHMEM_I(inode);
1984 pgoff_t index = pos >> PAGE_SHIFT;
1986 /* i_mutex is held by caller */
1987 if (unlikely(info->seals)) {
1988 if (info->seals & F_SEAL_WRITE)
1990 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1994 return shmem_getpage(inode, index, pagep, SGP_WRITE);
1998 shmem_write_end(struct file *file, struct address_space *mapping,
1999 loff_t pos, unsigned len, unsigned copied,
2000 struct page *page, void *fsdata)
2002 struct inode *inode = mapping->host;
2004 if (pos + copied > inode->i_size)
2005 i_size_write(inode, pos + copied);
2007 if (!PageUptodate(page)) {
2008 struct page *head = compound_head(page);
2009 if (PageTransCompound(page)) {
2012 for (i = 0; i < HPAGE_PMD_NR; i++) {
2013 if (head + i == page)
2015 clear_highpage(head + i);
2016 flush_dcache_page(head + i);
2019 if (copied < PAGE_SIZE) {
2020 unsigned from = pos & (PAGE_SIZE - 1);
2021 zero_user_segments(page, 0, from,
2022 from + copied, PAGE_SIZE);
2024 SetPageUptodate(head);
2026 set_page_dirty(page);
2033 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2035 struct file *file = iocb->ki_filp;
2036 struct inode *inode = file_inode(file);
2037 struct address_space *mapping = inode->i_mapping;
2039 unsigned long offset;
2040 enum sgp_type sgp = SGP_READ;
2043 loff_t *ppos = &iocb->ki_pos;
2046 * Might this read be for a stacking filesystem? Then when reading
2047 * holes of a sparse file, we actually need to allocate those pages,
2048 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2050 if (!iter_is_iovec(to))
2053 index = *ppos >> PAGE_SHIFT;
2054 offset = *ppos & ~PAGE_MASK;
2057 struct page *page = NULL;
2059 unsigned long nr, ret;
2060 loff_t i_size = i_size_read(inode);
2062 end_index = i_size >> PAGE_SHIFT;
2063 if (index > end_index)
2065 if (index == end_index) {
2066 nr = i_size & ~PAGE_MASK;
2071 error = shmem_getpage(inode, index, &page, sgp);
2073 if (error == -EINVAL)
2078 if (sgp == SGP_CACHE)
2079 set_page_dirty(page);
2084 * We must evaluate after, since reads (unlike writes)
2085 * are called without i_mutex protection against truncate
2088 i_size = i_size_read(inode);
2089 end_index = i_size >> PAGE_SHIFT;
2090 if (index == end_index) {
2091 nr = i_size & ~PAGE_MASK;
2102 * If users can be writing to this page using arbitrary
2103 * virtual addresses, take care about potential aliasing
2104 * before reading the page on the kernel side.
2106 if (mapping_writably_mapped(mapping))
2107 flush_dcache_page(page);
2109 * Mark the page accessed if we read the beginning.
2112 mark_page_accessed(page);
2114 page = ZERO_PAGE(0);
2119 * Ok, we have the page, and it's up-to-date, so
2120 * now we can copy it to user space...
2122 ret = copy_page_to_iter(page, offset, nr, to);
2125 index += offset >> PAGE_SHIFT;
2126 offset &= ~PAGE_MASK;
2129 if (!iov_iter_count(to))
2138 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2139 file_accessed(file);
2140 return retval ? retval : error;
2143 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2144 struct pipe_inode_info *pipe, size_t len,
2147 struct address_space *mapping = in->f_mapping;
2148 struct inode *inode = mapping->host;
2149 unsigned int loff, nr_pages, req_pages;
2150 struct page *pages[PIPE_DEF_BUFFERS];
2151 struct partial_page partial[PIPE_DEF_BUFFERS];
2153 pgoff_t index, end_index;
2156 struct splice_pipe_desc spd = {
2159 .nr_pages_max = PIPE_DEF_BUFFERS,
2161 .ops = &page_cache_pipe_buf_ops,
2162 .spd_release = spd_release_page,
2165 isize = i_size_read(inode);
2166 if (unlikely(*ppos >= isize))
2169 left = isize - *ppos;
2170 if (unlikely(left < len))
2173 if (splice_grow_spd(pipe, &spd))
2176 index = *ppos >> PAGE_SHIFT;
2177 loff = *ppos & ~PAGE_MASK;
2178 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2179 nr_pages = min(req_pages, spd.nr_pages_max);
2181 spd.nr_pages = find_get_pages_contig(mapping, index,
2182 nr_pages, spd.pages);
2183 index += spd.nr_pages;
2186 while (spd.nr_pages < nr_pages) {
2187 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2191 spd.pages[spd.nr_pages++] = page;
2195 index = *ppos >> PAGE_SHIFT;
2196 nr_pages = spd.nr_pages;
2199 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2200 unsigned int this_len;
2205 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2206 page = spd.pages[page_nr];
2208 if (!PageUptodate(page) || page->mapping != mapping) {
2209 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2213 put_page(spd.pages[page_nr]);
2214 spd.pages[page_nr] = page;
2217 isize = i_size_read(inode);
2218 end_index = (isize - 1) >> PAGE_SHIFT;
2219 if (unlikely(!isize || index > end_index))
2222 if (end_index == index) {
2225 plen = ((isize - 1) & ~PAGE_MASK) + 1;
2229 this_len = min(this_len, plen - loff);
2233 spd.partial[page_nr].offset = loff;
2234 spd.partial[page_nr].len = this_len;
2241 while (page_nr < nr_pages)
2242 put_page(spd.pages[page_nr++]);
2245 error = splice_to_pipe(pipe, &spd);
2247 splice_shrink_spd(&spd);
2257 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2259 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2260 pgoff_t index, pgoff_t end, int whence)
2263 struct pagevec pvec;
2264 pgoff_t indices[PAGEVEC_SIZE];
2268 pagevec_init(&pvec, 0);
2269 pvec.nr = 1; /* start small: we may be there already */
2271 pvec.nr = find_get_entries(mapping, index,
2272 pvec.nr, pvec.pages, indices);
2274 if (whence == SEEK_DATA)
2278 for (i = 0; i < pvec.nr; i++, index++) {
2279 if (index < indices[i]) {
2280 if (whence == SEEK_HOLE) {
2286 page = pvec.pages[i];
2287 if (page && !radix_tree_exceptional_entry(page)) {
2288 if (!PageUptodate(page))
2292 (page && whence == SEEK_DATA) ||
2293 (!page && whence == SEEK_HOLE)) {
2298 pagevec_remove_exceptionals(&pvec);
2299 pagevec_release(&pvec);
2300 pvec.nr = PAGEVEC_SIZE;
2306 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2308 struct address_space *mapping = file->f_mapping;
2309 struct inode *inode = mapping->host;
2313 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2314 return generic_file_llseek_size(file, offset, whence,
2315 MAX_LFS_FILESIZE, i_size_read(inode));
2317 /* We're holding i_mutex so we can access i_size directly */
2321 else if (offset >= inode->i_size)
2324 start = offset >> PAGE_SHIFT;
2325 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2326 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2327 new_offset <<= PAGE_SHIFT;
2328 if (new_offset > offset) {
2329 if (new_offset < inode->i_size)
2330 offset = new_offset;
2331 else if (whence == SEEK_DATA)
2334 offset = inode->i_size;
2339 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2340 inode_unlock(inode);
2345 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2346 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2348 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2349 #define LAST_SCAN 4 /* about 150ms max */
2351 static void shmem_tag_pins(struct address_space *mapping)
2353 struct radix_tree_iter iter;
2362 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2363 page = radix_tree_deref_slot(slot);
2364 if (!page || radix_tree_exception(page)) {
2365 if (radix_tree_deref_retry(page)) {
2366 slot = radix_tree_iter_retry(&iter);
2369 } else if (page_count(page) - page_mapcount(page) > 1) {
2370 spin_lock_irq(&mapping->tree_lock);
2371 radix_tree_tag_set(&mapping->page_tree, iter.index,
2373 spin_unlock_irq(&mapping->tree_lock);
2376 if (need_resched()) {
2378 slot = radix_tree_iter_next(&iter);
2385 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2386 * via get_user_pages(), drivers might have some pending I/O without any active
2387 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2388 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2389 * them to be dropped.
2390 * The caller must guarantee that no new user will acquire writable references
2391 * to those pages to avoid races.
2393 static int shmem_wait_for_pins(struct address_space *mapping)
2395 struct radix_tree_iter iter;
2401 shmem_tag_pins(mapping);
2404 for (scan = 0; scan <= LAST_SCAN; scan++) {
2405 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2409 lru_add_drain_all();
2410 else if (schedule_timeout_killable((HZ << scan) / 200))
2415 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2416 start, SHMEM_TAG_PINNED) {
2418 page = radix_tree_deref_slot(slot);
2419 if (radix_tree_exception(page)) {
2420 if (radix_tree_deref_retry(page)) {
2421 slot = radix_tree_iter_retry(&iter);
2429 page_count(page) - page_mapcount(page) != 1) {
2430 if (scan < LAST_SCAN)
2431 goto continue_resched;
2434 * On the last scan, we clean up all those tags
2435 * we inserted; but make a note that we still
2436 * found pages pinned.
2441 spin_lock_irq(&mapping->tree_lock);
2442 radix_tree_tag_clear(&mapping->page_tree,
2443 iter.index, SHMEM_TAG_PINNED);
2444 spin_unlock_irq(&mapping->tree_lock);
2446 if (need_resched()) {
2448 slot = radix_tree_iter_next(&iter);
2457 #define F_ALL_SEALS (F_SEAL_SEAL | \
2462 int shmem_add_seals(struct file *file, unsigned int seals)
2464 struct inode *inode = file_inode(file);
2465 struct shmem_inode_info *info = SHMEM_I(inode);
2470 * Sealing allows multiple parties to share a shmem-file but restrict
2471 * access to a specific subset of file operations. Seals can only be
2472 * added, but never removed. This way, mutually untrusted parties can
2473 * share common memory regions with a well-defined policy. A malicious
2474 * peer can thus never perform unwanted operations on a shared object.
2476 * Seals are only supported on special shmem-files and always affect
2477 * the whole underlying inode. Once a seal is set, it may prevent some
2478 * kinds of access to the file. Currently, the following seals are
2480 * SEAL_SEAL: Prevent further seals from being set on this file
2481 * SEAL_SHRINK: Prevent the file from shrinking
2482 * SEAL_GROW: Prevent the file from growing
2483 * SEAL_WRITE: Prevent write access to the file
2485 * As we don't require any trust relationship between two parties, we
2486 * must prevent seals from being removed. Therefore, sealing a file
2487 * only adds a given set of seals to the file, it never touches
2488 * existing seals. Furthermore, the "setting seals"-operation can be
2489 * sealed itself, which basically prevents any further seal from being
2492 * Semantics of sealing are only defined on volatile files. Only
2493 * anonymous shmem files support sealing. More importantly, seals are
2494 * never written to disk. Therefore, there's no plan to support it on
2498 if (file->f_op != &shmem_file_operations)
2500 if (!(file->f_mode & FMODE_WRITE))
2502 if (seals & ~(unsigned int)F_ALL_SEALS)
2507 if (info->seals & F_SEAL_SEAL) {
2512 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2513 error = mapping_deny_writable(file->f_mapping);
2517 error = shmem_wait_for_pins(file->f_mapping);
2519 mapping_allow_writable(file->f_mapping);
2524 info->seals |= seals;
2528 inode_unlock(inode);
2531 EXPORT_SYMBOL_GPL(shmem_add_seals);
2533 int shmem_get_seals(struct file *file)
2535 if (file->f_op != &shmem_file_operations)
2538 return SHMEM_I(file_inode(file))->seals;
2540 EXPORT_SYMBOL_GPL(shmem_get_seals);
2542 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2548 /* disallow upper 32bit */
2552 error = shmem_add_seals(file, arg);
2555 error = shmem_get_seals(file);
2565 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2568 struct inode *inode = file_inode(file);
2569 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2570 struct shmem_inode_info *info = SHMEM_I(inode);
2571 struct shmem_falloc shmem_falloc;
2572 pgoff_t start, index, end;
2575 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2580 if (mode & FALLOC_FL_PUNCH_HOLE) {
2581 struct address_space *mapping = file->f_mapping;
2582 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2583 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2584 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2586 /* protected by i_mutex */
2587 if (info->seals & F_SEAL_WRITE) {
2592 shmem_falloc.waitq = &shmem_falloc_waitq;
2593 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2594 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2595 spin_lock(&inode->i_lock);
2596 inode->i_private = &shmem_falloc;
2597 spin_unlock(&inode->i_lock);
2599 if ((u64)unmap_end > (u64)unmap_start)
2600 unmap_mapping_range(mapping, unmap_start,
2601 1 + unmap_end - unmap_start, 0);
2602 shmem_truncate_range(inode, offset, offset + len - 1);
2603 /* No need to unmap again: hole-punching leaves COWed pages */
2605 spin_lock(&inode->i_lock);
2606 inode->i_private = NULL;
2607 wake_up_all(&shmem_falloc_waitq);
2608 spin_unlock(&inode->i_lock);
2613 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2614 error = inode_newsize_ok(inode, offset + len);
2618 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2623 start = offset >> PAGE_SHIFT;
2624 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2625 /* Try to avoid a swapstorm if len is impossible to satisfy */
2626 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2631 shmem_falloc.waitq = NULL;
2632 shmem_falloc.start = start;
2633 shmem_falloc.next = start;
2634 shmem_falloc.nr_falloced = 0;
2635 shmem_falloc.nr_unswapped = 0;
2636 spin_lock(&inode->i_lock);
2637 inode->i_private = &shmem_falloc;
2638 spin_unlock(&inode->i_lock);
2640 for (index = start; index < end; index++) {
2644 * Good, the fallocate(2) manpage permits EINTR: we may have
2645 * been interrupted because we are using up too much memory.
2647 if (signal_pending(current))
2649 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2652 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2654 /* Remove the !PageUptodate pages we added */
2655 if (index > start) {
2656 shmem_undo_range(inode,
2657 (loff_t)start << PAGE_SHIFT,
2658 ((loff_t)index << PAGE_SHIFT) - 1, true);
2664 * Inform shmem_writepage() how far we have reached.
2665 * No need for lock or barrier: we have the page lock.
2667 shmem_falloc.next++;
2668 if (!PageUptodate(page))
2669 shmem_falloc.nr_falloced++;
2672 * If !PageUptodate, leave it that way so that freeable pages
2673 * can be recognized if we need to rollback on error later.
2674 * But set_page_dirty so that memory pressure will swap rather
2675 * than free the pages we are allocating (and SGP_CACHE pages
2676 * might still be clean: we now need to mark those dirty too).
2678 set_page_dirty(page);
2684 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2685 i_size_write(inode, offset + len);
2686 inode->i_ctime = CURRENT_TIME;
2688 spin_lock(&inode->i_lock);
2689 inode->i_private = NULL;
2690 spin_unlock(&inode->i_lock);
2692 inode_unlock(inode);
2696 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2698 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2700 buf->f_type = TMPFS_MAGIC;
2701 buf->f_bsize = PAGE_SIZE;
2702 buf->f_namelen = NAME_MAX;
2703 if (sbinfo->max_blocks) {
2704 buf->f_blocks = sbinfo->max_blocks;
2706 buf->f_bfree = sbinfo->max_blocks -
2707 percpu_counter_sum(&sbinfo->used_blocks);
2709 if (sbinfo->max_inodes) {
2710 buf->f_files = sbinfo->max_inodes;
2711 buf->f_ffree = sbinfo->free_inodes;
2713 /* else leave those fields 0 like simple_statfs */
2718 * File creation. Allocate an inode, and we're done..
2721 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2723 struct inode *inode;
2724 int error = -ENOSPC;
2726 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2728 error = simple_acl_create(dir, inode);
2731 error = security_inode_init_security(inode, dir,
2733 shmem_initxattrs, NULL);
2734 if (error && error != -EOPNOTSUPP)
2738 dir->i_size += BOGO_DIRENT_SIZE;
2739 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2740 d_instantiate(dentry, inode);
2741 dget(dentry); /* Extra count - pin the dentry in core */
2750 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2752 struct inode *inode;
2753 int error = -ENOSPC;
2755 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2757 error = security_inode_init_security(inode, dir,
2759 shmem_initxattrs, NULL);
2760 if (error && error != -EOPNOTSUPP)
2762 error = simple_acl_create(dir, inode);
2765 d_tmpfile(dentry, inode);
2773 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2777 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2783 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2786 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2792 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2794 struct inode *inode = d_inode(old_dentry);
2798 * No ordinary (disk based) filesystem counts links as inodes;
2799 * but each new link needs a new dentry, pinning lowmem, and
2800 * tmpfs dentries cannot be pruned until they are unlinked.
2802 ret = shmem_reserve_inode(inode->i_sb);
2806 dir->i_size += BOGO_DIRENT_SIZE;
2807 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2809 ihold(inode); /* New dentry reference */
2810 dget(dentry); /* Extra pinning count for the created dentry */
2811 d_instantiate(dentry, inode);
2816 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2818 struct inode *inode = d_inode(dentry);
2820 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2821 shmem_free_inode(inode->i_sb);
2823 dir->i_size -= BOGO_DIRENT_SIZE;
2824 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2826 dput(dentry); /* Undo the count from "create" - this does all the work */
2830 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2832 if (!simple_empty(dentry))
2835 drop_nlink(d_inode(dentry));
2837 return shmem_unlink(dir, dentry);
2840 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2842 bool old_is_dir = d_is_dir(old_dentry);
2843 bool new_is_dir = d_is_dir(new_dentry);
2845 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2847 drop_nlink(old_dir);
2850 drop_nlink(new_dir);
2854 old_dir->i_ctime = old_dir->i_mtime =
2855 new_dir->i_ctime = new_dir->i_mtime =
2856 d_inode(old_dentry)->i_ctime =
2857 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2862 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2864 struct dentry *whiteout;
2867 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2871 error = shmem_mknod(old_dir, whiteout,
2872 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2878 * Cheat and hash the whiteout while the old dentry is still in
2879 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2881 * d_lookup() will consistently find one of them at this point,
2882 * not sure which one, but that isn't even important.
2889 * The VFS layer already does all the dentry stuff for rename,
2890 * we just have to decrement the usage count for the target if
2891 * it exists so that the VFS layer correctly free's it when it
2894 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2896 struct inode *inode = d_inode(old_dentry);
2897 int they_are_dirs = S_ISDIR(inode->i_mode);
2899 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2902 if (flags & RENAME_EXCHANGE)
2903 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2905 if (!simple_empty(new_dentry))
2908 if (flags & RENAME_WHITEOUT) {
2911 error = shmem_whiteout(old_dir, old_dentry);
2916 if (d_really_is_positive(new_dentry)) {
2917 (void) shmem_unlink(new_dir, new_dentry);
2918 if (they_are_dirs) {
2919 drop_nlink(d_inode(new_dentry));
2920 drop_nlink(old_dir);
2922 } else if (they_are_dirs) {
2923 drop_nlink(old_dir);
2927 old_dir->i_size -= BOGO_DIRENT_SIZE;
2928 new_dir->i_size += BOGO_DIRENT_SIZE;
2929 old_dir->i_ctime = old_dir->i_mtime =
2930 new_dir->i_ctime = new_dir->i_mtime =
2931 inode->i_ctime = CURRENT_TIME;
2935 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2939 struct inode *inode;
2941 struct shmem_inode_info *info;
2943 len = strlen(symname) + 1;
2944 if (len > PAGE_SIZE)
2945 return -ENAMETOOLONG;
2947 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2951 error = security_inode_init_security(inode, dir, &dentry->d_name,
2952 shmem_initxattrs, NULL);
2954 if (error != -EOPNOTSUPP) {
2961 info = SHMEM_I(inode);
2962 inode->i_size = len-1;
2963 if (len <= SHORT_SYMLINK_LEN) {
2964 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2965 if (!inode->i_link) {
2969 inode->i_op = &shmem_short_symlink_operations;
2971 inode_nohighmem(inode);
2972 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2977 inode->i_mapping->a_ops = &shmem_aops;
2978 inode->i_op = &shmem_symlink_inode_operations;
2979 memcpy(page_address(page), symname, len);
2980 SetPageUptodate(page);
2981 set_page_dirty(page);
2985 dir->i_size += BOGO_DIRENT_SIZE;
2986 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2987 d_instantiate(dentry, inode);
2992 static void shmem_put_link(void *arg)
2994 mark_page_accessed(arg);
2998 static const char *shmem_get_link(struct dentry *dentry,
2999 struct inode *inode,
3000 struct delayed_call *done)
3002 struct page *page = NULL;
3005 page = find_get_page(inode->i_mapping, 0);
3007 return ERR_PTR(-ECHILD);
3008 if (!PageUptodate(page)) {
3010 return ERR_PTR(-ECHILD);
3013 error = shmem_getpage(inode, 0, &page, SGP_READ);
3015 return ERR_PTR(error);
3018 set_delayed_call(done, shmem_put_link, page);
3019 return page_address(page);
3022 #ifdef CONFIG_TMPFS_XATTR
3024 * Superblocks without xattr inode operations may get some security.* xattr
3025 * support from the LSM "for free". As soon as we have any other xattrs
3026 * like ACLs, we also need to implement the security.* handlers at
3027 * filesystem level, though.
3031 * Callback for security_inode_init_security() for acquiring xattrs.
3033 static int shmem_initxattrs(struct inode *inode,
3034 const struct xattr *xattr_array,
3037 struct shmem_inode_info *info = SHMEM_I(inode);
3038 const struct xattr *xattr;
3039 struct simple_xattr *new_xattr;
3042 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3043 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3047 len = strlen(xattr->name) + 1;
3048 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3050 if (!new_xattr->name) {
3055 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3056 XATTR_SECURITY_PREFIX_LEN);
3057 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3060 simple_xattr_list_add(&info->xattrs, new_xattr);
3066 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3067 struct dentry *unused, struct inode *inode,
3068 const char *name, void *buffer, size_t size)
3070 struct shmem_inode_info *info = SHMEM_I(inode);
3072 name = xattr_full_name(handler, name);
3073 return simple_xattr_get(&info->xattrs, name, buffer, size);
3076 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3077 struct dentry *unused, struct inode *inode,
3078 const char *name, const void *value,
3079 size_t size, int flags)
3081 struct shmem_inode_info *info = SHMEM_I(inode);
3083 name = xattr_full_name(handler, name);
3084 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3087 static const struct xattr_handler shmem_security_xattr_handler = {
3088 .prefix = XATTR_SECURITY_PREFIX,
3089 .get = shmem_xattr_handler_get,
3090 .set = shmem_xattr_handler_set,
3093 static const struct xattr_handler shmem_trusted_xattr_handler = {
3094 .prefix = XATTR_TRUSTED_PREFIX,
3095 .get = shmem_xattr_handler_get,
3096 .set = shmem_xattr_handler_set,
3099 static const struct xattr_handler *shmem_xattr_handlers[] = {
3100 #ifdef CONFIG_TMPFS_POSIX_ACL
3101 &posix_acl_access_xattr_handler,
3102 &posix_acl_default_xattr_handler,
3104 &shmem_security_xattr_handler,
3105 &shmem_trusted_xattr_handler,
3109 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3111 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3112 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3114 #endif /* CONFIG_TMPFS_XATTR */
3116 static const struct inode_operations shmem_short_symlink_operations = {
3117 .readlink = generic_readlink,
3118 .get_link = simple_get_link,
3119 #ifdef CONFIG_TMPFS_XATTR
3120 .setxattr = generic_setxattr,
3121 .getxattr = generic_getxattr,
3122 .listxattr = shmem_listxattr,
3123 .removexattr = generic_removexattr,
3127 static const struct inode_operations shmem_symlink_inode_operations = {
3128 .readlink = generic_readlink,
3129 .get_link = shmem_get_link,
3130 #ifdef CONFIG_TMPFS_XATTR
3131 .setxattr = generic_setxattr,
3132 .getxattr = generic_getxattr,
3133 .listxattr = shmem_listxattr,
3134 .removexattr = generic_removexattr,
3138 static struct dentry *shmem_get_parent(struct dentry *child)
3140 return ERR_PTR(-ESTALE);
3143 static int shmem_match(struct inode *ino, void *vfh)
3147 inum = (inum << 32) | fh[1];
3148 return ino->i_ino == inum && fh[0] == ino->i_generation;
3151 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3152 struct fid *fid, int fh_len, int fh_type)
3154 struct inode *inode;
3155 struct dentry *dentry = NULL;
3162 inum = (inum << 32) | fid->raw[1];
3164 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3165 shmem_match, fid->raw);
3167 dentry = d_find_alias(inode);
3174 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3175 struct inode *parent)
3179 return FILEID_INVALID;
3182 if (inode_unhashed(inode)) {
3183 /* Unfortunately insert_inode_hash is not idempotent,
3184 * so as we hash inodes here rather than at creation
3185 * time, we need a lock to ensure we only try
3188 static DEFINE_SPINLOCK(lock);
3190 if (inode_unhashed(inode))
3191 __insert_inode_hash(inode,
3192 inode->i_ino + inode->i_generation);
3196 fh[0] = inode->i_generation;
3197 fh[1] = inode->i_ino;
3198 fh[2] = ((__u64)inode->i_ino) >> 32;
3204 static const struct export_operations shmem_export_ops = {
3205 .get_parent = shmem_get_parent,
3206 .encode_fh = shmem_encode_fh,
3207 .fh_to_dentry = shmem_fh_to_dentry,
3210 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3213 char *this_char, *value, *rest;
3214 struct mempolicy *mpol = NULL;
3218 while (options != NULL) {
3219 this_char = options;
3222 * NUL-terminate this option: unfortunately,
3223 * mount options form a comma-separated list,
3224 * but mpol's nodelist may also contain commas.
3226 options = strchr(options, ',');
3227 if (options == NULL)
3230 if (!isdigit(*options)) {
3237 if ((value = strchr(this_char,'=')) != NULL) {
3240 pr_err("tmpfs: No value for mount option '%s'\n",
3245 if (!strcmp(this_char,"size")) {
3246 unsigned long long size;
3247 size = memparse(value,&rest);
3249 size <<= PAGE_SHIFT;
3250 size *= totalram_pages;
3256 sbinfo->max_blocks =
3257 DIV_ROUND_UP(size, PAGE_SIZE);
3258 } else if (!strcmp(this_char,"nr_blocks")) {
3259 sbinfo->max_blocks = memparse(value, &rest);
3262 } else if (!strcmp(this_char,"nr_inodes")) {
3263 sbinfo->max_inodes = memparse(value, &rest);
3266 } else if (!strcmp(this_char,"mode")) {
3269 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3272 } else if (!strcmp(this_char,"uid")) {
3275 uid = simple_strtoul(value, &rest, 0);
3278 sbinfo->uid = make_kuid(current_user_ns(), uid);
3279 if (!uid_valid(sbinfo->uid))
3281 } else if (!strcmp(this_char,"gid")) {
3284 gid = simple_strtoul(value, &rest, 0);
3287 sbinfo->gid = make_kgid(current_user_ns(), gid);
3288 if (!gid_valid(sbinfo->gid))
3290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3291 } else if (!strcmp(this_char, "huge")) {
3293 huge = shmem_parse_huge(value);
3296 if (!has_transparent_hugepage() &&
3297 huge != SHMEM_HUGE_NEVER)
3299 sbinfo->huge = huge;
3302 } else if (!strcmp(this_char,"mpol")) {
3305 if (mpol_parse_str(value, &mpol))
3309 pr_err("tmpfs: Bad mount option %s\n", this_char);
3313 sbinfo->mpol = mpol;
3317 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3325 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3327 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3328 struct shmem_sb_info config = *sbinfo;
3329 unsigned long inodes;
3330 int error = -EINVAL;
3333 if (shmem_parse_options(data, &config, true))
3336 spin_lock(&sbinfo->stat_lock);
3337 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3338 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3340 if (config.max_inodes < inodes)
3343 * Those tests disallow limited->unlimited while any are in use;
3344 * but we must separately disallow unlimited->limited, because
3345 * in that case we have no record of how much is already in use.
3347 if (config.max_blocks && !sbinfo->max_blocks)
3349 if (config.max_inodes && !sbinfo->max_inodes)
3353 sbinfo->huge = config.huge;
3354 sbinfo->max_blocks = config.max_blocks;
3355 sbinfo->max_inodes = config.max_inodes;
3356 sbinfo->free_inodes = config.max_inodes - inodes;
3359 * Preserve previous mempolicy unless mpol remount option was specified.
3362 mpol_put(sbinfo->mpol);
3363 sbinfo->mpol = config.mpol; /* transfers initial ref */
3366 spin_unlock(&sbinfo->stat_lock);
3370 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3372 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3374 if (sbinfo->max_blocks != shmem_default_max_blocks())
3375 seq_printf(seq, ",size=%luk",
3376 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3377 if (sbinfo->max_inodes != shmem_default_max_inodes())
3378 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3379 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3380 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3381 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3382 seq_printf(seq, ",uid=%u",
3383 from_kuid_munged(&init_user_ns, sbinfo->uid));
3384 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3385 seq_printf(seq, ",gid=%u",
3386 from_kgid_munged(&init_user_ns, sbinfo->gid));
3387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3388 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3390 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3392 shmem_show_mpol(seq, sbinfo->mpol);
3396 #define MFD_NAME_PREFIX "memfd:"
3397 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3398 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3400 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3402 SYSCALL_DEFINE2(memfd_create,
3403 const char __user *, uname,
3404 unsigned int, flags)
3406 struct shmem_inode_info *info;
3412 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3415 /* length includes terminating zero */
3416 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3419 if (len > MFD_NAME_MAX_LEN + 1)
3422 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3426 strcpy(name, MFD_NAME_PREFIX);
3427 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3432 /* terminating-zero may have changed after strnlen_user() returned */
3433 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3438 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3444 file = shmem_file_setup(name, 0, VM_NORESERVE);
3446 error = PTR_ERR(file);
3449 info = SHMEM_I(file_inode(file));
3450 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3451 file->f_flags |= O_RDWR | O_LARGEFILE;
3452 if (flags & MFD_ALLOW_SEALING)
3453 info->seals &= ~F_SEAL_SEAL;
3455 fd_install(fd, file);
3466 #endif /* CONFIG_TMPFS */
3468 static void shmem_put_super(struct super_block *sb)
3470 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3472 percpu_counter_destroy(&sbinfo->used_blocks);
3473 mpol_put(sbinfo->mpol);
3475 sb->s_fs_info = NULL;
3478 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3480 struct inode *inode;
3481 struct shmem_sb_info *sbinfo;
3484 /* Round up to L1_CACHE_BYTES to resist false sharing */
3485 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3486 L1_CACHE_BYTES), GFP_KERNEL);
3490 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3491 sbinfo->uid = current_fsuid();
3492 sbinfo->gid = current_fsgid();
3493 sb->s_fs_info = sbinfo;
3497 * Per default we only allow half of the physical ram per
3498 * tmpfs instance, limiting inodes to one per page of lowmem;
3499 * but the internal instance is left unlimited.
3501 if (!(sb->s_flags & MS_KERNMOUNT)) {
3502 sbinfo->max_blocks = shmem_default_max_blocks();
3503 sbinfo->max_inodes = shmem_default_max_inodes();
3504 if (shmem_parse_options(data, sbinfo, false)) {
3509 sb->s_flags |= MS_NOUSER;
3511 sb->s_export_op = &shmem_export_ops;
3512 sb->s_flags |= MS_NOSEC;
3514 sb->s_flags |= MS_NOUSER;
3517 spin_lock_init(&sbinfo->stat_lock);
3518 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3520 sbinfo->free_inodes = sbinfo->max_inodes;
3522 sb->s_maxbytes = MAX_LFS_FILESIZE;
3523 sb->s_blocksize = PAGE_SIZE;
3524 sb->s_blocksize_bits = PAGE_SHIFT;
3525 sb->s_magic = TMPFS_MAGIC;
3526 sb->s_op = &shmem_ops;
3527 sb->s_time_gran = 1;
3528 #ifdef CONFIG_TMPFS_XATTR
3529 sb->s_xattr = shmem_xattr_handlers;
3531 #ifdef CONFIG_TMPFS_POSIX_ACL
3532 sb->s_flags |= MS_POSIXACL;
3535 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3538 inode->i_uid = sbinfo->uid;
3539 inode->i_gid = sbinfo->gid;
3540 sb->s_root = d_make_root(inode);
3546 shmem_put_super(sb);
3550 static struct kmem_cache *shmem_inode_cachep;
3552 static struct inode *shmem_alloc_inode(struct super_block *sb)
3554 struct shmem_inode_info *info;
3555 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3558 return &info->vfs_inode;
3561 static void shmem_destroy_callback(struct rcu_head *head)
3563 struct inode *inode = container_of(head, struct inode, i_rcu);
3564 if (S_ISLNK(inode->i_mode))
3565 kfree(inode->i_link);
3566 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3569 static void shmem_destroy_inode(struct inode *inode)
3571 if (S_ISREG(inode->i_mode))
3572 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3573 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3576 static void shmem_init_inode(void *foo)
3578 struct shmem_inode_info *info = foo;
3579 inode_init_once(&info->vfs_inode);
3582 static int shmem_init_inodecache(void)
3584 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3585 sizeof(struct shmem_inode_info),
3586 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3590 static void shmem_destroy_inodecache(void)
3592 kmem_cache_destroy(shmem_inode_cachep);
3595 static const struct address_space_operations shmem_aops = {
3596 .writepage = shmem_writepage,
3597 .set_page_dirty = __set_page_dirty_no_writeback,
3599 .write_begin = shmem_write_begin,
3600 .write_end = shmem_write_end,
3602 #ifdef CONFIG_MIGRATION
3603 .migratepage = migrate_page,
3605 .error_remove_page = generic_error_remove_page,
3608 static const struct file_operations shmem_file_operations = {
3610 .get_unmapped_area = shmem_get_unmapped_area,
3612 .llseek = shmem_file_llseek,
3613 .read_iter = shmem_file_read_iter,
3614 .write_iter = generic_file_write_iter,
3615 .fsync = noop_fsync,
3616 .splice_read = shmem_file_splice_read,
3617 .splice_write = iter_file_splice_write,
3618 .fallocate = shmem_fallocate,
3622 static const struct inode_operations shmem_inode_operations = {
3623 .getattr = shmem_getattr,
3624 .setattr = shmem_setattr,
3625 #ifdef CONFIG_TMPFS_XATTR
3626 .setxattr = generic_setxattr,
3627 .getxattr = generic_getxattr,
3628 .listxattr = shmem_listxattr,
3629 .removexattr = generic_removexattr,
3630 .set_acl = simple_set_acl,
3634 static const struct inode_operations shmem_dir_inode_operations = {
3636 .create = shmem_create,
3637 .lookup = simple_lookup,
3639 .unlink = shmem_unlink,
3640 .symlink = shmem_symlink,
3641 .mkdir = shmem_mkdir,
3642 .rmdir = shmem_rmdir,
3643 .mknod = shmem_mknod,
3644 .rename2 = shmem_rename2,
3645 .tmpfile = shmem_tmpfile,
3647 #ifdef CONFIG_TMPFS_XATTR
3648 .setxattr = generic_setxattr,
3649 .getxattr = generic_getxattr,
3650 .listxattr = shmem_listxattr,
3651 .removexattr = generic_removexattr,
3653 #ifdef CONFIG_TMPFS_POSIX_ACL
3654 .setattr = shmem_setattr,
3655 .set_acl = simple_set_acl,
3659 static const struct inode_operations shmem_special_inode_operations = {
3660 #ifdef CONFIG_TMPFS_XATTR
3661 .setxattr = generic_setxattr,
3662 .getxattr = generic_getxattr,
3663 .listxattr = shmem_listxattr,
3664 .removexattr = generic_removexattr,
3666 #ifdef CONFIG_TMPFS_POSIX_ACL
3667 .setattr = shmem_setattr,
3668 .set_acl = simple_set_acl,
3672 static const struct super_operations shmem_ops = {
3673 .alloc_inode = shmem_alloc_inode,
3674 .destroy_inode = shmem_destroy_inode,
3676 .statfs = shmem_statfs,
3677 .remount_fs = shmem_remount_fs,
3678 .show_options = shmem_show_options,
3680 .evict_inode = shmem_evict_inode,
3681 .drop_inode = generic_delete_inode,
3682 .put_super = shmem_put_super,
3685 static const struct vm_operations_struct shmem_vm_ops = {
3686 .fault = shmem_fault,
3687 .map_pages = filemap_map_pages,
3689 .set_policy = shmem_set_policy,
3690 .get_policy = shmem_get_policy,
3694 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3695 int flags, const char *dev_name, void *data)
3697 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3700 static struct file_system_type shmem_fs_type = {
3701 .owner = THIS_MODULE,
3703 .mount = shmem_mount,
3704 .kill_sb = kill_litter_super,
3705 .fs_flags = FS_USERNS_MOUNT,
3708 int __init shmem_init(void)
3712 /* If rootfs called this, don't re-init */
3713 if (shmem_inode_cachep)
3716 error = shmem_init_inodecache();
3720 error = register_filesystem(&shmem_fs_type);
3722 pr_err("Could not register tmpfs\n");
3726 shm_mnt = kern_mount(&shmem_fs_type);
3727 if (IS_ERR(shm_mnt)) {
3728 error = PTR_ERR(shm_mnt);
3729 pr_err("Could not kern_mount tmpfs\n");
3733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3734 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3735 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3737 shmem_huge = 0; /* just in case it was patched */
3742 unregister_filesystem(&shmem_fs_type);
3744 shmem_destroy_inodecache();
3746 shm_mnt = ERR_PTR(error);
3750 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3751 static ssize_t shmem_enabled_show(struct kobject *kobj,
3752 struct kobj_attribute *attr, char *buf)
3756 SHMEM_HUGE_WITHIN_SIZE,
3764 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3765 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3767 count += sprintf(buf + count, fmt,
3768 shmem_format_huge(values[i]));
3770 buf[count - 1] = '\n';
3774 static ssize_t shmem_enabled_store(struct kobject *kobj,
3775 struct kobj_attribute *attr, const char *buf, size_t count)
3780 if (count + 1 > sizeof(tmp))
3782 memcpy(tmp, buf, count);
3784 if (count && tmp[count - 1] == '\n')
3785 tmp[count - 1] = '\0';
3787 huge = shmem_parse_huge(tmp);
3788 if (huge == -EINVAL)
3790 if (!has_transparent_hugepage() &&
3791 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3795 if (shmem_huge < SHMEM_HUGE_DENY)
3796 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3800 struct kobj_attribute shmem_enabled_attr =
3801 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3803 bool shmem_huge_enabled(struct vm_area_struct *vma)
3805 struct inode *inode = file_inode(vma->vm_file);
3806 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3810 if (shmem_huge == SHMEM_HUGE_FORCE)
3812 if (shmem_huge == SHMEM_HUGE_DENY)
3814 switch (sbinfo->huge) {
3815 case SHMEM_HUGE_NEVER:
3817 case SHMEM_HUGE_ALWAYS:
3819 case SHMEM_HUGE_WITHIN_SIZE:
3820 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3822 if (i_size >= HPAGE_PMD_SIZE &&
3823 i_size >> PAGE_SHIFT >= off)
3825 case SHMEM_HUGE_ADVISE:
3826 /* TODO: implement fadvise() hints */
3827 return (vma->vm_flags & VM_HUGEPAGE);
3833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3835 #else /* !CONFIG_SHMEM */
3838 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3840 * This is intended for small system where the benefits of the full
3841 * shmem code (swap-backed and resource-limited) are outweighed by
3842 * their complexity. On systems without swap this code should be
3843 * effectively equivalent, but much lighter weight.
3846 static struct file_system_type shmem_fs_type = {
3848 .mount = ramfs_mount,
3849 .kill_sb = kill_litter_super,
3850 .fs_flags = FS_USERNS_MOUNT,
3853 int __init shmem_init(void)
3855 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3857 shm_mnt = kern_mount(&shmem_fs_type);
3858 BUG_ON(IS_ERR(shm_mnt));
3863 int shmem_unuse(swp_entry_t swap, struct page *page)
3868 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3873 void shmem_unlock_mapping(struct address_space *mapping)
3878 unsigned long shmem_get_unmapped_area(struct file *file,
3879 unsigned long addr, unsigned long len,
3880 unsigned long pgoff, unsigned long flags)
3882 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3886 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3888 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3890 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3892 #define shmem_vm_ops generic_file_vm_ops
3893 #define shmem_file_operations ramfs_file_operations
3894 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3895 #define shmem_acct_size(flags, size) 0
3896 #define shmem_unacct_size(flags, size) do {} while (0)
3898 #endif /* CONFIG_SHMEM */
3902 static struct dentry_operations anon_ops = {
3903 .d_dname = simple_dname
3906 static struct file *__shmem_file_setup(const char *name, loff_t size,
3907 unsigned long flags, unsigned int i_flags)
3910 struct inode *inode;
3912 struct super_block *sb;
3915 if (IS_ERR(shm_mnt))
3916 return ERR_CAST(shm_mnt);
3918 if (size < 0 || size > MAX_LFS_FILESIZE)
3919 return ERR_PTR(-EINVAL);
3921 if (shmem_acct_size(flags, size))
3922 return ERR_PTR(-ENOMEM);
3924 res = ERR_PTR(-ENOMEM);
3926 this.len = strlen(name);
3927 this.hash = 0; /* will go */
3928 sb = shm_mnt->mnt_sb;
3929 path.mnt = mntget(shm_mnt);
3930 path.dentry = d_alloc_pseudo(sb, &this);
3933 d_set_d_op(path.dentry, &anon_ops);
3935 res = ERR_PTR(-ENOSPC);
3936 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3940 inode->i_flags |= i_flags;
3941 d_instantiate(path.dentry, inode);
3942 inode->i_size = size;
3943 clear_nlink(inode); /* It is unlinked */
3944 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3948 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3949 &shmem_file_operations);
3956 shmem_unacct_size(flags, size);
3963 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3964 * kernel internal. There will be NO LSM permission checks against the
3965 * underlying inode. So users of this interface must do LSM checks at a
3966 * higher layer. The users are the big_key and shm implementations. LSM
3967 * checks are provided at the key or shm level rather than the inode.
3968 * @name: name for dentry (to be seen in /proc/<pid>/maps
3969 * @size: size to be set for the file
3970 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3972 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3974 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3978 * shmem_file_setup - get an unlinked file living in tmpfs
3979 * @name: name for dentry (to be seen in /proc/<pid>/maps
3980 * @size: size to be set for the file
3981 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3983 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3985 return __shmem_file_setup(name, size, flags, 0);
3987 EXPORT_SYMBOL_GPL(shmem_file_setup);
3990 * shmem_zero_setup - setup a shared anonymous mapping
3991 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3993 int shmem_zero_setup(struct vm_area_struct *vma)
3996 loff_t size = vma->vm_end - vma->vm_start;
3999 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4000 * between XFS directory reading and selinux: since this file is only
4001 * accessible to the user through its mapping, use S_PRIVATE flag to
4002 * bypass file security, in the same way as shmem_kernel_file_setup().
4004 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4006 return PTR_ERR(file);
4010 vma->vm_file = file;
4011 vma->vm_ops = &shmem_vm_ops;
4013 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4014 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4015 (vma->vm_end & HPAGE_PMD_MASK)) {
4016 khugepaged_enter(vma, vma->vm_flags);
4023 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4024 * @mapping: the page's address_space
4025 * @index: the page index
4026 * @gfp: the page allocator flags to use if allocating
4028 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4029 * with any new page allocations done using the specified allocation flags.
4030 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4031 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4032 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4034 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4035 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4037 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4038 pgoff_t index, gfp_t gfp)
4041 struct inode *inode = mapping->host;
4045 BUG_ON(mapping->a_ops != &shmem_aops);
4046 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4049 page = ERR_PTR(error);
4055 * The tiny !SHMEM case uses ramfs without swap
4057 return read_cache_page_gfp(mapping, index, gfp);
4060 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);