]> Git Repo - linux.git/blob - mm/shmem.c
905c0e1cf5aff162a12c0c2d1a68523d7517990c
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <[email protected]>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <[email protected]>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <[email protected]>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95         pgoff_t start;          /* start of range currently being fallocated */
96         pgoff_t next;           /* the next page offset to be fallocated */
97         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
98         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104         return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115                                 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117                 struct page **pagep, enum sgp_type sgp,
118                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121                 struct page **pagep, enum sgp_type sgp)
122 {
123         return shmem_getpage_gfp(inode, index, pagep, sgp,
124                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129         return sb->s_fs_info;
130 }
131
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140         return (flags & VM_NORESERVE) ?
141                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146         if (!(flags & VM_NORESERVE))
147                 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151                 loff_t oldsize, loff_t newsize)
152 {
153         if (!(flags & VM_NORESERVE)) {
154                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155                         return security_vm_enough_memory_mm(current->mm,
156                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
157                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159         }
160         return 0;
161 }
162
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171         if (!(flags & VM_NORESERVE))
172                 return 0;
173
174         return security_vm_enough_memory_mm(current->mm,
175                         pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180         if (flags & VM_NORESERVE)
181                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191
192 static LIST_HEAD(shmem_swaplist);
193 static DEFINE_MUTEX(shmem_swaplist_mutex);
194
195 static int shmem_reserve_inode(struct super_block *sb)
196 {
197         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
198         if (sbinfo->max_inodes) {
199                 spin_lock(&sbinfo->stat_lock);
200                 if (!sbinfo->free_inodes) {
201                         spin_unlock(&sbinfo->stat_lock);
202                         return -ENOSPC;
203                 }
204                 sbinfo->free_inodes--;
205                 spin_unlock(&sbinfo->stat_lock);
206         }
207         return 0;
208 }
209
210 static void shmem_free_inode(struct super_block *sb)
211 {
212         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
213         if (sbinfo->max_inodes) {
214                 spin_lock(&sbinfo->stat_lock);
215                 sbinfo->free_inodes++;
216                 spin_unlock(&sbinfo->stat_lock);
217         }
218 }
219
220 /**
221  * shmem_recalc_inode - recalculate the block usage of an inode
222  * @inode: inode to recalc
223  *
224  * We have to calculate the free blocks since the mm can drop
225  * undirtied hole pages behind our back.
226  *
227  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
228  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
229  *
230  * It has to be called with the spinlock held.
231  */
232 static void shmem_recalc_inode(struct inode *inode)
233 {
234         struct shmem_inode_info *info = SHMEM_I(inode);
235         long freed;
236
237         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
238         if (freed > 0) {
239                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
240                 if (sbinfo->max_blocks)
241                         percpu_counter_add(&sbinfo->used_blocks, -freed);
242                 info->alloced -= freed;
243                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
244                 shmem_unacct_blocks(info->flags, freed);
245         }
246 }
247
248 bool shmem_charge(struct inode *inode, long pages)
249 {
250         struct shmem_inode_info *info = SHMEM_I(inode);
251         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
252         unsigned long flags;
253
254         if (shmem_acct_block(info->flags, pages))
255                 return false;
256         spin_lock_irqsave(&info->lock, flags);
257         info->alloced += pages;
258         inode->i_blocks += pages * BLOCKS_PER_PAGE;
259         shmem_recalc_inode(inode);
260         spin_unlock_irqrestore(&info->lock, flags);
261         inode->i_mapping->nrpages += pages;
262
263         if (!sbinfo->max_blocks)
264                 return true;
265         if (percpu_counter_compare(&sbinfo->used_blocks,
266                                 sbinfo->max_blocks - pages) > 0) {
267                 inode->i_mapping->nrpages -= pages;
268                 spin_lock_irqsave(&info->lock, flags);
269                 info->alloced -= pages;
270                 shmem_recalc_inode(inode);
271                 spin_unlock_irqrestore(&info->lock, flags);
272
273                 return false;
274         }
275         percpu_counter_add(&sbinfo->used_blocks, pages);
276         return true;
277 }
278
279 void shmem_uncharge(struct inode *inode, long pages)
280 {
281         struct shmem_inode_info *info = SHMEM_I(inode);
282         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
283         unsigned long flags;
284
285         spin_lock_irqsave(&info->lock, flags);
286         info->alloced -= pages;
287         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
288         shmem_recalc_inode(inode);
289         spin_unlock_irqrestore(&info->lock, flags);
290
291         if (sbinfo->max_blocks)
292                 percpu_counter_sub(&sbinfo->used_blocks, pages);
293 }
294
295 /*
296  * Replace item expected in radix tree by a new item, while holding tree lock.
297  */
298 static int shmem_radix_tree_replace(struct address_space *mapping,
299                         pgoff_t index, void *expected, void *replacement)
300 {
301         void **pslot;
302         void *item;
303
304         VM_BUG_ON(!expected);
305         VM_BUG_ON(!replacement);
306         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
307         if (!pslot)
308                 return -ENOENT;
309         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
310         if (item != expected)
311                 return -ENOENT;
312         radix_tree_replace_slot(pslot, replacement);
313         return 0;
314 }
315
316 /*
317  * Sometimes, before we decide whether to proceed or to fail, we must check
318  * that an entry was not already brought back from swap by a racing thread.
319  *
320  * Checking page is not enough: by the time a SwapCache page is locked, it
321  * might be reused, and again be SwapCache, using the same swap as before.
322  */
323 static bool shmem_confirm_swap(struct address_space *mapping,
324                                pgoff_t index, swp_entry_t swap)
325 {
326         void *item;
327
328         rcu_read_lock();
329         item = radix_tree_lookup(&mapping->page_tree, index);
330         rcu_read_unlock();
331         return item == swp_to_radix_entry(swap);
332 }
333
334 /*
335  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
336  *
337  * SHMEM_HUGE_NEVER:
338  *      disables huge pages for the mount;
339  * SHMEM_HUGE_ALWAYS:
340  *      enables huge pages for the mount;
341  * SHMEM_HUGE_WITHIN_SIZE:
342  *      only allocate huge pages if the page will be fully within i_size,
343  *      also respect fadvise()/madvise() hints;
344  * SHMEM_HUGE_ADVISE:
345  *      only allocate huge pages if requested with fadvise()/madvise();
346  */
347
348 #define SHMEM_HUGE_NEVER        0
349 #define SHMEM_HUGE_ALWAYS       1
350 #define SHMEM_HUGE_WITHIN_SIZE  2
351 #define SHMEM_HUGE_ADVISE       3
352
353 /*
354  * Special values.
355  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
356  *
357  * SHMEM_HUGE_DENY:
358  *      disables huge on shm_mnt and all mounts, for emergency use;
359  * SHMEM_HUGE_FORCE:
360  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
361  *
362  */
363 #define SHMEM_HUGE_DENY         (-1)
364 #define SHMEM_HUGE_FORCE        (-2)
365
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 /* ifdef here to avoid bloating shmem.o when not necessary */
368
369 int shmem_huge __read_mostly;
370
371 static int shmem_parse_huge(const char *str)
372 {
373         if (!strcmp(str, "never"))
374                 return SHMEM_HUGE_NEVER;
375         if (!strcmp(str, "always"))
376                 return SHMEM_HUGE_ALWAYS;
377         if (!strcmp(str, "within_size"))
378                 return SHMEM_HUGE_WITHIN_SIZE;
379         if (!strcmp(str, "advise"))
380                 return SHMEM_HUGE_ADVISE;
381         if (!strcmp(str, "deny"))
382                 return SHMEM_HUGE_DENY;
383         if (!strcmp(str, "force"))
384                 return SHMEM_HUGE_FORCE;
385         return -EINVAL;
386 }
387
388 static const char *shmem_format_huge(int huge)
389 {
390         switch (huge) {
391         case SHMEM_HUGE_NEVER:
392                 return "never";
393         case SHMEM_HUGE_ALWAYS:
394                 return "always";
395         case SHMEM_HUGE_WITHIN_SIZE:
396                 return "within_size";
397         case SHMEM_HUGE_ADVISE:
398                 return "advise";
399         case SHMEM_HUGE_DENY:
400                 return "deny";
401         case SHMEM_HUGE_FORCE:
402                 return "force";
403         default:
404                 VM_BUG_ON(1);
405                 return "bad_val";
406         }
407 }
408
409 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
410
411 #define shmem_huge SHMEM_HUGE_DENY
412
413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
414
415 /*
416  * Like add_to_page_cache_locked, but error if expected item has gone.
417  */
418 static int shmem_add_to_page_cache(struct page *page,
419                                    struct address_space *mapping,
420                                    pgoff_t index, void *expected)
421 {
422         int error, nr = hpage_nr_pages(page);
423
424         VM_BUG_ON_PAGE(PageTail(page), page);
425         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
426         VM_BUG_ON_PAGE(!PageLocked(page), page);
427         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
428         VM_BUG_ON(expected && PageTransHuge(page));
429
430         page_ref_add(page, nr);
431         page->mapping = mapping;
432         page->index = index;
433
434         spin_lock_irq(&mapping->tree_lock);
435         if (PageTransHuge(page)) {
436                 void __rcu **results;
437                 pgoff_t idx;
438                 int i;
439
440                 error = 0;
441                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
442                                         &results, &idx, index, 1) &&
443                                 idx < index + HPAGE_PMD_NR) {
444                         error = -EEXIST;
445                 }
446
447                 if (!error) {
448                         for (i = 0; i < HPAGE_PMD_NR; i++) {
449                                 error = radix_tree_insert(&mapping->page_tree,
450                                                 index + i, page + i);
451                                 VM_BUG_ON(error);
452                         }
453                         count_vm_event(THP_FILE_ALLOC);
454                 }
455         } else if (!expected) {
456                 error = radix_tree_insert(&mapping->page_tree, index, page);
457         } else {
458                 error = shmem_radix_tree_replace(mapping, index, expected,
459                                                                  page);
460         }
461
462         if (!error) {
463                 mapping->nrpages += nr;
464                 if (PageTransHuge(page))
465                         __inc_zone_page_state(page, NR_SHMEM_THPS);
466                 __mod_zone_page_state(page_zone(page), NR_FILE_PAGES, nr);
467                 __mod_zone_page_state(page_zone(page), NR_SHMEM, nr);
468                 spin_unlock_irq(&mapping->tree_lock);
469         } else {
470                 page->mapping = NULL;
471                 spin_unlock_irq(&mapping->tree_lock);
472                 page_ref_sub(page, nr);
473         }
474         return error;
475 }
476
477 /*
478  * Like delete_from_page_cache, but substitutes swap for page.
479  */
480 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
481 {
482         struct address_space *mapping = page->mapping;
483         int error;
484
485         VM_BUG_ON_PAGE(PageCompound(page), page);
486
487         spin_lock_irq(&mapping->tree_lock);
488         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
489         page->mapping = NULL;
490         mapping->nrpages--;
491         __dec_zone_page_state(page, NR_FILE_PAGES);
492         __dec_zone_page_state(page, NR_SHMEM);
493         spin_unlock_irq(&mapping->tree_lock);
494         put_page(page);
495         BUG_ON(error);
496 }
497
498 /*
499  * Remove swap entry from radix tree, free the swap and its page cache.
500  */
501 static int shmem_free_swap(struct address_space *mapping,
502                            pgoff_t index, void *radswap)
503 {
504         void *old;
505
506         spin_lock_irq(&mapping->tree_lock);
507         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
508         spin_unlock_irq(&mapping->tree_lock);
509         if (old != radswap)
510                 return -ENOENT;
511         free_swap_and_cache(radix_to_swp_entry(radswap));
512         return 0;
513 }
514
515 /*
516  * Determine (in bytes) how many of the shmem object's pages mapped by the
517  * given offsets are swapped out.
518  *
519  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
520  * as long as the inode doesn't go away and racy results are not a problem.
521  */
522 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
523                                                 pgoff_t start, pgoff_t end)
524 {
525         struct radix_tree_iter iter;
526         void **slot;
527         struct page *page;
528         unsigned long swapped = 0;
529
530         rcu_read_lock();
531
532         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
533                 if (iter.index >= end)
534                         break;
535
536                 page = radix_tree_deref_slot(slot);
537
538                 if (radix_tree_deref_retry(page)) {
539                         slot = radix_tree_iter_retry(&iter);
540                         continue;
541                 }
542
543                 if (radix_tree_exceptional_entry(page))
544                         swapped++;
545
546                 if (need_resched()) {
547                         cond_resched_rcu();
548                         slot = radix_tree_iter_next(&iter);
549                 }
550         }
551
552         rcu_read_unlock();
553
554         return swapped << PAGE_SHIFT;
555 }
556
557 /*
558  * Determine (in bytes) how many of the shmem object's pages mapped by the
559  * given vma is swapped out.
560  *
561  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
562  * as long as the inode doesn't go away and racy results are not a problem.
563  */
564 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
565 {
566         struct inode *inode = file_inode(vma->vm_file);
567         struct shmem_inode_info *info = SHMEM_I(inode);
568         struct address_space *mapping = inode->i_mapping;
569         unsigned long swapped;
570
571         /* Be careful as we don't hold info->lock */
572         swapped = READ_ONCE(info->swapped);
573
574         /*
575          * The easier cases are when the shmem object has nothing in swap, or
576          * the vma maps it whole. Then we can simply use the stats that we
577          * already track.
578          */
579         if (!swapped)
580                 return 0;
581
582         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
583                 return swapped << PAGE_SHIFT;
584
585         /* Here comes the more involved part */
586         return shmem_partial_swap_usage(mapping,
587                         linear_page_index(vma, vma->vm_start),
588                         linear_page_index(vma, vma->vm_end));
589 }
590
591 /*
592  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
593  */
594 void shmem_unlock_mapping(struct address_space *mapping)
595 {
596         struct pagevec pvec;
597         pgoff_t indices[PAGEVEC_SIZE];
598         pgoff_t index = 0;
599
600         pagevec_init(&pvec, 0);
601         /*
602          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
603          */
604         while (!mapping_unevictable(mapping)) {
605                 /*
606                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
607                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
608                  */
609                 pvec.nr = find_get_entries(mapping, index,
610                                            PAGEVEC_SIZE, pvec.pages, indices);
611                 if (!pvec.nr)
612                         break;
613                 index = indices[pvec.nr - 1] + 1;
614                 pagevec_remove_exceptionals(&pvec);
615                 check_move_unevictable_pages(pvec.pages, pvec.nr);
616                 pagevec_release(&pvec);
617                 cond_resched();
618         }
619 }
620
621 /*
622  * Remove range of pages and swap entries from radix tree, and free them.
623  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
624  */
625 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
626                                                                  bool unfalloc)
627 {
628         struct address_space *mapping = inode->i_mapping;
629         struct shmem_inode_info *info = SHMEM_I(inode);
630         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
631         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
632         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
633         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
634         struct pagevec pvec;
635         pgoff_t indices[PAGEVEC_SIZE];
636         long nr_swaps_freed = 0;
637         pgoff_t index;
638         int i;
639
640         if (lend == -1)
641                 end = -1;       /* unsigned, so actually very big */
642
643         pagevec_init(&pvec, 0);
644         index = start;
645         while (index < end) {
646                 pvec.nr = find_get_entries(mapping, index,
647                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
648                         pvec.pages, indices);
649                 if (!pvec.nr)
650                         break;
651                 for (i = 0; i < pagevec_count(&pvec); i++) {
652                         struct page *page = pvec.pages[i];
653
654                         index = indices[i];
655                         if (index >= end)
656                                 break;
657
658                         if (radix_tree_exceptional_entry(page)) {
659                                 if (unfalloc)
660                                         continue;
661                                 nr_swaps_freed += !shmem_free_swap(mapping,
662                                                                 index, page);
663                                 continue;
664                         }
665
666                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
667
668                         if (!trylock_page(page))
669                                 continue;
670
671                         if (PageTransTail(page)) {
672                                 /* Middle of THP: zero out the page */
673                                 clear_highpage(page);
674                                 unlock_page(page);
675                                 continue;
676                         } else if (PageTransHuge(page)) {
677                                 if (index == round_down(end, HPAGE_PMD_NR)) {
678                                         /*
679                                          * Range ends in the middle of THP:
680                                          * zero out the page
681                                          */
682                                         clear_highpage(page);
683                                         unlock_page(page);
684                                         continue;
685                                 }
686                                 index += HPAGE_PMD_NR - 1;
687                                 i += HPAGE_PMD_NR - 1;
688                         }
689
690                         if (!unfalloc || !PageUptodate(page)) {
691                                 VM_BUG_ON_PAGE(PageTail(page), page);
692                                 if (page_mapping(page) == mapping) {
693                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
694                                         truncate_inode_page(mapping, page);
695                                 }
696                         }
697                         unlock_page(page);
698                 }
699                 pagevec_remove_exceptionals(&pvec);
700                 pagevec_release(&pvec);
701                 cond_resched();
702                 index++;
703         }
704
705         if (partial_start) {
706                 struct page *page = NULL;
707                 shmem_getpage(inode, start - 1, &page, SGP_READ);
708                 if (page) {
709                         unsigned int top = PAGE_SIZE;
710                         if (start > end) {
711                                 top = partial_end;
712                                 partial_end = 0;
713                         }
714                         zero_user_segment(page, partial_start, top);
715                         set_page_dirty(page);
716                         unlock_page(page);
717                         put_page(page);
718                 }
719         }
720         if (partial_end) {
721                 struct page *page = NULL;
722                 shmem_getpage(inode, end, &page, SGP_READ);
723                 if (page) {
724                         zero_user_segment(page, 0, partial_end);
725                         set_page_dirty(page);
726                         unlock_page(page);
727                         put_page(page);
728                 }
729         }
730         if (start >= end)
731                 return;
732
733         index = start;
734         while (index < end) {
735                 cond_resched();
736
737                 pvec.nr = find_get_entries(mapping, index,
738                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
739                                 pvec.pages, indices);
740                 if (!pvec.nr) {
741                         /* If all gone or hole-punch or unfalloc, we're done */
742                         if (index == start || end != -1)
743                                 break;
744                         /* But if truncating, restart to make sure all gone */
745                         index = start;
746                         continue;
747                 }
748                 for (i = 0; i < pagevec_count(&pvec); i++) {
749                         struct page *page = pvec.pages[i];
750
751                         index = indices[i];
752                         if (index >= end)
753                                 break;
754
755                         if (radix_tree_exceptional_entry(page)) {
756                                 if (unfalloc)
757                                         continue;
758                                 if (shmem_free_swap(mapping, index, page)) {
759                                         /* Swap was replaced by page: retry */
760                                         index--;
761                                         break;
762                                 }
763                                 nr_swaps_freed++;
764                                 continue;
765                         }
766
767                         lock_page(page);
768
769                         if (PageTransTail(page)) {
770                                 /* Middle of THP: zero out the page */
771                                 clear_highpage(page);
772                                 unlock_page(page);
773                                 /*
774                                  * Partial thp truncate due 'start' in middle
775                                  * of THP: don't need to look on these pages
776                                  * again on !pvec.nr restart.
777                                  */
778                                 if (index != round_down(end, HPAGE_PMD_NR))
779                                         start++;
780                                 continue;
781                         } else if (PageTransHuge(page)) {
782                                 if (index == round_down(end, HPAGE_PMD_NR)) {
783                                         /*
784                                          * Range ends in the middle of THP:
785                                          * zero out the page
786                                          */
787                                         clear_highpage(page);
788                                         unlock_page(page);
789                                         continue;
790                                 }
791                                 index += HPAGE_PMD_NR - 1;
792                                 i += HPAGE_PMD_NR - 1;
793                         }
794
795                         if (!unfalloc || !PageUptodate(page)) {
796                                 VM_BUG_ON_PAGE(PageTail(page), page);
797                                 if (page_mapping(page) == mapping) {
798                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
799                                         truncate_inode_page(mapping, page);
800                                 } else {
801                                         /* Page was replaced by swap: retry */
802                                         unlock_page(page);
803                                         index--;
804                                         break;
805                                 }
806                         }
807                         unlock_page(page);
808                 }
809                 pagevec_remove_exceptionals(&pvec);
810                 pagevec_release(&pvec);
811                 index++;
812         }
813
814         spin_lock_irq(&info->lock);
815         info->swapped -= nr_swaps_freed;
816         shmem_recalc_inode(inode);
817         spin_unlock_irq(&info->lock);
818 }
819
820 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
821 {
822         shmem_undo_range(inode, lstart, lend, false);
823         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
824 }
825 EXPORT_SYMBOL_GPL(shmem_truncate_range);
826
827 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
828                          struct kstat *stat)
829 {
830         struct inode *inode = dentry->d_inode;
831         struct shmem_inode_info *info = SHMEM_I(inode);
832
833         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
834                 spin_lock_irq(&info->lock);
835                 shmem_recalc_inode(inode);
836                 spin_unlock_irq(&info->lock);
837         }
838         generic_fillattr(inode, stat);
839         return 0;
840 }
841
842 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
843 {
844         struct inode *inode = d_inode(dentry);
845         struct shmem_inode_info *info = SHMEM_I(inode);
846         int error;
847
848         error = inode_change_ok(inode, attr);
849         if (error)
850                 return error;
851
852         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
853                 loff_t oldsize = inode->i_size;
854                 loff_t newsize = attr->ia_size;
855
856                 /* protected by i_mutex */
857                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
858                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
859                         return -EPERM;
860
861                 if (newsize != oldsize) {
862                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
863                                         oldsize, newsize);
864                         if (error)
865                                 return error;
866                         i_size_write(inode, newsize);
867                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
868                 }
869                 if (newsize <= oldsize) {
870                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
871                         if (oldsize > holebegin)
872                                 unmap_mapping_range(inode->i_mapping,
873                                                         holebegin, 0, 1);
874                         if (info->alloced)
875                                 shmem_truncate_range(inode,
876                                                         newsize, (loff_t)-1);
877                         /* unmap again to remove racily COWed private pages */
878                         if (oldsize > holebegin)
879                                 unmap_mapping_range(inode->i_mapping,
880                                                         holebegin, 0, 1);
881                 }
882         }
883
884         setattr_copy(inode, attr);
885         if (attr->ia_valid & ATTR_MODE)
886                 error = posix_acl_chmod(inode, inode->i_mode);
887         return error;
888 }
889
890 static void shmem_evict_inode(struct inode *inode)
891 {
892         struct shmem_inode_info *info = SHMEM_I(inode);
893
894         if (inode->i_mapping->a_ops == &shmem_aops) {
895                 shmem_unacct_size(info->flags, inode->i_size);
896                 inode->i_size = 0;
897                 shmem_truncate_range(inode, 0, (loff_t)-1);
898                 if (!list_empty(&info->swaplist)) {
899                         mutex_lock(&shmem_swaplist_mutex);
900                         list_del_init(&info->swaplist);
901                         mutex_unlock(&shmem_swaplist_mutex);
902                 }
903         }
904
905         simple_xattrs_free(&info->xattrs);
906         WARN_ON(inode->i_blocks);
907         shmem_free_inode(inode->i_sb);
908         clear_inode(inode);
909 }
910
911 /*
912  * If swap found in inode, free it and move page from swapcache to filecache.
913  */
914 static int shmem_unuse_inode(struct shmem_inode_info *info,
915                              swp_entry_t swap, struct page **pagep)
916 {
917         struct address_space *mapping = info->vfs_inode.i_mapping;
918         void *radswap;
919         pgoff_t index;
920         gfp_t gfp;
921         int error = 0;
922
923         radswap = swp_to_radix_entry(swap);
924         index = radix_tree_locate_item(&mapping->page_tree, radswap);
925         if (index == -1)
926                 return -EAGAIN; /* tell shmem_unuse we found nothing */
927
928         /*
929          * Move _head_ to start search for next from here.
930          * But be careful: shmem_evict_inode checks list_empty without taking
931          * mutex, and there's an instant in list_move_tail when info->swaplist
932          * would appear empty, if it were the only one on shmem_swaplist.
933          */
934         if (shmem_swaplist.next != &info->swaplist)
935                 list_move_tail(&shmem_swaplist, &info->swaplist);
936
937         gfp = mapping_gfp_mask(mapping);
938         if (shmem_should_replace_page(*pagep, gfp)) {
939                 mutex_unlock(&shmem_swaplist_mutex);
940                 error = shmem_replace_page(pagep, gfp, info, index);
941                 mutex_lock(&shmem_swaplist_mutex);
942                 /*
943                  * We needed to drop mutex to make that restrictive page
944                  * allocation, but the inode might have been freed while we
945                  * dropped it: although a racing shmem_evict_inode() cannot
946                  * complete without emptying the radix_tree, our page lock
947                  * on this swapcache page is not enough to prevent that -
948                  * free_swap_and_cache() of our swap entry will only
949                  * trylock_page(), removing swap from radix_tree whatever.
950                  *
951                  * We must not proceed to shmem_add_to_page_cache() if the
952                  * inode has been freed, but of course we cannot rely on
953                  * inode or mapping or info to check that.  However, we can
954                  * safely check if our swap entry is still in use (and here
955                  * it can't have got reused for another page): if it's still
956                  * in use, then the inode cannot have been freed yet, and we
957                  * can safely proceed (if it's no longer in use, that tells
958                  * nothing about the inode, but we don't need to unuse swap).
959                  */
960                 if (!page_swapcount(*pagep))
961                         error = -ENOENT;
962         }
963
964         /*
965          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
966          * but also to hold up shmem_evict_inode(): so inode cannot be freed
967          * beneath us (pagelock doesn't help until the page is in pagecache).
968          */
969         if (!error)
970                 error = shmem_add_to_page_cache(*pagep, mapping, index,
971                                                 radswap);
972         if (error != -ENOMEM) {
973                 /*
974                  * Truncation and eviction use free_swap_and_cache(), which
975                  * only does trylock page: if we raced, best clean up here.
976                  */
977                 delete_from_swap_cache(*pagep);
978                 set_page_dirty(*pagep);
979                 if (!error) {
980                         spin_lock_irq(&info->lock);
981                         info->swapped--;
982                         spin_unlock_irq(&info->lock);
983                         swap_free(swap);
984                 }
985         }
986         return error;
987 }
988
989 /*
990  * Search through swapped inodes to find and replace swap by page.
991  */
992 int shmem_unuse(swp_entry_t swap, struct page *page)
993 {
994         struct list_head *this, *next;
995         struct shmem_inode_info *info;
996         struct mem_cgroup *memcg;
997         int error = 0;
998
999         /*
1000          * There's a faint possibility that swap page was replaced before
1001          * caller locked it: caller will come back later with the right page.
1002          */
1003         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1004                 goto out;
1005
1006         /*
1007          * Charge page using GFP_KERNEL while we can wait, before taking
1008          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1009          * Charged back to the user (not to caller) when swap account is used.
1010          */
1011         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1012                         false);
1013         if (error)
1014                 goto out;
1015         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1016         error = -EAGAIN;
1017
1018         mutex_lock(&shmem_swaplist_mutex);
1019         list_for_each_safe(this, next, &shmem_swaplist) {
1020                 info = list_entry(this, struct shmem_inode_info, swaplist);
1021                 if (info->swapped)
1022                         error = shmem_unuse_inode(info, swap, &page);
1023                 else
1024                         list_del_init(&info->swaplist);
1025                 cond_resched();
1026                 if (error != -EAGAIN)
1027                         break;
1028                 /* found nothing in this: move on to search the next */
1029         }
1030         mutex_unlock(&shmem_swaplist_mutex);
1031
1032         if (error) {
1033                 if (error != -ENOMEM)
1034                         error = 0;
1035                 mem_cgroup_cancel_charge(page, memcg, false);
1036         } else
1037                 mem_cgroup_commit_charge(page, memcg, true, false);
1038 out:
1039         unlock_page(page);
1040         put_page(page);
1041         return error;
1042 }
1043
1044 /*
1045  * Move the page from the page cache to the swap cache.
1046  */
1047 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1048 {
1049         struct shmem_inode_info *info;
1050         struct address_space *mapping;
1051         struct inode *inode;
1052         swp_entry_t swap;
1053         pgoff_t index;
1054
1055         VM_BUG_ON_PAGE(PageCompound(page), page);
1056         BUG_ON(!PageLocked(page));
1057         mapping = page->mapping;
1058         index = page->index;
1059         inode = mapping->host;
1060         info = SHMEM_I(inode);
1061         if (info->flags & VM_LOCKED)
1062                 goto redirty;
1063         if (!total_swap_pages)
1064                 goto redirty;
1065
1066         /*
1067          * Our capabilities prevent regular writeback or sync from ever calling
1068          * shmem_writepage; but a stacking filesystem might use ->writepage of
1069          * its underlying filesystem, in which case tmpfs should write out to
1070          * swap only in response to memory pressure, and not for the writeback
1071          * threads or sync.
1072          */
1073         if (!wbc->for_reclaim) {
1074                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1075                 goto redirty;
1076         }
1077
1078         /*
1079          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1080          * value into swapfile.c, the only way we can correctly account for a
1081          * fallocated page arriving here is now to initialize it and write it.
1082          *
1083          * That's okay for a page already fallocated earlier, but if we have
1084          * not yet completed the fallocation, then (a) we want to keep track
1085          * of this page in case we have to undo it, and (b) it may not be a
1086          * good idea to continue anyway, once we're pushing into swap.  So
1087          * reactivate the page, and let shmem_fallocate() quit when too many.
1088          */
1089         if (!PageUptodate(page)) {
1090                 if (inode->i_private) {
1091                         struct shmem_falloc *shmem_falloc;
1092                         spin_lock(&inode->i_lock);
1093                         shmem_falloc = inode->i_private;
1094                         if (shmem_falloc &&
1095                             !shmem_falloc->waitq &&
1096                             index >= shmem_falloc->start &&
1097                             index < shmem_falloc->next)
1098                                 shmem_falloc->nr_unswapped++;
1099                         else
1100                                 shmem_falloc = NULL;
1101                         spin_unlock(&inode->i_lock);
1102                         if (shmem_falloc)
1103                                 goto redirty;
1104                 }
1105                 clear_highpage(page);
1106                 flush_dcache_page(page);
1107                 SetPageUptodate(page);
1108         }
1109
1110         swap = get_swap_page();
1111         if (!swap.val)
1112                 goto redirty;
1113
1114         if (mem_cgroup_try_charge_swap(page, swap))
1115                 goto free_swap;
1116
1117         /*
1118          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1119          * if it's not already there.  Do it now before the page is
1120          * moved to swap cache, when its pagelock no longer protects
1121          * the inode from eviction.  But don't unlock the mutex until
1122          * we've incremented swapped, because shmem_unuse_inode() will
1123          * prune a !swapped inode from the swaplist under this mutex.
1124          */
1125         mutex_lock(&shmem_swaplist_mutex);
1126         if (list_empty(&info->swaplist))
1127                 list_add_tail(&info->swaplist, &shmem_swaplist);
1128
1129         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1130                 spin_lock_irq(&info->lock);
1131                 shmem_recalc_inode(inode);
1132                 info->swapped++;
1133                 spin_unlock_irq(&info->lock);
1134
1135                 swap_shmem_alloc(swap);
1136                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1137
1138                 mutex_unlock(&shmem_swaplist_mutex);
1139                 BUG_ON(page_mapped(page));
1140                 swap_writepage(page, wbc);
1141                 return 0;
1142         }
1143
1144         mutex_unlock(&shmem_swaplist_mutex);
1145 free_swap:
1146         swapcache_free(swap);
1147 redirty:
1148         set_page_dirty(page);
1149         if (wbc->for_reclaim)
1150                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1151         unlock_page(page);
1152         return 0;
1153 }
1154
1155 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1156 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1157 {
1158         char buffer[64];
1159
1160         if (!mpol || mpol->mode == MPOL_DEFAULT)
1161                 return;         /* show nothing */
1162
1163         mpol_to_str(buffer, sizeof(buffer), mpol);
1164
1165         seq_printf(seq, ",mpol=%s", buffer);
1166 }
1167
1168 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1169 {
1170         struct mempolicy *mpol = NULL;
1171         if (sbinfo->mpol) {
1172                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1173                 mpol = sbinfo->mpol;
1174                 mpol_get(mpol);
1175                 spin_unlock(&sbinfo->stat_lock);
1176         }
1177         return mpol;
1178 }
1179 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1180 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1181 {
1182 }
1183 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1184 {
1185         return NULL;
1186 }
1187 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1188 #ifndef CONFIG_NUMA
1189 #define vm_policy vm_private_data
1190 #endif
1191
1192 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1193                 struct shmem_inode_info *info, pgoff_t index)
1194 {
1195         /* Create a pseudo vma that just contains the policy */
1196         vma->vm_start = 0;
1197         /* Bias interleave by inode number to distribute better across nodes */
1198         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1199         vma->vm_ops = NULL;
1200         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1201 }
1202
1203 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1204 {
1205         /* Drop reference taken by mpol_shared_policy_lookup() */
1206         mpol_cond_put(vma->vm_policy);
1207 }
1208
1209 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1210                         struct shmem_inode_info *info, pgoff_t index)
1211 {
1212         struct vm_area_struct pvma;
1213         struct page *page;
1214
1215         shmem_pseudo_vma_init(&pvma, info, index);
1216         page = swapin_readahead(swap, gfp, &pvma, 0);
1217         shmem_pseudo_vma_destroy(&pvma);
1218
1219         return page;
1220 }
1221
1222 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1223                 struct shmem_inode_info *info, pgoff_t index)
1224 {
1225         struct vm_area_struct pvma;
1226         struct inode *inode = &info->vfs_inode;
1227         struct address_space *mapping = inode->i_mapping;
1228         pgoff_t idx, hindex = round_down(index, HPAGE_PMD_NR);
1229         void __rcu **results;
1230         struct page *page;
1231
1232         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1233                 return NULL;
1234
1235         rcu_read_lock();
1236         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1237                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1238                 rcu_read_unlock();
1239                 return NULL;
1240         }
1241         rcu_read_unlock();
1242
1243         shmem_pseudo_vma_init(&pvma, info, hindex);
1244         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1245                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1246         shmem_pseudo_vma_destroy(&pvma);
1247         if (page)
1248                 prep_transhuge_page(page);
1249         return page;
1250 }
1251
1252 static struct page *shmem_alloc_page(gfp_t gfp,
1253                         struct shmem_inode_info *info, pgoff_t index)
1254 {
1255         struct vm_area_struct pvma;
1256         struct page *page;
1257
1258         shmem_pseudo_vma_init(&pvma, info, index);
1259         page = alloc_page_vma(gfp, &pvma, 0);
1260         shmem_pseudo_vma_destroy(&pvma);
1261
1262         return page;
1263 }
1264
1265 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1266                 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1267                 pgoff_t index, bool huge)
1268 {
1269         struct page *page;
1270         int nr;
1271         int err = -ENOSPC;
1272
1273         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1274                 huge = false;
1275         nr = huge ? HPAGE_PMD_NR : 1;
1276
1277         if (shmem_acct_block(info->flags, nr))
1278                 goto failed;
1279         if (sbinfo->max_blocks) {
1280                 if (percpu_counter_compare(&sbinfo->used_blocks,
1281                                         sbinfo->max_blocks - nr) > 0)
1282                         goto unacct;
1283                 percpu_counter_add(&sbinfo->used_blocks, nr);
1284         }
1285
1286         if (huge)
1287                 page = shmem_alloc_hugepage(gfp, info, index);
1288         else
1289                 page = shmem_alloc_page(gfp, info, index);
1290         if (page) {
1291                 __SetPageLocked(page);
1292                 __SetPageSwapBacked(page);
1293                 return page;
1294         }
1295
1296         err = -ENOMEM;
1297         if (sbinfo->max_blocks)
1298                 percpu_counter_add(&sbinfo->used_blocks, -nr);
1299 unacct:
1300         shmem_unacct_blocks(info->flags, nr);
1301 failed:
1302         return ERR_PTR(err);
1303 }
1304
1305 /*
1306  * When a page is moved from swapcache to shmem filecache (either by the
1307  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1308  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1309  * ignorance of the mapping it belongs to.  If that mapping has special
1310  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1311  * we may need to copy to a suitable page before moving to filecache.
1312  *
1313  * In a future release, this may well be extended to respect cpuset and
1314  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1315  * but for now it is a simple matter of zone.
1316  */
1317 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1318 {
1319         return page_zonenum(page) > gfp_zone(gfp);
1320 }
1321
1322 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1323                                 struct shmem_inode_info *info, pgoff_t index)
1324 {
1325         struct page *oldpage, *newpage;
1326         struct address_space *swap_mapping;
1327         pgoff_t swap_index;
1328         int error;
1329
1330         oldpage = *pagep;
1331         swap_index = page_private(oldpage);
1332         swap_mapping = page_mapping(oldpage);
1333
1334         /*
1335          * We have arrived here because our zones are constrained, so don't
1336          * limit chance of success by further cpuset and node constraints.
1337          */
1338         gfp &= ~GFP_CONSTRAINT_MASK;
1339         newpage = shmem_alloc_page(gfp, info, index);
1340         if (!newpage)
1341                 return -ENOMEM;
1342
1343         get_page(newpage);
1344         copy_highpage(newpage, oldpage);
1345         flush_dcache_page(newpage);
1346
1347         SetPageUptodate(newpage);
1348         set_page_private(newpage, swap_index);
1349         SetPageSwapCache(newpage);
1350
1351         /*
1352          * Our caller will very soon move newpage out of swapcache, but it's
1353          * a nice clean interface for us to replace oldpage by newpage there.
1354          */
1355         spin_lock_irq(&swap_mapping->tree_lock);
1356         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1357                                                                    newpage);
1358         if (!error) {
1359                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1360                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1361         }
1362         spin_unlock_irq(&swap_mapping->tree_lock);
1363
1364         if (unlikely(error)) {
1365                 /*
1366                  * Is this possible?  I think not, now that our callers check
1367                  * both PageSwapCache and page_private after getting page lock;
1368                  * but be defensive.  Reverse old to newpage for clear and free.
1369                  */
1370                 oldpage = newpage;
1371         } else {
1372                 mem_cgroup_migrate(oldpage, newpage);
1373                 lru_cache_add_anon(newpage);
1374                 *pagep = newpage;
1375         }
1376
1377         ClearPageSwapCache(oldpage);
1378         set_page_private(oldpage, 0);
1379
1380         unlock_page(oldpage);
1381         put_page(oldpage);
1382         put_page(oldpage);
1383         return error;
1384 }
1385
1386 /*
1387  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1388  *
1389  * If we allocate a new one we do not mark it dirty. That's up to the
1390  * vm. If we swap it in we mark it dirty since we also free the swap
1391  * entry since a page cannot live in both the swap and page cache.
1392  *
1393  * fault_mm and fault_type are only supplied by shmem_fault:
1394  * otherwise they are NULL.
1395  */
1396 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1397         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1398         struct mm_struct *fault_mm, int *fault_type)
1399 {
1400         struct address_space *mapping = inode->i_mapping;
1401         struct shmem_inode_info *info;
1402         struct shmem_sb_info *sbinfo;
1403         struct mm_struct *charge_mm;
1404         struct mem_cgroup *memcg;
1405         struct page *page;
1406         swp_entry_t swap;
1407         enum sgp_type sgp_huge = sgp;
1408         pgoff_t hindex = index;
1409         int error;
1410         int once = 0;
1411         int alloced = 0;
1412
1413         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1414                 return -EFBIG;
1415         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1416                 sgp = SGP_CACHE;
1417 repeat:
1418         swap.val = 0;
1419         page = find_lock_entry(mapping, index);
1420         if (radix_tree_exceptional_entry(page)) {
1421                 swap = radix_to_swp_entry(page);
1422                 page = NULL;
1423         }
1424
1425         if (sgp <= SGP_CACHE &&
1426             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1427                 error = -EINVAL;
1428                 goto unlock;
1429         }
1430
1431         if (page && sgp == SGP_WRITE)
1432                 mark_page_accessed(page);
1433
1434         /* fallocated page? */
1435         if (page && !PageUptodate(page)) {
1436                 if (sgp != SGP_READ)
1437                         goto clear;
1438                 unlock_page(page);
1439                 put_page(page);
1440                 page = NULL;
1441         }
1442         if (page || (sgp == SGP_READ && !swap.val)) {
1443                 *pagep = page;
1444                 return 0;
1445         }
1446
1447         /*
1448          * Fast cache lookup did not find it:
1449          * bring it back from swap or allocate.
1450          */
1451         info = SHMEM_I(inode);
1452         sbinfo = SHMEM_SB(inode->i_sb);
1453         charge_mm = fault_mm ? : current->mm;
1454
1455         if (swap.val) {
1456                 /* Look it up and read it in.. */
1457                 page = lookup_swap_cache(swap);
1458                 if (!page) {
1459                         /* Or update major stats only when swapin succeeds?? */
1460                         if (fault_type) {
1461                                 *fault_type |= VM_FAULT_MAJOR;
1462                                 count_vm_event(PGMAJFAULT);
1463                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1464                         }
1465                         /* Here we actually start the io */
1466                         page = shmem_swapin(swap, gfp, info, index);
1467                         if (!page) {
1468                                 error = -ENOMEM;
1469                                 goto failed;
1470                         }
1471                 }
1472
1473                 /* We have to do this with page locked to prevent races */
1474                 lock_page(page);
1475                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1476                     !shmem_confirm_swap(mapping, index, swap)) {
1477                         error = -EEXIST;        /* try again */
1478                         goto unlock;
1479                 }
1480                 if (!PageUptodate(page)) {
1481                         error = -EIO;
1482                         goto failed;
1483                 }
1484                 wait_on_page_writeback(page);
1485
1486                 if (shmem_should_replace_page(page, gfp)) {
1487                         error = shmem_replace_page(&page, gfp, info, index);
1488                         if (error)
1489                                 goto failed;
1490                 }
1491
1492                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1493                                 false);
1494                 if (!error) {
1495                         error = shmem_add_to_page_cache(page, mapping, index,
1496                                                 swp_to_radix_entry(swap));
1497                         /*
1498                          * We already confirmed swap under page lock, and make
1499                          * no memory allocation here, so usually no possibility
1500                          * of error; but free_swap_and_cache() only trylocks a
1501                          * page, so it is just possible that the entry has been
1502                          * truncated or holepunched since swap was confirmed.
1503                          * shmem_undo_range() will have done some of the
1504                          * unaccounting, now delete_from_swap_cache() will do
1505                          * the rest.
1506                          * Reset swap.val? No, leave it so "failed" goes back to
1507                          * "repeat": reading a hole and writing should succeed.
1508                          */
1509                         if (error) {
1510                                 mem_cgroup_cancel_charge(page, memcg, false);
1511                                 delete_from_swap_cache(page);
1512                         }
1513                 }
1514                 if (error)
1515                         goto failed;
1516
1517                 mem_cgroup_commit_charge(page, memcg, true, false);
1518
1519                 spin_lock_irq(&info->lock);
1520                 info->swapped--;
1521                 shmem_recalc_inode(inode);
1522                 spin_unlock_irq(&info->lock);
1523
1524                 if (sgp == SGP_WRITE)
1525                         mark_page_accessed(page);
1526
1527                 delete_from_swap_cache(page);
1528                 set_page_dirty(page);
1529                 swap_free(swap);
1530
1531         } else {
1532                 /* shmem_symlink() */
1533                 if (mapping->a_ops != &shmem_aops)
1534                         goto alloc_nohuge;
1535                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1536                         goto alloc_nohuge;
1537                 if (shmem_huge == SHMEM_HUGE_FORCE)
1538                         goto alloc_huge;
1539                 switch (sbinfo->huge) {
1540                         loff_t i_size;
1541                         pgoff_t off;
1542                 case SHMEM_HUGE_NEVER:
1543                         goto alloc_nohuge;
1544                 case SHMEM_HUGE_WITHIN_SIZE:
1545                         off = round_up(index, HPAGE_PMD_NR);
1546                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1547                         if (i_size >= HPAGE_PMD_SIZE &&
1548                                         i_size >> PAGE_SHIFT >= off)
1549                                 goto alloc_huge;
1550                         /* fallthrough */
1551                 case SHMEM_HUGE_ADVISE:
1552                         if (sgp_huge == SGP_HUGE)
1553                                 goto alloc_huge;
1554                         /* TODO: implement fadvise() hints */
1555                         goto alloc_nohuge;
1556                 }
1557
1558 alloc_huge:
1559                 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1560                                 index, true);
1561                 if (IS_ERR(page)) {
1562 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1563                                         index, false);
1564                 }
1565                 if (IS_ERR(page)) {
1566                         error = PTR_ERR(page);
1567                         page = NULL;
1568                         goto failed;
1569                 }
1570
1571                 if (PageTransHuge(page))
1572                         hindex = round_down(index, HPAGE_PMD_NR);
1573                 else
1574                         hindex = index;
1575
1576                 if (sgp == SGP_WRITE)
1577                         __SetPageReferenced(page);
1578
1579                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1580                                 PageTransHuge(page));
1581                 if (error)
1582                         goto unacct;
1583                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1584                                 compound_order(page));
1585                 if (!error) {
1586                         error = shmem_add_to_page_cache(page, mapping, hindex,
1587                                                         NULL);
1588                         radix_tree_preload_end();
1589                 }
1590                 if (error) {
1591                         mem_cgroup_cancel_charge(page, memcg,
1592                                         PageTransHuge(page));
1593                         goto unacct;
1594                 }
1595                 mem_cgroup_commit_charge(page, memcg, false,
1596                                 PageTransHuge(page));
1597                 lru_cache_add_anon(page);
1598
1599                 spin_lock_irq(&info->lock);
1600                 info->alloced += 1 << compound_order(page);
1601                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1602                 shmem_recalc_inode(inode);
1603                 spin_unlock_irq(&info->lock);
1604                 alloced = true;
1605
1606                 /*
1607                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1608                  */
1609                 if (sgp == SGP_FALLOC)
1610                         sgp = SGP_WRITE;
1611 clear:
1612                 /*
1613                  * Let SGP_WRITE caller clear ends if write does not fill page;
1614                  * but SGP_FALLOC on a page fallocated earlier must initialize
1615                  * it now, lest undo on failure cancel our earlier guarantee.
1616                  */
1617                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1618                         struct page *head = compound_head(page);
1619                         int i;
1620
1621                         for (i = 0; i < (1 << compound_order(head)); i++) {
1622                                 clear_highpage(head + i);
1623                                 flush_dcache_page(head + i);
1624                         }
1625                         SetPageUptodate(head);
1626                 }
1627         }
1628
1629         /* Perhaps the file has been truncated since we checked */
1630         if (sgp <= SGP_CACHE &&
1631             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1632                 if (alloced) {
1633                         ClearPageDirty(page);
1634                         delete_from_page_cache(page);
1635                         spin_lock_irq(&info->lock);
1636                         shmem_recalc_inode(inode);
1637                         spin_unlock_irq(&info->lock);
1638                 }
1639                 error = -EINVAL;
1640                 goto unlock;
1641         }
1642         *pagep = page + index - hindex;
1643         return 0;
1644
1645         /*
1646          * Error recovery.
1647          */
1648 unacct:
1649         if (sbinfo->max_blocks)
1650                 percpu_counter_sub(&sbinfo->used_blocks,
1651                                 1 << compound_order(page));
1652         shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1653
1654         if (PageTransHuge(page)) {
1655                 unlock_page(page);
1656                 put_page(page);
1657                 goto alloc_nohuge;
1658         }
1659 failed:
1660         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1661                 error = -EEXIST;
1662 unlock:
1663         if (page) {
1664                 unlock_page(page);
1665                 put_page(page);
1666         }
1667         if (error == -ENOSPC && !once++) {
1668                 info = SHMEM_I(inode);
1669                 spin_lock_irq(&info->lock);
1670                 shmem_recalc_inode(inode);
1671                 spin_unlock_irq(&info->lock);
1672                 goto repeat;
1673         }
1674         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1675                 goto repeat;
1676         return error;
1677 }
1678
1679 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1680 {
1681         struct inode *inode = file_inode(vma->vm_file);
1682         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1683         enum sgp_type sgp;
1684         int error;
1685         int ret = VM_FAULT_LOCKED;
1686
1687         /*
1688          * Trinity finds that probing a hole which tmpfs is punching can
1689          * prevent the hole-punch from ever completing: which in turn
1690          * locks writers out with its hold on i_mutex.  So refrain from
1691          * faulting pages into the hole while it's being punched.  Although
1692          * shmem_undo_range() does remove the additions, it may be unable to
1693          * keep up, as each new page needs its own unmap_mapping_range() call,
1694          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1695          *
1696          * It does not matter if we sometimes reach this check just before the
1697          * hole-punch begins, so that one fault then races with the punch:
1698          * we just need to make racing faults a rare case.
1699          *
1700          * The implementation below would be much simpler if we just used a
1701          * standard mutex or completion: but we cannot take i_mutex in fault,
1702          * and bloating every shmem inode for this unlikely case would be sad.
1703          */
1704         if (unlikely(inode->i_private)) {
1705                 struct shmem_falloc *shmem_falloc;
1706
1707                 spin_lock(&inode->i_lock);
1708                 shmem_falloc = inode->i_private;
1709                 if (shmem_falloc &&
1710                     shmem_falloc->waitq &&
1711                     vmf->pgoff >= shmem_falloc->start &&
1712                     vmf->pgoff < shmem_falloc->next) {
1713                         wait_queue_head_t *shmem_falloc_waitq;
1714                         DEFINE_WAIT(shmem_fault_wait);
1715
1716                         ret = VM_FAULT_NOPAGE;
1717                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1718                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1719                                 /* It's polite to up mmap_sem if we can */
1720                                 up_read(&vma->vm_mm->mmap_sem);
1721                                 ret = VM_FAULT_RETRY;
1722                         }
1723
1724                         shmem_falloc_waitq = shmem_falloc->waitq;
1725                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1726                                         TASK_UNINTERRUPTIBLE);
1727                         spin_unlock(&inode->i_lock);
1728                         schedule();
1729
1730                         /*
1731                          * shmem_falloc_waitq points into the shmem_fallocate()
1732                          * stack of the hole-punching task: shmem_falloc_waitq
1733                          * is usually invalid by the time we reach here, but
1734                          * finish_wait() does not dereference it in that case;
1735                          * though i_lock needed lest racing with wake_up_all().
1736                          */
1737                         spin_lock(&inode->i_lock);
1738                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1739                         spin_unlock(&inode->i_lock);
1740                         return ret;
1741                 }
1742                 spin_unlock(&inode->i_lock);
1743         }
1744
1745         sgp = SGP_CACHE;
1746         if (vma->vm_flags & VM_HUGEPAGE)
1747                 sgp = SGP_HUGE;
1748         else if (vma->vm_flags & VM_NOHUGEPAGE)
1749                 sgp = SGP_NOHUGE;
1750
1751         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1752                                   gfp, vma->vm_mm, &ret);
1753         if (error)
1754                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1755         return ret;
1756 }
1757
1758 unsigned long shmem_get_unmapped_area(struct file *file,
1759                                       unsigned long uaddr, unsigned long len,
1760                                       unsigned long pgoff, unsigned long flags)
1761 {
1762         unsigned long (*get_area)(struct file *,
1763                 unsigned long, unsigned long, unsigned long, unsigned long);
1764         unsigned long addr;
1765         unsigned long offset;
1766         unsigned long inflated_len;
1767         unsigned long inflated_addr;
1768         unsigned long inflated_offset;
1769
1770         if (len > TASK_SIZE)
1771                 return -ENOMEM;
1772
1773         get_area = current->mm->get_unmapped_area;
1774         addr = get_area(file, uaddr, len, pgoff, flags);
1775
1776         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1777                 return addr;
1778         if (IS_ERR_VALUE(addr))
1779                 return addr;
1780         if (addr & ~PAGE_MASK)
1781                 return addr;
1782         if (addr > TASK_SIZE - len)
1783                 return addr;
1784
1785         if (shmem_huge == SHMEM_HUGE_DENY)
1786                 return addr;
1787         if (len < HPAGE_PMD_SIZE)
1788                 return addr;
1789         if (flags & MAP_FIXED)
1790                 return addr;
1791         /*
1792          * Our priority is to support MAP_SHARED mapped hugely;
1793          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1794          * But if caller specified an address hint, respect that as before.
1795          */
1796         if (uaddr)
1797                 return addr;
1798
1799         if (shmem_huge != SHMEM_HUGE_FORCE) {
1800                 struct super_block *sb;
1801
1802                 if (file) {
1803                         VM_BUG_ON(file->f_op != &shmem_file_operations);
1804                         sb = file_inode(file)->i_sb;
1805                 } else {
1806                         /*
1807                          * Called directly from mm/mmap.c, or drivers/char/mem.c
1808                          * for "/dev/zero", to create a shared anonymous object.
1809                          */
1810                         if (IS_ERR(shm_mnt))
1811                                 return addr;
1812                         sb = shm_mnt->mnt_sb;
1813                 }
1814                 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1815                         return addr;
1816         }
1817
1818         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1819         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1820                 return addr;
1821         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1822                 return addr;
1823
1824         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1825         if (inflated_len > TASK_SIZE)
1826                 return addr;
1827         if (inflated_len < len)
1828                 return addr;
1829
1830         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1831         if (IS_ERR_VALUE(inflated_addr))
1832                 return addr;
1833         if (inflated_addr & ~PAGE_MASK)
1834                 return addr;
1835
1836         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
1837         inflated_addr += offset - inflated_offset;
1838         if (inflated_offset > offset)
1839                 inflated_addr += HPAGE_PMD_SIZE;
1840
1841         if (inflated_addr > TASK_SIZE - len)
1842                 return addr;
1843         return inflated_addr;
1844 }
1845
1846 #ifdef CONFIG_NUMA
1847 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1848 {
1849         struct inode *inode = file_inode(vma->vm_file);
1850         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1851 }
1852
1853 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1854                                           unsigned long addr)
1855 {
1856         struct inode *inode = file_inode(vma->vm_file);
1857         pgoff_t index;
1858
1859         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1860         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1861 }
1862 #endif
1863
1864 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1865 {
1866         struct inode *inode = file_inode(file);
1867         struct shmem_inode_info *info = SHMEM_I(inode);
1868         int retval = -ENOMEM;
1869
1870         spin_lock_irq(&info->lock);
1871         if (lock && !(info->flags & VM_LOCKED)) {
1872                 if (!user_shm_lock(inode->i_size, user))
1873                         goto out_nomem;
1874                 info->flags |= VM_LOCKED;
1875                 mapping_set_unevictable(file->f_mapping);
1876         }
1877         if (!lock && (info->flags & VM_LOCKED) && user) {
1878                 user_shm_unlock(inode->i_size, user);
1879                 info->flags &= ~VM_LOCKED;
1880                 mapping_clear_unevictable(file->f_mapping);
1881         }
1882         retval = 0;
1883
1884 out_nomem:
1885         spin_unlock_irq(&info->lock);
1886         return retval;
1887 }
1888
1889 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1890 {
1891         file_accessed(file);
1892         vma->vm_ops = &shmem_vm_ops;
1893         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1894                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
1895                         (vma->vm_end & HPAGE_PMD_MASK)) {
1896                 khugepaged_enter(vma, vma->vm_flags);
1897         }
1898         return 0;
1899 }
1900
1901 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1902                                      umode_t mode, dev_t dev, unsigned long flags)
1903 {
1904         struct inode *inode;
1905         struct shmem_inode_info *info;
1906         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1907
1908         if (shmem_reserve_inode(sb))
1909                 return NULL;
1910
1911         inode = new_inode(sb);
1912         if (inode) {
1913                 inode->i_ino = get_next_ino();
1914                 inode_init_owner(inode, dir, mode);
1915                 inode->i_blocks = 0;
1916                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1917                 inode->i_generation = get_seconds();
1918                 info = SHMEM_I(inode);
1919                 memset(info, 0, (char *)inode - (char *)info);
1920                 spin_lock_init(&info->lock);
1921                 info->seals = F_SEAL_SEAL;
1922                 info->flags = flags & VM_NORESERVE;
1923                 INIT_LIST_HEAD(&info->swaplist);
1924                 simple_xattrs_init(&info->xattrs);
1925                 cache_no_acl(inode);
1926
1927                 switch (mode & S_IFMT) {
1928                 default:
1929                         inode->i_op = &shmem_special_inode_operations;
1930                         init_special_inode(inode, mode, dev);
1931                         break;
1932                 case S_IFREG:
1933                         inode->i_mapping->a_ops = &shmem_aops;
1934                         inode->i_op = &shmem_inode_operations;
1935                         inode->i_fop = &shmem_file_operations;
1936                         mpol_shared_policy_init(&info->policy,
1937                                                  shmem_get_sbmpol(sbinfo));
1938                         break;
1939                 case S_IFDIR:
1940                         inc_nlink(inode);
1941                         /* Some things misbehave if size == 0 on a directory */
1942                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1943                         inode->i_op = &shmem_dir_inode_operations;
1944                         inode->i_fop = &simple_dir_operations;
1945                         break;
1946                 case S_IFLNK:
1947                         /*
1948                          * Must not load anything in the rbtree,
1949                          * mpol_free_shared_policy will not be called.
1950                          */
1951                         mpol_shared_policy_init(&info->policy, NULL);
1952                         break;
1953                 }
1954         } else
1955                 shmem_free_inode(sb);
1956         return inode;
1957 }
1958
1959 bool shmem_mapping(struct address_space *mapping)
1960 {
1961         if (!mapping->host)
1962                 return false;
1963
1964         return mapping->host->i_sb->s_op == &shmem_ops;
1965 }
1966
1967 #ifdef CONFIG_TMPFS
1968 static const struct inode_operations shmem_symlink_inode_operations;
1969 static const struct inode_operations shmem_short_symlink_operations;
1970
1971 #ifdef CONFIG_TMPFS_XATTR
1972 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1973 #else
1974 #define shmem_initxattrs NULL
1975 #endif
1976
1977 static int
1978 shmem_write_begin(struct file *file, struct address_space *mapping,
1979                         loff_t pos, unsigned len, unsigned flags,
1980                         struct page **pagep, void **fsdata)
1981 {
1982         struct inode *inode = mapping->host;
1983         struct shmem_inode_info *info = SHMEM_I(inode);
1984         pgoff_t index = pos >> PAGE_SHIFT;
1985
1986         /* i_mutex is held by caller */
1987         if (unlikely(info->seals)) {
1988                 if (info->seals & F_SEAL_WRITE)
1989                         return -EPERM;
1990                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1991                         return -EPERM;
1992         }
1993
1994         return shmem_getpage(inode, index, pagep, SGP_WRITE);
1995 }
1996
1997 static int
1998 shmem_write_end(struct file *file, struct address_space *mapping,
1999                         loff_t pos, unsigned len, unsigned copied,
2000                         struct page *page, void *fsdata)
2001 {
2002         struct inode *inode = mapping->host;
2003
2004         if (pos + copied > inode->i_size)
2005                 i_size_write(inode, pos + copied);
2006
2007         if (!PageUptodate(page)) {
2008                 struct page *head = compound_head(page);
2009                 if (PageTransCompound(page)) {
2010                         int i;
2011
2012                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2013                                 if (head + i == page)
2014                                         continue;
2015                                 clear_highpage(head + i);
2016                                 flush_dcache_page(head + i);
2017                         }
2018                 }
2019                 if (copied < PAGE_SIZE) {
2020                         unsigned from = pos & (PAGE_SIZE - 1);
2021                         zero_user_segments(page, 0, from,
2022                                         from + copied, PAGE_SIZE);
2023                 }
2024                 SetPageUptodate(head);
2025         }
2026         set_page_dirty(page);
2027         unlock_page(page);
2028         put_page(page);
2029
2030         return copied;
2031 }
2032
2033 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2034 {
2035         struct file *file = iocb->ki_filp;
2036         struct inode *inode = file_inode(file);
2037         struct address_space *mapping = inode->i_mapping;
2038         pgoff_t index;
2039         unsigned long offset;
2040         enum sgp_type sgp = SGP_READ;
2041         int error = 0;
2042         ssize_t retval = 0;
2043         loff_t *ppos = &iocb->ki_pos;
2044
2045         /*
2046          * Might this read be for a stacking filesystem?  Then when reading
2047          * holes of a sparse file, we actually need to allocate those pages,
2048          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2049          */
2050         if (!iter_is_iovec(to))
2051                 sgp = SGP_CACHE;
2052
2053         index = *ppos >> PAGE_SHIFT;
2054         offset = *ppos & ~PAGE_MASK;
2055
2056         for (;;) {
2057                 struct page *page = NULL;
2058                 pgoff_t end_index;
2059                 unsigned long nr, ret;
2060                 loff_t i_size = i_size_read(inode);
2061
2062                 end_index = i_size >> PAGE_SHIFT;
2063                 if (index > end_index)
2064                         break;
2065                 if (index == end_index) {
2066                         nr = i_size & ~PAGE_MASK;
2067                         if (nr <= offset)
2068                                 break;
2069                 }
2070
2071                 error = shmem_getpage(inode, index, &page, sgp);
2072                 if (error) {
2073                         if (error == -EINVAL)
2074                                 error = 0;
2075                         break;
2076                 }
2077                 if (page) {
2078                         if (sgp == SGP_CACHE)
2079                                 set_page_dirty(page);
2080                         unlock_page(page);
2081                 }
2082
2083                 /*
2084                  * We must evaluate after, since reads (unlike writes)
2085                  * are called without i_mutex protection against truncate
2086                  */
2087                 nr = PAGE_SIZE;
2088                 i_size = i_size_read(inode);
2089                 end_index = i_size >> PAGE_SHIFT;
2090                 if (index == end_index) {
2091                         nr = i_size & ~PAGE_MASK;
2092                         if (nr <= offset) {
2093                                 if (page)
2094                                         put_page(page);
2095                                 break;
2096                         }
2097                 }
2098                 nr -= offset;
2099
2100                 if (page) {
2101                         /*
2102                          * If users can be writing to this page using arbitrary
2103                          * virtual addresses, take care about potential aliasing
2104                          * before reading the page on the kernel side.
2105                          */
2106                         if (mapping_writably_mapped(mapping))
2107                                 flush_dcache_page(page);
2108                         /*
2109                          * Mark the page accessed if we read the beginning.
2110                          */
2111                         if (!offset)
2112                                 mark_page_accessed(page);
2113                 } else {
2114                         page = ZERO_PAGE(0);
2115                         get_page(page);
2116                 }
2117
2118                 /*
2119                  * Ok, we have the page, and it's up-to-date, so
2120                  * now we can copy it to user space...
2121                  */
2122                 ret = copy_page_to_iter(page, offset, nr, to);
2123                 retval += ret;
2124                 offset += ret;
2125                 index += offset >> PAGE_SHIFT;
2126                 offset &= ~PAGE_MASK;
2127
2128                 put_page(page);
2129                 if (!iov_iter_count(to))
2130                         break;
2131                 if (ret < nr) {
2132                         error = -EFAULT;
2133                         break;
2134                 }
2135                 cond_resched();
2136         }
2137
2138         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2139         file_accessed(file);
2140         return retval ? retval : error;
2141 }
2142
2143 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2144                                 struct pipe_inode_info *pipe, size_t len,
2145                                 unsigned int flags)
2146 {
2147         struct address_space *mapping = in->f_mapping;
2148         struct inode *inode = mapping->host;
2149         unsigned int loff, nr_pages, req_pages;
2150         struct page *pages[PIPE_DEF_BUFFERS];
2151         struct partial_page partial[PIPE_DEF_BUFFERS];
2152         struct page *page;
2153         pgoff_t index, end_index;
2154         loff_t isize, left;
2155         int error, page_nr;
2156         struct splice_pipe_desc spd = {
2157                 .pages = pages,
2158                 .partial = partial,
2159                 .nr_pages_max = PIPE_DEF_BUFFERS,
2160                 .flags = flags,
2161                 .ops = &page_cache_pipe_buf_ops,
2162                 .spd_release = spd_release_page,
2163         };
2164
2165         isize = i_size_read(inode);
2166         if (unlikely(*ppos >= isize))
2167                 return 0;
2168
2169         left = isize - *ppos;
2170         if (unlikely(left < len))
2171                 len = left;
2172
2173         if (splice_grow_spd(pipe, &spd))
2174                 return -ENOMEM;
2175
2176         index = *ppos >> PAGE_SHIFT;
2177         loff = *ppos & ~PAGE_MASK;
2178         req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2179         nr_pages = min(req_pages, spd.nr_pages_max);
2180
2181         spd.nr_pages = find_get_pages_contig(mapping, index,
2182                                                 nr_pages, spd.pages);
2183         index += spd.nr_pages;
2184         error = 0;
2185
2186         while (spd.nr_pages < nr_pages) {
2187                 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2188                 if (error)
2189                         break;
2190                 unlock_page(page);
2191                 spd.pages[spd.nr_pages++] = page;
2192                 index++;
2193         }
2194
2195         index = *ppos >> PAGE_SHIFT;
2196         nr_pages = spd.nr_pages;
2197         spd.nr_pages = 0;
2198
2199         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2200                 unsigned int this_len;
2201
2202                 if (!len)
2203                         break;
2204
2205                 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2206                 page = spd.pages[page_nr];
2207
2208                 if (!PageUptodate(page) || page->mapping != mapping) {
2209                         error = shmem_getpage(inode, index, &page, SGP_CACHE);
2210                         if (error)
2211                                 break;
2212                         unlock_page(page);
2213                         put_page(spd.pages[page_nr]);
2214                         spd.pages[page_nr] = page;
2215                 }
2216
2217                 isize = i_size_read(inode);
2218                 end_index = (isize - 1) >> PAGE_SHIFT;
2219                 if (unlikely(!isize || index > end_index))
2220                         break;
2221
2222                 if (end_index == index) {
2223                         unsigned int plen;
2224
2225                         plen = ((isize - 1) & ~PAGE_MASK) + 1;
2226                         if (plen <= loff)
2227                                 break;
2228
2229                         this_len = min(this_len, plen - loff);
2230                         len = this_len;
2231                 }
2232
2233                 spd.partial[page_nr].offset = loff;
2234                 spd.partial[page_nr].len = this_len;
2235                 len -= this_len;
2236                 loff = 0;
2237                 spd.nr_pages++;
2238                 index++;
2239         }
2240
2241         while (page_nr < nr_pages)
2242                 put_page(spd.pages[page_nr++]);
2243
2244         if (spd.nr_pages)
2245                 error = splice_to_pipe(pipe, &spd);
2246
2247         splice_shrink_spd(&spd);
2248
2249         if (error > 0) {
2250                 *ppos += error;
2251                 file_accessed(in);
2252         }
2253         return error;
2254 }
2255
2256 /*
2257  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2258  */
2259 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2260                                     pgoff_t index, pgoff_t end, int whence)
2261 {
2262         struct page *page;
2263         struct pagevec pvec;
2264         pgoff_t indices[PAGEVEC_SIZE];
2265         bool done = false;
2266         int i;
2267
2268         pagevec_init(&pvec, 0);
2269         pvec.nr = 1;            /* start small: we may be there already */
2270         while (!done) {
2271                 pvec.nr = find_get_entries(mapping, index,
2272                                         pvec.nr, pvec.pages, indices);
2273                 if (!pvec.nr) {
2274                         if (whence == SEEK_DATA)
2275                                 index = end;
2276                         break;
2277                 }
2278                 for (i = 0; i < pvec.nr; i++, index++) {
2279                         if (index < indices[i]) {
2280                                 if (whence == SEEK_HOLE) {
2281                                         done = true;
2282                                         break;
2283                                 }
2284                                 index = indices[i];
2285                         }
2286                         page = pvec.pages[i];
2287                         if (page && !radix_tree_exceptional_entry(page)) {
2288                                 if (!PageUptodate(page))
2289                                         page = NULL;
2290                         }
2291                         if (index >= end ||
2292                             (page && whence == SEEK_DATA) ||
2293                             (!page && whence == SEEK_HOLE)) {
2294                                 done = true;
2295                                 break;
2296                         }
2297                 }
2298                 pagevec_remove_exceptionals(&pvec);
2299                 pagevec_release(&pvec);
2300                 pvec.nr = PAGEVEC_SIZE;
2301                 cond_resched();
2302         }
2303         return index;
2304 }
2305
2306 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2307 {
2308         struct address_space *mapping = file->f_mapping;
2309         struct inode *inode = mapping->host;
2310         pgoff_t start, end;
2311         loff_t new_offset;
2312
2313         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2314                 return generic_file_llseek_size(file, offset, whence,
2315                                         MAX_LFS_FILESIZE, i_size_read(inode));
2316         inode_lock(inode);
2317         /* We're holding i_mutex so we can access i_size directly */
2318
2319         if (offset < 0)
2320                 offset = -EINVAL;
2321         else if (offset >= inode->i_size)
2322                 offset = -ENXIO;
2323         else {
2324                 start = offset >> PAGE_SHIFT;
2325                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2326                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2327                 new_offset <<= PAGE_SHIFT;
2328                 if (new_offset > offset) {
2329                         if (new_offset < inode->i_size)
2330                                 offset = new_offset;
2331                         else if (whence == SEEK_DATA)
2332                                 offset = -ENXIO;
2333                         else
2334                                 offset = inode->i_size;
2335                 }
2336         }
2337
2338         if (offset >= 0)
2339                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2340         inode_unlock(inode);
2341         return offset;
2342 }
2343
2344 /*
2345  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2346  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2347  */
2348 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2349 #define LAST_SCAN               4       /* about 150ms max */
2350
2351 static void shmem_tag_pins(struct address_space *mapping)
2352 {
2353         struct radix_tree_iter iter;
2354         void **slot;
2355         pgoff_t start;
2356         struct page *page;
2357
2358         lru_add_drain();
2359         start = 0;
2360         rcu_read_lock();
2361
2362         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2363                 page = radix_tree_deref_slot(slot);
2364                 if (!page || radix_tree_exception(page)) {
2365                         if (radix_tree_deref_retry(page)) {
2366                                 slot = radix_tree_iter_retry(&iter);
2367                                 continue;
2368                         }
2369                 } else if (page_count(page) - page_mapcount(page) > 1) {
2370                         spin_lock_irq(&mapping->tree_lock);
2371                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2372                                            SHMEM_TAG_PINNED);
2373                         spin_unlock_irq(&mapping->tree_lock);
2374                 }
2375
2376                 if (need_resched()) {
2377                         cond_resched_rcu();
2378                         slot = radix_tree_iter_next(&iter);
2379                 }
2380         }
2381         rcu_read_unlock();
2382 }
2383
2384 /*
2385  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2386  * via get_user_pages(), drivers might have some pending I/O without any active
2387  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2388  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2389  * them to be dropped.
2390  * The caller must guarantee that no new user will acquire writable references
2391  * to those pages to avoid races.
2392  */
2393 static int shmem_wait_for_pins(struct address_space *mapping)
2394 {
2395         struct radix_tree_iter iter;
2396         void **slot;
2397         pgoff_t start;
2398         struct page *page;
2399         int error, scan;
2400
2401         shmem_tag_pins(mapping);
2402
2403         error = 0;
2404         for (scan = 0; scan <= LAST_SCAN; scan++) {
2405                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2406                         break;
2407
2408                 if (!scan)
2409                         lru_add_drain_all();
2410                 else if (schedule_timeout_killable((HZ << scan) / 200))
2411                         scan = LAST_SCAN;
2412
2413                 start = 0;
2414                 rcu_read_lock();
2415                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2416                                            start, SHMEM_TAG_PINNED) {
2417
2418                         page = radix_tree_deref_slot(slot);
2419                         if (radix_tree_exception(page)) {
2420                                 if (radix_tree_deref_retry(page)) {
2421                                         slot = radix_tree_iter_retry(&iter);
2422                                         continue;
2423                                 }
2424
2425                                 page = NULL;
2426                         }
2427
2428                         if (page &&
2429                             page_count(page) - page_mapcount(page) != 1) {
2430                                 if (scan < LAST_SCAN)
2431                                         goto continue_resched;
2432
2433                                 /*
2434                                  * On the last scan, we clean up all those tags
2435                                  * we inserted; but make a note that we still
2436                                  * found pages pinned.
2437                                  */
2438                                 error = -EBUSY;
2439                         }
2440
2441                         spin_lock_irq(&mapping->tree_lock);
2442                         radix_tree_tag_clear(&mapping->page_tree,
2443                                              iter.index, SHMEM_TAG_PINNED);
2444                         spin_unlock_irq(&mapping->tree_lock);
2445 continue_resched:
2446                         if (need_resched()) {
2447                                 cond_resched_rcu();
2448                                 slot = radix_tree_iter_next(&iter);
2449                         }
2450                 }
2451                 rcu_read_unlock();
2452         }
2453
2454         return error;
2455 }
2456
2457 #define F_ALL_SEALS (F_SEAL_SEAL | \
2458                      F_SEAL_SHRINK | \
2459                      F_SEAL_GROW | \
2460                      F_SEAL_WRITE)
2461
2462 int shmem_add_seals(struct file *file, unsigned int seals)
2463 {
2464         struct inode *inode = file_inode(file);
2465         struct shmem_inode_info *info = SHMEM_I(inode);
2466         int error;
2467
2468         /*
2469          * SEALING
2470          * Sealing allows multiple parties to share a shmem-file but restrict
2471          * access to a specific subset of file operations. Seals can only be
2472          * added, but never removed. This way, mutually untrusted parties can
2473          * share common memory regions with a well-defined policy. A malicious
2474          * peer can thus never perform unwanted operations on a shared object.
2475          *
2476          * Seals are only supported on special shmem-files and always affect
2477          * the whole underlying inode. Once a seal is set, it may prevent some
2478          * kinds of access to the file. Currently, the following seals are
2479          * defined:
2480          *   SEAL_SEAL: Prevent further seals from being set on this file
2481          *   SEAL_SHRINK: Prevent the file from shrinking
2482          *   SEAL_GROW: Prevent the file from growing
2483          *   SEAL_WRITE: Prevent write access to the file
2484          *
2485          * As we don't require any trust relationship between two parties, we
2486          * must prevent seals from being removed. Therefore, sealing a file
2487          * only adds a given set of seals to the file, it never touches
2488          * existing seals. Furthermore, the "setting seals"-operation can be
2489          * sealed itself, which basically prevents any further seal from being
2490          * added.
2491          *
2492          * Semantics of sealing are only defined on volatile files. Only
2493          * anonymous shmem files support sealing. More importantly, seals are
2494          * never written to disk. Therefore, there's no plan to support it on
2495          * other file types.
2496          */
2497
2498         if (file->f_op != &shmem_file_operations)
2499                 return -EINVAL;
2500         if (!(file->f_mode & FMODE_WRITE))
2501                 return -EPERM;
2502         if (seals & ~(unsigned int)F_ALL_SEALS)
2503                 return -EINVAL;
2504
2505         inode_lock(inode);
2506
2507         if (info->seals & F_SEAL_SEAL) {
2508                 error = -EPERM;
2509                 goto unlock;
2510         }
2511
2512         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2513                 error = mapping_deny_writable(file->f_mapping);
2514                 if (error)
2515                         goto unlock;
2516
2517                 error = shmem_wait_for_pins(file->f_mapping);
2518                 if (error) {
2519                         mapping_allow_writable(file->f_mapping);
2520                         goto unlock;
2521                 }
2522         }
2523
2524         info->seals |= seals;
2525         error = 0;
2526
2527 unlock:
2528         inode_unlock(inode);
2529         return error;
2530 }
2531 EXPORT_SYMBOL_GPL(shmem_add_seals);
2532
2533 int shmem_get_seals(struct file *file)
2534 {
2535         if (file->f_op != &shmem_file_operations)
2536                 return -EINVAL;
2537
2538         return SHMEM_I(file_inode(file))->seals;
2539 }
2540 EXPORT_SYMBOL_GPL(shmem_get_seals);
2541
2542 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2543 {
2544         long error;
2545
2546         switch (cmd) {
2547         case F_ADD_SEALS:
2548                 /* disallow upper 32bit */
2549                 if (arg > UINT_MAX)
2550                         return -EINVAL;
2551
2552                 error = shmem_add_seals(file, arg);
2553                 break;
2554         case F_GET_SEALS:
2555                 error = shmem_get_seals(file);
2556                 break;
2557         default:
2558                 error = -EINVAL;
2559                 break;
2560         }
2561
2562         return error;
2563 }
2564
2565 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2566                                                          loff_t len)
2567 {
2568         struct inode *inode = file_inode(file);
2569         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2570         struct shmem_inode_info *info = SHMEM_I(inode);
2571         struct shmem_falloc shmem_falloc;
2572         pgoff_t start, index, end;
2573         int error;
2574
2575         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2576                 return -EOPNOTSUPP;
2577
2578         inode_lock(inode);
2579
2580         if (mode & FALLOC_FL_PUNCH_HOLE) {
2581                 struct address_space *mapping = file->f_mapping;
2582                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2583                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2584                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2585
2586                 /* protected by i_mutex */
2587                 if (info->seals & F_SEAL_WRITE) {
2588                         error = -EPERM;
2589                         goto out;
2590                 }
2591
2592                 shmem_falloc.waitq = &shmem_falloc_waitq;
2593                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2594                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2595                 spin_lock(&inode->i_lock);
2596                 inode->i_private = &shmem_falloc;
2597                 spin_unlock(&inode->i_lock);
2598
2599                 if ((u64)unmap_end > (u64)unmap_start)
2600                         unmap_mapping_range(mapping, unmap_start,
2601                                             1 + unmap_end - unmap_start, 0);
2602                 shmem_truncate_range(inode, offset, offset + len - 1);
2603                 /* No need to unmap again: hole-punching leaves COWed pages */
2604
2605                 spin_lock(&inode->i_lock);
2606                 inode->i_private = NULL;
2607                 wake_up_all(&shmem_falloc_waitq);
2608                 spin_unlock(&inode->i_lock);
2609                 error = 0;
2610                 goto out;
2611         }
2612
2613         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2614         error = inode_newsize_ok(inode, offset + len);
2615         if (error)
2616                 goto out;
2617
2618         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2619                 error = -EPERM;
2620                 goto out;
2621         }
2622
2623         start = offset >> PAGE_SHIFT;
2624         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2625         /* Try to avoid a swapstorm if len is impossible to satisfy */
2626         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2627                 error = -ENOSPC;
2628                 goto out;
2629         }
2630
2631         shmem_falloc.waitq = NULL;
2632         shmem_falloc.start = start;
2633         shmem_falloc.next  = start;
2634         shmem_falloc.nr_falloced = 0;
2635         shmem_falloc.nr_unswapped = 0;
2636         spin_lock(&inode->i_lock);
2637         inode->i_private = &shmem_falloc;
2638         spin_unlock(&inode->i_lock);
2639
2640         for (index = start; index < end; index++) {
2641                 struct page *page;
2642
2643                 /*
2644                  * Good, the fallocate(2) manpage permits EINTR: we may have
2645                  * been interrupted because we are using up too much memory.
2646                  */
2647                 if (signal_pending(current))
2648                         error = -EINTR;
2649                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2650                         error = -ENOMEM;
2651                 else
2652                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2653                 if (error) {
2654                         /* Remove the !PageUptodate pages we added */
2655                         if (index > start) {
2656                                 shmem_undo_range(inode,
2657                                     (loff_t)start << PAGE_SHIFT,
2658                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2659                         }
2660                         goto undone;
2661                 }
2662
2663                 /*
2664                  * Inform shmem_writepage() how far we have reached.
2665                  * No need for lock or barrier: we have the page lock.
2666                  */
2667                 shmem_falloc.next++;
2668                 if (!PageUptodate(page))
2669                         shmem_falloc.nr_falloced++;
2670
2671                 /*
2672                  * If !PageUptodate, leave it that way so that freeable pages
2673                  * can be recognized if we need to rollback on error later.
2674                  * But set_page_dirty so that memory pressure will swap rather
2675                  * than free the pages we are allocating (and SGP_CACHE pages
2676                  * might still be clean: we now need to mark those dirty too).
2677                  */
2678                 set_page_dirty(page);
2679                 unlock_page(page);
2680                 put_page(page);
2681                 cond_resched();
2682         }
2683
2684         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2685                 i_size_write(inode, offset + len);
2686         inode->i_ctime = CURRENT_TIME;
2687 undone:
2688         spin_lock(&inode->i_lock);
2689         inode->i_private = NULL;
2690         spin_unlock(&inode->i_lock);
2691 out:
2692         inode_unlock(inode);
2693         return error;
2694 }
2695
2696 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2697 {
2698         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2699
2700         buf->f_type = TMPFS_MAGIC;
2701         buf->f_bsize = PAGE_SIZE;
2702         buf->f_namelen = NAME_MAX;
2703         if (sbinfo->max_blocks) {
2704                 buf->f_blocks = sbinfo->max_blocks;
2705                 buf->f_bavail =
2706                 buf->f_bfree  = sbinfo->max_blocks -
2707                                 percpu_counter_sum(&sbinfo->used_blocks);
2708         }
2709         if (sbinfo->max_inodes) {
2710                 buf->f_files = sbinfo->max_inodes;
2711                 buf->f_ffree = sbinfo->free_inodes;
2712         }
2713         /* else leave those fields 0 like simple_statfs */
2714         return 0;
2715 }
2716
2717 /*
2718  * File creation. Allocate an inode, and we're done..
2719  */
2720 static int
2721 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2722 {
2723         struct inode *inode;
2724         int error = -ENOSPC;
2725
2726         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2727         if (inode) {
2728                 error = simple_acl_create(dir, inode);
2729                 if (error)
2730                         goto out_iput;
2731                 error = security_inode_init_security(inode, dir,
2732                                                      &dentry->d_name,
2733                                                      shmem_initxattrs, NULL);
2734                 if (error && error != -EOPNOTSUPP)
2735                         goto out_iput;
2736
2737                 error = 0;
2738                 dir->i_size += BOGO_DIRENT_SIZE;
2739                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2740                 d_instantiate(dentry, inode);
2741                 dget(dentry); /* Extra count - pin the dentry in core */
2742         }
2743         return error;
2744 out_iput:
2745         iput(inode);
2746         return error;
2747 }
2748
2749 static int
2750 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2751 {
2752         struct inode *inode;
2753         int error = -ENOSPC;
2754
2755         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2756         if (inode) {
2757                 error = security_inode_init_security(inode, dir,
2758                                                      NULL,
2759                                                      shmem_initxattrs, NULL);
2760                 if (error && error != -EOPNOTSUPP)
2761                         goto out_iput;
2762                 error = simple_acl_create(dir, inode);
2763                 if (error)
2764                         goto out_iput;
2765                 d_tmpfile(dentry, inode);
2766         }
2767         return error;
2768 out_iput:
2769         iput(inode);
2770         return error;
2771 }
2772
2773 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2774 {
2775         int error;
2776
2777         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2778                 return error;
2779         inc_nlink(dir);
2780         return 0;
2781 }
2782
2783 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2784                 bool excl)
2785 {
2786         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2787 }
2788
2789 /*
2790  * Link a file..
2791  */
2792 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2793 {
2794         struct inode *inode = d_inode(old_dentry);
2795         int ret;
2796
2797         /*
2798          * No ordinary (disk based) filesystem counts links as inodes;
2799          * but each new link needs a new dentry, pinning lowmem, and
2800          * tmpfs dentries cannot be pruned until they are unlinked.
2801          */
2802         ret = shmem_reserve_inode(inode->i_sb);
2803         if (ret)
2804                 goto out;
2805
2806         dir->i_size += BOGO_DIRENT_SIZE;
2807         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2808         inc_nlink(inode);
2809         ihold(inode);   /* New dentry reference */
2810         dget(dentry);           /* Extra pinning count for the created dentry */
2811         d_instantiate(dentry, inode);
2812 out:
2813         return ret;
2814 }
2815
2816 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2817 {
2818         struct inode *inode = d_inode(dentry);
2819
2820         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2821                 shmem_free_inode(inode->i_sb);
2822
2823         dir->i_size -= BOGO_DIRENT_SIZE;
2824         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2825         drop_nlink(inode);
2826         dput(dentry);   /* Undo the count from "create" - this does all the work */
2827         return 0;
2828 }
2829
2830 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2831 {
2832         if (!simple_empty(dentry))
2833                 return -ENOTEMPTY;
2834
2835         drop_nlink(d_inode(dentry));
2836         drop_nlink(dir);
2837         return shmem_unlink(dir, dentry);
2838 }
2839
2840 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2841 {
2842         bool old_is_dir = d_is_dir(old_dentry);
2843         bool new_is_dir = d_is_dir(new_dentry);
2844
2845         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2846                 if (old_is_dir) {
2847                         drop_nlink(old_dir);
2848                         inc_nlink(new_dir);
2849                 } else {
2850                         drop_nlink(new_dir);
2851                         inc_nlink(old_dir);
2852                 }
2853         }
2854         old_dir->i_ctime = old_dir->i_mtime =
2855         new_dir->i_ctime = new_dir->i_mtime =
2856         d_inode(old_dentry)->i_ctime =
2857         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2858
2859         return 0;
2860 }
2861
2862 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2863 {
2864         struct dentry *whiteout;
2865         int error;
2866
2867         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2868         if (!whiteout)
2869                 return -ENOMEM;
2870
2871         error = shmem_mknod(old_dir, whiteout,
2872                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2873         dput(whiteout);
2874         if (error)
2875                 return error;
2876
2877         /*
2878          * Cheat and hash the whiteout while the old dentry is still in
2879          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2880          *
2881          * d_lookup() will consistently find one of them at this point,
2882          * not sure which one, but that isn't even important.
2883          */
2884         d_rehash(whiteout);
2885         return 0;
2886 }
2887
2888 /*
2889  * The VFS layer already does all the dentry stuff for rename,
2890  * we just have to decrement the usage count for the target if
2891  * it exists so that the VFS layer correctly free's it when it
2892  * gets overwritten.
2893  */
2894 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2895 {
2896         struct inode *inode = d_inode(old_dentry);
2897         int they_are_dirs = S_ISDIR(inode->i_mode);
2898
2899         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2900                 return -EINVAL;
2901
2902         if (flags & RENAME_EXCHANGE)
2903                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2904
2905         if (!simple_empty(new_dentry))
2906                 return -ENOTEMPTY;
2907
2908         if (flags & RENAME_WHITEOUT) {
2909                 int error;
2910
2911                 error = shmem_whiteout(old_dir, old_dentry);
2912                 if (error)
2913                         return error;
2914         }
2915
2916         if (d_really_is_positive(new_dentry)) {
2917                 (void) shmem_unlink(new_dir, new_dentry);
2918                 if (they_are_dirs) {
2919                         drop_nlink(d_inode(new_dentry));
2920                         drop_nlink(old_dir);
2921                 }
2922         } else if (they_are_dirs) {
2923                 drop_nlink(old_dir);
2924                 inc_nlink(new_dir);
2925         }
2926
2927         old_dir->i_size -= BOGO_DIRENT_SIZE;
2928         new_dir->i_size += BOGO_DIRENT_SIZE;
2929         old_dir->i_ctime = old_dir->i_mtime =
2930         new_dir->i_ctime = new_dir->i_mtime =
2931         inode->i_ctime = CURRENT_TIME;
2932         return 0;
2933 }
2934
2935 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2936 {
2937         int error;
2938         int len;
2939         struct inode *inode;
2940         struct page *page;
2941         struct shmem_inode_info *info;
2942
2943         len = strlen(symname) + 1;
2944         if (len > PAGE_SIZE)
2945                 return -ENAMETOOLONG;
2946
2947         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2948         if (!inode)
2949                 return -ENOSPC;
2950
2951         error = security_inode_init_security(inode, dir, &dentry->d_name,
2952                                              shmem_initxattrs, NULL);
2953         if (error) {
2954                 if (error != -EOPNOTSUPP) {
2955                         iput(inode);
2956                         return error;
2957                 }
2958                 error = 0;
2959         }
2960
2961         info = SHMEM_I(inode);
2962         inode->i_size = len-1;
2963         if (len <= SHORT_SYMLINK_LEN) {
2964                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2965                 if (!inode->i_link) {
2966                         iput(inode);
2967                         return -ENOMEM;
2968                 }
2969                 inode->i_op = &shmem_short_symlink_operations;
2970         } else {
2971                 inode_nohighmem(inode);
2972                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2973                 if (error) {
2974                         iput(inode);
2975                         return error;
2976                 }
2977                 inode->i_mapping->a_ops = &shmem_aops;
2978                 inode->i_op = &shmem_symlink_inode_operations;
2979                 memcpy(page_address(page), symname, len);
2980                 SetPageUptodate(page);
2981                 set_page_dirty(page);
2982                 unlock_page(page);
2983                 put_page(page);
2984         }
2985         dir->i_size += BOGO_DIRENT_SIZE;
2986         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2987         d_instantiate(dentry, inode);
2988         dget(dentry);
2989         return 0;
2990 }
2991
2992 static void shmem_put_link(void *arg)
2993 {
2994         mark_page_accessed(arg);
2995         put_page(arg);
2996 }
2997
2998 static const char *shmem_get_link(struct dentry *dentry,
2999                                   struct inode *inode,
3000                                   struct delayed_call *done)
3001 {
3002         struct page *page = NULL;
3003         int error;
3004         if (!dentry) {
3005                 page = find_get_page(inode->i_mapping, 0);
3006                 if (!page)
3007                         return ERR_PTR(-ECHILD);
3008                 if (!PageUptodate(page)) {
3009                         put_page(page);
3010                         return ERR_PTR(-ECHILD);
3011                 }
3012         } else {
3013                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3014                 if (error)
3015                         return ERR_PTR(error);
3016                 unlock_page(page);
3017         }
3018         set_delayed_call(done, shmem_put_link, page);
3019         return page_address(page);
3020 }
3021
3022 #ifdef CONFIG_TMPFS_XATTR
3023 /*
3024  * Superblocks without xattr inode operations may get some security.* xattr
3025  * support from the LSM "for free". As soon as we have any other xattrs
3026  * like ACLs, we also need to implement the security.* handlers at
3027  * filesystem level, though.
3028  */
3029
3030 /*
3031  * Callback for security_inode_init_security() for acquiring xattrs.
3032  */
3033 static int shmem_initxattrs(struct inode *inode,
3034                             const struct xattr *xattr_array,
3035                             void *fs_info)
3036 {
3037         struct shmem_inode_info *info = SHMEM_I(inode);
3038         const struct xattr *xattr;
3039         struct simple_xattr *new_xattr;
3040         size_t len;
3041
3042         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3043                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3044                 if (!new_xattr)
3045                         return -ENOMEM;
3046
3047                 len = strlen(xattr->name) + 1;
3048                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3049                                           GFP_KERNEL);
3050                 if (!new_xattr->name) {
3051                         kfree(new_xattr);
3052                         return -ENOMEM;
3053                 }
3054
3055                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3056                        XATTR_SECURITY_PREFIX_LEN);
3057                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3058                        xattr->name, len);
3059
3060                 simple_xattr_list_add(&info->xattrs, new_xattr);
3061         }
3062
3063         return 0;
3064 }
3065
3066 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3067                                    struct dentry *unused, struct inode *inode,
3068                                    const char *name, void *buffer, size_t size)
3069 {
3070         struct shmem_inode_info *info = SHMEM_I(inode);
3071
3072         name = xattr_full_name(handler, name);
3073         return simple_xattr_get(&info->xattrs, name, buffer, size);
3074 }
3075
3076 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3077                                    struct dentry *unused, struct inode *inode,
3078                                    const char *name, const void *value,
3079                                    size_t size, int flags)
3080 {
3081         struct shmem_inode_info *info = SHMEM_I(inode);
3082
3083         name = xattr_full_name(handler, name);
3084         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3085 }
3086
3087 static const struct xattr_handler shmem_security_xattr_handler = {
3088         .prefix = XATTR_SECURITY_PREFIX,
3089         .get = shmem_xattr_handler_get,
3090         .set = shmem_xattr_handler_set,
3091 };
3092
3093 static const struct xattr_handler shmem_trusted_xattr_handler = {
3094         .prefix = XATTR_TRUSTED_PREFIX,
3095         .get = shmem_xattr_handler_get,
3096         .set = shmem_xattr_handler_set,
3097 };
3098
3099 static const struct xattr_handler *shmem_xattr_handlers[] = {
3100 #ifdef CONFIG_TMPFS_POSIX_ACL
3101         &posix_acl_access_xattr_handler,
3102         &posix_acl_default_xattr_handler,
3103 #endif
3104         &shmem_security_xattr_handler,
3105         &shmem_trusted_xattr_handler,
3106         NULL
3107 };
3108
3109 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3110 {
3111         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3112         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3113 }
3114 #endif /* CONFIG_TMPFS_XATTR */
3115
3116 static const struct inode_operations shmem_short_symlink_operations = {
3117         .readlink       = generic_readlink,
3118         .get_link       = simple_get_link,
3119 #ifdef CONFIG_TMPFS_XATTR
3120         .setxattr       = generic_setxattr,
3121         .getxattr       = generic_getxattr,
3122         .listxattr      = shmem_listxattr,
3123         .removexattr    = generic_removexattr,
3124 #endif
3125 };
3126
3127 static const struct inode_operations shmem_symlink_inode_operations = {
3128         .readlink       = generic_readlink,
3129         .get_link       = shmem_get_link,
3130 #ifdef CONFIG_TMPFS_XATTR
3131         .setxattr       = generic_setxattr,
3132         .getxattr       = generic_getxattr,
3133         .listxattr      = shmem_listxattr,
3134         .removexattr    = generic_removexattr,
3135 #endif
3136 };
3137
3138 static struct dentry *shmem_get_parent(struct dentry *child)
3139 {
3140         return ERR_PTR(-ESTALE);
3141 }
3142
3143 static int shmem_match(struct inode *ino, void *vfh)
3144 {
3145         __u32 *fh = vfh;
3146         __u64 inum = fh[2];
3147         inum = (inum << 32) | fh[1];
3148         return ino->i_ino == inum && fh[0] == ino->i_generation;
3149 }
3150
3151 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3152                 struct fid *fid, int fh_len, int fh_type)
3153 {
3154         struct inode *inode;
3155         struct dentry *dentry = NULL;
3156         u64 inum;
3157
3158         if (fh_len < 3)
3159                 return NULL;
3160
3161         inum = fid->raw[2];
3162         inum = (inum << 32) | fid->raw[1];
3163
3164         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3165                         shmem_match, fid->raw);
3166         if (inode) {
3167                 dentry = d_find_alias(inode);
3168                 iput(inode);
3169         }
3170
3171         return dentry;
3172 }
3173
3174 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3175                                 struct inode *parent)
3176 {
3177         if (*len < 3) {
3178                 *len = 3;
3179                 return FILEID_INVALID;
3180         }
3181
3182         if (inode_unhashed(inode)) {
3183                 /* Unfortunately insert_inode_hash is not idempotent,
3184                  * so as we hash inodes here rather than at creation
3185                  * time, we need a lock to ensure we only try
3186                  * to do it once
3187                  */
3188                 static DEFINE_SPINLOCK(lock);
3189                 spin_lock(&lock);
3190                 if (inode_unhashed(inode))
3191                         __insert_inode_hash(inode,
3192                                             inode->i_ino + inode->i_generation);
3193                 spin_unlock(&lock);
3194         }
3195
3196         fh[0] = inode->i_generation;
3197         fh[1] = inode->i_ino;
3198         fh[2] = ((__u64)inode->i_ino) >> 32;
3199
3200         *len = 3;
3201         return 1;
3202 }
3203
3204 static const struct export_operations shmem_export_ops = {
3205         .get_parent     = shmem_get_parent,
3206         .encode_fh      = shmem_encode_fh,
3207         .fh_to_dentry   = shmem_fh_to_dentry,
3208 };
3209
3210 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3211                                bool remount)
3212 {
3213         char *this_char, *value, *rest;
3214         struct mempolicy *mpol = NULL;
3215         uid_t uid;
3216         gid_t gid;
3217
3218         while (options != NULL) {
3219                 this_char = options;
3220                 for (;;) {
3221                         /*
3222                          * NUL-terminate this option: unfortunately,
3223                          * mount options form a comma-separated list,
3224                          * but mpol's nodelist may also contain commas.
3225                          */
3226                         options = strchr(options, ',');
3227                         if (options == NULL)
3228                                 break;
3229                         options++;
3230                         if (!isdigit(*options)) {
3231                                 options[-1] = '\0';
3232                                 break;
3233                         }
3234                 }
3235                 if (!*this_char)
3236                         continue;
3237                 if ((value = strchr(this_char,'=')) != NULL) {
3238                         *value++ = 0;
3239                 } else {
3240                         pr_err("tmpfs: No value for mount option '%s'\n",
3241                                this_char);
3242                         goto error;
3243                 }
3244
3245                 if (!strcmp(this_char,"size")) {
3246                         unsigned long long size;
3247                         size = memparse(value,&rest);
3248                         if (*rest == '%') {
3249                                 size <<= PAGE_SHIFT;
3250                                 size *= totalram_pages;
3251                                 do_div(size, 100);
3252                                 rest++;
3253                         }
3254                         if (*rest)
3255                                 goto bad_val;
3256                         sbinfo->max_blocks =
3257                                 DIV_ROUND_UP(size, PAGE_SIZE);
3258                 } else if (!strcmp(this_char,"nr_blocks")) {
3259                         sbinfo->max_blocks = memparse(value, &rest);
3260                         if (*rest)
3261                                 goto bad_val;
3262                 } else if (!strcmp(this_char,"nr_inodes")) {
3263                         sbinfo->max_inodes = memparse(value, &rest);
3264                         if (*rest)
3265                                 goto bad_val;
3266                 } else if (!strcmp(this_char,"mode")) {
3267                         if (remount)
3268                                 continue;
3269                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3270                         if (*rest)
3271                                 goto bad_val;
3272                 } else if (!strcmp(this_char,"uid")) {
3273                         if (remount)
3274                                 continue;
3275                         uid = simple_strtoul(value, &rest, 0);
3276                         if (*rest)
3277                                 goto bad_val;
3278                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3279                         if (!uid_valid(sbinfo->uid))
3280                                 goto bad_val;
3281                 } else if (!strcmp(this_char,"gid")) {
3282                         if (remount)
3283                                 continue;
3284                         gid = simple_strtoul(value, &rest, 0);
3285                         if (*rest)
3286                                 goto bad_val;
3287                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3288                         if (!gid_valid(sbinfo->gid))
3289                                 goto bad_val;
3290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3291                 } else if (!strcmp(this_char, "huge")) {
3292                         int huge;
3293                         huge = shmem_parse_huge(value);
3294                         if (huge < 0)
3295                                 goto bad_val;
3296                         if (!has_transparent_hugepage() &&
3297                                         huge != SHMEM_HUGE_NEVER)
3298                                 goto bad_val;
3299                         sbinfo->huge = huge;
3300 #endif
3301 #ifdef CONFIG_NUMA
3302                 } else if (!strcmp(this_char,"mpol")) {
3303                         mpol_put(mpol);
3304                         mpol = NULL;
3305                         if (mpol_parse_str(value, &mpol))
3306                                 goto bad_val;
3307 #endif
3308                 } else {
3309                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3310                         goto error;
3311                 }
3312         }
3313         sbinfo->mpol = mpol;
3314         return 0;
3315
3316 bad_val:
3317         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3318                value, this_char);
3319 error:
3320         mpol_put(mpol);
3321         return 1;
3322
3323 }
3324
3325 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3326 {
3327         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3328         struct shmem_sb_info config = *sbinfo;
3329         unsigned long inodes;
3330         int error = -EINVAL;
3331
3332         config.mpol = NULL;
3333         if (shmem_parse_options(data, &config, true))
3334                 return error;
3335
3336         spin_lock(&sbinfo->stat_lock);
3337         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3338         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3339                 goto out;
3340         if (config.max_inodes < inodes)
3341                 goto out;
3342         /*
3343          * Those tests disallow limited->unlimited while any are in use;
3344          * but we must separately disallow unlimited->limited, because
3345          * in that case we have no record of how much is already in use.
3346          */
3347         if (config.max_blocks && !sbinfo->max_blocks)
3348                 goto out;
3349         if (config.max_inodes && !sbinfo->max_inodes)
3350                 goto out;
3351
3352         error = 0;
3353         sbinfo->huge = config.huge;
3354         sbinfo->max_blocks  = config.max_blocks;
3355         sbinfo->max_inodes  = config.max_inodes;
3356         sbinfo->free_inodes = config.max_inodes - inodes;
3357
3358         /*
3359          * Preserve previous mempolicy unless mpol remount option was specified.
3360          */
3361         if (config.mpol) {
3362                 mpol_put(sbinfo->mpol);
3363                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3364         }
3365 out:
3366         spin_unlock(&sbinfo->stat_lock);
3367         return error;
3368 }
3369
3370 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3371 {
3372         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3373
3374         if (sbinfo->max_blocks != shmem_default_max_blocks())
3375                 seq_printf(seq, ",size=%luk",
3376                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3377         if (sbinfo->max_inodes != shmem_default_max_inodes())
3378                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3379         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3380                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3381         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3382                 seq_printf(seq, ",uid=%u",
3383                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3384         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3385                 seq_printf(seq, ",gid=%u",
3386                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3388         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3389         if (sbinfo->huge)
3390                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3391 #endif
3392         shmem_show_mpol(seq, sbinfo->mpol);
3393         return 0;
3394 }
3395
3396 #define MFD_NAME_PREFIX "memfd:"
3397 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3398 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3399
3400 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3401
3402 SYSCALL_DEFINE2(memfd_create,
3403                 const char __user *, uname,
3404                 unsigned int, flags)
3405 {
3406         struct shmem_inode_info *info;
3407         struct file *file;
3408         int fd, error;
3409         char *name;
3410         long len;
3411
3412         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3413                 return -EINVAL;
3414
3415         /* length includes terminating zero */
3416         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3417         if (len <= 0)
3418                 return -EFAULT;
3419         if (len > MFD_NAME_MAX_LEN + 1)
3420                 return -EINVAL;
3421
3422         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3423         if (!name)
3424                 return -ENOMEM;
3425
3426         strcpy(name, MFD_NAME_PREFIX);
3427         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3428                 error = -EFAULT;
3429                 goto err_name;
3430         }
3431
3432         /* terminating-zero may have changed after strnlen_user() returned */
3433         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3434                 error = -EFAULT;
3435                 goto err_name;
3436         }
3437
3438         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3439         if (fd < 0) {
3440                 error = fd;
3441                 goto err_name;
3442         }
3443
3444         file = shmem_file_setup(name, 0, VM_NORESERVE);
3445         if (IS_ERR(file)) {
3446                 error = PTR_ERR(file);
3447                 goto err_fd;
3448         }
3449         info = SHMEM_I(file_inode(file));
3450         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3451         file->f_flags |= O_RDWR | O_LARGEFILE;
3452         if (flags & MFD_ALLOW_SEALING)
3453                 info->seals &= ~F_SEAL_SEAL;
3454
3455         fd_install(fd, file);
3456         kfree(name);
3457         return fd;
3458
3459 err_fd:
3460         put_unused_fd(fd);
3461 err_name:
3462         kfree(name);
3463         return error;
3464 }
3465
3466 #endif /* CONFIG_TMPFS */
3467
3468 static void shmem_put_super(struct super_block *sb)
3469 {
3470         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3471
3472         percpu_counter_destroy(&sbinfo->used_blocks);
3473         mpol_put(sbinfo->mpol);
3474         kfree(sbinfo);
3475         sb->s_fs_info = NULL;
3476 }
3477
3478 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3479 {
3480         struct inode *inode;
3481         struct shmem_sb_info *sbinfo;
3482         int err = -ENOMEM;
3483
3484         /* Round up to L1_CACHE_BYTES to resist false sharing */
3485         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3486                                 L1_CACHE_BYTES), GFP_KERNEL);
3487         if (!sbinfo)
3488                 return -ENOMEM;
3489
3490         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3491         sbinfo->uid = current_fsuid();
3492         sbinfo->gid = current_fsgid();
3493         sb->s_fs_info = sbinfo;
3494
3495 #ifdef CONFIG_TMPFS
3496         /*
3497          * Per default we only allow half of the physical ram per
3498          * tmpfs instance, limiting inodes to one per page of lowmem;
3499          * but the internal instance is left unlimited.
3500          */
3501         if (!(sb->s_flags & MS_KERNMOUNT)) {
3502                 sbinfo->max_blocks = shmem_default_max_blocks();
3503                 sbinfo->max_inodes = shmem_default_max_inodes();
3504                 if (shmem_parse_options(data, sbinfo, false)) {
3505                         err = -EINVAL;
3506                         goto failed;
3507                 }
3508         } else {
3509                 sb->s_flags |= MS_NOUSER;
3510         }
3511         sb->s_export_op = &shmem_export_ops;
3512         sb->s_flags |= MS_NOSEC;
3513 #else
3514         sb->s_flags |= MS_NOUSER;
3515 #endif
3516
3517         spin_lock_init(&sbinfo->stat_lock);
3518         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3519                 goto failed;
3520         sbinfo->free_inodes = sbinfo->max_inodes;
3521
3522         sb->s_maxbytes = MAX_LFS_FILESIZE;
3523         sb->s_blocksize = PAGE_SIZE;
3524         sb->s_blocksize_bits = PAGE_SHIFT;
3525         sb->s_magic = TMPFS_MAGIC;
3526         sb->s_op = &shmem_ops;
3527         sb->s_time_gran = 1;
3528 #ifdef CONFIG_TMPFS_XATTR
3529         sb->s_xattr = shmem_xattr_handlers;
3530 #endif
3531 #ifdef CONFIG_TMPFS_POSIX_ACL
3532         sb->s_flags |= MS_POSIXACL;
3533 #endif
3534
3535         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3536         if (!inode)
3537                 goto failed;
3538         inode->i_uid = sbinfo->uid;
3539         inode->i_gid = sbinfo->gid;
3540         sb->s_root = d_make_root(inode);
3541         if (!sb->s_root)
3542                 goto failed;
3543         return 0;
3544
3545 failed:
3546         shmem_put_super(sb);
3547         return err;
3548 }
3549
3550 static struct kmem_cache *shmem_inode_cachep;
3551
3552 static struct inode *shmem_alloc_inode(struct super_block *sb)
3553 {
3554         struct shmem_inode_info *info;
3555         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3556         if (!info)
3557                 return NULL;
3558         return &info->vfs_inode;
3559 }
3560
3561 static void shmem_destroy_callback(struct rcu_head *head)
3562 {
3563         struct inode *inode = container_of(head, struct inode, i_rcu);
3564         if (S_ISLNK(inode->i_mode))
3565                 kfree(inode->i_link);
3566         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3567 }
3568
3569 static void shmem_destroy_inode(struct inode *inode)
3570 {
3571         if (S_ISREG(inode->i_mode))
3572                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3573         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3574 }
3575
3576 static void shmem_init_inode(void *foo)
3577 {
3578         struct shmem_inode_info *info = foo;
3579         inode_init_once(&info->vfs_inode);
3580 }
3581
3582 static int shmem_init_inodecache(void)
3583 {
3584         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3585                                 sizeof(struct shmem_inode_info),
3586                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3587         return 0;
3588 }
3589
3590 static void shmem_destroy_inodecache(void)
3591 {
3592         kmem_cache_destroy(shmem_inode_cachep);
3593 }
3594
3595 static const struct address_space_operations shmem_aops = {
3596         .writepage      = shmem_writepage,
3597         .set_page_dirty = __set_page_dirty_no_writeback,
3598 #ifdef CONFIG_TMPFS
3599         .write_begin    = shmem_write_begin,
3600         .write_end      = shmem_write_end,
3601 #endif
3602 #ifdef CONFIG_MIGRATION
3603         .migratepage    = migrate_page,
3604 #endif
3605         .error_remove_page = generic_error_remove_page,
3606 };
3607
3608 static const struct file_operations shmem_file_operations = {
3609         .mmap           = shmem_mmap,
3610         .get_unmapped_area = shmem_get_unmapped_area,
3611 #ifdef CONFIG_TMPFS
3612         .llseek         = shmem_file_llseek,
3613         .read_iter      = shmem_file_read_iter,
3614         .write_iter     = generic_file_write_iter,
3615         .fsync          = noop_fsync,
3616         .splice_read    = shmem_file_splice_read,
3617         .splice_write   = iter_file_splice_write,
3618         .fallocate      = shmem_fallocate,
3619 #endif
3620 };
3621
3622 static const struct inode_operations shmem_inode_operations = {
3623         .getattr        = shmem_getattr,
3624         .setattr        = shmem_setattr,
3625 #ifdef CONFIG_TMPFS_XATTR
3626         .setxattr       = generic_setxattr,
3627         .getxattr       = generic_getxattr,
3628         .listxattr      = shmem_listxattr,
3629         .removexattr    = generic_removexattr,
3630         .set_acl        = simple_set_acl,
3631 #endif
3632 };
3633
3634 static const struct inode_operations shmem_dir_inode_operations = {
3635 #ifdef CONFIG_TMPFS
3636         .create         = shmem_create,
3637         .lookup         = simple_lookup,
3638         .link           = shmem_link,
3639         .unlink         = shmem_unlink,
3640         .symlink        = shmem_symlink,
3641         .mkdir          = shmem_mkdir,
3642         .rmdir          = shmem_rmdir,
3643         .mknod          = shmem_mknod,
3644         .rename2        = shmem_rename2,
3645         .tmpfile        = shmem_tmpfile,
3646 #endif
3647 #ifdef CONFIG_TMPFS_XATTR
3648         .setxattr       = generic_setxattr,
3649         .getxattr       = generic_getxattr,
3650         .listxattr      = shmem_listxattr,
3651         .removexattr    = generic_removexattr,
3652 #endif
3653 #ifdef CONFIG_TMPFS_POSIX_ACL
3654         .setattr        = shmem_setattr,
3655         .set_acl        = simple_set_acl,
3656 #endif
3657 };
3658
3659 static const struct inode_operations shmem_special_inode_operations = {
3660 #ifdef CONFIG_TMPFS_XATTR
3661         .setxattr       = generic_setxattr,
3662         .getxattr       = generic_getxattr,
3663         .listxattr      = shmem_listxattr,
3664         .removexattr    = generic_removexattr,
3665 #endif
3666 #ifdef CONFIG_TMPFS_POSIX_ACL
3667         .setattr        = shmem_setattr,
3668         .set_acl        = simple_set_acl,
3669 #endif
3670 };
3671
3672 static const struct super_operations shmem_ops = {
3673         .alloc_inode    = shmem_alloc_inode,
3674         .destroy_inode  = shmem_destroy_inode,
3675 #ifdef CONFIG_TMPFS
3676         .statfs         = shmem_statfs,
3677         .remount_fs     = shmem_remount_fs,
3678         .show_options   = shmem_show_options,
3679 #endif
3680         .evict_inode    = shmem_evict_inode,
3681         .drop_inode     = generic_delete_inode,
3682         .put_super      = shmem_put_super,
3683 };
3684
3685 static const struct vm_operations_struct shmem_vm_ops = {
3686         .fault          = shmem_fault,
3687         .map_pages      = filemap_map_pages,
3688 #ifdef CONFIG_NUMA
3689         .set_policy     = shmem_set_policy,
3690         .get_policy     = shmem_get_policy,
3691 #endif
3692 };
3693
3694 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3695         int flags, const char *dev_name, void *data)
3696 {
3697         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3698 }
3699
3700 static struct file_system_type shmem_fs_type = {
3701         .owner          = THIS_MODULE,
3702         .name           = "tmpfs",
3703         .mount          = shmem_mount,
3704         .kill_sb        = kill_litter_super,
3705         .fs_flags       = FS_USERNS_MOUNT,
3706 };
3707
3708 int __init shmem_init(void)
3709 {
3710         int error;
3711
3712         /* If rootfs called this, don't re-init */
3713         if (shmem_inode_cachep)
3714                 return 0;
3715
3716         error = shmem_init_inodecache();
3717         if (error)
3718                 goto out3;
3719
3720         error = register_filesystem(&shmem_fs_type);
3721         if (error) {
3722                 pr_err("Could not register tmpfs\n");
3723                 goto out2;
3724         }
3725
3726         shm_mnt = kern_mount(&shmem_fs_type);
3727         if (IS_ERR(shm_mnt)) {
3728                 error = PTR_ERR(shm_mnt);
3729                 pr_err("Could not kern_mount tmpfs\n");
3730                 goto out1;
3731         }
3732
3733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3734         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3735                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3736         else
3737                 shmem_huge = 0; /* just in case it was patched */
3738 #endif
3739         return 0;
3740
3741 out1:
3742         unregister_filesystem(&shmem_fs_type);
3743 out2:
3744         shmem_destroy_inodecache();
3745 out3:
3746         shm_mnt = ERR_PTR(error);
3747         return error;
3748 }
3749
3750 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3751 static ssize_t shmem_enabled_show(struct kobject *kobj,
3752                 struct kobj_attribute *attr, char *buf)
3753 {
3754         int values[] = {
3755                 SHMEM_HUGE_ALWAYS,
3756                 SHMEM_HUGE_WITHIN_SIZE,
3757                 SHMEM_HUGE_ADVISE,
3758                 SHMEM_HUGE_NEVER,
3759                 SHMEM_HUGE_DENY,
3760                 SHMEM_HUGE_FORCE,
3761         };
3762         int i, count;
3763
3764         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3765                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3766
3767                 count += sprintf(buf + count, fmt,
3768                                 shmem_format_huge(values[i]));
3769         }
3770         buf[count - 1] = '\n';
3771         return count;
3772 }
3773
3774 static ssize_t shmem_enabled_store(struct kobject *kobj,
3775                 struct kobj_attribute *attr, const char *buf, size_t count)
3776 {
3777         char tmp[16];
3778         int huge;
3779
3780         if (count + 1 > sizeof(tmp))
3781                 return -EINVAL;
3782         memcpy(tmp, buf, count);
3783         tmp[count] = '\0';
3784         if (count && tmp[count - 1] == '\n')
3785                 tmp[count - 1] = '\0';
3786
3787         huge = shmem_parse_huge(tmp);
3788         if (huge == -EINVAL)
3789                 return -EINVAL;
3790         if (!has_transparent_hugepage() &&
3791                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3792                 return -EINVAL;
3793
3794         shmem_huge = huge;
3795         if (shmem_huge < SHMEM_HUGE_DENY)
3796                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3797         return count;
3798 }
3799
3800 struct kobj_attribute shmem_enabled_attr =
3801         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3802
3803 bool shmem_huge_enabled(struct vm_area_struct *vma)
3804 {
3805         struct inode *inode = file_inode(vma->vm_file);
3806         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3807         loff_t i_size;
3808         pgoff_t off;
3809
3810         if (shmem_huge == SHMEM_HUGE_FORCE)
3811                 return true;
3812         if (shmem_huge == SHMEM_HUGE_DENY)
3813                 return false;
3814         switch (sbinfo->huge) {
3815                 case SHMEM_HUGE_NEVER:
3816                         return false;
3817                 case SHMEM_HUGE_ALWAYS:
3818                         return true;
3819                 case SHMEM_HUGE_WITHIN_SIZE:
3820                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3821                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3822                         if (i_size >= HPAGE_PMD_SIZE &&
3823                                         i_size >> PAGE_SHIFT >= off)
3824                                 return true;
3825                 case SHMEM_HUGE_ADVISE:
3826                         /* TODO: implement fadvise() hints */
3827                         return (vma->vm_flags & VM_HUGEPAGE);
3828                 default:
3829                         VM_BUG_ON(1);
3830                         return false;
3831         }
3832 }
3833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3834
3835 #else /* !CONFIG_SHMEM */
3836
3837 /*
3838  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3839  *
3840  * This is intended for small system where the benefits of the full
3841  * shmem code (swap-backed and resource-limited) are outweighed by
3842  * their complexity. On systems without swap this code should be
3843  * effectively equivalent, but much lighter weight.
3844  */
3845
3846 static struct file_system_type shmem_fs_type = {
3847         .name           = "tmpfs",
3848         .mount          = ramfs_mount,
3849         .kill_sb        = kill_litter_super,
3850         .fs_flags       = FS_USERNS_MOUNT,
3851 };
3852
3853 int __init shmem_init(void)
3854 {
3855         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3856
3857         shm_mnt = kern_mount(&shmem_fs_type);
3858         BUG_ON(IS_ERR(shm_mnt));
3859
3860         return 0;
3861 }
3862
3863 int shmem_unuse(swp_entry_t swap, struct page *page)
3864 {
3865         return 0;
3866 }
3867
3868 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3869 {
3870         return 0;
3871 }
3872
3873 void shmem_unlock_mapping(struct address_space *mapping)
3874 {
3875 }
3876
3877 #ifdef CONFIG_MMU
3878 unsigned long shmem_get_unmapped_area(struct file *file,
3879                                       unsigned long addr, unsigned long len,
3880                                       unsigned long pgoff, unsigned long flags)
3881 {
3882         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3883 }
3884 #endif
3885
3886 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3887 {
3888         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3889 }
3890 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3891
3892 #define shmem_vm_ops                            generic_file_vm_ops
3893 #define shmem_file_operations                   ramfs_file_operations
3894 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3895 #define shmem_acct_size(flags, size)            0
3896 #define shmem_unacct_size(flags, size)          do {} while (0)
3897
3898 #endif /* CONFIG_SHMEM */
3899
3900 /* common code */
3901
3902 static struct dentry_operations anon_ops = {
3903         .d_dname = simple_dname
3904 };
3905
3906 static struct file *__shmem_file_setup(const char *name, loff_t size,
3907                                        unsigned long flags, unsigned int i_flags)
3908 {
3909         struct file *res;
3910         struct inode *inode;
3911         struct path path;
3912         struct super_block *sb;
3913         struct qstr this;
3914
3915         if (IS_ERR(shm_mnt))
3916                 return ERR_CAST(shm_mnt);
3917
3918         if (size < 0 || size > MAX_LFS_FILESIZE)
3919                 return ERR_PTR(-EINVAL);
3920
3921         if (shmem_acct_size(flags, size))
3922                 return ERR_PTR(-ENOMEM);
3923
3924         res = ERR_PTR(-ENOMEM);
3925         this.name = name;
3926         this.len = strlen(name);
3927         this.hash = 0; /* will go */
3928         sb = shm_mnt->mnt_sb;
3929         path.mnt = mntget(shm_mnt);
3930         path.dentry = d_alloc_pseudo(sb, &this);
3931         if (!path.dentry)
3932                 goto put_memory;
3933         d_set_d_op(path.dentry, &anon_ops);
3934
3935         res = ERR_PTR(-ENOSPC);
3936         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3937         if (!inode)
3938                 goto put_memory;
3939
3940         inode->i_flags |= i_flags;
3941         d_instantiate(path.dentry, inode);
3942         inode->i_size = size;
3943         clear_nlink(inode);     /* It is unlinked */
3944         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3945         if (IS_ERR(res))
3946                 goto put_path;
3947
3948         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3949                   &shmem_file_operations);
3950         if (IS_ERR(res))
3951                 goto put_path;
3952
3953         return res;
3954
3955 put_memory:
3956         shmem_unacct_size(flags, size);
3957 put_path:
3958         path_put(&path);
3959         return res;
3960 }
3961
3962 /**
3963  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3964  *      kernel internal.  There will be NO LSM permission checks against the
3965  *      underlying inode.  So users of this interface must do LSM checks at a
3966  *      higher layer.  The users are the big_key and shm implementations.  LSM
3967  *      checks are provided at the key or shm level rather than the inode.
3968  * @name: name for dentry (to be seen in /proc/<pid>/maps
3969  * @size: size to be set for the file
3970  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3971  */
3972 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3973 {
3974         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3975 }
3976
3977 /**
3978  * shmem_file_setup - get an unlinked file living in tmpfs
3979  * @name: name for dentry (to be seen in /proc/<pid>/maps
3980  * @size: size to be set for the file
3981  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3982  */
3983 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3984 {
3985         return __shmem_file_setup(name, size, flags, 0);
3986 }
3987 EXPORT_SYMBOL_GPL(shmem_file_setup);
3988
3989 /**
3990  * shmem_zero_setup - setup a shared anonymous mapping
3991  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3992  */
3993 int shmem_zero_setup(struct vm_area_struct *vma)
3994 {
3995         struct file *file;
3996         loff_t size = vma->vm_end - vma->vm_start;
3997
3998         /*
3999          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4000          * between XFS directory reading and selinux: since this file is only
4001          * accessible to the user through its mapping, use S_PRIVATE flag to
4002          * bypass file security, in the same way as shmem_kernel_file_setup().
4003          */
4004         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4005         if (IS_ERR(file))
4006                 return PTR_ERR(file);
4007
4008         if (vma->vm_file)
4009                 fput(vma->vm_file);
4010         vma->vm_file = file;
4011         vma->vm_ops = &shmem_vm_ops;
4012
4013         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4014                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4015                         (vma->vm_end & HPAGE_PMD_MASK)) {
4016                 khugepaged_enter(vma, vma->vm_flags);
4017         }
4018
4019         return 0;
4020 }
4021
4022 /**
4023  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4024  * @mapping:    the page's address_space
4025  * @index:      the page index
4026  * @gfp:        the page allocator flags to use if allocating
4027  *
4028  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4029  * with any new page allocations done using the specified allocation flags.
4030  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4031  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4032  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4033  *
4034  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4035  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4036  */
4037 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4038                                          pgoff_t index, gfp_t gfp)
4039 {
4040 #ifdef CONFIG_SHMEM
4041         struct inode *inode = mapping->host;
4042         struct page *page;
4043         int error;
4044
4045         BUG_ON(mapping->a_ops != &shmem_aops);
4046         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4047                                   gfp, NULL, NULL);
4048         if (error)
4049                 page = ERR_PTR(error);
4050         else
4051                 unlock_page(page);
4052         return page;
4053 #else
4054         /*
4055          * The tiny !SHMEM case uses ramfs without swap
4056          */
4057         return read_cache_page_gfp(mapping, index, gfp);
4058 #endif
4059 }
4060 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.256839 seconds and 2 git commands to generate.