]> Git Repo - linux.git/blob - drivers/nvdimm/pmem.c
904629b97c4f631cfd5a2298cb6459f5a0d44cc7
[linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <[email protected]>.
6  * Copyright (c) 2015, Boaz Harrosh <[email protected]>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         struct request_queue    *pmem_queue;
37         struct gendisk          *pmem_disk;
38         struct nd_namespace_common *ndns;
39
40         /* One contiguous memory region per device */
41         phys_addr_t             phys_addr;
42         /* when non-zero this device is hosting a 'pfn' instance */
43         phys_addr_t             data_offset;
44         unsigned long           pfn_flags;
45         void __pmem             *virt_addr;
46         size_t                  size;
47         struct badblocks        bb;
48 };
49
50 static int pmem_major;
51
52 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
53 {
54         if (bb->count) {
55                 sector_t first_bad;
56                 int num_bad;
57
58                 return !!badblocks_check(bb, sector, len / 512, &first_bad,
59                                 &num_bad);
60         }
61
62         return false;
63 }
64
65 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
66                         unsigned int len, unsigned int off, int rw,
67                         sector_t sector)
68 {
69         void *mem = kmap_atomic(page);
70         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
71         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
72
73         if (rw == READ) {
74                 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
75                         return -EIO;
76                 memcpy_from_pmem(mem + off, pmem_addr, len);
77                 flush_dcache_page(page);
78         } else {
79                 flush_dcache_page(page);
80                 memcpy_to_pmem(pmem_addr, mem + off, len);
81         }
82
83         kunmap_atomic(mem);
84         return 0;
85 }
86
87 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
88 {
89         int rc = 0;
90         bool do_acct;
91         unsigned long start;
92         struct bio_vec bvec;
93         struct bvec_iter iter;
94         struct block_device *bdev = bio->bi_bdev;
95         struct pmem_device *pmem = bdev->bd_disk->private_data;
96
97         do_acct = nd_iostat_start(bio, &start);
98         bio_for_each_segment(bvec, bio, iter) {
99                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
100                                 bvec.bv_offset, bio_data_dir(bio),
101                                 iter.bi_sector);
102                 if (rc) {
103                         bio->bi_error = rc;
104                         break;
105                 }
106         }
107         if (do_acct)
108                 nd_iostat_end(bio, start);
109
110         if (bio_data_dir(bio))
111                 wmb_pmem();
112
113         bio_endio(bio);
114         return BLK_QC_T_NONE;
115 }
116
117 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
118                        struct page *page, int rw)
119 {
120         struct pmem_device *pmem = bdev->bd_disk->private_data;
121         int rc;
122
123         rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
124         if (rw & WRITE)
125                 wmb_pmem();
126
127         /*
128          * The ->rw_page interface is subtle and tricky.  The core
129          * retries on any error, so we can only invoke page_endio() in
130          * the successful completion case.  Otherwise, we'll see crashes
131          * caused by double completion.
132          */
133         if (rc == 0)
134                 page_endio(page, rw & WRITE, 0);
135
136         return rc;
137 }
138
139 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
140                       void __pmem **kaddr, pfn_t *pfn)
141 {
142         struct pmem_device *pmem = bdev->bd_disk->private_data;
143         resource_size_t offset = sector * 512 + pmem->data_offset;
144
145         *kaddr = pmem->virt_addr + offset;
146         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
147
148         return pmem->size - offset;
149 }
150
151 static const struct block_device_operations pmem_fops = {
152         .owner =                THIS_MODULE,
153         .rw_page =              pmem_rw_page,
154         .direct_access =        pmem_direct_access,
155         .revalidate_disk =      nvdimm_revalidate_disk,
156 };
157
158 static struct pmem_device *pmem_alloc(struct device *dev,
159                 struct resource *res, int id)
160 {
161         struct pmem_device *pmem;
162
163         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
164         if (!pmem)
165                 return ERR_PTR(-ENOMEM);
166
167         pmem->phys_addr = res->start;
168         pmem->size = resource_size(res);
169         if (!arch_has_wmb_pmem())
170                 dev_warn(dev, "unable to guarantee persistence of writes\n");
171
172         if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
173                         dev_name(dev))) {
174                 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
175                                 &pmem->phys_addr, pmem->size);
176                 return ERR_PTR(-EBUSY);
177         }
178
179         pmem->pfn_flags = PFN_DEV;
180         if (pmem_should_map_pages(dev)) {
181                 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res);
182                 pmem->pfn_flags |= PFN_MAP;
183         } else
184                 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
185                                 pmem->phys_addr, pmem->size,
186                                 ARCH_MEMREMAP_PMEM);
187
188         if (IS_ERR(pmem->virt_addr))
189                 return (void __force *) pmem->virt_addr;
190
191         return pmem;
192 }
193
194 static void pmem_detach_disk(struct pmem_device *pmem)
195 {
196         if (!pmem->pmem_disk)
197                 return;
198
199         del_gendisk(pmem->pmem_disk);
200         put_disk(pmem->pmem_disk);
201         blk_cleanup_queue(pmem->pmem_queue);
202 }
203
204 static int pmem_attach_disk(struct device *dev,
205                 struct nd_namespace_common *ndns, struct pmem_device *pmem)
206 {
207         int nid = dev_to_node(dev);
208         struct gendisk *disk;
209
210         pmem->pmem_queue = blk_alloc_queue_node(GFP_KERNEL, nid);
211         if (!pmem->pmem_queue)
212                 return -ENOMEM;
213
214         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
215         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
216         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
217         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
218         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
219
220         disk = alloc_disk_node(0, nid);
221         if (!disk) {
222                 blk_cleanup_queue(pmem->pmem_queue);
223                 return -ENOMEM;
224         }
225
226         disk->major             = pmem_major;
227         disk->first_minor       = 0;
228         disk->fops              = &pmem_fops;
229         disk->private_data      = pmem;
230         disk->queue             = pmem->pmem_queue;
231         disk->flags             = GENHD_FL_EXT_DEVT;
232         nvdimm_namespace_disk_name(ndns, disk->disk_name);
233         disk->driverfs_dev = dev;
234         set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
235         pmem->pmem_disk = disk;
236         devm_exit_badblocks(dev, &pmem->bb);
237         if (devm_init_badblocks(dev, &pmem->bb))
238                 return -ENOMEM;
239         nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
240
241         disk->bb = &pmem->bb;
242         add_disk(disk);
243         revalidate_disk(disk);
244
245         return 0;
246 }
247
248 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
249                 resource_size_t offset, void *buf, size_t size, int rw)
250 {
251         struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
252
253         if (unlikely(offset + size > pmem->size)) {
254                 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
255                 return -EFAULT;
256         }
257
258         if (rw == READ) {
259                 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
260
261                 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
262                         return -EIO;
263                 memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
264         } else {
265                 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
266                 wmb_pmem();
267         }
268
269         return 0;
270 }
271
272 static int nd_pfn_init(struct nd_pfn *nd_pfn)
273 {
274         struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
275         struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
276         struct nd_namespace_common *ndns = nd_pfn->ndns;
277         struct nd_region *nd_region;
278         unsigned long npfns;
279         phys_addr_t offset;
280         u64 checksum;
281         int rc;
282
283         if (!pfn_sb)
284                 return -ENOMEM;
285
286         nd_pfn->pfn_sb = pfn_sb;
287         rc = nd_pfn_validate(nd_pfn);
288         if (rc == -ENODEV)
289                 /* no info block, do init */;
290         else
291                 return rc;
292
293         nd_region = to_nd_region(nd_pfn->dev.parent);
294         if (nd_region->ro) {
295                 dev_info(&nd_pfn->dev,
296                                 "%s is read-only, unable to init metadata\n",
297                                 dev_name(&nd_region->dev));
298                 goto err;
299         }
300
301         memset(pfn_sb, 0, sizeof(*pfn_sb));
302         npfns = (pmem->size - SZ_8K) / SZ_4K;
303         /*
304          * Note, we use 64 here for the standard size of struct page,
305          * debugging options may cause it to be larger in which case the
306          * implementation will limit the pfns advertised through
307          * ->direct_access() to those that are included in the memmap.
308          */
309         if (nd_pfn->mode == PFN_MODE_PMEM)
310                 offset = ALIGN(SZ_8K + 64 * npfns, nd_pfn->align);
311         else if (nd_pfn->mode == PFN_MODE_RAM)
312                 offset = ALIGN(SZ_8K, nd_pfn->align);
313         else
314                 goto err;
315
316         npfns = (pmem->size - offset) / SZ_4K;
317         pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
318         pfn_sb->dataoff = cpu_to_le64(offset);
319         pfn_sb->npfns = cpu_to_le64(npfns);
320         memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
321         memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
322         memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
323         pfn_sb->version_major = cpu_to_le16(1);
324         checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
325         pfn_sb->checksum = cpu_to_le64(checksum);
326
327         rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
328         if (rc)
329                 goto err;
330
331         return 0;
332  err:
333         nd_pfn->pfn_sb = NULL;
334         kfree(pfn_sb);
335         return -ENXIO;
336 }
337
338 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
339 {
340         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
341         struct pmem_device *pmem;
342
343         /* free pmem disk */
344         pmem = dev_get_drvdata(&nd_pfn->dev);
345         pmem_detach_disk(pmem);
346
347         /* release nd_pfn resources */
348         kfree(nd_pfn->pfn_sb);
349         nd_pfn->pfn_sb = NULL;
350
351         return 0;
352 }
353
354 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
355 {
356         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
357         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
358         struct device *dev = &nd_pfn->dev;
359         struct vmem_altmap *altmap;
360         struct nd_region *nd_region;
361         struct nd_pfn_sb *pfn_sb;
362         struct pmem_device *pmem;
363         phys_addr_t offset;
364         int rc;
365
366         if (!nd_pfn->uuid || !nd_pfn->ndns)
367                 return -ENODEV;
368
369         nd_region = to_nd_region(dev->parent);
370         rc = nd_pfn_init(nd_pfn);
371         if (rc)
372                 return rc;
373
374         pfn_sb = nd_pfn->pfn_sb;
375         offset = le64_to_cpu(pfn_sb->dataoff);
376         nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
377         if (nd_pfn->mode == PFN_MODE_RAM) {
378                 if (offset < SZ_8K)
379                         return -EINVAL;
380                 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
381                 altmap = NULL;
382         } else {
383                 rc = -ENXIO;
384                 goto err;
385         }
386
387         /* establish pfn range for lookup, and switch to direct map */
388         pmem = dev_get_drvdata(dev);
389         devm_memunmap(dev, (void __force *) pmem->virt_addr);
390         pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res);
391         pmem->pfn_flags |= PFN_MAP;
392         if (IS_ERR(pmem->virt_addr)) {
393                 rc = PTR_ERR(pmem->virt_addr);
394                 goto err;
395         }
396
397         /* attach pmem disk in "pfn-mode" */
398         pmem->data_offset = offset;
399         rc = pmem_attach_disk(dev, ndns, pmem);
400         if (rc)
401                 goto err;
402
403         return rc;
404  err:
405         nvdimm_namespace_detach_pfn(ndns);
406         return rc;
407 }
408
409 static int nd_pmem_probe(struct device *dev)
410 {
411         struct nd_region *nd_region = to_nd_region(dev->parent);
412         struct nd_namespace_common *ndns;
413         struct nd_namespace_io *nsio;
414         struct pmem_device *pmem;
415
416         ndns = nvdimm_namespace_common_probe(dev);
417         if (IS_ERR(ndns))
418                 return PTR_ERR(ndns);
419
420         nsio = to_nd_namespace_io(&ndns->dev);
421         pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
422         if (IS_ERR(pmem))
423                 return PTR_ERR(pmem);
424
425         pmem->ndns = ndns;
426         dev_set_drvdata(dev, pmem);
427         ndns->rw_bytes = pmem_rw_bytes;
428         if (devm_init_badblocks(dev, &pmem->bb))
429                 return -ENOMEM;
430         nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
431
432         if (is_nd_btt(dev))
433                 return nvdimm_namespace_attach_btt(ndns);
434
435         if (is_nd_pfn(dev))
436                 return nvdimm_namespace_attach_pfn(ndns);
437
438         if (nd_btt_probe(ndns, pmem) == 0) {
439                 /* we'll come back as btt-pmem */
440                 return -ENXIO;
441         }
442
443         if (nd_pfn_probe(ndns, pmem) == 0) {
444                 /* we'll come back as pfn-pmem */
445                 return -ENXIO;
446         }
447
448         return pmem_attach_disk(dev, ndns, pmem);
449 }
450
451 static int nd_pmem_remove(struct device *dev)
452 {
453         struct pmem_device *pmem = dev_get_drvdata(dev);
454
455         if (is_nd_btt(dev))
456                 nvdimm_namespace_detach_btt(pmem->ndns);
457         else if (is_nd_pfn(dev))
458                 nvdimm_namespace_detach_pfn(pmem->ndns);
459         else
460                 pmem_detach_disk(pmem);
461
462         return 0;
463 }
464
465 MODULE_ALIAS("pmem");
466 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
467 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
468 static struct nd_device_driver nd_pmem_driver = {
469         .probe = nd_pmem_probe,
470         .remove = nd_pmem_remove,
471         .drv = {
472                 .name = "nd_pmem",
473         },
474         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
475 };
476
477 static int __init pmem_init(void)
478 {
479         int error;
480
481         pmem_major = register_blkdev(0, "pmem");
482         if (pmem_major < 0)
483                 return pmem_major;
484
485         error = nd_driver_register(&nd_pmem_driver);
486         if (error) {
487                 unregister_blkdev(pmem_major, "pmem");
488                 return error;
489         }
490
491         return 0;
492 }
493 module_init(pmem_init);
494
495 static void pmem_exit(void)
496 {
497         driver_unregister(&nd_pmem_driver.drv);
498         unregister_blkdev(pmem_major, "pmem");
499 }
500 module_exit(pmem_exit);
501
502 MODULE_AUTHOR("Ross Zwisler <[email protected]>");
503 MODULE_LICENSE("GPL v2");
This page took 0.042837 seconds and 2 git commands to generate.