1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 folio_put_refs(folio, refs);
98 * try_grab_folio() - Attempt to get or pin a folio.
99 * @page: pointer to page to be grabbed
100 * @refs: the value to (effectively) add to the folio's refcount
101 * @flags: gup flags: these are the FOLL_* flag values.
103 * "grab" names in this file mean, "look at flags to decide whether to use
104 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
107 * same time. (That's true throughout the get_user_pages*() and
108 * pin_user_pages*() APIs.) Cases:
110 * FOLL_GET: folio's refcount will be incremented by @refs.
112 * FOLL_PIN on large folios: folio's refcount will be incremented by
113 * @refs, and its compound_pincount will be incremented by @refs.
115 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
116 * @refs * GUP_PIN_COUNTING_BIAS.
118 * Return: The folio containing @page (with refcount appropriately
119 * incremented) for success, or NULL upon failure. If neither FOLL_GET
120 * nor FOLL_PIN was set, that's considered failure, and furthermore,
121 * a likely bug in the caller, so a warning is also emitted.
123 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 if (flags & FOLL_GET)
126 return try_get_folio(page, refs);
127 else if (flags & FOLL_PIN) {
131 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
132 * right zone, so fail and let the caller fall back to the slow
135 if (unlikely((flags & FOLL_LONGTERM) &&
136 !is_pinnable_page(page)))
140 * CAUTION: Don't use compound_head() on the page before this
141 * point, the result won't be stable.
143 folio = try_get_folio(page, refs);
148 * When pinning a large folio, use an exact count to track it.
150 * However, be sure to *also* increment the normal folio
151 * refcount field at least once, so that the folio really
152 * is pinned. That's why the refcount from the earlier
153 * try_get_folio() is left intact.
155 if (folio_test_large(folio))
156 atomic_add(refs, folio_pincount_ptr(folio));
159 refs * (GUP_PIN_COUNTING_BIAS - 1));
160 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 if (flags & FOLL_PIN) {
172 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
173 if (folio_test_large(folio))
174 atomic_sub(refs, folio_pincount_ptr(folio));
176 refs *= GUP_PIN_COUNTING_BIAS;
179 folio_put_refs(folio, refs);
183 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
184 * @page: pointer to page to be grabbed
185 * @flags: gup flags: these are the FOLL_* flag values.
187 * This might not do anything at all, depending on the flags argument.
189 * "grab" names in this file mean, "look at flags to decide whether to use
190 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
192 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
193 * time. Cases: please see the try_grab_folio() documentation, with
196 * Return: true for success, or if no action was required (if neither FOLL_PIN
197 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
198 * FOLL_PIN was set, but the page could not be grabbed.
200 bool __must_check try_grab_page(struct page *page, unsigned int flags)
202 struct folio *folio = page_folio(page);
204 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
205 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 if (flags & FOLL_GET)
209 folio_ref_inc(folio);
210 else if (flags & FOLL_PIN) {
212 * Similar to try_grab_folio(): be sure to *also*
213 * increment the normal page refcount field at least once,
214 * so that the page really is pinned.
216 if (folio_test_large(folio)) {
217 folio_ref_add(folio, 1);
218 atomic_add(1, folio_pincount_ptr(folio));
220 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
230 * unpin_user_page() - release a dma-pinned page
231 * @page: pointer to page to be released
233 * Pages that were pinned via pin_user_pages*() must be released via either
234 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
235 * that such pages can be separately tracked and uniquely handled. In
236 * particular, interactions with RDMA and filesystems need special handling.
238 void unpin_user_page(struct page *page)
240 sanity_check_pinned_pages(&page, 1);
241 gup_put_folio(page_folio(page), 1, FOLL_PIN);
243 EXPORT_SYMBOL(unpin_user_page);
245 static inline struct folio *gup_folio_range_next(struct page *start,
246 unsigned long npages, unsigned long i, unsigned int *ntails)
248 struct page *next = nth_page(start, i);
249 struct folio *folio = page_folio(next);
252 if (folio_test_large(folio))
253 nr = min_t(unsigned int, npages - i,
254 folio_nr_pages(folio) - folio_page_idx(folio, next));
260 static inline struct folio *gup_folio_next(struct page **list,
261 unsigned long npages, unsigned long i, unsigned int *ntails)
263 struct folio *folio = page_folio(list[i]);
266 for (nr = i + 1; nr < npages; nr++) {
267 if (page_folio(list[nr]) != folio)
276 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
277 * @pages: array of pages to be maybe marked dirty, and definitely released.
278 * @npages: number of pages in the @pages array.
279 * @make_dirty: whether to mark the pages dirty
281 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
282 * variants called on that page.
284 * For each page in the @pages array, make that page (or its head page, if a
285 * compound page) dirty, if @make_dirty is true, and if the page was previously
286 * listed as clean. In any case, releases all pages using unpin_user_page(),
287 * possibly via unpin_user_pages(), for the non-dirty case.
289 * Please see the unpin_user_page() documentation for details.
291 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
292 * required, then the caller should a) verify that this is really correct,
293 * because _lock() is usually required, and b) hand code it:
294 * set_page_dirty_lock(), unpin_user_page().
297 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
305 unpin_user_pages(pages, npages);
309 sanity_check_pinned_pages(pages, npages);
310 for (i = 0; i < npages; i += nr) {
311 folio = gup_folio_next(pages, npages, i, &nr);
313 * Checking PageDirty at this point may race with
314 * clear_page_dirty_for_io(), but that's OK. Two key
317 * 1) This code sees the page as already dirty, so it
318 * skips the call to set_page_dirty(). That could happen
319 * because clear_page_dirty_for_io() called
320 * page_mkclean(), followed by set_page_dirty().
321 * However, now the page is going to get written back,
322 * which meets the original intention of setting it
323 * dirty, so all is well: clear_page_dirty_for_io() goes
324 * on to call TestClearPageDirty(), and write the page
327 * 2) This code sees the page as clean, so it calls
328 * set_page_dirty(). The page stays dirty, despite being
329 * written back, so it gets written back again in the
330 * next writeback cycle. This is harmless.
332 if (!folio_test_dirty(folio)) {
334 folio_mark_dirty(folio);
337 gup_put_folio(folio, nr, FOLL_PIN);
340 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343 * unpin_user_page_range_dirty_lock() - release and optionally dirty
344 * gup-pinned page range
346 * @page: the starting page of a range maybe marked dirty, and definitely released.
347 * @npages: number of consecutive pages to release.
348 * @make_dirty: whether to mark the pages dirty
350 * "gup-pinned page range" refers to a range of pages that has had one of the
351 * pin_user_pages() variants called on that page.
353 * For the page ranges defined by [page .. page+npages], make that range (or
354 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
355 * page range was previously listed as clean.
357 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
358 * required, then the caller should a) verify that this is really correct,
359 * because _lock() is usually required, and b) hand code it:
360 * set_page_dirty_lock(), unpin_user_page().
363 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
370 for (i = 0; i < npages; i += nr) {
371 folio = gup_folio_range_next(page, npages, i, &nr);
372 if (make_dirty && !folio_test_dirty(folio)) {
374 folio_mark_dirty(folio);
377 gup_put_folio(folio, nr, FOLL_PIN);
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
382 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
389 * Don't perform any sanity checks because we might have raced with
390 * fork() and some anonymous pages might now actually be shared --
391 * which is why we're unpinning after all.
393 for (i = 0; i < npages; i += nr) {
394 folio = gup_folio_next(pages, npages, i, &nr);
395 gup_put_folio(folio, nr, FOLL_PIN);
400 * unpin_user_pages() - release an array of gup-pinned pages.
401 * @pages: array of pages to be marked dirty and released.
402 * @npages: number of pages in the @pages array.
404 * For each page in the @pages array, release the page using unpin_user_page().
406 * Please see the unpin_user_page() documentation for details.
408 void unpin_user_pages(struct page **pages, unsigned long npages)
415 * If this WARN_ON() fires, then the system *might* be leaking pages (by
416 * leaving them pinned), but probably not. More likely, gup/pup returned
417 * a hard -ERRNO error to the caller, who erroneously passed it here.
419 if (WARN_ON(IS_ERR_VALUE(npages)))
422 sanity_check_pinned_pages(pages, npages);
423 for (i = 0; i < npages; i += nr) {
424 folio = gup_folio_next(pages, npages, i, &nr);
425 gup_put_folio(folio, nr, FOLL_PIN);
428 EXPORT_SYMBOL(unpin_user_pages);
431 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
432 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
433 * cache bouncing on large SMP machines for concurrent pinned gups.
435 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
437 if (!test_bit(MMF_HAS_PINNED, mm_flags))
438 set_bit(MMF_HAS_PINNED, mm_flags);
442 static struct page *no_page_table(struct vm_area_struct *vma,
446 * When core dumping an enormous anonymous area that nobody
447 * has touched so far, we don't want to allocate unnecessary pages or
448 * page tables. Return error instead of NULL to skip handle_mm_fault,
449 * then get_dump_page() will return NULL to leave a hole in the dump.
450 * But we can only make this optimization where a hole would surely
451 * be zero-filled if handle_mm_fault() actually did handle it.
453 if ((flags & FOLL_DUMP) &&
454 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
455 return ERR_PTR(-EFAULT);
459 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
460 pte_t *pte, unsigned int flags)
462 if (flags & FOLL_TOUCH) {
465 if (flags & FOLL_WRITE)
466 entry = pte_mkdirty(entry);
467 entry = pte_mkyoung(entry);
469 if (!pte_same(*pte, entry)) {
470 set_pte_at(vma->vm_mm, address, pte, entry);
471 update_mmu_cache(vma, address, pte);
475 /* Proper page table entry exists, but no corresponding struct page */
480 * FOLL_FORCE can write to even unwritable pte's, but only
481 * after we've gone through a COW cycle and they are dirty.
483 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
485 return pte_write(pte) ||
486 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
489 static struct page *follow_page_pte(struct vm_area_struct *vma,
490 unsigned long address, pmd_t *pmd, unsigned int flags,
491 struct dev_pagemap **pgmap)
493 struct mm_struct *mm = vma->vm_mm;
499 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
500 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
501 (FOLL_PIN | FOLL_GET)))
502 return ERR_PTR(-EINVAL);
504 if (unlikely(pmd_bad(*pmd)))
505 return no_page_table(vma, flags);
507 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
509 if (!pte_present(pte)) {
512 * KSM's break_ksm() relies upon recognizing a ksm page
513 * even while it is being migrated, so for that case we
514 * need migration_entry_wait().
516 if (likely(!(flags & FOLL_MIGRATION)))
520 entry = pte_to_swp_entry(pte);
521 if (!is_migration_entry(entry))
523 pte_unmap_unlock(ptep, ptl);
524 migration_entry_wait(mm, pmd, address);
527 if ((flags & FOLL_NUMA) && pte_protnone(pte))
529 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
530 pte_unmap_unlock(ptep, ptl);
534 page = vm_normal_page(vma, address, pte);
535 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
537 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
538 * case since they are only valid while holding the pgmap
541 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
543 page = pte_page(pte);
546 } else if (unlikely(!page)) {
547 if (flags & FOLL_DUMP) {
548 /* Avoid special (like zero) pages in core dumps */
549 page = ERR_PTR(-EFAULT);
553 if (is_zero_pfn(pte_pfn(pte))) {
554 page = pte_page(pte);
556 ret = follow_pfn_pte(vma, address, ptep, flags);
562 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
563 page = ERR_PTR(-EMLINK);
567 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
568 !PageAnonExclusive(page), page);
570 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
571 if (unlikely(!try_grab_page(page, flags))) {
572 page = ERR_PTR(-ENOMEM);
576 * We need to make the page accessible if and only if we are going
577 * to access its content (the FOLL_PIN case). Please see
578 * Documentation/core-api/pin_user_pages.rst for details.
580 if (flags & FOLL_PIN) {
581 ret = arch_make_page_accessible(page);
583 unpin_user_page(page);
588 if (flags & FOLL_TOUCH) {
589 if ((flags & FOLL_WRITE) &&
590 !pte_dirty(pte) && !PageDirty(page))
591 set_page_dirty(page);
593 * pte_mkyoung() would be more correct here, but atomic care
594 * is needed to avoid losing the dirty bit: it is easier to use
595 * mark_page_accessed().
597 mark_page_accessed(page);
600 pte_unmap_unlock(ptep, ptl);
603 pte_unmap_unlock(ptep, ptl);
606 return no_page_table(vma, flags);
609 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
610 unsigned long address, pud_t *pudp,
612 struct follow_page_context *ctx)
617 struct mm_struct *mm = vma->vm_mm;
619 pmd = pmd_offset(pudp, address);
621 * The READ_ONCE() will stabilize the pmdval in a register or
622 * on the stack so that it will stop changing under the code.
624 pmdval = READ_ONCE(*pmd);
625 if (pmd_none(pmdval))
626 return no_page_table(vma, flags);
627 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
628 page = follow_huge_pmd(mm, address, pmd, flags);
631 return no_page_table(vma, flags);
633 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
634 page = follow_huge_pd(vma, address,
635 __hugepd(pmd_val(pmdval)), flags,
639 return no_page_table(vma, flags);
642 if (!pmd_present(pmdval)) {
644 * Should never reach here, if thp migration is not supported;
645 * Otherwise, it must be a thp migration entry.
647 VM_BUG_ON(!thp_migration_supported() ||
648 !is_pmd_migration_entry(pmdval));
650 if (likely(!(flags & FOLL_MIGRATION)))
651 return no_page_table(vma, flags);
653 pmd_migration_entry_wait(mm, pmd);
654 pmdval = READ_ONCE(*pmd);
656 * MADV_DONTNEED may convert the pmd to null because
657 * mmap_lock is held in read mode
659 if (pmd_none(pmdval))
660 return no_page_table(vma, flags);
663 if (pmd_devmap(pmdval)) {
664 ptl = pmd_lock(mm, pmd);
665 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
670 if (likely(!pmd_trans_huge(pmdval)))
671 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
673 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
674 return no_page_table(vma, flags);
677 ptl = pmd_lock(mm, pmd);
678 if (unlikely(pmd_none(*pmd))) {
680 return no_page_table(vma, flags);
682 if (unlikely(!pmd_present(*pmd))) {
684 if (likely(!(flags & FOLL_MIGRATION)))
685 return no_page_table(vma, flags);
686 pmd_migration_entry_wait(mm, pmd);
689 if (unlikely(!pmd_trans_huge(*pmd))) {
691 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
693 if (flags & FOLL_SPLIT_PMD) {
695 page = pmd_page(*pmd);
696 if (is_huge_zero_page(page)) {
699 split_huge_pmd(vma, pmd, address);
700 if (pmd_trans_unstable(pmd))
704 split_huge_pmd(vma, pmd, address);
705 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
708 return ret ? ERR_PTR(ret) :
709 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
711 page = follow_trans_huge_pmd(vma, address, pmd, flags);
713 ctx->page_mask = HPAGE_PMD_NR - 1;
717 static struct page *follow_pud_mask(struct vm_area_struct *vma,
718 unsigned long address, p4d_t *p4dp,
720 struct follow_page_context *ctx)
725 struct mm_struct *mm = vma->vm_mm;
727 pud = pud_offset(p4dp, address);
729 return no_page_table(vma, flags);
730 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
731 page = follow_huge_pud(mm, address, pud, flags);
734 return no_page_table(vma, flags);
736 if (is_hugepd(__hugepd(pud_val(*pud)))) {
737 page = follow_huge_pd(vma, address,
738 __hugepd(pud_val(*pud)), flags,
742 return no_page_table(vma, flags);
744 if (pud_devmap(*pud)) {
745 ptl = pud_lock(mm, pud);
746 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
751 if (unlikely(pud_bad(*pud)))
752 return no_page_table(vma, flags);
754 return follow_pmd_mask(vma, address, pud, flags, ctx);
757 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
758 unsigned long address, pgd_t *pgdp,
760 struct follow_page_context *ctx)
765 p4d = p4d_offset(pgdp, address);
767 return no_page_table(vma, flags);
768 BUILD_BUG_ON(p4d_huge(*p4d));
769 if (unlikely(p4d_bad(*p4d)))
770 return no_page_table(vma, flags);
772 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
773 page = follow_huge_pd(vma, address,
774 __hugepd(p4d_val(*p4d)), flags,
778 return no_page_table(vma, flags);
780 return follow_pud_mask(vma, address, p4d, flags, ctx);
784 * follow_page_mask - look up a page descriptor from a user-virtual address
785 * @vma: vm_area_struct mapping @address
786 * @address: virtual address to look up
787 * @flags: flags modifying lookup behaviour
788 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
789 * pointer to output page_mask
791 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
793 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
794 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
796 * When getting an anonymous page and the caller has to trigger unsharing
797 * of a shared anonymous page first, -EMLINK is returned. The caller should
798 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
799 * relevant with FOLL_PIN and !FOLL_WRITE.
801 * On output, the @ctx->page_mask is set according to the size of the page.
803 * Return: the mapped (struct page *), %NULL if no mapping exists, or
804 * an error pointer if there is a mapping to something not represented
805 * by a page descriptor (see also vm_normal_page()).
807 static struct page *follow_page_mask(struct vm_area_struct *vma,
808 unsigned long address, unsigned int flags,
809 struct follow_page_context *ctx)
813 struct mm_struct *mm = vma->vm_mm;
817 /* make this handle hugepd */
818 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
820 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
824 pgd = pgd_offset(mm, address);
826 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827 return no_page_table(vma, flags);
829 if (pgd_huge(*pgd)) {
830 page = follow_huge_pgd(mm, address, pgd, flags);
833 return no_page_table(vma, flags);
835 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
836 page = follow_huge_pd(vma, address,
837 __hugepd(pgd_val(*pgd)), flags,
841 return no_page_table(vma, flags);
844 return follow_p4d_mask(vma, address, pgd, flags, ctx);
847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
848 unsigned int foll_flags)
850 struct follow_page_context ctx = { NULL };
853 if (vma_is_secretmem(vma))
856 if (foll_flags & FOLL_PIN)
859 page = follow_page_mask(vma, address, foll_flags, &ctx);
861 put_dev_pagemap(ctx.pgmap);
865 static int get_gate_page(struct mm_struct *mm, unsigned long address,
866 unsigned int gup_flags, struct vm_area_struct **vma,
876 /* user gate pages are read-only */
877 if (gup_flags & FOLL_WRITE)
879 if (address > TASK_SIZE)
880 pgd = pgd_offset_k(address);
882 pgd = pgd_offset_gate(mm, address);
885 p4d = p4d_offset(pgd, address);
888 pud = pud_offset(p4d, address);
891 pmd = pmd_offset(pud, address);
892 if (!pmd_present(*pmd))
894 VM_BUG_ON(pmd_trans_huge(*pmd));
895 pte = pte_offset_map(pmd, address);
898 *vma = get_gate_vma(mm);
901 *page = vm_normal_page(*vma, address, *pte);
903 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
905 *page = pte_page(*pte);
907 if (unlikely(!try_grab_page(*page, gup_flags))) {
919 * mmap_lock must be held on entry. If @locked != NULL and *@flags
920 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
921 * is, *@locked will be set to 0 and -EBUSY returned.
923 static int faultin_page(struct vm_area_struct *vma,
924 unsigned long address, unsigned int *flags, bool unshare,
927 unsigned int fault_flags = 0;
930 if (*flags & FOLL_NOFAULT)
932 if (*flags & FOLL_WRITE)
933 fault_flags |= FAULT_FLAG_WRITE;
934 if (*flags & FOLL_REMOTE)
935 fault_flags |= FAULT_FLAG_REMOTE;
937 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
938 if (*flags & FOLL_NOWAIT)
939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
940 if (*flags & FOLL_TRIED) {
942 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 fault_flags |= FAULT_FLAG_TRIED;
948 fault_flags |= FAULT_FLAG_UNSHARE;
949 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
950 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 ret = handle_mm_fault(vma, address, fault_flags, NULL);
955 if (ret & VM_FAULT_COMPLETED) {
957 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
958 * mmap lock in the page fault handler. Sanity check this.
960 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
964 * We should do the same as VM_FAULT_RETRY, but let's not
965 * return -EBUSY since that's not reflecting the reality of
966 * what has happened - we've just fully completed a page
967 * fault, with the mmap lock released. Use -EAGAIN to show
968 * that we want to take the mmap lock _again_.
973 if (ret & VM_FAULT_ERROR) {
974 int err = vm_fault_to_errno(ret, *flags);
981 if (ret & VM_FAULT_RETRY) {
982 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
988 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
989 * necessary, even if maybe_mkwrite decided not to set pte_write. We
990 * can thus safely do subsequent page lookups as if they were reads.
991 * But only do so when looping for pte_write is futile: in some cases
992 * userspace may also be wanting to write to the gotten user page,
993 * which a read fault here might prevent (a readonly page might get
994 * reCOWed by userspace write).
996 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
1001 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1003 vm_flags_t vm_flags = vma->vm_flags;
1004 int write = (gup_flags & FOLL_WRITE);
1005 int foreign = (gup_flags & FOLL_REMOTE);
1007 if (vm_flags & (VM_IO | VM_PFNMAP))
1010 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1013 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1016 if (vma_is_secretmem(vma))
1020 if (!(vm_flags & VM_WRITE)) {
1021 if (!(gup_flags & FOLL_FORCE))
1024 * We used to let the write,force case do COW in a
1025 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1026 * set a breakpoint in a read-only mapping of an
1027 * executable, without corrupting the file (yet only
1028 * when that file had been opened for writing!).
1029 * Anon pages in shared mappings are surprising: now
1032 if (!is_cow_mapping(vm_flags))
1035 } else if (!(vm_flags & VM_READ)) {
1036 if (!(gup_flags & FOLL_FORCE))
1039 * Is there actually any vma we can reach here which does not
1040 * have VM_MAYREAD set?
1042 if (!(vm_flags & VM_MAYREAD))
1046 * gups are always data accesses, not instruction
1047 * fetches, so execute=false here
1049 if (!arch_vma_access_permitted(vma, write, false, foreign))
1055 * __get_user_pages() - pin user pages in memory
1056 * @mm: mm_struct of target mm
1057 * @start: starting user address
1058 * @nr_pages: number of pages from start to pin
1059 * @gup_flags: flags modifying pin behaviour
1060 * @pages: array that receives pointers to the pages pinned.
1061 * Should be at least nr_pages long. Or NULL, if caller
1062 * only intends to ensure the pages are faulted in.
1063 * @vmas: array of pointers to vmas corresponding to each page.
1064 * Or NULL if the caller does not require them.
1065 * @locked: whether we're still with the mmap_lock held
1067 * Returns either number of pages pinned (which may be less than the
1068 * number requested), or an error. Details about the return value:
1070 * -- If nr_pages is 0, returns 0.
1071 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1072 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1073 * pages pinned. Again, this may be less than nr_pages.
1074 * -- 0 return value is possible when the fault would need to be retried.
1076 * The caller is responsible for releasing returned @pages, via put_page().
1078 * @vmas are valid only as long as mmap_lock is held.
1080 * Must be called with mmap_lock held. It may be released. See below.
1082 * __get_user_pages walks a process's page tables and takes a reference to
1083 * each struct page that each user address corresponds to at a given
1084 * instant. That is, it takes the page that would be accessed if a user
1085 * thread accesses the given user virtual address at that instant.
1087 * This does not guarantee that the page exists in the user mappings when
1088 * __get_user_pages returns, and there may even be a completely different
1089 * page there in some cases (eg. if mmapped pagecache has been invalidated
1090 * and subsequently re faulted). However it does guarantee that the page
1091 * won't be freed completely. And mostly callers simply care that the page
1092 * contains data that was valid *at some point in time*. Typically, an IO
1093 * or similar operation cannot guarantee anything stronger anyway because
1094 * locks can't be held over the syscall boundary.
1096 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1097 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1098 * appropriate) must be called after the page is finished with, and
1099 * before put_page is called.
1101 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1102 * released by an up_read(). That can happen if @gup_flags does not
1105 * A caller using such a combination of @locked and @gup_flags
1106 * must therefore hold the mmap_lock for reading only, and recognize
1107 * when it's been released. Otherwise, it must be held for either
1108 * reading or writing and will not be released.
1110 * In most cases, get_user_pages or get_user_pages_fast should be used
1111 * instead of __get_user_pages. __get_user_pages should be used only if
1112 * you need some special @gup_flags.
1114 static long __get_user_pages(struct mm_struct *mm,
1115 unsigned long start, unsigned long nr_pages,
1116 unsigned int gup_flags, struct page **pages,
1117 struct vm_area_struct **vmas, int *locked)
1119 long ret = 0, i = 0;
1120 struct vm_area_struct *vma = NULL;
1121 struct follow_page_context ctx = { NULL };
1126 start = untagged_addr(start);
1128 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1131 * If FOLL_FORCE is set then do not force a full fault as the hinting
1132 * fault information is unrelated to the reference behaviour of a task
1133 * using the address space
1135 if (!(gup_flags & FOLL_FORCE))
1136 gup_flags |= FOLL_NUMA;
1140 unsigned int foll_flags = gup_flags;
1141 unsigned int page_increm;
1143 /* first iteration or cross vma bound */
1144 if (!vma || start >= vma->vm_end) {
1145 vma = find_extend_vma(mm, start);
1146 if (!vma && in_gate_area(mm, start)) {
1147 ret = get_gate_page(mm, start & PAGE_MASK,
1149 pages ? &pages[i] : NULL);
1160 ret = check_vma_flags(vma, gup_flags);
1164 if (is_vm_hugetlb_page(vma)) {
1165 i = follow_hugetlb_page(mm, vma, pages, vmas,
1166 &start, &nr_pages, i,
1168 if (locked && *locked == 0) {
1170 * We've got a VM_FAULT_RETRY
1171 * and we've lost mmap_lock.
1172 * We must stop here.
1174 BUG_ON(gup_flags & FOLL_NOWAIT);
1182 * If we have a pending SIGKILL, don't keep faulting pages and
1183 * potentially allocating memory.
1185 if (fatal_signal_pending(current)) {
1191 page = follow_page_mask(vma, start, foll_flags, &ctx);
1192 if (!page || PTR_ERR(page) == -EMLINK) {
1193 ret = faultin_page(vma, start, &foll_flags,
1194 PTR_ERR(page) == -EMLINK, locked);
1208 } else if (PTR_ERR(page) == -EEXIST) {
1210 * Proper page table entry exists, but no corresponding
1211 * struct page. If the caller expects **pages to be
1212 * filled in, bail out now, because that can't be done
1216 ret = PTR_ERR(page);
1221 } else if (IS_ERR(page)) {
1222 ret = PTR_ERR(page);
1227 flush_anon_page(vma, page, start);
1228 flush_dcache_page(page);
1236 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1237 if (page_increm > nr_pages)
1238 page_increm = nr_pages;
1240 start += page_increm * PAGE_SIZE;
1241 nr_pages -= page_increm;
1245 put_dev_pagemap(ctx.pgmap);
1249 static bool vma_permits_fault(struct vm_area_struct *vma,
1250 unsigned int fault_flags)
1252 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1253 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1254 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1256 if (!(vm_flags & vma->vm_flags))
1260 * The architecture might have a hardware protection
1261 * mechanism other than read/write that can deny access.
1263 * gup always represents data access, not instruction
1264 * fetches, so execute=false here:
1266 if (!arch_vma_access_permitted(vma, write, false, foreign))
1273 * fixup_user_fault() - manually resolve a user page fault
1274 * @mm: mm_struct of target mm
1275 * @address: user address
1276 * @fault_flags:flags to pass down to handle_mm_fault()
1277 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1278 * does not allow retry. If NULL, the caller must guarantee
1279 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1281 * This is meant to be called in the specific scenario where for locking reasons
1282 * we try to access user memory in atomic context (within a pagefault_disable()
1283 * section), this returns -EFAULT, and we want to resolve the user fault before
1286 * Typically this is meant to be used by the futex code.
1288 * The main difference with get_user_pages() is that this function will
1289 * unconditionally call handle_mm_fault() which will in turn perform all the
1290 * necessary SW fixup of the dirty and young bits in the PTE, while
1291 * get_user_pages() only guarantees to update these in the struct page.
1293 * This is important for some architectures where those bits also gate the
1294 * access permission to the page because they are maintained in software. On
1295 * such architectures, gup() will not be enough to make a subsequent access
1298 * This function will not return with an unlocked mmap_lock. So it has not the
1299 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1301 int fixup_user_fault(struct mm_struct *mm,
1302 unsigned long address, unsigned int fault_flags,
1305 struct vm_area_struct *vma;
1308 address = untagged_addr(address);
1311 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1314 vma = find_extend_vma(mm, address);
1315 if (!vma || address < vma->vm_start)
1318 if (!vma_permits_fault(vma, fault_flags))
1321 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1322 fatal_signal_pending(current))
1325 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1327 if (ret & VM_FAULT_COMPLETED) {
1329 * NOTE: it's a pity that we need to retake the lock here
1330 * to pair with the unlock() in the callers. Ideally we
1331 * could tell the callers so they do not need to unlock.
1338 if (ret & VM_FAULT_ERROR) {
1339 int err = vm_fault_to_errno(ret, 0);
1346 if (ret & VM_FAULT_RETRY) {
1349 fault_flags |= FAULT_FLAG_TRIED;
1355 EXPORT_SYMBOL_GPL(fixup_user_fault);
1358 * Please note that this function, unlike __get_user_pages will not
1359 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1361 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1362 unsigned long start,
1363 unsigned long nr_pages,
1364 struct page **pages,
1365 struct vm_area_struct **vmas,
1369 long ret, pages_done;
1373 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1375 /* check caller initialized locked */
1376 BUG_ON(*locked != 1);
1379 if (flags & FOLL_PIN)
1380 mm_set_has_pinned_flag(&mm->flags);
1383 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1384 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1385 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1386 * for FOLL_GET, not for the newer FOLL_PIN.
1388 * FOLL_PIN always expects pages to be non-null, but no need to assert
1389 * that here, as any failures will be obvious enough.
1391 if (pages && !(flags & FOLL_PIN))
1395 lock_dropped = false;
1397 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1400 /* VM_FAULT_RETRY couldn't trigger, bypass */
1403 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1406 BUG_ON(ret >= nr_pages);
1417 * VM_FAULT_RETRY didn't trigger or it was a
1425 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1426 * For the prefault case (!pages) we only update counts.
1430 start += ret << PAGE_SHIFT;
1431 lock_dropped = true;
1435 * Repeat on the address that fired VM_FAULT_RETRY
1436 * with both FAULT_FLAG_ALLOW_RETRY and
1437 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1438 * by fatal signals, so we need to check it before we
1439 * start trying again otherwise it can loop forever.
1442 if (fatal_signal_pending(current)) {
1444 pages_done = -EINTR;
1448 ret = mmap_read_lock_killable(mm);
1457 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1458 pages, NULL, locked);
1460 /* Continue to retry until we succeeded */
1478 if (lock_dropped && *locked) {
1480 * We must let the caller know we temporarily dropped the lock
1481 * and so the critical section protected by it was lost.
1483 mmap_read_unlock(mm);
1490 * populate_vma_page_range() - populate a range of pages in the vma.
1492 * @start: start address
1494 * @locked: whether the mmap_lock is still held
1496 * This takes care of mlocking the pages too if VM_LOCKED is set.
1498 * Return either number of pages pinned in the vma, or a negative error
1501 * vma->vm_mm->mmap_lock must be held.
1503 * If @locked is NULL, it may be held for read or write and will
1506 * If @locked is non-NULL, it must held for read only and may be
1507 * released. If it's released, *@locked will be set to 0.
1509 long populate_vma_page_range(struct vm_area_struct *vma,
1510 unsigned long start, unsigned long end, int *locked)
1512 struct mm_struct *mm = vma->vm_mm;
1513 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1517 VM_BUG_ON(!PAGE_ALIGNED(start));
1518 VM_BUG_ON(!PAGE_ALIGNED(end));
1519 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1520 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1521 mmap_assert_locked(mm);
1524 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1525 * faultin_page() to break COW, so it has no work to do here.
1527 if (vma->vm_flags & VM_LOCKONFAULT)
1530 gup_flags = FOLL_TOUCH;
1532 * We want to touch writable mappings with a write fault in order
1533 * to break COW, except for shared mappings because these don't COW
1534 * and we would not want to dirty them for nothing.
1536 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1537 gup_flags |= FOLL_WRITE;
1540 * We want mlock to succeed for regions that have any permissions
1541 * other than PROT_NONE.
1543 if (vma_is_accessible(vma))
1544 gup_flags |= FOLL_FORCE;
1547 * We made sure addr is within a VMA, so the following will
1548 * not result in a stack expansion that recurses back here.
1550 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1551 NULL, NULL, locked);
1557 * faultin_vma_page_range() - populate (prefault) page tables inside the
1558 * given VMA range readable/writable
1560 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1563 * @start: start address
1565 * @write: whether to prefault readable or writable
1566 * @locked: whether the mmap_lock is still held
1568 * Returns either number of processed pages in the vma, or a negative error
1569 * code on error (see __get_user_pages()).
1571 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1572 * covered by the VMA.
1574 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1576 * If @locked is non-NULL, it must held for read only and may be released. If
1577 * it's released, *@locked will be set to 0.
1579 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1580 unsigned long end, bool write, int *locked)
1582 struct mm_struct *mm = vma->vm_mm;
1583 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1587 VM_BUG_ON(!PAGE_ALIGNED(start));
1588 VM_BUG_ON(!PAGE_ALIGNED(end));
1589 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1590 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1591 mmap_assert_locked(mm);
1594 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1595 * the page dirty with FOLL_WRITE -- which doesn't make a
1596 * difference with !FOLL_FORCE, because the page is writable
1597 * in the page table.
1598 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1600 * !FOLL_FORCE: Require proper access permissions.
1602 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1604 gup_flags |= FOLL_WRITE;
1607 * We want to report -EINVAL instead of -EFAULT for any permission
1608 * problems or incompatible mappings.
1610 if (check_vma_flags(vma, gup_flags))
1613 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1614 NULL, NULL, locked);
1620 * __mm_populate - populate and/or mlock pages within a range of address space.
1622 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1623 * flags. VMAs must be already marked with the desired vm_flags, and
1624 * mmap_lock must not be held.
1626 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1628 struct mm_struct *mm = current->mm;
1629 unsigned long end, nstart, nend;
1630 struct vm_area_struct *vma = NULL;
1636 for (nstart = start; nstart < end; nstart = nend) {
1638 * We want to fault in pages for [nstart; end) address range.
1639 * Find first corresponding VMA.
1644 vma = find_vma(mm, nstart);
1645 } else if (nstart >= vma->vm_end)
1647 if (!vma || vma->vm_start >= end)
1650 * Set [nstart; nend) to intersection of desired address
1651 * range with the first VMA. Also, skip undesirable VMA types.
1653 nend = min(end, vma->vm_end);
1654 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1656 if (nstart < vma->vm_start)
1657 nstart = vma->vm_start;
1659 * Now fault in a range of pages. populate_vma_page_range()
1660 * double checks the vma flags, so that it won't mlock pages
1661 * if the vma was already munlocked.
1663 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1665 if (ignore_errors) {
1667 continue; /* continue at next VMA */
1671 nend = nstart + ret * PAGE_SIZE;
1675 mmap_read_unlock(mm);
1676 return ret; /* 0 or negative error code */
1678 #else /* CONFIG_MMU */
1679 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1680 unsigned long nr_pages, struct page **pages,
1681 struct vm_area_struct **vmas, int *locked,
1682 unsigned int foll_flags)
1684 struct vm_area_struct *vma;
1685 unsigned long vm_flags;
1688 /* calculate required read or write permissions.
1689 * If FOLL_FORCE is set, we only require the "MAY" flags.
1691 vm_flags = (foll_flags & FOLL_WRITE) ?
1692 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1693 vm_flags &= (foll_flags & FOLL_FORCE) ?
1694 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1696 for (i = 0; i < nr_pages; i++) {
1697 vma = find_vma(mm, start);
1699 goto finish_or_fault;
1701 /* protect what we can, including chardevs */
1702 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1703 !(vm_flags & vma->vm_flags))
1704 goto finish_or_fault;
1707 pages[i] = virt_to_page(start);
1713 start = (start + PAGE_SIZE) & PAGE_MASK;
1719 return i ? : -EFAULT;
1721 #endif /* !CONFIG_MMU */
1724 * fault_in_writeable - fault in userspace address range for writing
1725 * @uaddr: start of address range
1726 * @size: size of address range
1728 * Returns the number of bytes not faulted in (like copy_to_user() and
1729 * copy_from_user()).
1731 size_t fault_in_writeable(char __user *uaddr, size_t size)
1733 char __user *start = uaddr, *end;
1735 if (unlikely(size == 0))
1737 if (!user_write_access_begin(uaddr, size))
1739 if (!PAGE_ALIGNED(uaddr)) {
1740 unsafe_put_user(0, uaddr, out);
1741 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1743 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1744 if (unlikely(end < start))
1746 while (uaddr != end) {
1747 unsafe_put_user(0, uaddr, out);
1752 user_write_access_end();
1753 if (size > uaddr - start)
1754 return size - (uaddr - start);
1757 EXPORT_SYMBOL(fault_in_writeable);
1760 * fault_in_subpage_writeable - fault in an address range for writing
1761 * @uaddr: start of address range
1762 * @size: size of address range
1764 * Fault in a user address range for writing while checking for permissions at
1765 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1766 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1768 * Returns the number of bytes not faulted in (like copy_to_user() and
1769 * copy_from_user()).
1771 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1776 * Attempt faulting in at page granularity first for page table
1777 * permission checking. The arch-specific probe_subpage_writeable()
1778 * functions may not check for this.
1780 faulted_in = size - fault_in_writeable(uaddr, size);
1782 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1784 return size - faulted_in;
1786 EXPORT_SYMBOL(fault_in_subpage_writeable);
1789 * fault_in_safe_writeable - fault in an address range for writing
1790 * @uaddr: start of address range
1791 * @size: length of address range
1793 * Faults in an address range for writing. This is primarily useful when we
1794 * already know that some or all of the pages in the address range aren't in
1797 * Unlike fault_in_writeable(), this function is non-destructive.
1799 * Note that we don't pin or otherwise hold the pages referenced that we fault
1800 * in. There's no guarantee that they'll stay in memory for any duration of
1803 * Returns the number of bytes not faulted in, like copy_to_user() and
1806 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1808 unsigned long start = (unsigned long)uaddr, end;
1809 struct mm_struct *mm = current->mm;
1810 bool unlocked = false;
1812 if (unlikely(size == 0))
1814 end = PAGE_ALIGN(start + size);
1820 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1822 start = (start + PAGE_SIZE) & PAGE_MASK;
1823 } while (start != end);
1824 mmap_read_unlock(mm);
1826 if (size > (unsigned long)uaddr - start)
1827 return size - ((unsigned long)uaddr - start);
1830 EXPORT_SYMBOL(fault_in_safe_writeable);
1833 * fault_in_readable - fault in userspace address range for reading
1834 * @uaddr: start of user address range
1835 * @size: size of user address range
1837 * Returns the number of bytes not faulted in (like copy_to_user() and
1838 * copy_from_user()).
1840 size_t fault_in_readable(const char __user *uaddr, size_t size)
1842 const char __user *start = uaddr, *end;
1845 if (unlikely(size == 0))
1847 if (!user_read_access_begin(uaddr, size))
1849 if (!PAGE_ALIGNED(uaddr)) {
1850 unsafe_get_user(c, uaddr, out);
1851 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1853 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1854 if (unlikely(end < start))
1856 while (uaddr != end) {
1857 unsafe_get_user(c, uaddr, out);
1862 user_read_access_end();
1864 if (size > uaddr - start)
1865 return size - (uaddr - start);
1868 EXPORT_SYMBOL(fault_in_readable);
1871 * get_dump_page() - pin user page in memory while writing it to core dump
1872 * @addr: user address
1874 * Returns struct page pointer of user page pinned for dump,
1875 * to be freed afterwards by put_page().
1877 * Returns NULL on any kind of failure - a hole must then be inserted into
1878 * the corefile, to preserve alignment with its headers; and also returns
1879 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1880 * allowing a hole to be left in the corefile to save disk space.
1882 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1884 #ifdef CONFIG_ELF_CORE
1885 struct page *get_dump_page(unsigned long addr)
1887 struct mm_struct *mm = current->mm;
1892 if (mmap_read_lock_killable(mm))
1894 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1895 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1897 mmap_read_unlock(mm);
1898 return (ret == 1) ? page : NULL;
1900 #endif /* CONFIG_ELF_CORE */
1902 #ifdef CONFIG_MIGRATION
1904 * Check whether all pages are pinnable, if so return number of pages. If some
1905 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1906 * pages were migrated, or if some pages were not successfully isolated.
1907 * Return negative error if migration fails.
1909 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1910 struct page **pages,
1911 unsigned int gup_flags)
1913 unsigned long isolation_error_count = 0, i;
1914 struct folio *prev_folio = NULL;
1915 LIST_HEAD(movable_page_list);
1916 bool drain_allow = true;
1919 for (i = 0; i < nr_pages; i++) {
1920 struct folio *folio = page_folio(pages[i]);
1922 if (folio == prev_folio)
1926 if (folio_is_pinnable(folio))
1930 * Try to move out any movable page before pinning the range.
1932 if (folio_test_hugetlb(folio)) {
1933 if (isolate_hugetlb(&folio->page,
1934 &movable_page_list))
1935 isolation_error_count++;
1939 if (!folio_test_lru(folio) && drain_allow) {
1940 lru_add_drain_all();
1941 drain_allow = false;
1944 if (folio_isolate_lru(folio)) {
1945 isolation_error_count++;
1948 list_add_tail(&folio->lru, &movable_page_list);
1949 node_stat_mod_folio(folio,
1950 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1951 folio_nr_pages(folio));
1954 if (!list_empty(&movable_page_list) || isolation_error_count)
1958 * If list is empty, and no isolation errors, means that all pages are
1959 * in the correct zone.
1964 if (gup_flags & FOLL_PIN) {
1965 unpin_user_pages(pages, nr_pages);
1967 for (i = 0; i < nr_pages; i++)
1971 if (!list_empty(&movable_page_list)) {
1972 struct migration_target_control mtc = {
1973 .nid = NUMA_NO_NODE,
1974 .gfp_mask = GFP_USER | __GFP_NOWARN,
1977 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1978 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1979 MR_LONGTERM_PIN, NULL);
1980 if (ret > 0) /* number of pages not migrated */
1984 if (ret && !list_empty(&movable_page_list))
1985 putback_movable_pages(&movable_page_list);
1989 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1990 struct page **pages,
1991 unsigned int gup_flags)
1995 #endif /* CONFIG_MIGRATION */
1998 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1999 * allows us to process the FOLL_LONGTERM flag.
2001 static long __gup_longterm_locked(struct mm_struct *mm,
2002 unsigned long start,
2003 unsigned long nr_pages,
2004 struct page **pages,
2005 struct vm_area_struct **vmas,
2006 unsigned int gup_flags)
2011 if (!(gup_flags & FOLL_LONGTERM))
2012 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2014 flags = memalloc_pin_save();
2016 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2020 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2022 memalloc_pin_restore(flags);
2027 static bool is_valid_gup_flags(unsigned int gup_flags)
2030 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2031 * never directly by the caller, so enforce that with an assertion:
2033 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2036 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2037 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2040 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2047 static long __get_user_pages_remote(struct mm_struct *mm,
2048 unsigned long start, unsigned long nr_pages,
2049 unsigned int gup_flags, struct page **pages,
2050 struct vm_area_struct **vmas, int *locked)
2053 * Parts of FOLL_LONGTERM behavior are incompatible with
2054 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2055 * vmas. However, this only comes up if locked is set, and there are
2056 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2057 * allow what we can.
2059 if (gup_flags & FOLL_LONGTERM) {
2060 if (WARN_ON_ONCE(locked))
2063 * This will check the vmas (even if our vmas arg is NULL)
2064 * and return -ENOTSUPP if DAX isn't allowed in this case:
2066 return __gup_longterm_locked(mm, start, nr_pages, pages,
2067 vmas, gup_flags | FOLL_TOUCH |
2071 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2073 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2077 * get_user_pages_remote() - pin user pages in memory
2078 * @mm: mm_struct of target mm
2079 * @start: starting user address
2080 * @nr_pages: number of pages from start to pin
2081 * @gup_flags: flags modifying lookup behaviour
2082 * @pages: array that receives pointers to the pages pinned.
2083 * Should be at least nr_pages long. Or NULL, if caller
2084 * only intends to ensure the pages are faulted in.
2085 * @vmas: array of pointers to vmas corresponding to each page.
2086 * Or NULL if the caller does not require them.
2087 * @locked: pointer to lock flag indicating whether lock is held and
2088 * subsequently whether VM_FAULT_RETRY functionality can be
2089 * utilised. Lock must initially be held.
2091 * Returns either number of pages pinned (which may be less than the
2092 * number requested), or an error. Details about the return value:
2094 * -- If nr_pages is 0, returns 0.
2095 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2096 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2097 * pages pinned. Again, this may be less than nr_pages.
2099 * The caller is responsible for releasing returned @pages, via put_page().
2101 * @vmas are valid only as long as mmap_lock is held.
2103 * Must be called with mmap_lock held for read or write.
2105 * get_user_pages_remote walks a process's page tables and takes a reference
2106 * to each struct page that each user address corresponds to at a given
2107 * instant. That is, it takes the page that would be accessed if a user
2108 * thread accesses the given user virtual address at that instant.
2110 * This does not guarantee that the page exists in the user mappings when
2111 * get_user_pages_remote returns, and there may even be a completely different
2112 * page there in some cases (eg. if mmapped pagecache has been invalidated
2113 * and subsequently re faulted). However it does guarantee that the page
2114 * won't be freed completely. And mostly callers simply care that the page
2115 * contains data that was valid *at some point in time*. Typically, an IO
2116 * or similar operation cannot guarantee anything stronger anyway because
2117 * locks can't be held over the syscall boundary.
2119 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2120 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2121 * be called after the page is finished with, and before put_page is called.
2123 * get_user_pages_remote is typically used for fewer-copy IO operations,
2124 * to get a handle on the memory by some means other than accesses
2125 * via the user virtual addresses. The pages may be submitted for
2126 * DMA to devices or accessed via their kernel linear mapping (via the
2127 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2129 * See also get_user_pages_fast, for performance critical applications.
2131 * get_user_pages_remote should be phased out in favor of
2132 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2133 * should use get_user_pages_remote because it cannot pass
2134 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2136 long get_user_pages_remote(struct mm_struct *mm,
2137 unsigned long start, unsigned long nr_pages,
2138 unsigned int gup_flags, struct page **pages,
2139 struct vm_area_struct **vmas, int *locked)
2141 if (!is_valid_gup_flags(gup_flags))
2144 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2145 pages, vmas, locked);
2147 EXPORT_SYMBOL(get_user_pages_remote);
2149 #else /* CONFIG_MMU */
2150 long get_user_pages_remote(struct mm_struct *mm,
2151 unsigned long start, unsigned long nr_pages,
2152 unsigned int gup_flags, struct page **pages,
2153 struct vm_area_struct **vmas, int *locked)
2158 static long __get_user_pages_remote(struct mm_struct *mm,
2159 unsigned long start, unsigned long nr_pages,
2160 unsigned int gup_flags, struct page **pages,
2161 struct vm_area_struct **vmas, int *locked)
2165 #endif /* !CONFIG_MMU */
2168 * get_user_pages() - pin user pages in memory
2169 * @start: starting user address
2170 * @nr_pages: number of pages from start to pin
2171 * @gup_flags: flags modifying lookup behaviour
2172 * @pages: array that receives pointers to the pages pinned.
2173 * Should be at least nr_pages long. Or NULL, if caller
2174 * only intends to ensure the pages are faulted in.
2175 * @vmas: array of pointers to vmas corresponding to each page.
2176 * Or NULL if the caller does not require them.
2178 * This is the same as get_user_pages_remote(), just with a less-flexible
2179 * calling convention where we assume that the mm being operated on belongs to
2180 * the current task, and doesn't allow passing of a locked parameter. We also
2181 * obviously don't pass FOLL_REMOTE in here.
2183 long get_user_pages(unsigned long start, unsigned long nr_pages,
2184 unsigned int gup_flags, struct page **pages,
2185 struct vm_area_struct **vmas)
2187 if (!is_valid_gup_flags(gup_flags))
2190 return __gup_longterm_locked(current->mm, start, nr_pages,
2191 pages, vmas, gup_flags | FOLL_TOUCH);
2193 EXPORT_SYMBOL(get_user_pages);
2196 * get_user_pages_unlocked() is suitable to replace the form:
2198 * mmap_read_lock(mm);
2199 * get_user_pages(mm, ..., pages, NULL);
2200 * mmap_read_unlock(mm);
2204 * get_user_pages_unlocked(mm, ..., pages);
2206 * It is functionally equivalent to get_user_pages_fast so
2207 * get_user_pages_fast should be used instead if specific gup_flags
2208 * (e.g. FOLL_FORCE) are not required.
2210 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2211 struct page **pages, unsigned int gup_flags)
2213 struct mm_struct *mm = current->mm;
2218 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2219 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2220 * vmas. As there are no users of this flag in this call we simply
2221 * disallow this option for now.
2223 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2227 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2228 &locked, gup_flags | FOLL_TOUCH);
2230 mmap_read_unlock(mm);
2233 EXPORT_SYMBOL(get_user_pages_unlocked);
2238 * get_user_pages_fast attempts to pin user pages by walking the page
2239 * tables directly and avoids taking locks. Thus the walker needs to be
2240 * protected from page table pages being freed from under it, and should
2241 * block any THP splits.
2243 * One way to achieve this is to have the walker disable interrupts, and
2244 * rely on IPIs from the TLB flushing code blocking before the page table
2245 * pages are freed. This is unsuitable for architectures that do not need
2246 * to broadcast an IPI when invalidating TLBs.
2248 * Another way to achieve this is to batch up page table containing pages
2249 * belonging to more than one mm_user, then rcu_sched a callback to free those
2250 * pages. Disabling interrupts will allow the fast_gup walker to both block
2251 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2252 * (which is a relatively rare event). The code below adopts this strategy.
2254 * Before activating this code, please be aware that the following assumptions
2255 * are currently made:
2257 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2258 * free pages containing page tables or TLB flushing requires IPI broadcast.
2260 * *) ptes can be read atomically by the architecture.
2262 * *) access_ok is sufficient to validate userspace address ranges.
2264 * The last two assumptions can be relaxed by the addition of helper functions.
2266 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2268 #ifdef CONFIG_HAVE_FAST_GUP
2270 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2272 struct page **pages)
2274 while ((*nr) - nr_start) {
2275 struct page *page = pages[--(*nr)];
2277 ClearPageReferenced(page);
2278 if (flags & FOLL_PIN)
2279 unpin_user_page(page);
2285 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2286 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2287 unsigned int flags, struct page **pages, int *nr)
2289 struct dev_pagemap *pgmap = NULL;
2290 int nr_start = *nr, ret = 0;
2293 ptem = ptep = pte_offset_map(&pmd, addr);
2295 pte_t pte = ptep_get_lockless(ptep);
2297 struct folio *folio;
2300 * Similar to the PMD case below, NUMA hinting must take slow
2301 * path using the pte_protnone check.
2303 if (pte_protnone(pte))
2306 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2309 if (pte_devmap(pte)) {
2310 if (unlikely(flags & FOLL_LONGTERM))
2313 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2314 if (unlikely(!pgmap)) {
2315 undo_dev_pagemap(nr, nr_start, flags, pages);
2318 } else if (pte_special(pte))
2321 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2322 page = pte_page(pte);
2324 folio = try_grab_folio(page, 1, flags);
2328 if (unlikely(page_is_secretmem(page))) {
2329 gup_put_folio(folio, 1, flags);
2333 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2334 gup_put_folio(folio, 1, flags);
2338 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2339 gup_put_folio(folio, 1, flags);
2344 * We need to make the page accessible if and only if we are
2345 * going to access its content (the FOLL_PIN case). Please
2346 * see Documentation/core-api/pin_user_pages.rst for
2349 if (flags & FOLL_PIN) {
2350 ret = arch_make_page_accessible(page);
2352 gup_put_folio(folio, 1, flags);
2356 folio_set_referenced(folio);
2359 } while (ptep++, addr += PAGE_SIZE, addr != end);
2365 put_dev_pagemap(pgmap);
2372 * If we can't determine whether or not a pte is special, then fail immediately
2373 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2376 * For a futex to be placed on a THP tail page, get_futex_key requires a
2377 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2378 * useful to have gup_huge_pmd even if we can't operate on ptes.
2380 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2381 unsigned int flags, struct page **pages, int *nr)
2385 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2387 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2388 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2389 unsigned long end, unsigned int flags,
2390 struct page **pages, int *nr)
2393 struct dev_pagemap *pgmap = NULL;
2396 struct page *page = pfn_to_page(pfn);
2398 pgmap = get_dev_pagemap(pfn, pgmap);
2399 if (unlikely(!pgmap)) {
2400 undo_dev_pagemap(nr, nr_start, flags, pages);
2403 SetPageReferenced(page);
2405 if (unlikely(!try_grab_page(page, flags))) {
2406 undo_dev_pagemap(nr, nr_start, flags, pages);
2411 } while (addr += PAGE_SIZE, addr != end);
2413 put_dev_pagemap(pgmap);
2417 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2418 unsigned long end, unsigned int flags,
2419 struct page **pages, int *nr)
2421 unsigned long fault_pfn;
2424 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2425 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2428 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2429 undo_dev_pagemap(nr, nr_start, flags, pages);
2435 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2436 unsigned long end, unsigned int flags,
2437 struct page **pages, int *nr)
2439 unsigned long fault_pfn;
2442 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2443 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2446 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2447 undo_dev_pagemap(nr, nr_start, flags, pages);
2453 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2454 unsigned long end, unsigned int flags,
2455 struct page **pages, int *nr)
2461 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2462 unsigned long end, unsigned int flags,
2463 struct page **pages, int *nr)
2470 static int record_subpages(struct page *page, unsigned long addr,
2471 unsigned long end, struct page **pages)
2475 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2476 pages[nr] = nth_page(page, nr);
2481 #ifdef CONFIG_ARCH_HAS_HUGEPD
2482 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2485 unsigned long __boundary = (addr + sz) & ~(sz-1);
2486 return (__boundary - 1 < end - 1) ? __boundary : end;
2489 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2490 unsigned long end, unsigned int flags,
2491 struct page **pages, int *nr)
2493 unsigned long pte_end;
2495 struct folio *folio;
2499 pte_end = (addr + sz) & ~(sz-1);
2503 pte = huge_ptep_get(ptep);
2505 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2508 /* hugepages are never "special" */
2509 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2511 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2512 refs = record_subpages(page, addr, end, pages + *nr);
2514 folio = try_grab_folio(page, refs, flags);
2518 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2519 gup_put_folio(folio, refs, flags);
2523 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2524 gup_put_folio(folio, refs, flags);
2529 folio_set_referenced(folio);
2533 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2534 unsigned int pdshift, unsigned long end, unsigned int flags,
2535 struct page **pages, int *nr)
2538 unsigned long sz = 1UL << hugepd_shift(hugepd);
2541 ptep = hugepte_offset(hugepd, addr, pdshift);
2543 next = hugepte_addr_end(addr, end, sz);
2544 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2546 } while (ptep++, addr = next, addr != end);
2551 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2552 unsigned int pdshift, unsigned long end, unsigned int flags,
2553 struct page **pages, int *nr)
2557 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2559 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2560 unsigned long end, unsigned int flags,
2561 struct page **pages, int *nr)
2564 struct folio *folio;
2567 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2570 if (pmd_devmap(orig)) {
2571 if (unlikely(flags & FOLL_LONGTERM))
2573 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2577 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2578 refs = record_subpages(page, addr, end, pages + *nr);
2580 folio = try_grab_folio(page, refs, flags);
2584 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2585 gup_put_folio(folio, refs, flags);
2589 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2590 gup_put_folio(folio, refs, flags);
2595 folio_set_referenced(folio);
2599 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2600 unsigned long end, unsigned int flags,
2601 struct page **pages, int *nr)
2604 struct folio *folio;
2607 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2610 if (pud_devmap(orig)) {
2611 if (unlikely(flags & FOLL_LONGTERM))
2613 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2617 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2618 refs = record_subpages(page, addr, end, pages + *nr);
2620 folio = try_grab_folio(page, refs, flags);
2624 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2625 gup_put_folio(folio, refs, flags);
2629 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2630 gup_put_folio(folio, refs, flags);
2635 folio_set_referenced(folio);
2639 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2640 unsigned long end, unsigned int flags,
2641 struct page **pages, int *nr)
2645 struct folio *folio;
2647 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2650 BUILD_BUG_ON(pgd_devmap(orig));
2652 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2653 refs = record_subpages(page, addr, end, pages + *nr);
2655 folio = try_grab_folio(page, refs, flags);
2659 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2660 gup_put_folio(folio, refs, flags);
2665 folio_set_referenced(folio);
2669 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2670 unsigned int flags, struct page **pages, int *nr)
2675 pmdp = pmd_offset_lockless(pudp, pud, addr);
2677 pmd_t pmd = READ_ONCE(*pmdp);
2679 next = pmd_addr_end(addr, end);
2680 if (!pmd_present(pmd))
2683 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2686 * NUMA hinting faults need to be handled in the GUP
2687 * slowpath for accounting purposes and so that they
2688 * can be serialised against THP migration.
2690 if (pmd_protnone(pmd))
2693 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2697 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2699 * architecture have different format for hugetlbfs
2700 * pmd format and THP pmd format
2702 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2703 PMD_SHIFT, next, flags, pages, nr))
2705 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2707 } while (pmdp++, addr = next, addr != end);
2712 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2713 unsigned int flags, struct page **pages, int *nr)
2718 pudp = pud_offset_lockless(p4dp, p4d, addr);
2720 pud_t pud = READ_ONCE(*pudp);
2722 next = pud_addr_end(addr, end);
2723 if (unlikely(!pud_present(pud)))
2725 if (unlikely(pud_huge(pud))) {
2726 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2729 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2730 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2731 PUD_SHIFT, next, flags, pages, nr))
2733 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2735 } while (pudp++, addr = next, addr != end);
2740 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2741 unsigned int flags, struct page **pages, int *nr)
2746 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2748 p4d_t p4d = READ_ONCE(*p4dp);
2750 next = p4d_addr_end(addr, end);
2753 BUILD_BUG_ON(p4d_huge(p4d));
2754 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2755 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2756 P4D_SHIFT, next, flags, pages, nr))
2758 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2760 } while (p4dp++, addr = next, addr != end);
2765 static void gup_pgd_range(unsigned long addr, unsigned long end,
2766 unsigned int flags, struct page **pages, int *nr)
2771 pgdp = pgd_offset(current->mm, addr);
2773 pgd_t pgd = READ_ONCE(*pgdp);
2775 next = pgd_addr_end(addr, end);
2778 if (unlikely(pgd_huge(pgd))) {
2779 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2782 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2783 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2784 PGDIR_SHIFT, next, flags, pages, nr))
2786 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2788 } while (pgdp++, addr = next, addr != end);
2791 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2792 unsigned int flags, struct page **pages, int *nr)
2795 #endif /* CONFIG_HAVE_FAST_GUP */
2797 #ifndef gup_fast_permitted
2799 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2800 * we need to fall back to the slow version:
2802 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2808 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2809 unsigned int gup_flags, struct page **pages)
2814 * FIXME: FOLL_LONGTERM does not work with
2815 * get_user_pages_unlocked() (see comments in that function)
2817 if (gup_flags & FOLL_LONGTERM) {
2818 mmap_read_lock(current->mm);
2819 ret = __gup_longterm_locked(current->mm,
2821 pages, NULL, gup_flags);
2822 mmap_read_unlock(current->mm);
2824 ret = get_user_pages_unlocked(start, nr_pages,
2831 static unsigned long lockless_pages_from_mm(unsigned long start,
2833 unsigned int gup_flags,
2834 struct page **pages)
2836 unsigned long flags;
2840 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2841 !gup_fast_permitted(start, end))
2844 if (gup_flags & FOLL_PIN) {
2845 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2851 * Disable interrupts. The nested form is used, in order to allow full,
2852 * general purpose use of this routine.
2854 * With interrupts disabled, we block page table pages from being freed
2855 * from under us. See struct mmu_table_batch comments in
2856 * include/asm-generic/tlb.h for more details.
2858 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2859 * that come from THPs splitting.
2861 local_irq_save(flags);
2862 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2863 local_irq_restore(flags);
2866 * When pinning pages for DMA there could be a concurrent write protect
2867 * from fork() via copy_page_range(), in this case always fail fast GUP.
2869 if (gup_flags & FOLL_PIN) {
2870 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2871 unpin_user_pages_lockless(pages, nr_pinned);
2874 sanity_check_pinned_pages(pages, nr_pinned);
2880 static int internal_get_user_pages_fast(unsigned long start,
2881 unsigned long nr_pages,
2882 unsigned int gup_flags,
2883 struct page **pages)
2885 unsigned long len, end;
2886 unsigned long nr_pinned;
2889 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2890 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2891 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2894 if (gup_flags & FOLL_PIN)
2895 mm_set_has_pinned_flag(¤t->mm->flags);
2897 if (!(gup_flags & FOLL_FAST_ONLY))
2898 might_lock_read(¤t->mm->mmap_lock);
2900 start = untagged_addr(start) & PAGE_MASK;
2901 len = nr_pages << PAGE_SHIFT;
2902 if (check_add_overflow(start, len, &end))
2904 if (unlikely(!access_ok((void __user *)start, len)))
2907 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2908 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2911 /* Slow path: try to get the remaining pages with get_user_pages */
2912 start += nr_pinned << PAGE_SHIFT;
2914 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2918 * The caller has to unpin the pages we already pinned so
2919 * returning -errno is not an option
2925 return ret + nr_pinned;
2929 * get_user_pages_fast_only() - pin user pages in memory
2930 * @start: starting user address
2931 * @nr_pages: number of pages from start to pin
2932 * @gup_flags: flags modifying pin behaviour
2933 * @pages: array that receives pointers to the pages pinned.
2934 * Should be at least nr_pages long.
2936 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2938 * Note a difference with get_user_pages_fast: this always returns the
2939 * number of pages pinned, 0 if no pages were pinned.
2941 * If the architecture does not support this function, simply return with no
2944 * Careful, careful! COW breaking can go either way, so a non-write
2945 * access can get ambiguous page results. If you call this function without
2946 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2948 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2949 unsigned int gup_flags, struct page **pages)
2953 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2954 * because gup fast is always a "pin with a +1 page refcount" request.
2956 * FOLL_FAST_ONLY is required in order to match the API description of
2957 * this routine: no fall back to regular ("slow") GUP.
2959 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2961 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2965 * As specified in the API description above, this routine is not
2966 * allowed to return negative values. However, the common core
2967 * routine internal_get_user_pages_fast() *can* return -errno.
2968 * Therefore, correct for that here:
2975 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2978 * get_user_pages_fast() - pin user pages in memory
2979 * @start: starting user address
2980 * @nr_pages: number of pages from start to pin
2981 * @gup_flags: flags modifying pin behaviour
2982 * @pages: array that receives pointers to the pages pinned.
2983 * Should be at least nr_pages long.
2985 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2986 * If not successful, it will fall back to taking the lock and
2987 * calling get_user_pages().
2989 * Returns number of pages pinned. This may be fewer than the number requested.
2990 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2993 int get_user_pages_fast(unsigned long start, int nr_pages,
2994 unsigned int gup_flags, struct page **pages)
2996 if (!is_valid_gup_flags(gup_flags))
3000 * The caller may or may not have explicitly set FOLL_GET; either way is
3001 * OK. However, internally (within mm/gup.c), gup fast variants must set
3002 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3005 gup_flags |= FOLL_GET;
3006 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3008 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3011 * pin_user_pages_fast() - pin user pages in memory without taking locks
3013 * @start: starting user address
3014 * @nr_pages: number of pages from start to pin
3015 * @gup_flags: flags modifying pin behaviour
3016 * @pages: array that receives pointers to the pages pinned.
3017 * Should be at least nr_pages long.
3019 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3020 * get_user_pages_fast() for documentation on the function arguments, because
3021 * the arguments here are identical.
3023 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3024 * see Documentation/core-api/pin_user_pages.rst for further details.
3026 int pin_user_pages_fast(unsigned long start, int nr_pages,
3027 unsigned int gup_flags, struct page **pages)
3029 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3030 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3033 if (WARN_ON_ONCE(!pages))
3036 gup_flags |= FOLL_PIN;
3037 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3039 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3042 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3043 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3045 * The API rules are the same, too: no negative values may be returned.
3047 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3048 unsigned int gup_flags, struct page **pages)
3053 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3054 * rules require returning 0, rather than -errno:
3056 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3059 if (WARN_ON_ONCE(!pages))
3062 * FOLL_FAST_ONLY is required in order to match the API description of
3063 * this routine: no fall back to regular ("slow") GUP.
3065 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3066 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3069 * This routine is not allowed to return negative values. However,
3070 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3071 * correct for that here:
3078 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3081 * pin_user_pages_remote() - pin pages of a remote process
3083 * @mm: mm_struct of target mm
3084 * @start: starting user address
3085 * @nr_pages: number of pages from start to pin
3086 * @gup_flags: flags modifying lookup behaviour
3087 * @pages: array that receives pointers to the pages pinned.
3088 * Should be at least nr_pages long.
3089 * @vmas: array of pointers to vmas corresponding to each page.
3090 * Or NULL if the caller does not require them.
3091 * @locked: pointer to lock flag indicating whether lock is held and
3092 * subsequently whether VM_FAULT_RETRY functionality can be
3093 * utilised. Lock must initially be held.
3095 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3096 * get_user_pages_remote() for documentation on the function arguments, because
3097 * the arguments here are identical.
3099 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3100 * see Documentation/core-api/pin_user_pages.rst for details.
3102 long pin_user_pages_remote(struct mm_struct *mm,
3103 unsigned long start, unsigned long nr_pages,
3104 unsigned int gup_flags, struct page **pages,
3105 struct vm_area_struct **vmas, int *locked)
3107 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3108 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3111 if (WARN_ON_ONCE(!pages))
3114 gup_flags |= FOLL_PIN;
3115 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3116 pages, vmas, locked);
3118 EXPORT_SYMBOL(pin_user_pages_remote);
3121 * pin_user_pages() - pin user pages in memory for use by other devices
3123 * @start: starting user address
3124 * @nr_pages: number of pages from start to pin
3125 * @gup_flags: flags modifying lookup behaviour
3126 * @pages: array that receives pointers to the pages pinned.
3127 * Should be at least nr_pages long.
3128 * @vmas: array of pointers to vmas corresponding to each page.
3129 * Or NULL if the caller does not require them.
3131 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3134 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3135 * see Documentation/core-api/pin_user_pages.rst for details.
3137 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3138 unsigned int gup_flags, struct page **pages,
3139 struct vm_area_struct **vmas)
3141 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3142 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3145 if (WARN_ON_ONCE(!pages))
3148 gup_flags |= FOLL_PIN;
3149 return __gup_longterm_locked(current->mm, start, nr_pages,
3150 pages, vmas, gup_flags);
3152 EXPORT_SYMBOL(pin_user_pages);
3155 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3156 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3157 * FOLL_PIN and rejects FOLL_GET.
3159 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3160 struct page **pages, unsigned int gup_flags)
3162 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3166 if (WARN_ON_ONCE(!pages))
3169 gup_flags |= FOLL_PIN;
3170 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3172 EXPORT_SYMBOL(pin_user_pages_unlocked);