1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
23 #include "transaction.h"
24 #include "btrfs_inode.h"
26 #include "print-tree.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
43 #include <asm/cpufeature.h>
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_end_io_wq {
76 struct btrfs_fs_info *info;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
82 static struct kmem_cache *btrfs_end_io_wq_cache;
84 int __init btrfs_end_io_wq_init(void)
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
91 if (!btrfs_end_io_wq_cache)
96 void __cold btrfs_end_io_wq_exit(void)
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
106 struct async_submit_bio {
109 extent_submit_bio_start_t *submit_bio_start;
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
116 struct btrfs_work work;
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
148 static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166 { .id = 0, .name_stem = "tree" },
169 void __init btrfs_init_lockdep(void)
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
186 struct btrfs_lockdep_keyset *ks;
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 struct page *page, size_t pg_offset, u64 start, u64 len,
209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 struct extent_map_tree *em_tree = &inode->extent_tree;
211 struct extent_map *em;
214 read_lock(&em_tree->lock);
215 em = lookup_extent_mapping(em_tree, start, len);
217 em->bdev = fs_info->fs_devices->latest_bdev;
218 read_unlock(&em_tree->lock);
221 read_unlock(&em_tree->lock);
223 em = alloc_extent_map();
225 em = ERR_PTR(-ENOMEM);
230 em->block_len = (u64)-1;
232 em->bdev = fs_info->fs_devices->latest_bdev;
234 write_lock(&em_tree->lock);
235 ret = add_extent_mapping(em_tree, em, 0);
236 if (ret == -EEXIST) {
238 em = lookup_extent_mapping(em_tree, start, len);
245 write_unlock(&em_tree->lock);
251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 return crc32c(seed, data, len);
256 void btrfs_csum_final(u32 crc, u8 *result)
258 put_unaligned_le32(~crc, result);
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 char result[BTRFS_CSUM_SIZE];
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
275 unsigned long map_start;
276 unsigned long map_len;
280 len = buf->len - offset;
282 err = map_private_extent_buffer(buf, offset, 32,
283 &kaddr, &map_start, &map_len);
286 cur_len = min(len, map_len - (offset - map_start));
287 crc = btrfs_csum_data(kaddr + offset - map_start,
292 memset(result, 0, BTRFS_CSUM_SIZE);
294 btrfs_csum_final(crc, result);
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
300 memcpy(&found, result, csum_size);
302 read_extent_buffer(buf, &val, 0, csum_size);
303 btrfs_warn_rl(fs_info,
304 "%s checksum verify failed on %llu wanted %X found %X level %d",
305 fs_info->sb->s_id, buf->start,
306 val, found, btrfs_header_level(buf));
310 write_extent_buffer(buf, result, 0, csum_size);
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323 struct extent_buffer *eb, u64 parent_transid,
326 struct extent_state *cached_state = NULL;
328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
343 if (extent_buffer_uptodate(eb) &&
344 btrfs_header_generation(eb) == parent_transid) {
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
351 parent_transid, btrfs_header_generation(eb));
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
357 * block that has been freed and re-allocated. So don't clear uptodate
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 btrfs_tree_read_unlock_blocking(eb);
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 char result[sizeof(crc)];
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391 * is filled with zeros and is included in the checksum.
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
397 if (memcmp(raw_disk_sb, result, sizeof(result)))
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
410 static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
412 struct btrfs_key *first_key, u64 parent_transid)
415 struct btrfs_key found_key;
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420 #ifdef CONFIG_BTRFS_DEBUG
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
446 #ifdef CONFIG_BTRFS_DEBUG
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469 struct extent_buffer *eb,
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
473 struct extent_io_tree *io_tree;
478 int failed_mirror = 0;
480 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
481 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
486 if (verify_parent_transid(io_tree, eb,
489 else if (verify_level_key(fs_info, eb, level,
490 first_key, parent_transid))
497 * This buffer's crc is fine, but its contents are corrupted, so
498 * there is no reason to read the other copies, they won't be
501 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
505 num_copies = btrfs_num_copies(fs_info,
510 if (!failed_mirror) {
512 failed_mirror = eb->read_mirror;
516 if (mirror_num == failed_mirror)
519 if (mirror_num > num_copies)
523 if (failed && !ret && failed_mirror)
524 repair_eb_io_failure(fs_info, eb, failed_mirror);
530 * checksum a dirty tree block before IO. This has extra checks to make sure
531 * we only fill in the checksum field in the first page of a multi-page block
534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
536 u64 start = page_offset(page);
538 struct extent_buffer *eb;
540 eb = (struct extent_buffer *)page->private;
541 if (page != eb->pages[0])
544 found_start = btrfs_header_bytenr(eb);
546 * Please do not consolidate these warnings into a single if.
547 * It is useful to know what went wrong.
549 if (WARN_ON(found_start != start))
551 if (WARN_ON(!PageUptodate(page)))
554 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
555 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
557 return csum_tree_block(fs_info, eb, 0);
560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
561 struct extent_buffer *eb)
563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564 u8 fsid[BTRFS_FSID_SIZE];
567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
569 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
573 fs_devices = fs_devices->seed;
578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 u64 phy_offset, struct page *page,
580 u64 start, u64 end, int mirror)
584 struct extent_buffer *eb;
585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586 struct btrfs_fs_info *fs_info = root->fs_info;
593 eb = (struct extent_buffer *)page->private;
595 /* the pending IO might have been the only thing that kept this buffer
596 * in memory. Make sure we have a ref for all this other checks
598 extent_buffer_get(eb);
600 reads_done = atomic_dec_and_test(&eb->io_pages);
604 eb->read_mirror = mirror;
605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610 found_start = btrfs_header_bytenr(eb);
611 if (found_start != eb->start) {
612 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
613 eb->start, found_start);
617 if (check_tree_block_fsid(fs_info, eb)) {
618 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 found_level = btrfs_header_level(eb);
624 if (found_level >= BTRFS_MAX_LEVEL) {
625 btrfs_err(fs_info, "bad tree block level %d on %llu",
626 (int)btrfs_header_level(eb), eb->start);
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 ret = csum_tree_block(fs_info, eb, 1);
639 * If this is a leaf block and it is corrupt, set the corrupt bit so
640 * that we don't try and read the other copies of this block, just
643 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
648 if (found_level > 0 && btrfs_check_node(fs_info, eb))
652 set_extent_buffer_uptodate(eb);
655 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
656 btree_readahead_hook(eb, ret);
660 * our io error hook is going to dec the io pages
661 * again, we have to make sure it has something
664 atomic_inc(&eb->io_pages);
665 clear_extent_buffer_uptodate(eb);
667 free_extent_buffer(eb);
672 static int btree_io_failed_hook(struct page *page, int failed_mirror)
674 struct extent_buffer *eb;
676 eb = (struct extent_buffer *)page->private;
677 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
678 eb->read_mirror = failed_mirror;
679 atomic_dec(&eb->io_pages);
680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681 btree_readahead_hook(eb, -EIO);
682 return -EIO; /* we fixed nothing */
685 static void end_workqueue_bio(struct bio *bio)
687 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
688 struct btrfs_fs_info *fs_info;
689 struct btrfs_workqueue *wq;
690 btrfs_work_func_t func;
692 fs_info = end_io_wq->info;
693 end_io_wq->status = bio->bi_status;
695 if (bio_op(bio) == REQ_OP_WRITE) {
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
697 wq = fs_info->endio_meta_write_workers;
698 func = btrfs_endio_meta_write_helper;
699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
700 wq = fs_info->endio_freespace_worker;
701 func = btrfs_freespace_write_helper;
702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
703 wq = fs_info->endio_raid56_workers;
704 func = btrfs_endio_raid56_helper;
706 wq = fs_info->endio_write_workers;
707 func = btrfs_endio_write_helper;
710 if (unlikely(end_io_wq->metadata ==
711 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
712 wq = fs_info->endio_repair_workers;
713 func = btrfs_endio_repair_helper;
714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
715 wq = fs_info->endio_raid56_workers;
716 func = btrfs_endio_raid56_helper;
717 } else if (end_io_wq->metadata) {
718 wq = fs_info->endio_meta_workers;
719 func = btrfs_endio_meta_helper;
721 wq = fs_info->endio_workers;
722 func = btrfs_endio_helper;
726 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
727 btrfs_queue_work(wq, &end_io_wq->work);
730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
731 enum btrfs_wq_endio_type metadata)
733 struct btrfs_end_io_wq *end_io_wq;
735 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
737 return BLK_STS_RESOURCE;
739 end_io_wq->private = bio->bi_private;
740 end_io_wq->end_io = bio->bi_end_io;
741 end_io_wq->info = info;
742 end_io_wq->status = 0;
743 end_io_wq->bio = bio;
744 end_io_wq->metadata = metadata;
746 bio->bi_private = end_io_wq;
747 bio->bi_end_io = end_workqueue_bio;
751 static void run_one_async_start(struct btrfs_work *work)
753 struct async_submit_bio *async;
756 async = container_of(work, struct async_submit_bio, work);
757 ret = async->submit_bio_start(async->private_data, async->bio,
763 static void run_one_async_done(struct btrfs_work *work)
765 struct async_submit_bio *async;
767 async = container_of(work, struct async_submit_bio, work);
769 /* If an error occurred we just want to clean up the bio and move on */
771 async->bio->bi_status = async->status;
772 bio_endio(async->bio);
776 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
779 static void run_one_async_free(struct btrfs_work *work)
781 struct async_submit_bio *async;
783 async = container_of(work, struct async_submit_bio, work);
787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
788 int mirror_num, unsigned long bio_flags,
789 u64 bio_offset, void *private_data,
790 extent_submit_bio_start_t *submit_bio_start)
792 struct async_submit_bio *async;
794 async = kmalloc(sizeof(*async), GFP_NOFS);
796 return BLK_STS_RESOURCE;
798 async->private_data = private_data;
800 async->mirror_num = mirror_num;
801 async->submit_bio_start = submit_bio_start;
803 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
804 run_one_async_done, run_one_async_free);
806 async->bio_offset = bio_offset;
810 if (op_is_sync(bio->bi_opf))
811 btrfs_set_work_high_priority(&async->work);
813 btrfs_queue_work(fs_info->workers, &async->work);
817 static blk_status_t btree_csum_one_bio(struct bio *bio)
819 struct bio_vec *bvec;
820 struct btrfs_root *root;
823 ASSERT(!bio_flagged(bio, BIO_CLONED));
824 bio_for_each_segment_all(bvec, bio, i) {
825 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
826 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
831 return errno_to_blk_status(ret);
834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
841 return btree_csum_one_bio(bio);
844 static int check_async_write(struct btrfs_inode *bi)
846 if (atomic_read(&bi->sync_writers))
849 if (static_cpu_has(X86_FEATURE_XMM4_2))
855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
856 int mirror_num, unsigned long bio_flags,
859 struct inode *inode = private_data;
860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
861 int async = check_async_write(BTRFS_I(inode));
864 if (bio_op(bio) != REQ_OP_WRITE) {
866 * called for a read, do the setup so that checksum validation
867 * can happen in the async kernel threads
869 ret = btrfs_bio_wq_end_io(fs_info, bio,
870 BTRFS_WQ_ENDIO_METADATA);
873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
875 ret = btree_csum_one_bio(bio);
878 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
881 * kthread helpers are used to submit writes so that
882 * checksumming can happen in parallel across all CPUs
884 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
885 bio_offset, private_data,
886 btree_submit_bio_start);
894 bio->bi_status = ret;
899 #ifdef CONFIG_MIGRATION
900 static int btree_migratepage(struct address_space *mapping,
901 struct page *newpage, struct page *page,
902 enum migrate_mode mode)
905 * we can't safely write a btree page from here,
906 * we haven't done the locking hook
911 * Buffers may be managed in a filesystem specific way.
912 * We must have no buffers or drop them.
914 if (page_has_private(page) &&
915 !try_to_release_page(page, GFP_KERNEL))
917 return migrate_page(mapping, newpage, page, mode);
922 static int btree_writepages(struct address_space *mapping,
923 struct writeback_control *wbc)
925 struct btrfs_fs_info *fs_info;
928 if (wbc->sync_mode == WB_SYNC_NONE) {
930 if (wbc->for_kupdate)
933 fs_info = BTRFS_I(mapping->host)->root->fs_info;
934 /* this is a bit racy, but that's ok */
935 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
936 BTRFS_DIRTY_METADATA_THRESH,
937 fs_info->dirty_metadata_batch);
941 return btree_write_cache_pages(mapping, wbc);
944 static int btree_readpage(struct file *file, struct page *page)
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
948 return extent_read_full_page(tree, page, btree_get_extent, 0);
951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 if (PageWriteback(page) || PageDirty(page))
956 return try_release_extent_buffer(page);
959 static void btree_invalidatepage(struct page *page, unsigned int offset,
962 struct extent_io_tree *tree;
963 tree = &BTRFS_I(page->mapping->host)->io_tree;
964 extent_invalidatepage(tree, page, offset);
965 btree_releasepage(page, GFP_NOFS);
966 if (PagePrivate(page)) {
967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968 "page private not zero on page %llu",
969 (unsigned long long)page_offset(page));
970 ClearPagePrivate(page);
971 set_page_private(page, 0);
976 static int btree_set_page_dirty(struct page *page)
979 struct extent_buffer *eb;
981 BUG_ON(!PagePrivate(page));
982 eb = (struct extent_buffer *)page->private;
984 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
985 BUG_ON(!atomic_read(&eb->refs));
986 btrfs_assert_tree_locked(eb);
988 return __set_page_dirty_nobuffers(page);
991 static const struct address_space_operations btree_aops = {
992 .readpage = btree_readpage,
993 .writepages = btree_writepages,
994 .releasepage = btree_releasepage,
995 .invalidatepage = btree_invalidatepage,
996 #ifdef CONFIG_MIGRATION
997 .migratepage = btree_migratepage,
999 .set_page_dirty = btree_set_page_dirty,
1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1004 struct extent_buffer *buf = NULL;
1005 struct inode *btree_inode = fs_info->btree_inode;
1007 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1010 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1012 free_extent_buffer(buf);
1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1016 int mirror_num, struct extent_buffer **eb)
1018 struct extent_buffer *buf = NULL;
1019 struct inode *btree_inode = fs_info->btree_inode;
1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1023 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1029 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1032 free_extent_buffer(buf);
1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037 free_extent_buffer(buf);
1039 } else if (extent_buffer_uptodate(buf)) {
1042 free_extent_buffer(buf);
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
1057 int btrfs_write_tree_block(struct extent_buffer *buf)
1059 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1060 buf->start + buf->len - 1);
1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1065 filemap_fdatawait_range(buf->pages[0]->mapping,
1066 buf->start, buf->start + buf->len - 1);
1070 * Read tree block at logical address @bytenr and do variant basic but critical
1073 * @parent_transid: expected transid of this tree block, skip check if 0
1074 * @level: expected level, mandatory check
1075 * @first_key: expected key in slot 0, skip check if NULL
1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1078 u64 parent_transid, int level,
1079 struct btrfs_key *first_key)
1081 struct extent_buffer *buf = NULL;
1084 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1088 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1091 free_extent_buffer(buf);
1092 return ERR_PTR(ret);
1098 void clean_tree_block(struct btrfs_fs_info *fs_info,
1099 struct extent_buffer *buf)
1101 if (btrfs_header_generation(buf) ==
1102 fs_info->running_transaction->transid) {
1103 btrfs_assert_tree_locked(buf);
1105 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1108 fs_info->dirty_metadata_batch);
1109 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1110 btrfs_set_lock_blocking(buf);
1111 clear_extent_buffer_dirty(buf);
1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1118 struct btrfs_subvolume_writers *writers;
1121 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1123 return ERR_PTR(-ENOMEM);
1125 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1128 return ERR_PTR(ret);
1131 init_waitqueue_head(&writers->wait);
1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1138 percpu_counter_destroy(&writers->counter);
1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1147 root->commit_root = NULL;
1149 root->orphan_cleanup_state = 0;
1151 root->last_trans = 0;
1152 root->highest_objectid = 0;
1153 root->nr_delalloc_inodes = 0;
1154 root->nr_ordered_extents = 0;
1155 root->inode_tree = RB_ROOT;
1156 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1157 root->block_rsv = NULL;
1159 INIT_LIST_HEAD(&root->dirty_list);
1160 INIT_LIST_HEAD(&root->root_list);
1161 INIT_LIST_HEAD(&root->delalloc_inodes);
1162 INIT_LIST_HEAD(&root->delalloc_root);
1163 INIT_LIST_HEAD(&root->ordered_extents);
1164 INIT_LIST_HEAD(&root->ordered_root);
1165 INIT_LIST_HEAD(&root->logged_list[0]);
1166 INIT_LIST_HEAD(&root->logged_list[1]);
1167 spin_lock_init(&root->inode_lock);
1168 spin_lock_init(&root->delalloc_lock);
1169 spin_lock_init(&root->ordered_extent_lock);
1170 spin_lock_init(&root->accounting_lock);
1171 spin_lock_init(&root->log_extents_lock[0]);
1172 spin_lock_init(&root->log_extents_lock[1]);
1173 spin_lock_init(&root->qgroup_meta_rsv_lock);
1174 mutex_init(&root->objectid_mutex);
1175 mutex_init(&root->log_mutex);
1176 mutex_init(&root->ordered_extent_mutex);
1177 mutex_init(&root->delalloc_mutex);
1178 init_waitqueue_head(&root->log_writer_wait);
1179 init_waitqueue_head(&root->log_commit_wait[0]);
1180 init_waitqueue_head(&root->log_commit_wait[1]);
1181 INIT_LIST_HEAD(&root->log_ctxs[0]);
1182 INIT_LIST_HEAD(&root->log_ctxs[1]);
1183 atomic_set(&root->log_commit[0], 0);
1184 atomic_set(&root->log_commit[1], 0);
1185 atomic_set(&root->log_writers, 0);
1186 atomic_set(&root->log_batch, 0);
1187 refcount_set(&root->refs, 1);
1188 atomic_set(&root->will_be_snapshotted, 0);
1189 atomic_set(&root->snapshot_force_cow, 0);
1190 root->log_transid = 0;
1191 root->log_transid_committed = -1;
1192 root->last_log_commit = 0;
1194 extent_io_tree_init(&root->dirty_log_pages, NULL);
1196 memset(&root->root_key, 0, sizeof(root->root_key));
1197 memset(&root->root_item, 0, sizeof(root->root_item));
1198 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1200 root->defrag_trans_start = fs_info->generation;
1202 root->defrag_trans_start = 0;
1203 root->root_key.objectid = objectid;
1206 spin_lock_init(&root->root_item_lock);
1209 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1212 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1214 root->fs_info = fs_info;
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 /* Should only be used by the testing infrastructure */
1220 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1222 struct btrfs_root *root;
1225 return ERR_PTR(-EINVAL);
1227 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1229 return ERR_PTR(-ENOMEM);
1231 /* We don't use the stripesize in selftest, set it as sectorsize */
1232 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1233 root->alloc_bytenr = 0;
1239 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info,
1243 struct extent_buffer *leaf;
1244 struct btrfs_root *tree_root = fs_info->tree_root;
1245 struct btrfs_root *root;
1246 struct btrfs_key key;
1248 uuid_le uuid = NULL_UUID_LE;
1250 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252 return ERR_PTR(-ENOMEM);
1254 __setup_root(root, fs_info, objectid);
1255 root->root_key.objectid = objectid;
1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 root->root_key.offset = 0;
1259 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1261 ret = PTR_ERR(leaf);
1267 btrfs_mark_buffer_dirty(leaf);
1269 root->commit_root = btrfs_root_node(root);
1270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1272 root->root_item.flags = 0;
1273 root->root_item.byte_limit = 0;
1274 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1275 btrfs_set_root_generation(&root->root_item, trans->transid);
1276 btrfs_set_root_level(&root->root_item, 0);
1277 btrfs_set_root_refs(&root->root_item, 1);
1278 btrfs_set_root_used(&root->root_item, leaf->len);
1279 btrfs_set_root_last_snapshot(&root->root_item, 0);
1280 btrfs_set_root_dirid(&root->root_item, 0);
1281 if (is_fstree(objectid))
1283 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1284 root->root_item.drop_level = 0;
1286 key.objectid = objectid;
1287 key.type = BTRFS_ROOT_ITEM_KEY;
1289 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1293 btrfs_tree_unlock(leaf);
1299 btrfs_tree_unlock(leaf);
1300 free_extent_buffer(root->commit_root);
1301 free_extent_buffer(leaf);
1305 return ERR_PTR(ret);
1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info)
1311 struct btrfs_root *root;
1312 struct extent_buffer *leaf;
1314 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1316 return ERR_PTR(-ENOMEM);
1318 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325 * DON'T set REF_COWS for log trees
1327 * log trees do not get reference counted because they go away
1328 * before a real commit is actually done. They do store pointers
1329 * to file data extents, and those reference counts still get
1330 * updated (along with back refs to the log tree).
1333 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1337 return ERR_CAST(leaf);
1342 btrfs_mark_buffer_dirty(root->node);
1343 btrfs_tree_unlock(root->node);
1347 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348 struct btrfs_fs_info *fs_info)
1350 struct btrfs_root *log_root;
1352 log_root = alloc_log_tree(trans, fs_info);
1353 if (IS_ERR(log_root))
1354 return PTR_ERR(log_root);
1355 WARN_ON(fs_info->log_root_tree);
1356 fs_info->log_root_tree = log_root;
1360 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root)
1363 struct btrfs_fs_info *fs_info = root->fs_info;
1364 struct btrfs_root *log_root;
1365 struct btrfs_inode_item *inode_item;
1367 log_root = alloc_log_tree(trans, fs_info);
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1371 log_root->last_trans = trans->transid;
1372 log_root->root_key.offset = root->root_key.objectid;
1374 inode_item = &log_root->root_item.inode;
1375 btrfs_set_stack_inode_generation(inode_item, 1);
1376 btrfs_set_stack_inode_size(inode_item, 3);
1377 btrfs_set_stack_inode_nlink(inode_item, 1);
1378 btrfs_set_stack_inode_nbytes(inode_item,
1380 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1382 btrfs_set_root_node(&log_root->root_item, log_root->node);
1384 WARN_ON(root->log_root);
1385 root->log_root = log_root;
1386 root->log_transid = 0;
1387 root->log_transid_committed = -1;
1388 root->last_log_commit = 0;
1392 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1393 struct btrfs_key *key)
1395 struct btrfs_root *root;
1396 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1397 struct btrfs_path *path;
1402 path = btrfs_alloc_path();
1404 return ERR_PTR(-ENOMEM);
1406 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1412 __setup_root(root, fs_info, key->objectid);
1414 ret = btrfs_find_root(tree_root, key, path,
1415 &root->root_item, &root->root_key);
1422 generation = btrfs_root_generation(&root->root_item);
1423 level = btrfs_root_level(&root->root_item);
1424 root->node = read_tree_block(fs_info,
1425 btrfs_root_bytenr(&root->root_item),
1426 generation, level, NULL);
1427 if (IS_ERR(root->node)) {
1428 ret = PTR_ERR(root->node);
1430 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1432 free_extent_buffer(root->node);
1435 root->commit_root = btrfs_root_node(root);
1437 btrfs_free_path(path);
1443 root = ERR_PTR(ret);
1447 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448 struct btrfs_key *location)
1450 struct btrfs_root *root;
1452 root = btrfs_read_tree_root(tree_root, location);
1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1457 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1458 btrfs_check_and_init_root_item(&root->root_item);
1464 int btrfs_init_fs_root(struct btrfs_root *root)
1467 struct btrfs_subvolume_writers *writers;
1469 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1472 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1477 writers = btrfs_alloc_subvolume_writers();
1478 if (IS_ERR(writers)) {
1479 ret = PTR_ERR(writers);
1482 root->subv_writers = writers;
1484 btrfs_init_free_ino_ctl(root);
1485 spin_lock_init(&root->ino_cache_lock);
1486 init_waitqueue_head(&root->ino_cache_wait);
1488 ret = get_anon_bdev(&root->anon_dev);
1492 mutex_lock(&root->objectid_mutex);
1493 ret = btrfs_find_highest_objectid(root,
1494 &root->highest_objectid);
1496 mutex_unlock(&root->objectid_mutex);
1500 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1502 mutex_unlock(&root->objectid_mutex);
1506 /* The caller is responsible to call btrfs_free_fs_root */
1510 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513 struct btrfs_root *root;
1515 spin_lock(&fs_info->fs_roots_radix_lock);
1516 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517 (unsigned long)root_id);
1518 spin_unlock(&fs_info->fs_roots_radix_lock);
1522 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523 struct btrfs_root *root)
1527 ret = radix_tree_preload(GFP_NOFS);
1531 spin_lock(&fs_info->fs_roots_radix_lock);
1532 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533 (unsigned long)root->root_key.objectid,
1536 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1537 spin_unlock(&fs_info->fs_roots_radix_lock);
1538 radix_tree_preload_end();
1543 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_key *location,
1547 struct btrfs_root *root;
1548 struct btrfs_path *path;
1549 struct btrfs_key key;
1552 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553 return fs_info->tree_root;
1554 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555 return fs_info->extent_root;
1556 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557 return fs_info->chunk_root;
1558 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559 return fs_info->dev_root;
1560 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561 return fs_info->csum_root;
1562 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563 return fs_info->quota_root ? fs_info->quota_root :
1565 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566 return fs_info->uuid_root ? fs_info->uuid_root :
1568 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569 return fs_info->free_space_root ? fs_info->free_space_root :
1572 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1575 return ERR_PTR(-ENOENT);
1579 root = btrfs_read_fs_root(fs_info->tree_root, location);
1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1588 ret = btrfs_init_fs_root(root);
1592 path = btrfs_alloc_path();
1597 key.objectid = BTRFS_ORPHAN_OBJECTID;
1598 key.type = BTRFS_ORPHAN_ITEM_KEY;
1599 key.offset = location->objectid;
1601 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1602 btrfs_free_path(path);
1606 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1608 ret = btrfs_insert_fs_root(fs_info, root);
1610 if (ret == -EEXIST) {
1611 btrfs_free_fs_root(root);
1618 btrfs_free_fs_root(root);
1619 return ERR_PTR(ret);
1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626 struct btrfs_device *device;
1627 struct backing_dev_info *bdi;
1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633 bdi = device->bdev->bd_bdi;
1634 if (bdi_congested(bdi, bdi_bits)) {
1644 * called by the kthread helper functions to finally call the bio end_io
1645 * functions. This is where read checksum verification actually happens
1647 static void end_workqueue_fn(struct btrfs_work *work)
1650 struct btrfs_end_io_wq *end_io_wq;
1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1653 bio = end_io_wq->bio;
1655 bio->bi_status = end_io_wq->status;
1656 bio->bi_private = end_io_wq->private;
1657 bio->bi_end_io = end_io_wq->end_io;
1658 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1662 static int cleaner_kthread(void *arg)
1664 struct btrfs_root *root = arg;
1665 struct btrfs_fs_info *fs_info = root->fs_info;
1667 struct btrfs_trans_handle *trans;
1672 /* Make the cleaner go to sleep early. */
1673 if (btrfs_need_cleaner_sleep(fs_info))
1677 * Do not do anything if we might cause open_ctree() to block
1678 * before we have finished mounting the filesystem.
1680 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1683 if (!mutex_trylock(&fs_info->cleaner_mutex))
1687 * Avoid the problem that we change the status of the fs
1688 * during the above check and trylock.
1690 if (btrfs_need_cleaner_sleep(fs_info)) {
1691 mutex_unlock(&fs_info->cleaner_mutex);
1695 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1696 btrfs_run_delayed_iputs(fs_info);
1697 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1699 again = btrfs_clean_one_deleted_snapshot(root);
1700 mutex_unlock(&fs_info->cleaner_mutex);
1703 * The defragger has dealt with the R/O remount and umount,
1704 * needn't do anything special here.
1706 btrfs_run_defrag_inodes(fs_info);
1709 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1710 * with relocation (btrfs_relocate_chunk) and relocation
1711 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1712 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1713 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1714 * unused block groups.
1716 btrfs_delete_unused_bgs(fs_info);
1719 set_current_state(TASK_INTERRUPTIBLE);
1720 if (!kthread_should_stop())
1722 __set_current_state(TASK_RUNNING);
1724 } while (!kthread_should_stop());
1727 * Transaction kthread is stopped before us and wakes us up.
1728 * However we might have started a new transaction and COWed some
1729 * tree blocks when deleting unused block groups for example. So
1730 * make sure we commit the transaction we started to have a clean
1731 * shutdown when evicting the btree inode - if it has dirty pages
1732 * when we do the final iput() on it, eviction will trigger a
1733 * writeback for it which will fail with null pointer dereferences
1734 * since work queues and other resources were already released and
1735 * destroyed by the time the iput/eviction/writeback is made.
1737 trans = btrfs_attach_transaction(root);
1738 if (IS_ERR(trans)) {
1739 if (PTR_ERR(trans) != -ENOENT)
1741 "cleaner transaction attach returned %ld",
1746 ret = btrfs_commit_transaction(trans);
1749 "cleaner open transaction commit returned %d",
1756 static int transaction_kthread(void *arg)
1758 struct btrfs_root *root = arg;
1759 struct btrfs_fs_info *fs_info = root->fs_info;
1760 struct btrfs_trans_handle *trans;
1761 struct btrfs_transaction *cur;
1764 unsigned long delay;
1768 cannot_commit = false;
1769 delay = HZ * fs_info->commit_interval;
1770 mutex_lock(&fs_info->transaction_kthread_mutex);
1772 spin_lock(&fs_info->trans_lock);
1773 cur = fs_info->running_transaction;
1775 spin_unlock(&fs_info->trans_lock);
1779 now = ktime_get_seconds();
1780 if (cur->state < TRANS_STATE_BLOCKED &&
1781 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1782 (now < cur->start_time ||
1783 now - cur->start_time < fs_info->commit_interval)) {
1784 spin_unlock(&fs_info->trans_lock);
1788 transid = cur->transid;
1789 spin_unlock(&fs_info->trans_lock);
1791 /* If the file system is aborted, this will always fail. */
1792 trans = btrfs_attach_transaction(root);
1793 if (IS_ERR(trans)) {
1794 if (PTR_ERR(trans) != -ENOENT)
1795 cannot_commit = true;
1798 if (transid == trans->transid) {
1799 btrfs_commit_transaction(trans);
1801 btrfs_end_transaction(trans);
1804 wake_up_process(fs_info->cleaner_kthread);
1805 mutex_unlock(&fs_info->transaction_kthread_mutex);
1807 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1808 &fs_info->fs_state)))
1809 btrfs_cleanup_transaction(fs_info);
1810 if (!kthread_should_stop() &&
1811 (!btrfs_transaction_blocked(fs_info) ||
1813 schedule_timeout_interruptible(delay);
1814 } while (!kthread_should_stop());
1819 * this will find the highest generation in the array of
1820 * root backups. The index of the highest array is returned,
1821 * or -1 if we can't find anything.
1823 * We check to make sure the array is valid by comparing the
1824 * generation of the latest root in the array with the generation
1825 * in the super block. If they don't match we pitch it.
1827 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830 int newest_index = -1;
1831 struct btrfs_root_backup *root_backup;
1834 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1835 root_backup = info->super_copy->super_roots + i;
1836 cur = btrfs_backup_tree_root_gen(root_backup);
1837 if (cur == newest_gen)
1841 /* check to see if we actually wrapped around */
1842 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1843 root_backup = info->super_copy->super_roots;
1844 cur = btrfs_backup_tree_root_gen(root_backup);
1845 if (cur == newest_gen)
1848 return newest_index;
1853 * find the oldest backup so we know where to store new entries
1854 * in the backup array. This will set the backup_root_index
1855 * field in the fs_info struct
1857 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860 int newest_index = -1;
1862 newest_index = find_newest_super_backup(info, newest_gen);
1863 /* if there was garbage in there, just move along */
1864 if (newest_index == -1) {
1865 info->backup_root_index = 0;
1867 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872 * copy all the root pointers into the super backup array.
1873 * this will bump the backup pointer by one when it is
1876 static void backup_super_roots(struct btrfs_fs_info *info)
1879 struct btrfs_root_backup *root_backup;
1882 next_backup = info->backup_root_index;
1883 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1884 BTRFS_NUM_BACKUP_ROOTS;
1887 * just overwrite the last backup if we're at the same generation
1888 * this happens only at umount
1890 root_backup = info->super_for_commit->super_roots + last_backup;
1891 if (btrfs_backup_tree_root_gen(root_backup) ==
1892 btrfs_header_generation(info->tree_root->node))
1893 next_backup = last_backup;
1895 root_backup = info->super_for_commit->super_roots + next_backup;
1898 * make sure all of our padding and empty slots get zero filled
1899 * regardless of which ones we use today
1901 memset(root_backup, 0, sizeof(*root_backup));
1903 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1906 btrfs_set_backup_tree_root_gen(root_backup,
1907 btrfs_header_generation(info->tree_root->node));
1909 btrfs_set_backup_tree_root_level(root_backup,
1910 btrfs_header_level(info->tree_root->node));
1912 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1913 btrfs_set_backup_chunk_root_gen(root_backup,
1914 btrfs_header_generation(info->chunk_root->node));
1915 btrfs_set_backup_chunk_root_level(root_backup,
1916 btrfs_header_level(info->chunk_root->node));
1918 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1919 btrfs_set_backup_extent_root_gen(root_backup,
1920 btrfs_header_generation(info->extent_root->node));
1921 btrfs_set_backup_extent_root_level(root_backup,
1922 btrfs_header_level(info->extent_root->node));
1925 * we might commit during log recovery, which happens before we set
1926 * the fs_root. Make sure it is valid before we fill it in.
1928 if (info->fs_root && info->fs_root->node) {
1929 btrfs_set_backup_fs_root(root_backup,
1930 info->fs_root->node->start);
1931 btrfs_set_backup_fs_root_gen(root_backup,
1932 btrfs_header_generation(info->fs_root->node));
1933 btrfs_set_backup_fs_root_level(root_backup,
1934 btrfs_header_level(info->fs_root->node));
1937 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1938 btrfs_set_backup_dev_root_gen(root_backup,
1939 btrfs_header_generation(info->dev_root->node));
1940 btrfs_set_backup_dev_root_level(root_backup,
1941 btrfs_header_level(info->dev_root->node));
1943 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1944 btrfs_set_backup_csum_root_gen(root_backup,
1945 btrfs_header_generation(info->csum_root->node));
1946 btrfs_set_backup_csum_root_level(root_backup,
1947 btrfs_header_level(info->csum_root->node));
1949 btrfs_set_backup_total_bytes(root_backup,
1950 btrfs_super_total_bytes(info->super_copy));
1951 btrfs_set_backup_bytes_used(root_backup,
1952 btrfs_super_bytes_used(info->super_copy));
1953 btrfs_set_backup_num_devices(root_backup,
1954 btrfs_super_num_devices(info->super_copy));
1957 * if we don't copy this out to the super_copy, it won't get remembered
1958 * for the next commit
1960 memcpy(&info->super_copy->super_roots,
1961 &info->super_for_commit->super_roots,
1962 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1966 * this copies info out of the root backup array and back into
1967 * the in-memory super block. It is meant to help iterate through
1968 * the array, so you send it the number of backups you've already
1969 * tried and the last backup index you used.
1971 * this returns -1 when it has tried all the backups
1973 static noinline int next_root_backup(struct btrfs_fs_info *info,
1974 struct btrfs_super_block *super,
1975 int *num_backups_tried, int *backup_index)
1977 struct btrfs_root_backup *root_backup;
1978 int newest = *backup_index;
1980 if (*num_backups_tried == 0) {
1981 u64 gen = btrfs_super_generation(super);
1983 newest = find_newest_super_backup(info, gen);
1987 *backup_index = newest;
1988 *num_backups_tried = 1;
1989 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1990 /* we've tried all the backups, all done */
1993 /* jump to the next oldest backup */
1994 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1995 BTRFS_NUM_BACKUP_ROOTS;
1996 *backup_index = newest;
1997 *num_backups_tried += 1;
1999 root_backup = super->super_roots + newest;
2001 btrfs_set_super_generation(super,
2002 btrfs_backup_tree_root_gen(root_backup));
2003 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2004 btrfs_set_super_root_level(super,
2005 btrfs_backup_tree_root_level(root_backup));
2006 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009 * fixme: the total bytes and num_devices need to match or we should
2012 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2013 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2017 /* helper to cleanup workers */
2018 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2020 btrfs_destroy_workqueue(fs_info->fixup_workers);
2021 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2022 btrfs_destroy_workqueue(fs_info->workers);
2023 btrfs_destroy_workqueue(fs_info->endio_workers);
2024 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2026 btrfs_destroy_workqueue(fs_info->rmw_workers);
2027 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2028 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2029 btrfs_destroy_workqueue(fs_info->submit_workers);
2030 btrfs_destroy_workqueue(fs_info->delayed_workers);
2031 btrfs_destroy_workqueue(fs_info->caching_workers);
2032 btrfs_destroy_workqueue(fs_info->readahead_workers);
2033 btrfs_destroy_workqueue(fs_info->flush_workers);
2034 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2035 btrfs_destroy_workqueue(fs_info->extent_workers);
2037 * Now that all other work queues are destroyed, we can safely destroy
2038 * the queues used for metadata I/O, since tasks from those other work
2039 * queues can do metadata I/O operations.
2041 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2042 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045 static void free_root_extent_buffers(struct btrfs_root *root)
2048 free_extent_buffer(root->node);
2049 free_extent_buffer(root->commit_root);
2051 root->commit_root = NULL;
2055 /* helper to cleanup tree roots */
2056 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2058 free_root_extent_buffers(info->tree_root);
2060 free_root_extent_buffers(info->dev_root);
2061 free_root_extent_buffers(info->extent_root);
2062 free_root_extent_buffers(info->csum_root);
2063 free_root_extent_buffers(info->quota_root);
2064 free_root_extent_buffers(info->uuid_root);
2066 free_root_extent_buffers(info->chunk_root);
2067 free_root_extent_buffers(info->free_space_root);
2070 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2073 struct btrfs_root *gang[8];
2076 while (!list_empty(&fs_info->dead_roots)) {
2077 gang[0] = list_entry(fs_info->dead_roots.next,
2078 struct btrfs_root, root_list);
2079 list_del(&gang[0]->root_list);
2081 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2082 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2084 free_extent_buffer(gang[0]->node);
2085 free_extent_buffer(gang[0]->commit_root);
2086 btrfs_put_fs_root(gang[0]);
2091 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2096 for (i = 0; i < ret; i++)
2097 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2101 btrfs_free_log_root_tree(NULL, fs_info);
2102 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2106 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2108 mutex_init(&fs_info->scrub_lock);
2109 atomic_set(&fs_info->scrubs_running, 0);
2110 atomic_set(&fs_info->scrub_pause_req, 0);
2111 atomic_set(&fs_info->scrubs_paused, 0);
2112 atomic_set(&fs_info->scrub_cancel_req, 0);
2113 init_waitqueue_head(&fs_info->scrub_pause_wait);
2114 fs_info->scrub_workers_refcnt = 0;
2117 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2119 spin_lock_init(&fs_info->balance_lock);
2120 mutex_init(&fs_info->balance_mutex);
2121 atomic_set(&fs_info->balance_pause_req, 0);
2122 atomic_set(&fs_info->balance_cancel_req, 0);
2123 fs_info->balance_ctl = NULL;
2124 init_waitqueue_head(&fs_info->balance_wait_q);
2127 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2129 struct inode *inode = fs_info->btree_inode;
2131 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2132 set_nlink(inode, 1);
2134 * we set the i_size on the btree inode to the max possible int.
2135 * the real end of the address space is determined by all of
2136 * the devices in the system
2138 inode->i_size = OFFSET_MAX;
2139 inode->i_mapping->a_ops = &btree_aops;
2141 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2142 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2143 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2144 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2146 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2148 BTRFS_I(inode)->root = fs_info->tree_root;
2149 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2150 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2151 btrfs_insert_inode_hash(inode);
2154 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2156 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2157 rwlock_init(&fs_info->dev_replace.lock);
2158 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2159 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2160 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2163 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165 spin_lock_init(&fs_info->qgroup_lock);
2166 mutex_init(&fs_info->qgroup_ioctl_lock);
2167 fs_info->qgroup_tree = RB_ROOT;
2168 fs_info->qgroup_op_tree = RB_ROOT;
2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 fs_info->qgroup_seq = 1;
2171 fs_info->qgroup_ulist = NULL;
2172 fs_info->qgroup_rescan_running = false;
2173 mutex_init(&fs_info->qgroup_rescan_lock);
2176 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2177 struct btrfs_fs_devices *fs_devices)
2179 u32 max_active = fs_info->thread_pool_size;
2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2183 btrfs_alloc_workqueue(fs_info, "worker",
2184 flags | WQ_HIGHPRI, max_active, 16);
2186 fs_info->delalloc_workers =
2187 btrfs_alloc_workqueue(fs_info, "delalloc",
2188 flags, max_active, 2);
2190 fs_info->flush_workers =
2191 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2192 flags, max_active, 0);
2194 fs_info->caching_workers =
2195 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2198 * a higher idle thresh on the submit workers makes it much more
2199 * likely that bios will be send down in a sane order to the
2202 fs_info->submit_workers =
2203 btrfs_alloc_workqueue(fs_info, "submit", flags,
2204 min_t(u64, fs_devices->num_devices,
2207 fs_info->fixup_workers =
2208 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2211 * endios are largely parallel and should have a very
2214 fs_info->endio_workers =
2215 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2216 fs_info->endio_meta_workers =
2217 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2219 fs_info->endio_meta_write_workers =
2220 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2222 fs_info->endio_raid56_workers =
2223 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2225 fs_info->endio_repair_workers =
2226 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2227 fs_info->rmw_workers =
2228 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2229 fs_info->endio_write_workers =
2230 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2232 fs_info->endio_freespace_worker =
2233 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2235 fs_info->delayed_workers =
2236 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2238 fs_info->readahead_workers =
2239 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2241 fs_info->qgroup_rescan_workers =
2242 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2243 fs_info->extent_workers =
2244 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2245 min_t(u64, fs_devices->num_devices,
2248 if (!(fs_info->workers && fs_info->delalloc_workers &&
2249 fs_info->submit_workers && fs_info->flush_workers &&
2250 fs_info->endio_workers && fs_info->endio_meta_workers &&
2251 fs_info->endio_meta_write_workers &&
2252 fs_info->endio_repair_workers &&
2253 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2254 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2255 fs_info->caching_workers && fs_info->readahead_workers &&
2256 fs_info->fixup_workers && fs_info->delayed_workers &&
2257 fs_info->extent_workers &&
2258 fs_info->qgroup_rescan_workers)) {
2265 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2266 struct btrfs_fs_devices *fs_devices)
2269 struct btrfs_root *log_tree_root;
2270 struct btrfs_super_block *disk_super = fs_info->super_copy;
2271 u64 bytenr = btrfs_super_log_root(disk_super);
2272 int level = btrfs_super_log_root_level(disk_super);
2274 if (fs_devices->rw_devices == 0) {
2275 btrfs_warn(fs_info, "log replay required on RO media");
2279 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2283 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2285 log_tree_root->node = read_tree_block(fs_info, bytenr,
2286 fs_info->generation + 1,
2288 if (IS_ERR(log_tree_root->node)) {
2289 btrfs_warn(fs_info, "failed to read log tree");
2290 ret = PTR_ERR(log_tree_root->node);
2291 kfree(log_tree_root);
2293 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2294 btrfs_err(fs_info, "failed to read log tree");
2295 free_extent_buffer(log_tree_root->node);
2296 kfree(log_tree_root);
2299 /* returns with log_tree_root freed on success */
2300 ret = btrfs_recover_log_trees(log_tree_root);
2302 btrfs_handle_fs_error(fs_info, ret,
2303 "Failed to recover log tree");
2304 free_extent_buffer(log_tree_root->node);
2305 kfree(log_tree_root);
2309 if (sb_rdonly(fs_info->sb)) {
2310 ret = btrfs_commit_super(fs_info);
2318 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2320 struct btrfs_root *tree_root = fs_info->tree_root;
2321 struct btrfs_root *root;
2322 struct btrfs_key location;
2325 BUG_ON(!fs_info->tree_root);
2327 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2328 location.type = BTRFS_ROOT_ITEM_KEY;
2329 location.offset = 0;
2331 root = btrfs_read_tree_root(tree_root, &location);
2333 ret = PTR_ERR(root);
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 fs_info->extent_root = root;
2339 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2340 root = btrfs_read_tree_root(tree_root, &location);
2342 ret = PTR_ERR(root);
2345 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346 fs_info->dev_root = root;
2347 btrfs_init_devices_late(fs_info);
2349 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2350 root = btrfs_read_tree_root(tree_root, &location);
2352 ret = PTR_ERR(root);
2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 fs_info->csum_root = root;
2358 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2359 root = btrfs_read_tree_root(tree_root, &location);
2360 if (!IS_ERR(root)) {
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2363 fs_info->quota_root = root;
2366 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2367 root = btrfs_read_tree_root(tree_root, &location);
2369 ret = PTR_ERR(root);
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->uuid_root = root;
2377 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2378 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2379 root = btrfs_read_tree_root(tree_root, &location);
2381 ret = PTR_ERR(root);
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->free_space_root = root;
2390 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2391 location.objectid, ret);
2396 * Real super block validation
2397 * NOTE: super csum type and incompat features will not be checked here.
2399 * @sb: super block to check
2400 * @mirror_num: the super block number to check its bytenr:
2401 * 0 the primary (1st) sb
2402 * 1, 2 2nd and 3rd backup copy
2403 * -1 skip bytenr check
2405 static int validate_super(struct btrfs_fs_info *fs_info,
2406 struct btrfs_super_block *sb, int mirror_num)
2408 u64 nodesize = btrfs_super_nodesize(sb);
2409 u64 sectorsize = btrfs_super_sectorsize(sb);
2412 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2413 btrfs_err(fs_info, "no valid FS found");
2416 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2417 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2418 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2421 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2423 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2426 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2428 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2431 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2432 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2433 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2438 * Check sectorsize and nodesize first, other check will need it.
2439 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2441 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2442 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2446 /* Only PAGE SIZE is supported yet */
2447 if (sectorsize != PAGE_SIZE) {
2449 "sectorsize %llu not supported yet, only support %lu",
2450 sectorsize, PAGE_SIZE);
2453 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2454 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2455 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2458 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2459 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2460 le32_to_cpu(sb->__unused_leafsize), nodesize);
2464 /* Root alignment check */
2465 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2466 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2467 btrfs_super_root(sb));
2470 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2471 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2472 btrfs_super_chunk_root(sb));
2475 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2476 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2477 btrfs_super_log_root(sb));
2481 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2483 "dev_item UUID does not match fsid: %pU != %pU",
2484 fs_info->fsid, sb->dev_item.fsid);
2489 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2492 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2493 btrfs_err(fs_info, "bytes_used is too small %llu",
2494 btrfs_super_bytes_used(sb));
2497 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2498 btrfs_err(fs_info, "invalid stripesize %u",
2499 btrfs_super_stripesize(sb));
2502 if (btrfs_super_num_devices(sb) > (1UL << 31))
2503 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2504 btrfs_super_num_devices(sb));
2505 if (btrfs_super_num_devices(sb) == 0) {
2506 btrfs_err(fs_info, "number of devices is 0");
2510 if (mirror_num >= 0 &&
2511 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2512 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2513 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2518 * Obvious sys_chunk_array corruptions, it must hold at least one key
2521 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2522 btrfs_err(fs_info, "system chunk array too big %u > %u",
2523 btrfs_super_sys_array_size(sb),
2524 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2527 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2528 + sizeof(struct btrfs_chunk)) {
2529 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2530 btrfs_super_sys_array_size(sb),
2531 sizeof(struct btrfs_disk_key)
2532 + sizeof(struct btrfs_chunk));
2537 * The generation is a global counter, we'll trust it more than the others
2538 * but it's still possible that it's the one that's wrong.
2540 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2542 "suspicious: generation < chunk_root_generation: %llu < %llu",
2543 btrfs_super_generation(sb),
2544 btrfs_super_chunk_root_generation(sb));
2545 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2546 && btrfs_super_cache_generation(sb) != (u64)-1)
2548 "suspicious: generation < cache_generation: %llu < %llu",
2549 btrfs_super_generation(sb),
2550 btrfs_super_cache_generation(sb));
2556 * Validation of super block at mount time.
2557 * Some checks already done early at mount time, like csum type and incompat
2558 * flags will be skipped.
2560 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2562 return validate_super(fs_info, fs_info->super_copy, 0);
2566 * Validation of super block at write time.
2567 * Some checks like bytenr check will be skipped as their values will be
2569 * Extra checks like csum type and incompat flags will be done here.
2571 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2572 struct btrfs_super_block *sb)
2576 ret = validate_super(fs_info, sb, -1);
2579 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2581 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2582 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2585 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2588 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2589 btrfs_super_incompat_flags(sb),
2590 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2596 "super block corruption detected before writing it to disk");
2600 int open_ctree(struct super_block *sb,
2601 struct btrfs_fs_devices *fs_devices,
2609 struct btrfs_key location;
2610 struct buffer_head *bh;
2611 struct btrfs_super_block *disk_super;
2612 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2613 struct btrfs_root *tree_root;
2614 struct btrfs_root *chunk_root;
2617 int num_backups_tried = 0;
2618 int backup_index = 0;
2619 int clear_free_space_tree = 0;
2622 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2623 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2624 if (!tree_root || !chunk_root) {
2629 ret = init_srcu_struct(&fs_info->subvol_srcu);
2635 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2640 fs_info->dirty_metadata_batch = PAGE_SIZE *
2641 (1 + ilog2(nr_cpu_ids));
2643 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2646 goto fail_dirty_metadata_bytes;
2649 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2653 goto fail_delalloc_bytes;
2656 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2657 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2658 INIT_LIST_HEAD(&fs_info->trans_list);
2659 INIT_LIST_HEAD(&fs_info->dead_roots);
2660 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2661 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2662 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2663 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2664 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2665 spin_lock_init(&fs_info->delalloc_root_lock);
2666 spin_lock_init(&fs_info->trans_lock);
2667 spin_lock_init(&fs_info->fs_roots_radix_lock);
2668 spin_lock_init(&fs_info->delayed_iput_lock);
2669 spin_lock_init(&fs_info->defrag_inodes_lock);
2670 spin_lock_init(&fs_info->tree_mod_seq_lock);
2671 spin_lock_init(&fs_info->super_lock);
2672 spin_lock_init(&fs_info->qgroup_op_lock);
2673 spin_lock_init(&fs_info->buffer_lock);
2674 spin_lock_init(&fs_info->unused_bgs_lock);
2675 rwlock_init(&fs_info->tree_mod_log_lock);
2676 mutex_init(&fs_info->unused_bg_unpin_mutex);
2677 mutex_init(&fs_info->delete_unused_bgs_mutex);
2678 mutex_init(&fs_info->reloc_mutex);
2679 mutex_init(&fs_info->delalloc_root_mutex);
2680 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2681 seqlock_init(&fs_info->profiles_lock);
2683 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2684 INIT_LIST_HEAD(&fs_info->space_info);
2685 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2686 INIT_LIST_HEAD(&fs_info->unused_bgs);
2687 btrfs_mapping_init(&fs_info->mapping_tree);
2688 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2689 BTRFS_BLOCK_RSV_GLOBAL);
2690 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2691 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2692 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2693 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2694 BTRFS_BLOCK_RSV_DELOPS);
2695 atomic_set(&fs_info->async_delalloc_pages, 0);
2696 atomic_set(&fs_info->defrag_running, 0);
2697 atomic_set(&fs_info->qgroup_op_seq, 0);
2698 atomic_set(&fs_info->reada_works_cnt, 0);
2699 atomic64_set(&fs_info->tree_mod_seq, 0);
2701 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2702 fs_info->metadata_ratio = 0;
2703 fs_info->defrag_inodes = RB_ROOT;
2704 atomic64_set(&fs_info->free_chunk_space, 0);
2705 fs_info->tree_mod_log = RB_ROOT;
2706 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2707 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2708 /* readahead state */
2709 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2710 spin_lock_init(&fs_info->reada_lock);
2711 btrfs_init_ref_verify(fs_info);
2713 fs_info->thread_pool_size = min_t(unsigned long,
2714 num_online_cpus() + 2, 8);
2716 INIT_LIST_HEAD(&fs_info->ordered_roots);
2717 spin_lock_init(&fs_info->ordered_root_lock);
2719 fs_info->btree_inode = new_inode(sb);
2720 if (!fs_info->btree_inode) {
2722 goto fail_bio_counter;
2724 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2726 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2728 if (!fs_info->delayed_root) {
2732 btrfs_init_delayed_root(fs_info->delayed_root);
2734 btrfs_init_scrub(fs_info);
2735 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2736 fs_info->check_integrity_print_mask = 0;
2738 btrfs_init_balance(fs_info);
2739 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2741 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2742 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2744 btrfs_init_btree_inode(fs_info);
2746 spin_lock_init(&fs_info->block_group_cache_lock);
2747 fs_info->block_group_cache_tree = RB_ROOT;
2748 fs_info->first_logical_byte = (u64)-1;
2750 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2751 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2752 fs_info->pinned_extents = &fs_info->freed_extents[0];
2753 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2755 mutex_init(&fs_info->ordered_operations_mutex);
2756 mutex_init(&fs_info->tree_log_mutex);
2757 mutex_init(&fs_info->chunk_mutex);
2758 mutex_init(&fs_info->transaction_kthread_mutex);
2759 mutex_init(&fs_info->cleaner_mutex);
2760 mutex_init(&fs_info->ro_block_group_mutex);
2761 init_rwsem(&fs_info->commit_root_sem);
2762 init_rwsem(&fs_info->cleanup_work_sem);
2763 init_rwsem(&fs_info->subvol_sem);
2764 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2766 btrfs_init_dev_replace_locks(fs_info);
2767 btrfs_init_qgroup(fs_info);
2769 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2772 init_waitqueue_head(&fs_info->transaction_throttle);
2773 init_waitqueue_head(&fs_info->transaction_wait);
2774 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775 init_waitqueue_head(&fs_info->async_submit_wait);
2777 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2779 /* Usable values until the real ones are cached from the superblock */
2780 fs_info->nodesize = 4096;
2781 fs_info->sectorsize = 4096;
2782 fs_info->stripesize = 4096;
2784 ret = btrfs_alloc_stripe_hash_table(fs_info);
2790 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2792 invalidate_bdev(fs_devices->latest_bdev);
2795 * Read super block and check the signature bytes only
2797 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2804 * We want to check superblock checksum, the type is stored inside.
2805 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2807 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2808 btrfs_err(fs_info, "superblock checksum mismatch");
2815 * super_copy is zeroed at allocation time and we never touch the
2816 * following bytes up to INFO_SIZE, the checksum is calculated from
2817 * the whole block of INFO_SIZE
2819 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2820 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2821 sizeof(*fs_info->super_for_commit));
2824 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2826 ret = btrfs_validate_mount_super(fs_info);
2828 btrfs_err(fs_info, "superblock contains fatal errors");
2833 disk_super = fs_info->super_copy;
2834 if (!btrfs_super_root(disk_super))
2837 /* check FS state, whether FS is broken. */
2838 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2839 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2842 * run through our array of backup supers and setup
2843 * our ring pointer to the oldest one
2845 generation = btrfs_super_generation(disk_super);
2846 find_oldest_super_backup(fs_info, generation);
2849 * In the long term, we'll store the compression type in the super
2850 * block, and it'll be used for per file compression control.
2852 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2854 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2860 features = btrfs_super_incompat_flags(disk_super) &
2861 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2864 "cannot mount because of unsupported optional features (%llx)",
2870 features = btrfs_super_incompat_flags(disk_super);
2871 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2872 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2873 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2874 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2875 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2877 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2878 btrfs_info(fs_info, "has skinny extents");
2881 * flag our filesystem as having big metadata blocks if
2882 * they are bigger than the page size
2884 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2885 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2887 "flagging fs with big metadata feature");
2888 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2891 nodesize = btrfs_super_nodesize(disk_super);
2892 sectorsize = btrfs_super_sectorsize(disk_super);
2893 stripesize = sectorsize;
2894 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2895 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2897 /* Cache block sizes */
2898 fs_info->nodesize = nodesize;
2899 fs_info->sectorsize = sectorsize;
2900 fs_info->stripesize = stripesize;
2903 * mixed block groups end up with duplicate but slightly offset
2904 * extent buffers for the same range. It leads to corruptions
2906 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2907 (sectorsize != nodesize)) {
2909 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2910 nodesize, sectorsize);
2915 * Needn't use the lock because there is no other task which will
2918 btrfs_set_super_incompat_flags(disk_super, features);
2920 features = btrfs_super_compat_ro_flags(disk_super) &
2921 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2922 if (!sb_rdonly(sb) && features) {
2924 "cannot mount read-write because of unsupported optional features (%llx)",
2930 ret = btrfs_init_workqueues(fs_info, fs_devices);
2933 goto fail_sb_buffer;
2936 sb->s_bdi->congested_fn = btrfs_congested_fn;
2937 sb->s_bdi->congested_data = fs_info;
2938 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2939 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2940 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2941 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2943 sb->s_blocksize = sectorsize;
2944 sb->s_blocksize_bits = blksize_bits(sectorsize);
2945 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2947 mutex_lock(&fs_info->chunk_mutex);
2948 ret = btrfs_read_sys_array(fs_info);
2949 mutex_unlock(&fs_info->chunk_mutex);
2951 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2952 goto fail_sb_buffer;
2955 generation = btrfs_super_chunk_root_generation(disk_super);
2956 level = btrfs_super_chunk_root_level(disk_super);
2958 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2960 chunk_root->node = read_tree_block(fs_info,
2961 btrfs_super_chunk_root(disk_super),
2962 generation, level, NULL);
2963 if (IS_ERR(chunk_root->node) ||
2964 !extent_buffer_uptodate(chunk_root->node)) {
2965 btrfs_err(fs_info, "failed to read chunk root");
2966 if (!IS_ERR(chunk_root->node))
2967 free_extent_buffer(chunk_root->node);
2968 chunk_root->node = NULL;
2969 goto fail_tree_roots;
2971 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2972 chunk_root->commit_root = btrfs_root_node(chunk_root);
2974 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2975 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2977 ret = btrfs_read_chunk_tree(fs_info);
2979 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2980 goto fail_tree_roots;
2984 * Keep the devid that is marked to be the target device for the
2985 * device replace procedure
2987 btrfs_free_extra_devids(fs_devices, 0);
2989 if (!fs_devices->latest_bdev) {
2990 btrfs_err(fs_info, "failed to read devices");
2991 goto fail_tree_roots;
2995 generation = btrfs_super_generation(disk_super);
2996 level = btrfs_super_root_level(disk_super);
2998 tree_root->node = read_tree_block(fs_info,
2999 btrfs_super_root(disk_super),
3000 generation, level, NULL);
3001 if (IS_ERR(tree_root->node) ||
3002 !extent_buffer_uptodate(tree_root->node)) {
3003 btrfs_warn(fs_info, "failed to read tree root");
3004 if (!IS_ERR(tree_root->node))
3005 free_extent_buffer(tree_root->node);
3006 tree_root->node = NULL;
3007 goto recovery_tree_root;
3010 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3011 tree_root->commit_root = btrfs_root_node(tree_root);
3012 btrfs_set_root_refs(&tree_root->root_item, 1);
3014 mutex_lock(&tree_root->objectid_mutex);
3015 ret = btrfs_find_highest_objectid(tree_root,
3016 &tree_root->highest_objectid);
3018 mutex_unlock(&tree_root->objectid_mutex);
3019 goto recovery_tree_root;
3022 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3024 mutex_unlock(&tree_root->objectid_mutex);
3026 ret = btrfs_read_roots(fs_info);
3028 goto recovery_tree_root;
3030 fs_info->generation = generation;
3031 fs_info->last_trans_committed = generation;
3033 ret = btrfs_verify_dev_extents(fs_info);
3036 "failed to verify dev extents against chunks: %d",
3038 goto fail_block_groups;
3040 ret = btrfs_recover_balance(fs_info);
3042 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3043 goto fail_block_groups;
3046 ret = btrfs_init_dev_stats(fs_info);
3048 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3049 goto fail_block_groups;
3052 ret = btrfs_init_dev_replace(fs_info);
3054 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3055 goto fail_block_groups;
3058 btrfs_free_extra_devids(fs_devices, 1);
3060 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3062 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3064 goto fail_block_groups;
3067 ret = btrfs_sysfs_add_device(fs_devices);
3069 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3071 goto fail_fsdev_sysfs;
3074 ret = btrfs_sysfs_add_mounted(fs_info);
3076 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3077 goto fail_fsdev_sysfs;
3080 ret = btrfs_init_space_info(fs_info);
3082 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3086 ret = btrfs_read_block_groups(fs_info);
3088 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3092 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3094 "writeable mount is not allowed due to too many missing devices");
3098 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3100 if (IS_ERR(fs_info->cleaner_kthread))
3103 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3105 "btrfs-transaction");
3106 if (IS_ERR(fs_info->transaction_kthread))
3109 if (!btrfs_test_opt(fs_info, NOSSD) &&
3110 !fs_info->fs_devices->rotating) {
3111 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3115 * Mount does not set all options immediately, we can do it now and do
3116 * not have to wait for transaction commit
3118 btrfs_apply_pending_changes(fs_info);
3120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3121 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3122 ret = btrfsic_mount(fs_info, fs_devices,
3123 btrfs_test_opt(fs_info,
3124 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3126 fs_info->check_integrity_print_mask);
3129 "failed to initialize integrity check module: %d",
3133 ret = btrfs_read_qgroup_config(fs_info);
3135 goto fail_trans_kthread;
3137 if (btrfs_build_ref_tree(fs_info))
3138 btrfs_err(fs_info, "couldn't build ref tree");
3140 /* do not make disk changes in broken FS or nologreplay is given */
3141 if (btrfs_super_log_root(disk_super) != 0 &&
3142 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3143 ret = btrfs_replay_log(fs_info, fs_devices);
3150 ret = btrfs_find_orphan_roots(fs_info);
3154 if (!sb_rdonly(sb)) {
3155 ret = btrfs_cleanup_fs_roots(fs_info);
3159 mutex_lock(&fs_info->cleaner_mutex);
3160 ret = btrfs_recover_relocation(tree_root);
3161 mutex_unlock(&fs_info->cleaner_mutex);
3163 btrfs_warn(fs_info, "failed to recover relocation: %d",
3170 location.objectid = BTRFS_FS_TREE_OBJECTID;
3171 location.type = BTRFS_ROOT_ITEM_KEY;
3172 location.offset = 0;
3174 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3175 if (IS_ERR(fs_info->fs_root)) {
3176 err = PTR_ERR(fs_info->fs_root);
3177 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3184 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3185 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3186 clear_free_space_tree = 1;
3187 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3188 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3189 btrfs_warn(fs_info, "free space tree is invalid");
3190 clear_free_space_tree = 1;
3193 if (clear_free_space_tree) {
3194 btrfs_info(fs_info, "clearing free space tree");
3195 ret = btrfs_clear_free_space_tree(fs_info);
3198 "failed to clear free space tree: %d", ret);
3199 close_ctree(fs_info);
3204 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3205 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3206 btrfs_info(fs_info, "creating free space tree");
3207 ret = btrfs_create_free_space_tree(fs_info);
3210 "failed to create free space tree: %d", ret);
3211 close_ctree(fs_info);
3216 down_read(&fs_info->cleanup_work_sem);
3217 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3218 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3219 up_read(&fs_info->cleanup_work_sem);
3220 close_ctree(fs_info);
3223 up_read(&fs_info->cleanup_work_sem);
3225 ret = btrfs_resume_balance_async(fs_info);
3227 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3228 close_ctree(fs_info);
3232 ret = btrfs_resume_dev_replace_async(fs_info);
3234 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3235 close_ctree(fs_info);
3239 btrfs_qgroup_rescan_resume(fs_info);
3241 if (!fs_info->uuid_root) {
3242 btrfs_info(fs_info, "creating UUID tree");
3243 ret = btrfs_create_uuid_tree(fs_info);
3246 "failed to create the UUID tree: %d", ret);
3247 close_ctree(fs_info);
3250 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3251 fs_info->generation !=
3252 btrfs_super_uuid_tree_generation(disk_super)) {
3253 btrfs_info(fs_info, "checking UUID tree");
3254 ret = btrfs_check_uuid_tree(fs_info);
3257 "failed to check the UUID tree: %d", ret);
3258 close_ctree(fs_info);
3262 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3264 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3267 * backuproot only affect mount behavior, and if open_ctree succeeded,
3268 * no need to keep the flag
3270 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3275 btrfs_free_qgroup_config(fs_info);
3277 kthread_stop(fs_info->transaction_kthread);
3278 btrfs_cleanup_transaction(fs_info);
3279 btrfs_free_fs_roots(fs_info);
3281 kthread_stop(fs_info->cleaner_kthread);
3284 * make sure we're done with the btree inode before we stop our
3287 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3290 btrfs_sysfs_remove_mounted(fs_info);
3293 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3296 btrfs_put_block_group_cache(fs_info);
3299 free_root_pointers(fs_info, 1);
3300 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3303 btrfs_stop_all_workers(fs_info);
3304 btrfs_free_block_groups(fs_info);
3307 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3309 iput(fs_info->btree_inode);
3311 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3312 fail_delalloc_bytes:
3313 percpu_counter_destroy(&fs_info->delalloc_bytes);
3314 fail_dirty_metadata_bytes:
3315 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3317 cleanup_srcu_struct(&fs_info->subvol_srcu);
3319 btrfs_free_stripe_hash_table(fs_info);
3320 btrfs_close_devices(fs_info->fs_devices);
3324 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3325 goto fail_tree_roots;
3327 free_root_pointers(fs_info, 0);
3329 /* don't use the log in recovery mode, it won't be valid */
3330 btrfs_set_super_log_root(disk_super, 0);
3332 /* we can't trust the free space cache either */
3333 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3335 ret = next_root_backup(fs_info, fs_info->super_copy,
3336 &num_backups_tried, &backup_index);
3338 goto fail_block_groups;
3339 goto retry_root_backup;
3341 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3343 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3346 set_buffer_uptodate(bh);
3348 struct btrfs_device *device = (struct btrfs_device *)
3351 btrfs_warn_rl_in_rcu(device->fs_info,
3352 "lost page write due to IO error on %s",
3353 rcu_str_deref(device->name));
3354 /* note, we don't set_buffer_write_io_error because we have
3355 * our own ways of dealing with the IO errors
3357 clear_buffer_uptodate(bh);
3358 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3364 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3365 struct buffer_head **bh_ret)
3367 struct buffer_head *bh;
3368 struct btrfs_super_block *super;
3371 bytenr = btrfs_sb_offset(copy_num);
3372 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3375 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3377 * If we fail to read from the underlying devices, as of now
3378 * the best option we have is to mark it EIO.
3383 super = (struct btrfs_super_block *)bh->b_data;
3384 if (btrfs_super_bytenr(super) != bytenr ||
3385 btrfs_super_magic(super) != BTRFS_MAGIC) {
3395 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3397 struct buffer_head *bh;
3398 struct buffer_head *latest = NULL;
3399 struct btrfs_super_block *super;
3404 /* we would like to check all the supers, but that would make
3405 * a btrfs mount succeed after a mkfs from a different FS.
3406 * So, we need to add a special mount option to scan for
3407 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3409 for (i = 0; i < 1; i++) {
3410 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3414 super = (struct btrfs_super_block *)bh->b_data;
3416 if (!latest || btrfs_super_generation(super) > transid) {
3419 transid = btrfs_super_generation(super);
3426 return ERR_PTR(ret);
3432 * Write superblock @sb to the @device. Do not wait for completion, all the
3433 * buffer heads we write are pinned.
3435 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3436 * the expected device size at commit time. Note that max_mirrors must be
3437 * same for write and wait phases.
3439 * Return number of errors when buffer head is not found or submission fails.
3441 static int write_dev_supers(struct btrfs_device *device,
3442 struct btrfs_super_block *sb, int max_mirrors)
3444 struct buffer_head *bh;
3452 if (max_mirrors == 0)
3453 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3455 for (i = 0; i < max_mirrors; i++) {
3456 bytenr = btrfs_sb_offset(i);
3457 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3458 device->commit_total_bytes)
3461 btrfs_set_super_bytenr(sb, bytenr);
3464 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3465 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3466 btrfs_csum_final(crc, sb->csum);
3468 /* One reference for us, and we leave it for the caller */
3469 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3470 BTRFS_SUPER_INFO_SIZE);
3472 btrfs_err(device->fs_info,
3473 "couldn't get super buffer head for bytenr %llu",
3479 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3481 /* one reference for submit_bh */
3484 set_buffer_uptodate(bh);
3486 bh->b_end_io = btrfs_end_buffer_write_sync;
3487 bh->b_private = device;
3490 * we fua the first super. The others we allow
3493 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3494 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3495 op_flags |= REQ_FUA;
3496 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3500 return errors < i ? 0 : -1;
3504 * Wait for write completion of superblocks done by write_dev_supers,
3505 * @max_mirrors same for write and wait phases.
3507 * Return number of errors when buffer head is not found or not marked up to
3510 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3512 struct buffer_head *bh;
3515 bool primary_failed = false;
3518 if (max_mirrors == 0)
3519 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3521 for (i = 0; i < max_mirrors; i++) {
3522 bytenr = btrfs_sb_offset(i);
3523 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3524 device->commit_total_bytes)
3527 bh = __find_get_block(device->bdev,
3528 bytenr / BTRFS_BDEV_BLOCKSIZE,
3529 BTRFS_SUPER_INFO_SIZE);
3533 primary_failed = true;
3537 if (!buffer_uptodate(bh)) {
3540 primary_failed = true;
3543 /* drop our reference */
3546 /* drop the reference from the writing run */
3550 /* log error, force error return */
3551 if (primary_failed) {
3552 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3557 return errors < i ? 0 : -1;
3561 * endio for the write_dev_flush, this will wake anyone waiting
3562 * for the barrier when it is done
3564 static void btrfs_end_empty_barrier(struct bio *bio)
3566 complete(bio->bi_private);
3570 * Submit a flush request to the device if it supports it. Error handling is
3571 * done in the waiting counterpart.
3573 static void write_dev_flush(struct btrfs_device *device)
3575 struct request_queue *q = bdev_get_queue(device->bdev);
3576 struct bio *bio = device->flush_bio;
3578 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3582 bio->bi_end_io = btrfs_end_empty_barrier;
3583 bio_set_dev(bio, device->bdev);
3584 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3585 init_completion(&device->flush_wait);
3586 bio->bi_private = &device->flush_wait;
3588 btrfsic_submit_bio(bio);
3589 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3593 * If the flush bio has been submitted by write_dev_flush, wait for it.
3595 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3597 struct bio *bio = device->flush_bio;
3599 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3602 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3603 wait_for_completion_io(&device->flush_wait);
3605 return bio->bi_status;
3608 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3610 if (!btrfs_check_rw_degradable(fs_info, NULL))
3616 * send an empty flush down to each device in parallel,
3617 * then wait for them
3619 static int barrier_all_devices(struct btrfs_fs_info *info)
3621 struct list_head *head;
3622 struct btrfs_device *dev;
3623 int errors_wait = 0;
3626 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3627 /* send down all the barriers */
3628 head = &info->fs_devices->devices;
3629 list_for_each_entry(dev, head, dev_list) {
3630 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3634 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3635 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3638 write_dev_flush(dev);
3639 dev->last_flush_error = BLK_STS_OK;
3642 /* wait for all the barriers */
3643 list_for_each_entry(dev, head, dev_list) {
3644 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3650 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3651 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3654 ret = wait_dev_flush(dev);
3656 dev->last_flush_error = ret;
3657 btrfs_dev_stat_inc_and_print(dev,
3658 BTRFS_DEV_STAT_FLUSH_ERRS);
3665 * At some point we need the status of all disks
3666 * to arrive at the volume status. So error checking
3667 * is being pushed to a separate loop.
3669 return check_barrier_error(info);
3674 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3677 int min_tolerated = INT_MAX;
3679 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3680 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3681 min_tolerated = min(min_tolerated,
3682 btrfs_raid_array[BTRFS_RAID_SINGLE].
3683 tolerated_failures);
3685 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3686 if (raid_type == BTRFS_RAID_SINGLE)
3688 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3690 min_tolerated = min(min_tolerated,
3691 btrfs_raid_array[raid_type].
3692 tolerated_failures);
3695 if (min_tolerated == INT_MAX) {
3696 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3700 return min_tolerated;
3703 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3705 struct list_head *head;
3706 struct btrfs_device *dev;
3707 struct btrfs_super_block *sb;
3708 struct btrfs_dev_item *dev_item;
3712 int total_errors = 0;
3715 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3718 * max_mirrors == 0 indicates we're from commit_transaction,
3719 * not from fsync where the tree roots in fs_info have not
3720 * been consistent on disk.
3722 if (max_mirrors == 0)
3723 backup_super_roots(fs_info);
3725 sb = fs_info->super_for_commit;
3726 dev_item = &sb->dev_item;
3728 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3729 head = &fs_info->fs_devices->devices;
3730 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3733 ret = barrier_all_devices(fs_info);
3736 &fs_info->fs_devices->device_list_mutex);
3737 btrfs_handle_fs_error(fs_info, ret,
3738 "errors while submitting device barriers.");
3743 list_for_each_entry(dev, head, dev_list) {
3748 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3749 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3752 btrfs_set_stack_device_generation(dev_item, 0);
3753 btrfs_set_stack_device_type(dev_item, dev->type);
3754 btrfs_set_stack_device_id(dev_item, dev->devid);
3755 btrfs_set_stack_device_total_bytes(dev_item,
3756 dev->commit_total_bytes);
3757 btrfs_set_stack_device_bytes_used(dev_item,
3758 dev->commit_bytes_used);
3759 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3760 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3761 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3762 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3763 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3765 flags = btrfs_super_flags(sb);
3766 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3768 ret = btrfs_validate_write_super(fs_info, sb);
3770 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3771 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3772 "unexpected superblock corruption detected");
3776 ret = write_dev_supers(dev, sb, max_mirrors);
3780 if (total_errors > max_errors) {
3781 btrfs_err(fs_info, "%d errors while writing supers",
3783 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3785 /* FUA is masked off if unsupported and can't be the reason */
3786 btrfs_handle_fs_error(fs_info, -EIO,
3787 "%d errors while writing supers",
3793 list_for_each_entry(dev, head, dev_list) {
3796 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3797 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3800 ret = wait_dev_supers(dev, max_mirrors);
3804 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3805 if (total_errors > max_errors) {
3806 btrfs_handle_fs_error(fs_info, -EIO,
3807 "%d errors while writing supers",
3814 /* Drop a fs root from the radix tree and free it. */
3815 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3816 struct btrfs_root *root)
3818 spin_lock(&fs_info->fs_roots_radix_lock);
3819 radix_tree_delete(&fs_info->fs_roots_radix,
3820 (unsigned long)root->root_key.objectid);
3821 spin_unlock(&fs_info->fs_roots_radix_lock);
3823 if (btrfs_root_refs(&root->root_item) == 0)
3824 synchronize_srcu(&fs_info->subvol_srcu);
3826 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3827 btrfs_free_log(NULL, root);
3828 if (root->reloc_root) {
3829 free_extent_buffer(root->reloc_root->node);
3830 free_extent_buffer(root->reloc_root->commit_root);
3831 btrfs_put_fs_root(root->reloc_root);
3832 root->reloc_root = NULL;
3836 if (root->free_ino_pinned)
3837 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3838 if (root->free_ino_ctl)
3839 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3840 btrfs_free_fs_root(root);
3843 void btrfs_free_fs_root(struct btrfs_root *root)
3845 iput(root->ino_cache_inode);
3846 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3848 free_anon_bdev(root->anon_dev);
3849 if (root->subv_writers)
3850 btrfs_free_subvolume_writers(root->subv_writers);
3851 free_extent_buffer(root->node);
3852 free_extent_buffer(root->commit_root);
3853 kfree(root->free_ino_ctl);
3854 kfree(root->free_ino_pinned);
3855 btrfs_put_fs_root(root);
3858 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3860 u64 root_objectid = 0;
3861 struct btrfs_root *gang[8];
3864 unsigned int ret = 0;
3868 index = srcu_read_lock(&fs_info->subvol_srcu);
3869 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3870 (void **)gang, root_objectid,
3873 srcu_read_unlock(&fs_info->subvol_srcu, index);
3876 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3878 for (i = 0; i < ret; i++) {
3879 /* Avoid to grab roots in dead_roots */
3880 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3884 /* grab all the search result for later use */
3885 gang[i] = btrfs_grab_fs_root(gang[i]);
3887 srcu_read_unlock(&fs_info->subvol_srcu, index);
3889 for (i = 0; i < ret; i++) {
3892 root_objectid = gang[i]->root_key.objectid;
3893 err = btrfs_orphan_cleanup(gang[i]);
3896 btrfs_put_fs_root(gang[i]);
3901 /* release the uncleaned roots due to error */
3902 for (; i < ret; i++) {
3904 btrfs_put_fs_root(gang[i]);
3909 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3911 struct btrfs_root *root = fs_info->tree_root;
3912 struct btrfs_trans_handle *trans;
3914 mutex_lock(&fs_info->cleaner_mutex);
3915 btrfs_run_delayed_iputs(fs_info);
3916 mutex_unlock(&fs_info->cleaner_mutex);
3917 wake_up_process(fs_info->cleaner_kthread);
3919 /* wait until ongoing cleanup work done */
3920 down_write(&fs_info->cleanup_work_sem);
3921 up_write(&fs_info->cleanup_work_sem);
3923 trans = btrfs_join_transaction(root);
3925 return PTR_ERR(trans);
3926 return btrfs_commit_transaction(trans);
3929 void close_ctree(struct btrfs_fs_info *fs_info)
3933 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3935 /* wait for the qgroup rescan worker to stop */
3936 btrfs_qgroup_wait_for_completion(fs_info, false);
3938 /* wait for the uuid_scan task to finish */
3939 down(&fs_info->uuid_tree_rescan_sem);
3940 /* avoid complains from lockdep et al., set sem back to initial state */
3941 up(&fs_info->uuid_tree_rescan_sem);
3943 /* pause restriper - we want to resume on mount */
3944 btrfs_pause_balance(fs_info);
3946 btrfs_dev_replace_suspend_for_unmount(fs_info);
3948 btrfs_scrub_cancel(fs_info);
3950 /* wait for any defraggers to finish */
3951 wait_event(fs_info->transaction_wait,
3952 (atomic_read(&fs_info->defrag_running) == 0));
3954 /* clear out the rbtree of defraggable inodes */
3955 btrfs_cleanup_defrag_inodes(fs_info);
3957 cancel_work_sync(&fs_info->async_reclaim_work);
3959 if (!sb_rdonly(fs_info->sb)) {
3961 * If the cleaner thread is stopped and there are
3962 * block groups queued for removal, the deletion will be
3963 * skipped when we quit the cleaner thread.
3965 btrfs_delete_unused_bgs(fs_info);
3967 ret = btrfs_commit_super(fs_info);
3969 btrfs_err(fs_info, "commit super ret %d", ret);
3972 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3973 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3974 btrfs_error_commit_super(fs_info);
3976 kthread_stop(fs_info->transaction_kthread);
3977 kthread_stop(fs_info->cleaner_kthread);
3979 ASSERT(list_empty(&fs_info->delayed_iputs));
3980 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3982 btrfs_free_qgroup_config(fs_info);
3983 ASSERT(list_empty(&fs_info->delalloc_roots));
3985 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3986 btrfs_info(fs_info, "at unmount delalloc count %lld",
3987 percpu_counter_sum(&fs_info->delalloc_bytes));
3990 btrfs_sysfs_remove_mounted(fs_info);
3991 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3993 btrfs_free_fs_roots(fs_info);
3995 btrfs_put_block_group_cache(fs_info);
3998 * we must make sure there is not any read request to
3999 * submit after we stopping all workers.
4001 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4002 btrfs_stop_all_workers(fs_info);
4004 btrfs_free_block_groups(fs_info);
4006 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4007 free_root_pointers(fs_info, 1);
4009 iput(fs_info->btree_inode);
4011 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4012 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4013 btrfsic_unmount(fs_info->fs_devices);
4016 btrfs_close_devices(fs_info->fs_devices);
4017 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4019 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4020 percpu_counter_destroy(&fs_info->delalloc_bytes);
4021 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4022 cleanup_srcu_struct(&fs_info->subvol_srcu);
4024 btrfs_free_stripe_hash_table(fs_info);
4025 btrfs_free_ref_cache(fs_info);
4027 while (!list_empty(&fs_info->pinned_chunks)) {
4028 struct extent_map *em;
4030 em = list_first_entry(&fs_info->pinned_chunks,
4031 struct extent_map, list);
4032 list_del_init(&em->list);
4033 free_extent_map(em);
4037 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4041 struct inode *btree_inode = buf->pages[0]->mapping->host;
4043 ret = extent_buffer_uptodate(buf);
4047 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4048 parent_transid, atomic);
4054 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4056 struct btrfs_fs_info *fs_info;
4057 struct btrfs_root *root;
4058 u64 transid = btrfs_header_generation(buf);
4061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4063 * This is a fast path so only do this check if we have sanity tests
4064 * enabled. Normal people shouldn't be using umapped buffers as dirty
4065 * outside of the sanity tests.
4067 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4070 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4071 fs_info = root->fs_info;
4072 btrfs_assert_tree_locked(buf);
4073 if (transid != fs_info->generation)
4074 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4075 buf->start, transid, fs_info->generation);
4076 was_dirty = set_extent_buffer_dirty(buf);
4078 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4080 fs_info->dirty_metadata_batch);
4081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4083 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4084 * but item data not updated.
4085 * So here we should only check item pointers, not item data.
4087 if (btrfs_header_level(buf) == 0 &&
4088 btrfs_check_leaf_relaxed(fs_info, buf)) {
4089 btrfs_print_leaf(buf);
4095 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4099 * looks as though older kernels can get into trouble with
4100 * this code, they end up stuck in balance_dirty_pages forever
4104 if (current->flags & PF_MEMALLOC)
4108 btrfs_balance_delayed_items(fs_info);
4110 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4111 BTRFS_DIRTY_METADATA_THRESH,
4112 fs_info->dirty_metadata_batch);
4114 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4118 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4120 __btrfs_btree_balance_dirty(fs_info, 1);
4123 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4125 __btrfs_btree_balance_dirty(fs_info, 0);
4128 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4129 struct btrfs_key *first_key)
4131 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4132 struct btrfs_fs_info *fs_info = root->fs_info;
4134 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4138 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4140 /* cleanup FS via transaction */
4141 btrfs_cleanup_transaction(fs_info);
4143 mutex_lock(&fs_info->cleaner_mutex);
4144 btrfs_run_delayed_iputs(fs_info);
4145 mutex_unlock(&fs_info->cleaner_mutex);
4147 down_write(&fs_info->cleanup_work_sem);
4148 up_write(&fs_info->cleanup_work_sem);
4151 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4153 struct btrfs_ordered_extent *ordered;
4155 spin_lock(&root->ordered_extent_lock);
4157 * This will just short circuit the ordered completion stuff which will
4158 * make sure the ordered extent gets properly cleaned up.
4160 list_for_each_entry(ordered, &root->ordered_extents,
4162 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4163 spin_unlock(&root->ordered_extent_lock);
4166 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4168 struct btrfs_root *root;
4169 struct list_head splice;
4171 INIT_LIST_HEAD(&splice);
4173 spin_lock(&fs_info->ordered_root_lock);
4174 list_splice_init(&fs_info->ordered_roots, &splice);
4175 while (!list_empty(&splice)) {
4176 root = list_first_entry(&splice, struct btrfs_root,
4178 list_move_tail(&root->ordered_root,
4179 &fs_info->ordered_roots);
4181 spin_unlock(&fs_info->ordered_root_lock);
4182 btrfs_destroy_ordered_extents(root);
4185 spin_lock(&fs_info->ordered_root_lock);
4187 spin_unlock(&fs_info->ordered_root_lock);
4190 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4191 struct btrfs_fs_info *fs_info)
4193 struct rb_node *node;
4194 struct btrfs_delayed_ref_root *delayed_refs;
4195 struct btrfs_delayed_ref_node *ref;
4198 delayed_refs = &trans->delayed_refs;
4200 spin_lock(&delayed_refs->lock);
4201 if (atomic_read(&delayed_refs->num_entries) == 0) {
4202 spin_unlock(&delayed_refs->lock);
4203 btrfs_info(fs_info, "delayed_refs has NO entry");
4207 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4208 struct btrfs_delayed_ref_head *head;
4210 bool pin_bytes = false;
4212 head = rb_entry(node, struct btrfs_delayed_ref_head,
4214 if (!mutex_trylock(&head->mutex)) {
4215 refcount_inc(&head->refs);
4216 spin_unlock(&delayed_refs->lock);
4218 mutex_lock(&head->mutex);
4219 mutex_unlock(&head->mutex);
4220 btrfs_put_delayed_ref_head(head);
4221 spin_lock(&delayed_refs->lock);
4224 spin_lock(&head->lock);
4225 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4226 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4229 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4230 RB_CLEAR_NODE(&ref->ref_node);
4231 if (!list_empty(&ref->add_list))
4232 list_del(&ref->add_list);
4233 atomic_dec(&delayed_refs->num_entries);
4234 btrfs_put_delayed_ref(ref);
4236 if (head->must_insert_reserved)
4238 btrfs_free_delayed_extent_op(head->extent_op);
4239 delayed_refs->num_heads--;
4240 if (head->processing == 0)
4241 delayed_refs->num_heads_ready--;
4242 atomic_dec(&delayed_refs->num_entries);
4243 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
4244 RB_CLEAR_NODE(&head->href_node);
4245 spin_unlock(&head->lock);
4246 spin_unlock(&delayed_refs->lock);
4247 mutex_unlock(&head->mutex);
4250 btrfs_pin_extent(fs_info, head->bytenr,
4251 head->num_bytes, 1);
4252 btrfs_put_delayed_ref_head(head);
4254 spin_lock(&delayed_refs->lock);
4257 spin_unlock(&delayed_refs->lock);
4262 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4264 struct btrfs_inode *btrfs_inode;
4265 struct list_head splice;
4267 INIT_LIST_HEAD(&splice);
4269 spin_lock(&root->delalloc_lock);
4270 list_splice_init(&root->delalloc_inodes, &splice);
4272 while (!list_empty(&splice)) {
4273 struct inode *inode = NULL;
4274 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4276 __btrfs_del_delalloc_inode(root, btrfs_inode);
4277 spin_unlock(&root->delalloc_lock);
4280 * Make sure we get a live inode and that it'll not disappear
4283 inode = igrab(&btrfs_inode->vfs_inode);
4285 invalidate_inode_pages2(inode->i_mapping);
4288 spin_lock(&root->delalloc_lock);
4290 spin_unlock(&root->delalloc_lock);
4293 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4295 struct btrfs_root *root;
4296 struct list_head splice;
4298 INIT_LIST_HEAD(&splice);
4300 spin_lock(&fs_info->delalloc_root_lock);
4301 list_splice_init(&fs_info->delalloc_roots, &splice);
4302 while (!list_empty(&splice)) {
4303 root = list_first_entry(&splice, struct btrfs_root,
4305 root = btrfs_grab_fs_root(root);
4307 spin_unlock(&fs_info->delalloc_root_lock);
4309 btrfs_destroy_delalloc_inodes(root);
4310 btrfs_put_fs_root(root);
4312 spin_lock(&fs_info->delalloc_root_lock);
4314 spin_unlock(&fs_info->delalloc_root_lock);
4317 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4318 struct extent_io_tree *dirty_pages,
4322 struct extent_buffer *eb;
4327 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4332 clear_extent_bits(dirty_pages, start, end, mark);
4333 while (start <= end) {
4334 eb = find_extent_buffer(fs_info, start);
4335 start += fs_info->nodesize;
4338 wait_on_extent_buffer_writeback(eb);
4340 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4342 clear_extent_buffer_dirty(eb);
4343 free_extent_buffer_stale(eb);
4350 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4351 struct extent_io_tree *pinned_extents)
4353 struct extent_io_tree *unpin;
4359 unpin = pinned_extents;
4362 ret = find_first_extent_bit(unpin, 0, &start, &end,
4363 EXTENT_DIRTY, NULL);
4367 clear_extent_dirty(unpin, start, end);
4368 btrfs_error_unpin_extent_range(fs_info, start, end);
4373 if (unpin == &fs_info->freed_extents[0])
4374 unpin = &fs_info->freed_extents[1];
4376 unpin = &fs_info->freed_extents[0];
4384 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4386 struct inode *inode;
4388 inode = cache->io_ctl.inode;
4390 invalidate_inode_pages2(inode->i_mapping);
4391 BTRFS_I(inode)->generation = 0;
4392 cache->io_ctl.inode = NULL;
4395 btrfs_put_block_group(cache);
4398 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4399 struct btrfs_fs_info *fs_info)
4401 struct btrfs_block_group_cache *cache;
4403 spin_lock(&cur_trans->dirty_bgs_lock);
4404 while (!list_empty(&cur_trans->dirty_bgs)) {
4405 cache = list_first_entry(&cur_trans->dirty_bgs,
4406 struct btrfs_block_group_cache,
4409 if (!list_empty(&cache->io_list)) {
4410 spin_unlock(&cur_trans->dirty_bgs_lock);
4411 list_del_init(&cache->io_list);
4412 btrfs_cleanup_bg_io(cache);
4413 spin_lock(&cur_trans->dirty_bgs_lock);
4416 list_del_init(&cache->dirty_list);
4417 spin_lock(&cache->lock);
4418 cache->disk_cache_state = BTRFS_DC_ERROR;
4419 spin_unlock(&cache->lock);
4421 spin_unlock(&cur_trans->dirty_bgs_lock);
4422 btrfs_put_block_group(cache);
4423 spin_lock(&cur_trans->dirty_bgs_lock);
4425 spin_unlock(&cur_trans->dirty_bgs_lock);
4428 * Refer to the definition of io_bgs member for details why it's safe
4429 * to use it without any locking
4431 while (!list_empty(&cur_trans->io_bgs)) {
4432 cache = list_first_entry(&cur_trans->io_bgs,
4433 struct btrfs_block_group_cache,
4436 list_del_init(&cache->io_list);
4437 spin_lock(&cache->lock);
4438 cache->disk_cache_state = BTRFS_DC_ERROR;
4439 spin_unlock(&cache->lock);
4440 btrfs_cleanup_bg_io(cache);
4444 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4445 struct btrfs_fs_info *fs_info)
4447 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4448 ASSERT(list_empty(&cur_trans->dirty_bgs));
4449 ASSERT(list_empty(&cur_trans->io_bgs));
4451 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4453 cur_trans->state = TRANS_STATE_COMMIT_START;
4454 wake_up(&fs_info->transaction_blocked_wait);
4456 cur_trans->state = TRANS_STATE_UNBLOCKED;
4457 wake_up(&fs_info->transaction_wait);
4459 btrfs_destroy_delayed_inodes(fs_info);
4460 btrfs_assert_delayed_root_empty(fs_info);
4462 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4464 btrfs_destroy_pinned_extent(fs_info,
4465 fs_info->pinned_extents);
4467 cur_trans->state =TRANS_STATE_COMPLETED;
4468 wake_up(&cur_trans->commit_wait);
4471 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4473 struct btrfs_transaction *t;
4475 mutex_lock(&fs_info->transaction_kthread_mutex);
4477 spin_lock(&fs_info->trans_lock);
4478 while (!list_empty(&fs_info->trans_list)) {
4479 t = list_first_entry(&fs_info->trans_list,
4480 struct btrfs_transaction, list);
4481 if (t->state >= TRANS_STATE_COMMIT_START) {
4482 refcount_inc(&t->use_count);
4483 spin_unlock(&fs_info->trans_lock);
4484 btrfs_wait_for_commit(fs_info, t->transid);
4485 btrfs_put_transaction(t);
4486 spin_lock(&fs_info->trans_lock);
4489 if (t == fs_info->running_transaction) {
4490 t->state = TRANS_STATE_COMMIT_DOING;
4491 spin_unlock(&fs_info->trans_lock);
4493 * We wait for 0 num_writers since we don't hold a trans
4494 * handle open currently for this transaction.
4496 wait_event(t->writer_wait,
4497 atomic_read(&t->num_writers) == 0);
4499 spin_unlock(&fs_info->trans_lock);
4501 btrfs_cleanup_one_transaction(t, fs_info);
4503 spin_lock(&fs_info->trans_lock);
4504 if (t == fs_info->running_transaction)
4505 fs_info->running_transaction = NULL;
4506 list_del_init(&t->list);
4507 spin_unlock(&fs_info->trans_lock);
4509 btrfs_put_transaction(t);
4510 trace_btrfs_transaction_commit(fs_info->tree_root);
4511 spin_lock(&fs_info->trans_lock);
4513 spin_unlock(&fs_info->trans_lock);
4514 btrfs_destroy_all_ordered_extents(fs_info);
4515 btrfs_destroy_delayed_inodes(fs_info);
4516 btrfs_assert_delayed_root_empty(fs_info);
4517 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4518 btrfs_destroy_all_delalloc_inodes(fs_info);
4519 mutex_unlock(&fs_info->transaction_kthread_mutex);
4524 static const struct extent_io_ops btree_extent_io_ops = {
4525 /* mandatory callbacks */
4526 .submit_bio_hook = btree_submit_bio_hook,
4527 .readpage_end_io_hook = btree_readpage_end_io_hook,
4528 .readpage_io_failed_hook = btree_io_failed_hook,
4530 /* optional callbacks */