1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 enum rw_hint hint, struct writeback_control *wbc);
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
62 inline void touch_buffer(struct buffer_head *bh)
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
67 EXPORT_SYMBOL(touch_buffer);
69 void __lock_buffer(struct buffer_head *bh)
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 EXPORT_SYMBOL(__lock_buffer);
75 void unlock_buffer(struct buffer_head *bh)
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
81 EXPORT_SYMBOL(unlock_buffer);
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
88 void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
91 struct buffer_head *head, *bh;
95 BUG_ON(!folio_test_locked(folio));
97 head = folio_buffers(folio);
101 if (folio_test_writeback(folio))
106 if (buffer_locked(bh))
109 if (buffer_dirty(bh))
112 bh = bh->b_this_page;
113 } while (bh != head);
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
121 void __wait_on_buffer(struct buffer_head * bh)
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 EXPORT_SYMBOL(__wait_on_buffer);
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 * End-of-IO handler helper function which does not touch the bh after
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
146 set_buffer_uptodate(bh);
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
160 __end_buffer_read_notouch(bh, uptodate);
163 EXPORT_SYMBOL(end_buffer_read_sync);
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
168 set_buffer_uptodate(bh);
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
177 EXPORT_SYMBOL(end_buffer_write_sync);
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
185 * Hack idea: for the blockdev mapping, i_private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take i_private_lock.
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
192 struct address_space *bd_mapping = bdev->bd_mapping;
193 const int blkbits = bd_mapping->host->i_blkbits;
194 struct buffer_head *ret = NULL;
196 struct buffer_head *bh;
197 struct buffer_head *head;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
202 index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
207 spin_lock(&bd_mapping->i_private_lock);
208 head = folio_buffers(folio);
213 if (!buffer_mapped(bh))
215 else if (bh->b_blocknr == block) {
220 bh = bh->b_this_page;
221 } while (bh != head);
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
239 spin_unlock(&bd_mapping->i_private_lock);
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
248 struct buffer_head *first;
249 struct buffer_head *tmp;
251 int folio_uptodate = 1;
253 BUG_ON(!buffer_async_read(bh));
257 set_buffer_uptodate(bh);
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
268 first = folio_buffers(folio);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
274 if (!buffer_uptodate(tmp))
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
280 tmp = tmp->b_this_page;
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 folio_end_read(folio, folio_uptodate);
288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
292 struct postprocess_bh_ctx {
293 struct work_struct work;
294 struct buffer_head *bh;
297 static void verify_bh(struct work_struct *work)
299 struct postprocess_bh_ctx *ctx =
300 container_of(work, struct postprocess_bh_ctx, work);
301 struct buffer_head *bh = ctx->bh;
304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305 end_buffer_async_read(bh, valid);
309 static bool need_fsverity(struct buffer_head *bh)
311 struct folio *folio = bh->b_folio;
312 struct inode *inode = folio->mapping->host;
314 return fsverity_active(inode) &&
316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
319 static void decrypt_bh(struct work_struct *work)
321 struct postprocess_bh_ctx *ctx =
322 container_of(work, struct postprocess_bh_ctx, work);
323 struct buffer_head *bh = ctx->bh;
326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328 if (err == 0 && need_fsverity(bh)) {
330 * We use different work queues for decryption and for verity
331 * because verity may require reading metadata pages that need
332 * decryption, and we shouldn't recurse to the same workqueue.
334 INIT_WORK(&ctx->work, verify_bh);
335 fsverity_enqueue_verify_work(&ctx->work);
338 end_buffer_async_read(bh, err == 0);
343 * I/O completion handler for block_read_full_folio() - pages
344 * which come unlocked at the end of I/O.
346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 struct inode *inode = bh->b_folio->mapping->host;
349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 bool verify = need_fsverity(bh);
352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 if (uptodate && (decrypt || verify)) {
354 struct postprocess_bh_ctx *ctx =
355 kmalloc(sizeof(*ctx), GFP_ATOMIC);
360 INIT_WORK(&ctx->work, decrypt_bh);
361 fscrypt_enqueue_decrypt_work(&ctx->work);
363 INIT_WORK(&ctx->work, verify_bh);
364 fsverity_enqueue_verify_work(&ctx->work);
370 end_buffer_async_read(bh, uptodate);
374 * Completion handler for block_write_full_folio() - folios which are unlocked
375 * during I/O, and which have the writeback flag cleared upon I/O completion.
377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
380 struct buffer_head *first;
381 struct buffer_head *tmp;
384 BUG_ON(!buffer_async_write(bh));
388 set_buffer_uptodate(bh);
390 buffer_io_error(bh, ", lost async page write");
391 mark_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
395 first = folio_buffers(folio);
396 spin_lock_irqsave(&first->b_uptodate_lock, flags);
398 clear_buffer_async_write(bh);
400 tmp = bh->b_this_page;
402 if (buffer_async_write(tmp)) {
403 BUG_ON(!buffer_locked(tmp));
406 tmp = tmp->b_this_page;
408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409 folio_end_writeback(folio);
413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
418 * If a page's buffers are under async readin (end_buffer_async_read
419 * completion) then there is a possibility that another thread of
420 * control could lock one of the buffers after it has completed
421 * but while some of the other buffers have not completed. This
422 * locked buffer would confuse end_buffer_async_read() into not unlocking
423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
424 * that this buffer is not under async I/O.
426 * The page comes unlocked when it has no locked buffer_async buffers
429 * PageLocked prevents anyone starting new async I/O reads any of
432 * PageWriteback is used to prevent simultaneous writeout of the same
435 * PageLocked prevents anyone from starting writeback of a page which is
436 * under read I/O (PageWriteback is only ever set against a locked page).
438 static void mark_buffer_async_read(struct buffer_head *bh)
440 bh->b_end_io = end_buffer_async_read_io;
441 set_buffer_async_read(bh);
444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 bh_end_io_t *handler)
447 bh->b_end_io = handler;
448 set_buffer_async_write(bh);
451 void mark_buffer_async_write(struct buffer_head *bh)
453 mark_buffer_async_write_endio(bh, end_buffer_async_write);
455 EXPORT_SYMBOL(mark_buffer_async_write);
459 * fs/buffer.c contains helper functions for buffer-backed address space's
460 * fsync functions. A common requirement for buffer-based filesystems is
461 * that certain data from the backing blockdev needs to be written out for
462 * a successful fsync(). For example, ext2 indirect blocks need to be
463 * written back and waited upon before fsync() returns.
465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467 * management of a list of dependent buffers at ->i_mapping->i_private_list.
469 * Locking is a little subtle: try_to_free_buffers() will remove buffers
470 * from their controlling inode's queue when they are being freed. But
471 * try_to_free_buffers() will be operating against the *blockdev* mapping
472 * at the time, not against the S_ISREG file which depends on those buffers.
473 * So the locking for i_private_list is via the i_private_lock in the address_space
474 * which backs the buffers. Which is different from the address_space
475 * against which the buffers are listed. So for a particular address_space,
476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
477 * mapping->i_private_list will always be protected by the backing blockdev's
480 * Which introduces a requirement: all buffers on an address_space's
481 * ->i_private_list must be from the same address_space: the blockdev's.
483 * address_spaces which do not place buffers at ->i_private_list via these
484 * utility functions are free to use i_private_lock and i_private_list for
485 * whatever they want. The only requirement is that list_empty(i_private_list)
486 * be true at clear_inode() time.
488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
489 * filesystems should do that. invalidate_inode_buffers() should just go
490 * BUG_ON(!list_empty).
492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
493 * take an address_space, not an inode. And it should be called
494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498 * list if it is already on a list. Because if the buffer is on a list,
499 * it *must* already be on the right one. If not, the filesystem is being
500 * silly. This will save a ton of locking. But first we have to ensure
501 * that buffers are taken *off* the old inode's list when they are freed
502 * (presumably in truncate). That requires careful auditing of all
503 * filesystems (do it inside bforget()). It could also be done by bringing
508 * The buffer's backing address_space's i_private_lock must be held
510 static void __remove_assoc_queue(struct buffer_head *bh)
512 list_del_init(&bh->b_assoc_buffers);
513 WARN_ON(!bh->b_assoc_map);
514 bh->b_assoc_map = NULL;
517 int inode_has_buffers(struct inode *inode)
519 return !list_empty(&inode->i_data.i_private_list);
523 * osync is designed to support O_SYNC io. It waits synchronously for
524 * all already-submitted IO to complete, but does not queue any new
525 * writes to the disk.
527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528 * as you dirty the buffers, and then use osync_inode_buffers to wait for
529 * completion. Any other dirty buffers which are not yet queued for
530 * write will not be flushed to disk by the osync.
532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
534 struct buffer_head *bh;
540 list_for_each_prev(p, list) {
542 if (buffer_locked(bh)) {
546 if (!buffer_uptodate(bh))
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
568 int sync_mapping_buffers(struct address_space *mapping)
570 struct address_space *buffer_mapping = mapping->i_private_data;
572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575 return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 &mapping->i_private_list);
578 EXPORT_SYMBOL(sync_mapping_buffers);
581 * generic_buffers_fsync_noflush - generic buffer fsync implementation
582 * for simple filesystems with no inode lock
584 * @file: file to synchronize
585 * @start: start offset in bytes
586 * @end: end offset in bytes (inclusive)
587 * @datasync: only synchronize essential metadata if true
589 * This is a generic implementation of the fsync method for simple
590 * filesystems which track all non-inode metadata in the buffers list
591 * hanging off the address_space structure.
593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 struct inode *inode = file->f_mapping->host;
600 err = file_write_and_wait_range(file, start, end);
604 ret = sync_mapping_buffers(inode->i_mapping);
605 if (!(inode->i_state & I_DIRTY_ALL))
607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 err = sync_inode_metadata(inode, 1);
615 /* check and advance again to catch errors after syncing out buffers */
616 err = file_check_and_advance_wb_err(file);
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624 * generic_buffers_fsync - generic buffer fsync implementation
625 * for simple filesystems with no inode lock
627 * @file: file to synchronize
628 * @start: start offset in bytes
629 * @end: end offset in bytes (inclusive)
630 * @datasync: only synchronize essential metadata if true
632 * This is a generic implementation of the fsync method for simple
633 * filesystems which track all non-inode metadata in the buffers list
634 * hanging off the address_space structure. This also makes sure that
635 * a device cache flush operation is called at the end.
637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 struct inode *inode = file->f_mapping->host;
643 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
645 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648 EXPORT_SYMBOL(generic_buffers_fsync);
651 * Called when we've recently written block `bblock', and it is known that
652 * `bblock' was for a buffer_boundary() buffer. This means that the block at
653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
654 * dirty, schedule it for IO. So that indirects merge nicely with their data.
656 void write_boundary_block(struct block_device *bdev,
657 sector_t bblock, unsigned blocksize)
659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
661 if (buffer_dirty(bh))
662 write_dirty_buffer(bh, 0);
667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
669 struct address_space *mapping = inode->i_mapping;
670 struct address_space *buffer_mapping = bh->b_folio->mapping;
672 mark_buffer_dirty(bh);
673 if (!mapping->i_private_data) {
674 mapping->i_private_data = buffer_mapping;
676 BUG_ON(mapping->i_private_data != buffer_mapping);
678 if (!bh->b_assoc_map) {
679 spin_lock(&buffer_mapping->i_private_lock);
680 list_move_tail(&bh->b_assoc_buffers,
681 &mapping->i_private_list);
682 bh->b_assoc_map = mapping;
683 spin_unlock(&buffer_mapping->i_private_lock);
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
689 * block_dirty_folio - Mark a folio as dirty.
690 * @mapping: The address space containing this folio.
691 * @folio: The folio to mark dirty.
693 * Filesystems which use buffer_heads can use this function as their
694 * ->dirty_folio implementation. Some filesystems need to do a little
695 * work before calling this function. Filesystems which do not use
696 * buffer_heads should call filemap_dirty_folio() instead.
698 * If the folio has buffers, the uptodate buffers are set dirty, to
699 * preserve dirty-state coherency between the folio and the buffers.
700 * Buffers added to a dirty folio are created dirty.
702 * The buffers are dirtied before the folio is dirtied. There's a small
703 * race window in which writeback may see the folio cleanness but not the
704 * buffer dirtiness. That's fine. If this code were to set the folio
705 * dirty before the buffers, writeback could clear the folio dirty flag,
706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707 * folio on the dirty folio list.
709 * We use i_private_lock to lock against try_to_free_buffers() while
710 * using the folio's buffer list. This also prevents clean buffers
711 * being added to the folio after it was set dirty.
713 * Context: May only be called from process context. Does not sleep.
714 * Caller must ensure that @folio cannot be truncated during this call,
715 * typically by holding the folio lock or having a page in the folio
716 * mapped and holding the page table lock.
718 * Return: True if the folio was dirtied; false if it was already dirtied.
720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
722 struct buffer_head *head;
725 spin_lock(&mapping->i_private_lock);
726 head = folio_buffers(folio);
728 struct buffer_head *bh = head;
731 set_buffer_dirty(bh);
732 bh = bh->b_this_page;
733 } while (bh != head);
736 * Lock out page's memcg migration to keep PageDirty
737 * synchronized with per-memcg dirty page counters.
739 folio_memcg_lock(folio);
740 newly_dirty = !folio_test_set_dirty(folio);
741 spin_unlock(&mapping->i_private_lock);
744 __folio_mark_dirty(folio, mapping, 1);
746 folio_memcg_unlock(folio);
749 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
753 EXPORT_SYMBOL(block_dirty_folio);
756 * Write out and wait upon a list of buffers.
758 * We have conflicting pressures: we want to make sure that all
759 * initially dirty buffers get waited on, but that any subsequently
760 * dirtied buffers don't. After all, we don't want fsync to last
761 * forever if somebody is actively writing to the file.
763 * Do this in two main stages: first we copy dirty buffers to a
764 * temporary inode list, queueing the writes as we go. Then we clean
765 * up, waiting for those writes to complete.
767 * During this second stage, any subsequent updates to the file may end
768 * up refiling the buffer on the original inode's dirty list again, so
769 * there is a chance we will end up with a buffer queued for write but
770 * not yet completed on that list. So, as a final cleanup we go through
771 * the osync code to catch these locked, dirty buffers without requeuing
772 * any newly dirty buffers for write.
774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
776 struct buffer_head *bh;
777 struct list_head tmp;
778 struct address_space *mapping;
780 struct blk_plug plug;
782 INIT_LIST_HEAD(&tmp);
783 blk_start_plug(&plug);
786 while (!list_empty(list)) {
787 bh = BH_ENTRY(list->next);
788 mapping = bh->b_assoc_map;
789 __remove_assoc_queue(bh);
790 /* Avoid race with mark_buffer_dirty_inode() which does
791 * a lockless check and we rely on seeing the dirty bit */
793 if (buffer_dirty(bh) || buffer_locked(bh)) {
794 list_add(&bh->b_assoc_buffers, &tmp);
795 bh->b_assoc_map = mapping;
796 if (buffer_dirty(bh)) {
800 * Ensure any pending I/O completes so that
801 * write_dirty_buffer() actually writes the
802 * current contents - it is a noop if I/O is
803 * still in flight on potentially older
806 write_dirty_buffer(bh, REQ_SYNC);
809 * Kick off IO for the previous mapping. Note
810 * that we will not run the very last mapping,
811 * wait_on_buffer() will do that for us
812 * through sync_buffer().
821 blk_finish_plug(&plug);
824 while (!list_empty(&tmp)) {
825 bh = BH_ENTRY(tmp.prev);
827 mapping = bh->b_assoc_map;
828 __remove_assoc_queue(bh);
829 /* Avoid race with mark_buffer_dirty_inode() which does
830 * a lockless check and we rely on seeing the dirty bit */
832 if (buffer_dirty(bh)) {
833 list_add(&bh->b_assoc_buffers,
834 &mapping->i_private_list);
835 bh->b_assoc_map = mapping;
839 if (!buffer_uptodate(bh))
846 err2 = osync_buffers_list(lock, list);
854 * Invalidate any and all dirty buffers on a given inode. We are
855 * probably unmounting the fs, but that doesn't mean we have already
856 * done a sync(). Just drop the buffers from the inode list.
858 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
859 * assumes that all the buffers are against the blockdev. Not true
862 void invalidate_inode_buffers(struct inode *inode)
864 if (inode_has_buffers(inode)) {
865 struct address_space *mapping = &inode->i_data;
866 struct list_head *list = &mapping->i_private_list;
867 struct address_space *buffer_mapping = mapping->i_private_data;
869 spin_lock(&buffer_mapping->i_private_lock);
870 while (!list_empty(list))
871 __remove_assoc_queue(BH_ENTRY(list->next));
872 spin_unlock(&buffer_mapping->i_private_lock);
875 EXPORT_SYMBOL(invalidate_inode_buffers);
878 * Remove any clean buffers from the inode's buffer list. This is called
879 * when we're trying to free the inode itself. Those buffers can pin it.
881 * Returns true if all buffers were removed.
883 int remove_inode_buffers(struct inode *inode)
887 if (inode_has_buffers(inode)) {
888 struct address_space *mapping = &inode->i_data;
889 struct list_head *list = &mapping->i_private_list;
890 struct address_space *buffer_mapping = mapping->i_private_data;
892 spin_lock(&buffer_mapping->i_private_lock);
893 while (!list_empty(list)) {
894 struct buffer_head *bh = BH_ENTRY(list->next);
895 if (buffer_dirty(bh)) {
899 __remove_assoc_queue(bh);
901 spin_unlock(&buffer_mapping->i_private_lock);
907 * Create the appropriate buffers when given a folio for data area and
908 * the size of each buffer.. Use the bh->b_this_page linked list to
909 * follow the buffers created. Return NULL if unable to create more
912 * The retry flag is used to differentiate async IO (paging, swapping)
913 * which may not fail from ordinary buffer allocations.
915 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918 struct buffer_head *bh, *head;
920 struct mem_cgroup *memcg, *old_memcg;
922 /* The folio lock pins the memcg */
923 memcg = folio_memcg(folio);
924 old_memcg = set_active_memcg(memcg);
927 offset = folio_size(folio);
928 while ((offset -= size) >= 0) {
929 bh = alloc_buffer_head(gfp);
933 bh->b_this_page = head;
939 /* Link the buffer to its folio */
940 folio_set_bh(bh, folio, offset);
943 set_active_memcg(old_memcg);
946 * In case anything failed, we just free everything we got.
952 head = head->b_this_page;
953 free_buffer_head(bh);
959 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
961 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
964 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
968 return folio_alloc_buffers(page_folio(page), size, gfp);
970 EXPORT_SYMBOL_GPL(alloc_page_buffers);
972 static inline void link_dev_buffers(struct folio *folio,
973 struct buffer_head *head)
975 struct buffer_head *bh, *tail;
980 bh = bh->b_this_page;
982 tail->b_this_page = head;
983 folio_attach_private(folio, head);
986 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
988 sector_t retval = ~((sector_t)0);
989 loff_t sz = bdev_nr_bytes(bdev);
992 unsigned int sizebits = blksize_bits(size);
993 retval = (sz >> sizebits);
999 * Initialise the state of a blockdev folio's buffers.
1001 static sector_t folio_init_buffers(struct folio *folio,
1002 struct block_device *bdev, unsigned size)
1004 struct buffer_head *head = folio_buffers(folio);
1005 struct buffer_head *bh = head;
1006 bool uptodate = folio_test_uptodate(folio);
1007 sector_t block = div_u64(folio_pos(folio), size);
1008 sector_t end_block = blkdev_max_block(bdev, size);
1011 if (!buffer_mapped(bh)) {
1012 bh->b_end_io = NULL;
1013 bh->b_private = NULL;
1015 bh->b_blocknr = block;
1017 set_buffer_uptodate(bh);
1018 if (block < end_block)
1019 set_buffer_mapped(bh);
1022 bh = bh->b_this_page;
1023 } while (bh != head);
1026 * Caller needs to validate requested block against end of device.
1032 * Create the page-cache folio that contains the requested block.
1034 * This is used purely for blockdev mappings.
1036 * Returns false if we have a failure which cannot be cured by retrying
1037 * without sleeping. Returns true if we succeeded, or the caller should retry.
1039 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1040 pgoff_t index, unsigned size, gfp_t gfp)
1042 struct address_space *mapping = bdev->bd_mapping;
1043 struct folio *folio;
1044 struct buffer_head *bh;
1045 sector_t end_block = 0;
1047 folio = __filemap_get_folio(mapping, index,
1048 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1052 bh = folio_buffers(folio);
1054 if (bh->b_size == size) {
1055 end_block = folio_init_buffers(folio, bdev, size);
1060 * Retrying may succeed; for example the folio may finish
1061 * writeback, or buffers may be cleaned. This should not
1062 * happen very often; maybe we have old buffers attached to
1063 * this blockdev's page cache and we're trying to change
1066 if (!try_to_free_buffers(folio)) {
1072 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1077 * Link the folio to the buffers and initialise them. Take the
1078 * lock to be atomic wrt __find_get_block(), which does not
1079 * run under the folio lock.
1081 spin_lock(&mapping->i_private_lock);
1082 link_dev_buffers(folio, bh);
1083 end_block = folio_init_buffers(folio, bdev, size);
1084 spin_unlock(&mapping->i_private_lock);
1086 folio_unlock(folio);
1088 return block < end_block;
1092 * Create buffers for the specified block device block's folio. If
1093 * that folio was dirty, the buffers are set dirty also. Returns false
1094 * if we've hit a permanent error.
1096 static bool grow_buffers(struct block_device *bdev, sector_t block,
1097 unsigned size, gfp_t gfp)
1102 * Check for a block which lies outside our maximum possible
1105 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1106 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1107 __func__, (unsigned long long)block,
1112 /* Create a folio with the proper size buffers */
1113 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1116 static struct buffer_head *
1117 __getblk_slow(struct block_device *bdev, sector_t block,
1118 unsigned size, gfp_t gfp)
1120 /* Size must be multiple of hard sectorsize */
1121 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1122 (size < 512 || size > PAGE_SIZE))) {
1123 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1125 printk(KERN_ERR "logical block size: %d\n",
1126 bdev_logical_block_size(bdev));
1133 struct buffer_head *bh;
1135 bh = __find_get_block(bdev, block, size);
1139 if (!grow_buffers(bdev, block, size, gfp))
1145 * The relationship between dirty buffers and dirty pages:
1147 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1148 * the page is tagged dirty in the page cache.
1150 * At all times, the dirtiness of the buffers represents the dirtiness of
1151 * subsections of the page. If the page has buffers, the page dirty bit is
1152 * merely a hint about the true dirty state.
1154 * When a page is set dirty in its entirety, all its buffers are marked dirty
1155 * (if the page has buffers).
1157 * When a buffer is marked dirty, its page is dirtied, but the page's other
1160 * Also. When blockdev buffers are explicitly read with bread(), they
1161 * individually become uptodate. But their backing page remains not
1162 * uptodate - even if all of its buffers are uptodate. A subsequent
1163 * block_read_full_folio() against that folio will discover all the uptodate
1164 * buffers, will set the folio uptodate and will perform no I/O.
1168 * mark_buffer_dirty - mark a buffer_head as needing writeout
1169 * @bh: the buffer_head to mark dirty
1171 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1172 * its backing page dirty, then tag the page as dirty in the page cache
1173 * and then attach the address_space's inode to its superblock's dirty
1176 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1177 * i_pages lock and mapping->host->i_lock.
1179 void mark_buffer_dirty(struct buffer_head *bh)
1181 WARN_ON_ONCE(!buffer_uptodate(bh));
1183 trace_block_dirty_buffer(bh);
1186 * Very *carefully* optimize the it-is-already-dirty case.
1188 * Don't let the final "is it dirty" escape to before we
1189 * perhaps modified the buffer.
1191 if (buffer_dirty(bh)) {
1193 if (buffer_dirty(bh))
1197 if (!test_set_buffer_dirty(bh)) {
1198 struct folio *folio = bh->b_folio;
1199 struct address_space *mapping = NULL;
1201 folio_memcg_lock(folio);
1202 if (!folio_test_set_dirty(folio)) {
1203 mapping = folio->mapping;
1205 __folio_mark_dirty(folio, mapping, 0);
1207 folio_memcg_unlock(folio);
1209 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1212 EXPORT_SYMBOL(mark_buffer_dirty);
1214 void mark_buffer_write_io_error(struct buffer_head *bh)
1216 set_buffer_write_io_error(bh);
1217 /* FIXME: do we need to set this in both places? */
1218 if (bh->b_folio && bh->b_folio->mapping)
1219 mapping_set_error(bh->b_folio->mapping, -EIO);
1220 if (bh->b_assoc_map) {
1221 mapping_set_error(bh->b_assoc_map, -EIO);
1222 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1225 EXPORT_SYMBOL(mark_buffer_write_io_error);
1228 * __brelse - Release a buffer.
1229 * @bh: The buffer to release.
1231 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1233 void __brelse(struct buffer_head *bh)
1235 if (atomic_read(&bh->b_count)) {
1239 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1241 EXPORT_SYMBOL(__brelse);
1244 * __bforget - Discard any dirty data in a buffer.
1245 * @bh: The buffer to forget.
1247 * This variant of bforget() can be called if @bh is guaranteed to not
1250 void __bforget(struct buffer_head *bh)
1252 clear_buffer_dirty(bh);
1253 if (bh->b_assoc_map) {
1254 struct address_space *buffer_mapping = bh->b_folio->mapping;
1256 spin_lock(&buffer_mapping->i_private_lock);
1257 list_del_init(&bh->b_assoc_buffers);
1258 bh->b_assoc_map = NULL;
1259 spin_unlock(&buffer_mapping->i_private_lock);
1263 EXPORT_SYMBOL(__bforget);
1265 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1268 if (buffer_uptodate(bh)) {
1273 bh->b_end_io = end_buffer_read_sync;
1274 submit_bh(REQ_OP_READ, bh);
1276 if (buffer_uptodate(bh))
1284 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1285 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1286 * refcount elevated by one when they're in an LRU. A buffer can only appear
1287 * once in a particular CPU's LRU. A single buffer can be present in multiple
1288 * CPU's LRUs at the same time.
1290 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1291 * sb_find_get_block().
1293 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1294 * a local interrupt disable for that.
1297 #define BH_LRU_SIZE 16
1300 struct buffer_head *bhs[BH_LRU_SIZE];
1303 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1306 #define bh_lru_lock() local_irq_disable()
1307 #define bh_lru_unlock() local_irq_enable()
1309 #define bh_lru_lock() preempt_disable()
1310 #define bh_lru_unlock() preempt_enable()
1313 static inline void check_irqs_on(void)
1315 #ifdef irqs_disabled
1316 BUG_ON(irqs_disabled());
1321 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1322 * inserted at the front, and the buffer_head at the back if any is evicted.
1323 * Or, if already in the LRU it is moved to the front.
1325 static void bh_lru_install(struct buffer_head *bh)
1327 struct buffer_head *evictee = bh;
1335 * the refcount of buffer_head in bh_lru prevents dropping the
1336 * attached page(i.e., try_to_free_buffers) so it could cause
1337 * failing page migration.
1338 * Skip putting upcoming bh into bh_lru until migration is done.
1340 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1345 b = this_cpu_ptr(&bh_lrus);
1346 for (i = 0; i < BH_LRU_SIZE; i++) {
1347 swap(evictee, b->bhs[i]);
1348 if (evictee == bh) {
1360 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1362 static struct buffer_head *
1363 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1365 struct buffer_head *ret = NULL;
1370 if (cpu_is_isolated(smp_processor_id())) {
1374 for (i = 0; i < BH_LRU_SIZE; i++) {
1375 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1377 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1378 bh->b_size == size) {
1381 __this_cpu_write(bh_lrus.bhs[i],
1382 __this_cpu_read(bh_lrus.bhs[i - 1]));
1385 __this_cpu_write(bh_lrus.bhs[0], bh);
1397 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1398 * it in the LRU and mark it as accessed. If it is not present then return
1401 struct buffer_head *
1402 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1404 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1407 /* __find_get_block_slow will mark the page accessed */
1408 bh = __find_get_block_slow(bdev, block);
1416 EXPORT_SYMBOL(__find_get_block);
1419 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1420 * @bdev: The block device.
1421 * @block: The block number.
1422 * @size: The size of buffer_heads for this @bdev.
1423 * @gfp: The memory allocation flags to use.
1425 * The returned buffer head has its reference count incremented, but is
1426 * not locked. The caller should call brelse() when it has finished
1427 * with the buffer. The buffer may not be uptodate. If needed, the
1428 * caller can bring it uptodate either by reading it or overwriting it.
1430 * Return: The buffer head, or NULL if memory could not be allocated.
1432 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1433 unsigned size, gfp_t gfp)
1435 struct buffer_head *bh = __find_get_block(bdev, block, size);
1441 return __getblk_slow(bdev, block, size, gfp);
1443 EXPORT_SYMBOL(bdev_getblk);
1446 * Do async read-ahead on a buffer..
1448 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1450 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1451 GFP_NOWAIT | __GFP_MOVABLE);
1454 bh_readahead(bh, REQ_RAHEAD);
1458 EXPORT_SYMBOL(__breadahead);
1461 * __bread_gfp() - Read a block.
1462 * @bdev: The block device to read from.
1463 * @block: Block number in units of block size.
1464 * @size: The block size of this device in bytes.
1465 * @gfp: Not page allocation flags; see below.
1467 * You are not expected to call this function. You should use one of
1468 * sb_bread(), sb_bread_unmovable() or __bread().
1470 * Read a specified block, and return the buffer head that refers to it.
1471 * If @gfp is 0, the memory will be allocated using the block device's
1472 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1473 * allocated from a movable area. Do not pass in a complete set of
1476 * The returned buffer head has its refcount increased. The caller should
1477 * call brelse() when it has finished with the buffer.
1479 * Context: May sleep waiting for I/O.
1480 * Return: NULL if the block was unreadable.
1482 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1483 unsigned size, gfp_t gfp)
1485 struct buffer_head *bh;
1487 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1490 * Prefer looping in the allocator rather than here, at least that
1491 * code knows what it's doing.
1493 gfp |= __GFP_NOFAIL;
1495 bh = bdev_getblk(bdev, block, size, gfp);
1497 if (likely(bh) && !buffer_uptodate(bh))
1498 bh = __bread_slow(bh);
1501 EXPORT_SYMBOL(__bread_gfp);
1503 static void __invalidate_bh_lrus(struct bh_lru *b)
1507 for (i = 0; i < BH_LRU_SIZE; i++) {
1513 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1514 * This doesn't race because it runs in each cpu either in irq
1515 * or with preempt disabled.
1517 static void invalidate_bh_lru(void *arg)
1519 struct bh_lru *b = &get_cpu_var(bh_lrus);
1521 __invalidate_bh_lrus(b);
1522 put_cpu_var(bh_lrus);
1525 bool has_bh_in_lru(int cpu, void *dummy)
1527 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1530 for (i = 0; i < BH_LRU_SIZE; i++) {
1538 void invalidate_bh_lrus(void)
1540 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1542 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1545 * It's called from workqueue context so we need a bh_lru_lock to close
1546 * the race with preemption/irq.
1548 void invalidate_bh_lrus_cpu(void)
1553 b = this_cpu_ptr(&bh_lrus);
1554 __invalidate_bh_lrus(b);
1558 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1559 unsigned long offset)
1561 bh->b_folio = folio;
1562 BUG_ON(offset >= folio_size(folio));
1563 if (folio_test_highmem(folio))
1565 * This catches illegal uses and preserves the offset:
1567 bh->b_data = (char *)(0 + offset);
1569 bh->b_data = folio_address(folio) + offset;
1571 EXPORT_SYMBOL(folio_set_bh);
1574 * Called when truncating a buffer on a page completely.
1577 /* Bits that are cleared during an invalidate */
1578 #define BUFFER_FLAGS_DISCARD \
1579 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1580 1 << BH_Delay | 1 << BH_Unwritten)
1582 static void discard_buffer(struct buffer_head * bh)
1584 unsigned long b_state;
1587 clear_buffer_dirty(bh);
1589 b_state = READ_ONCE(bh->b_state);
1591 } while (!try_cmpxchg(&bh->b_state, &b_state,
1592 b_state & ~BUFFER_FLAGS_DISCARD));
1597 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1598 * @folio: The folio which is affected.
1599 * @offset: start of the range to invalidate
1600 * @length: length of the range to invalidate
1602 * block_invalidate_folio() is called when all or part of the folio has been
1603 * invalidated by a truncate operation.
1605 * block_invalidate_folio() does not have to release all buffers, but it must
1606 * ensure that no dirty buffer is left outside @offset and that no I/O
1607 * is underway against any of the blocks which are outside the truncation
1608 * point. Because the caller is about to free (and possibly reuse) those
1611 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1613 struct buffer_head *head, *bh, *next;
1614 size_t curr_off = 0;
1615 size_t stop = length + offset;
1617 BUG_ON(!folio_test_locked(folio));
1620 * Check for overflow
1622 BUG_ON(stop > folio_size(folio) || stop < length);
1624 head = folio_buffers(folio);
1630 size_t next_off = curr_off + bh->b_size;
1631 next = bh->b_this_page;
1634 * Are we still fully in range ?
1636 if (next_off > stop)
1640 * is this block fully invalidated?
1642 if (offset <= curr_off)
1644 curr_off = next_off;
1646 } while (bh != head);
1649 * We release buffers only if the entire folio is being invalidated.
1650 * The get_block cached value has been unconditionally invalidated,
1651 * so real IO is not possible anymore.
1653 if (length == folio_size(folio))
1654 filemap_release_folio(folio, 0);
1658 EXPORT_SYMBOL(block_invalidate_folio);
1661 * We attach and possibly dirty the buffers atomically wrt
1662 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1663 * is already excluded via the folio lock.
1665 struct buffer_head *create_empty_buffers(struct folio *folio,
1666 unsigned long blocksize, unsigned long b_state)
1668 struct buffer_head *bh, *head, *tail;
1669 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1671 head = folio_alloc_buffers(folio, blocksize, gfp);
1674 bh->b_state |= b_state;
1676 bh = bh->b_this_page;
1678 tail->b_this_page = head;
1680 spin_lock(&folio->mapping->i_private_lock);
1681 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1684 if (folio_test_dirty(folio))
1685 set_buffer_dirty(bh);
1686 if (folio_test_uptodate(folio))
1687 set_buffer_uptodate(bh);
1688 bh = bh->b_this_page;
1689 } while (bh != head);
1691 folio_attach_private(folio, head);
1692 spin_unlock(&folio->mapping->i_private_lock);
1696 EXPORT_SYMBOL(create_empty_buffers);
1699 * clean_bdev_aliases: clean a range of buffers in block device
1700 * @bdev: Block device to clean buffers in
1701 * @block: Start of a range of blocks to clean
1702 * @len: Number of blocks to clean
1704 * We are taking a range of blocks for data and we don't want writeback of any
1705 * buffer-cache aliases starting from return from this function and until the
1706 * moment when something will explicitly mark the buffer dirty (hopefully that
1707 * will not happen until we will free that block ;-) We don't even need to mark
1708 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1709 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1710 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1711 * would confuse anyone who might pick it with bread() afterwards...
1713 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1714 * writeout I/O going on against recently-freed buffers. We don't wait on that
1715 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1716 * need to. That happens here.
1718 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1720 struct address_space *bd_mapping = bdev->bd_mapping;
1721 const int blkbits = bd_mapping->host->i_blkbits;
1722 struct folio_batch fbatch;
1723 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1726 struct buffer_head *bh;
1727 struct buffer_head *head;
1729 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1730 folio_batch_init(&fbatch);
1731 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1732 count = folio_batch_count(&fbatch);
1733 for (i = 0; i < count; i++) {
1734 struct folio *folio = fbatch.folios[i];
1736 if (!folio_buffers(folio))
1739 * We use folio lock instead of bd_mapping->i_private_lock
1740 * to pin buffers here since we can afford to sleep and
1741 * it scales better than a global spinlock lock.
1744 /* Recheck when the folio is locked which pins bhs */
1745 head = folio_buffers(folio);
1750 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1752 if (bh->b_blocknr >= block + len)
1754 clear_buffer_dirty(bh);
1756 clear_buffer_req(bh);
1758 bh = bh->b_this_page;
1759 } while (bh != head);
1761 folio_unlock(folio);
1763 folio_batch_release(&fbatch);
1765 /* End of range already reached? */
1766 if (index > end || !index)
1770 EXPORT_SYMBOL(clean_bdev_aliases);
1772 static struct buffer_head *folio_create_buffers(struct folio *folio,
1773 struct inode *inode,
1774 unsigned int b_state)
1776 struct buffer_head *bh;
1778 BUG_ON(!folio_test_locked(folio));
1780 bh = folio_buffers(folio);
1782 bh = create_empty_buffers(folio,
1783 1 << READ_ONCE(inode->i_blkbits), b_state);
1788 * NOTE! All mapped/uptodate combinations are valid:
1790 * Mapped Uptodate Meaning
1792 * No No "unknown" - must do get_block()
1793 * No Yes "hole" - zero-filled
1794 * Yes No "allocated" - allocated on disk, not read in
1795 * Yes Yes "valid" - allocated and up-to-date in memory.
1797 * "Dirty" is valid only with the last case (mapped+uptodate).
1801 * While block_write_full_folio is writing back the dirty buffers under
1802 * the page lock, whoever dirtied the buffers may decide to clean them
1803 * again at any time. We handle that by only looking at the buffer
1804 * state inside lock_buffer().
1806 * If block_write_full_folio() is called for regular writeback
1807 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1808 * locked buffer. This only can happen if someone has written the buffer
1809 * directly, with submit_bh(). At the address_space level PageWriteback
1810 * prevents this contention from occurring.
1812 * If block_write_full_folio() is called with wbc->sync_mode ==
1813 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1814 * causes the writes to be flagged as synchronous writes.
1816 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1817 get_block_t *get_block, struct writeback_control *wbc)
1821 sector_t last_block;
1822 struct buffer_head *bh, *head;
1824 int nr_underway = 0;
1825 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1827 head = folio_create_buffers(folio, inode,
1828 (1 << BH_Dirty) | (1 << BH_Uptodate));
1831 * Be very careful. We have no exclusion from block_dirty_folio
1832 * here, and the (potentially unmapped) buffers may become dirty at
1833 * any time. If a buffer becomes dirty here after we've inspected it
1834 * then we just miss that fact, and the folio stays dirty.
1836 * Buffers outside i_size may be dirtied by block_dirty_folio;
1837 * handle that here by just cleaning them.
1841 blocksize = bh->b_size;
1843 block = div_u64(folio_pos(folio), blocksize);
1844 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1847 * Get all the dirty buffers mapped to disk addresses and
1848 * handle any aliases from the underlying blockdev's mapping.
1851 if (block > last_block) {
1853 * mapped buffers outside i_size will occur, because
1854 * this folio can be outside i_size when there is a
1855 * truncate in progress.
1858 * The buffer was zeroed by block_write_full_folio()
1860 clear_buffer_dirty(bh);
1861 set_buffer_uptodate(bh);
1862 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1864 WARN_ON(bh->b_size != blocksize);
1865 err = get_block(inode, block, bh, 1);
1868 clear_buffer_delay(bh);
1869 if (buffer_new(bh)) {
1870 /* blockdev mappings never come here */
1871 clear_buffer_new(bh);
1872 clean_bdev_bh_alias(bh);
1875 bh = bh->b_this_page;
1877 } while (bh != head);
1880 if (!buffer_mapped(bh))
1883 * If it's a fully non-blocking write attempt and we cannot
1884 * lock the buffer then redirty the folio. Note that this can
1885 * potentially cause a busy-wait loop from writeback threads
1886 * and kswapd activity, but those code paths have their own
1887 * higher-level throttling.
1889 if (wbc->sync_mode != WB_SYNC_NONE) {
1891 } else if (!trylock_buffer(bh)) {
1892 folio_redirty_for_writepage(wbc, folio);
1895 if (test_clear_buffer_dirty(bh)) {
1896 mark_buffer_async_write_endio(bh,
1897 end_buffer_async_write);
1901 } while ((bh = bh->b_this_page) != head);
1904 * The folio and its buffers are protected by the writeback flag,
1905 * so we can drop the bh refcounts early.
1907 BUG_ON(folio_test_writeback(folio));
1908 folio_start_writeback(folio);
1911 struct buffer_head *next = bh->b_this_page;
1912 if (buffer_async_write(bh)) {
1913 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1914 inode->i_write_hint, wbc);
1918 } while (bh != head);
1919 folio_unlock(folio);
1923 if (nr_underway == 0) {
1925 * The folio was marked dirty, but the buffers were
1926 * clean. Someone wrote them back by hand with
1927 * write_dirty_buffer/submit_bh. A rare case.
1929 folio_end_writeback(folio);
1932 * The folio and buffer_heads can be released at any time from
1940 * ENOSPC, or some other error. We may already have added some
1941 * blocks to the file, so we need to write these out to avoid
1942 * exposing stale data.
1943 * The folio is currently locked and not marked for writeback
1946 /* Recovery: lock and submit the mapped buffers */
1948 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1949 !buffer_delay(bh)) {
1951 mark_buffer_async_write_endio(bh,
1952 end_buffer_async_write);
1955 * The buffer may have been set dirty during
1956 * attachment to a dirty folio.
1958 clear_buffer_dirty(bh);
1960 } while ((bh = bh->b_this_page) != head);
1961 BUG_ON(folio_test_writeback(folio));
1962 mapping_set_error(folio->mapping, err);
1963 folio_start_writeback(folio);
1965 struct buffer_head *next = bh->b_this_page;
1966 if (buffer_async_write(bh)) {
1967 clear_buffer_dirty(bh);
1968 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1969 inode->i_write_hint, wbc);
1973 } while (bh != head);
1974 folio_unlock(folio);
1977 EXPORT_SYMBOL(__block_write_full_folio);
1980 * If a folio has any new buffers, zero them out here, and mark them uptodate
1981 * and dirty so they'll be written out (in order to prevent uninitialised
1982 * block data from leaking). And clear the new bit.
1984 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1986 size_t block_start, block_end;
1987 struct buffer_head *head, *bh;
1989 BUG_ON(!folio_test_locked(folio));
1990 head = folio_buffers(folio);
1997 block_end = block_start + bh->b_size;
1999 if (buffer_new(bh)) {
2000 if (block_end > from && block_start < to) {
2001 if (!folio_test_uptodate(folio)) {
2004 start = max(from, block_start);
2005 xend = min(to, block_end);
2007 folio_zero_segment(folio, start, xend);
2008 set_buffer_uptodate(bh);
2011 clear_buffer_new(bh);
2012 mark_buffer_dirty(bh);
2016 block_start = block_end;
2017 bh = bh->b_this_page;
2018 } while (bh != head);
2020 EXPORT_SYMBOL(folio_zero_new_buffers);
2023 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2024 const struct iomap *iomap)
2026 loff_t offset = (loff_t)block << inode->i_blkbits;
2028 bh->b_bdev = iomap->bdev;
2031 * Block points to offset in file we need to map, iomap contains
2032 * the offset at which the map starts. If the map ends before the
2033 * current block, then do not map the buffer and let the caller
2036 if (offset >= iomap->offset + iomap->length)
2039 switch (iomap->type) {
2042 * If the buffer is not up to date or beyond the current EOF,
2043 * we need to mark it as new to ensure sub-block zeroing is
2044 * executed if necessary.
2046 if (!buffer_uptodate(bh) ||
2047 (offset >= i_size_read(inode)))
2050 case IOMAP_DELALLOC:
2051 if (!buffer_uptodate(bh) ||
2052 (offset >= i_size_read(inode)))
2054 set_buffer_uptodate(bh);
2055 set_buffer_mapped(bh);
2056 set_buffer_delay(bh);
2058 case IOMAP_UNWRITTEN:
2060 * For unwritten regions, we always need to ensure that regions
2061 * in the block we are not writing to are zeroed. Mark the
2062 * buffer as new to ensure this.
2065 set_buffer_unwritten(bh);
2068 if ((iomap->flags & IOMAP_F_NEW) ||
2069 offset >= i_size_read(inode)) {
2071 * This can happen if truncating the block device races
2072 * with the check in the caller as i_size updates on
2073 * block devices aren't synchronized by i_rwsem for
2076 if (S_ISBLK(inode->i_mode))
2080 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2082 set_buffer_mapped(bh);
2090 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2091 get_block_t *get_block, const struct iomap *iomap)
2093 size_t from = offset_in_folio(folio, pos);
2094 size_t to = from + len;
2095 struct inode *inode = folio->mapping->host;
2096 size_t block_start, block_end;
2100 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2102 BUG_ON(!folio_test_locked(folio));
2103 BUG_ON(to > folio_size(folio));
2106 head = folio_create_buffers(folio, inode, 0);
2107 blocksize = head->b_size;
2108 block = div_u64(folio_pos(folio), blocksize);
2110 for (bh = head, block_start = 0; bh != head || !block_start;
2111 block++, block_start=block_end, bh = bh->b_this_page) {
2112 block_end = block_start + blocksize;
2113 if (block_end <= from || block_start >= to) {
2114 if (folio_test_uptodate(folio)) {
2115 if (!buffer_uptodate(bh))
2116 set_buffer_uptodate(bh);
2121 clear_buffer_new(bh);
2122 if (!buffer_mapped(bh)) {
2123 WARN_ON(bh->b_size != blocksize);
2125 err = get_block(inode, block, bh, 1);
2127 err = iomap_to_bh(inode, block, bh, iomap);
2131 if (buffer_new(bh)) {
2132 clean_bdev_bh_alias(bh);
2133 if (folio_test_uptodate(folio)) {
2134 clear_buffer_new(bh);
2135 set_buffer_uptodate(bh);
2136 mark_buffer_dirty(bh);
2139 if (block_end > to || block_start < from)
2140 folio_zero_segments(folio,
2146 if (folio_test_uptodate(folio)) {
2147 if (!buffer_uptodate(bh))
2148 set_buffer_uptodate(bh);
2151 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2152 !buffer_unwritten(bh) &&
2153 (block_start < from || block_end > to)) {
2154 bh_read_nowait(bh, 0);
2159 * If we issued read requests - let them complete.
2161 while(wait_bh > wait) {
2162 wait_on_buffer(*--wait_bh);
2163 if (!buffer_uptodate(*wait_bh))
2167 folio_zero_new_buffers(folio, from, to);
2171 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2172 get_block_t *get_block)
2174 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2177 EXPORT_SYMBOL(__block_write_begin);
2179 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2181 size_t block_start, block_end;
2182 bool partial = false;
2184 struct buffer_head *bh, *head;
2186 bh = head = folio_buffers(folio);
2189 blocksize = bh->b_size;
2193 block_end = block_start + blocksize;
2194 if (block_end <= from || block_start >= to) {
2195 if (!buffer_uptodate(bh))
2198 set_buffer_uptodate(bh);
2199 mark_buffer_dirty(bh);
2202 clear_buffer_new(bh);
2204 block_start = block_end;
2205 bh = bh->b_this_page;
2206 } while (bh != head);
2209 * If this is a partial write which happened to make all buffers
2210 * uptodate then we can optimize away a bogus read_folio() for
2211 * the next read(). Here we 'discover' whether the folio went
2212 * uptodate as a result of this (potentially partial) write.
2215 folio_mark_uptodate(folio);
2219 * block_write_begin takes care of the basic task of block allocation and
2220 * bringing partial write blocks uptodate first.
2222 * The filesystem needs to handle block truncation upon failure.
2224 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2225 struct page **pagep, get_block_t *get_block)
2227 pgoff_t index = pos >> PAGE_SHIFT;
2231 page = grab_cache_page_write_begin(mapping, index);
2235 status = __block_write_begin(page, pos, len, get_block);
2236 if (unlikely(status)) {
2245 EXPORT_SYMBOL(block_write_begin);
2247 int block_write_end(struct file *file, struct address_space *mapping,
2248 loff_t pos, unsigned len, unsigned copied,
2249 struct page *page, void *fsdata)
2251 struct folio *folio = page_folio(page);
2252 size_t start = pos - folio_pos(folio);
2254 if (unlikely(copied < len)) {
2256 * The buffers that were written will now be uptodate, so
2257 * we don't have to worry about a read_folio reading them
2258 * and overwriting a partial write. However if we have
2259 * encountered a short write and only partially written
2260 * into a buffer, it will not be marked uptodate, so a
2261 * read_folio might come in and destroy our partial write.
2263 * Do the simplest thing, and just treat any short write to a
2264 * non uptodate folio as a zero-length write, and force the
2265 * caller to redo the whole thing.
2267 if (!folio_test_uptodate(folio))
2270 folio_zero_new_buffers(folio, start+copied, start+len);
2272 flush_dcache_folio(folio);
2274 /* This could be a short (even 0-length) commit */
2275 __block_commit_write(folio, start, start + copied);
2279 EXPORT_SYMBOL(block_write_end);
2281 int generic_write_end(struct file *file, struct address_space *mapping,
2282 loff_t pos, unsigned len, unsigned copied,
2283 struct page *page, void *fsdata)
2285 struct inode *inode = mapping->host;
2286 loff_t old_size = inode->i_size;
2287 bool i_size_changed = false;
2289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2292 * No need to use i_size_read() here, the i_size cannot change under us
2293 * because we hold i_rwsem.
2295 * But it's important to update i_size while still holding page lock:
2296 * page writeout could otherwise come in and zero beyond i_size.
2298 if (pos + copied > inode->i_size) {
2299 i_size_write(inode, pos + copied);
2300 i_size_changed = true;
2307 pagecache_isize_extended(inode, old_size, pos);
2309 * Don't mark the inode dirty under page lock. First, it unnecessarily
2310 * makes the holding time of page lock longer. Second, it forces lock
2311 * ordering of page lock and transaction start for journaling
2315 mark_inode_dirty(inode);
2318 EXPORT_SYMBOL(generic_write_end);
2321 * block_is_partially_uptodate checks whether buffers within a folio are
2324 * Returns true if all buffers which correspond to the specified part
2325 * of the folio are uptodate.
2327 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2329 unsigned block_start, block_end, blocksize;
2331 struct buffer_head *bh, *head;
2334 head = folio_buffers(folio);
2337 blocksize = head->b_size;
2338 to = min_t(unsigned, folio_size(folio) - from, count);
2340 if (from < blocksize && to > folio_size(folio) - blocksize)
2346 block_end = block_start + blocksize;
2347 if (block_end > from && block_start < to) {
2348 if (!buffer_uptodate(bh)) {
2352 if (block_end >= to)
2355 block_start = block_end;
2356 bh = bh->b_this_page;
2357 } while (bh != head);
2361 EXPORT_SYMBOL(block_is_partially_uptodate);
2364 * Generic "read_folio" function for block devices that have the normal
2365 * get_block functionality. This is most of the block device filesystems.
2366 * Reads the folio asynchronously --- the unlock_buffer() and
2367 * set/clear_buffer_uptodate() functions propagate buffer state into the
2368 * folio once IO has completed.
2370 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2372 struct inode *inode = folio->mapping->host;
2373 sector_t iblock, lblock;
2374 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2377 int fully_mapped = 1;
2378 bool page_error = false;
2379 loff_t limit = i_size_read(inode);
2381 /* This is needed for ext4. */
2382 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2383 limit = inode->i_sb->s_maxbytes;
2385 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2387 head = folio_create_buffers(folio, inode, 0);
2388 blocksize = head->b_size;
2390 iblock = div_u64(folio_pos(folio), blocksize);
2391 lblock = div_u64(limit + blocksize - 1, blocksize);
2397 if (buffer_uptodate(bh))
2400 if (!buffer_mapped(bh)) {
2404 if (iblock < lblock) {
2405 WARN_ON(bh->b_size != blocksize);
2406 err = get_block(inode, iblock, bh, 0);
2410 if (!buffer_mapped(bh)) {
2411 folio_zero_range(folio, i * blocksize,
2414 set_buffer_uptodate(bh);
2418 * get_block() might have updated the buffer
2421 if (buffer_uptodate(bh))
2425 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2428 folio_set_mappedtodisk(folio);
2432 * All buffers are uptodate or get_block() returned an
2433 * error when trying to map them - we can finish the read.
2435 folio_end_read(folio, !page_error);
2439 /* Stage two: lock the buffers */
2440 for (i = 0; i < nr; i++) {
2443 mark_buffer_async_read(bh);
2447 * Stage 3: start the IO. Check for uptodateness
2448 * inside the buffer lock in case another process reading
2449 * the underlying blockdev brought it uptodate (the sct fix).
2451 for (i = 0; i < nr; i++) {
2453 if (buffer_uptodate(bh))
2454 end_buffer_async_read(bh, 1);
2456 submit_bh(REQ_OP_READ, bh);
2460 EXPORT_SYMBOL(block_read_full_folio);
2462 /* utility function for filesystems that need to do work on expanding
2463 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2464 * deal with the hole.
2466 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2468 struct address_space *mapping = inode->i_mapping;
2469 const struct address_space_operations *aops = mapping->a_ops;
2471 void *fsdata = NULL;
2474 err = inode_newsize_ok(inode, size);
2478 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2482 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2488 EXPORT_SYMBOL(generic_cont_expand_simple);
2490 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2491 loff_t pos, loff_t *bytes)
2493 struct inode *inode = mapping->host;
2494 const struct address_space_operations *aops = mapping->a_ops;
2495 unsigned int blocksize = i_blocksize(inode);
2497 void *fsdata = NULL;
2498 pgoff_t index, curidx;
2500 unsigned zerofrom, offset, len;
2503 index = pos >> PAGE_SHIFT;
2504 offset = pos & ~PAGE_MASK;
2506 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2507 zerofrom = curpos & ~PAGE_MASK;
2508 if (zerofrom & (blocksize-1)) {
2509 *bytes |= (blocksize-1);
2512 len = PAGE_SIZE - zerofrom;
2514 err = aops->write_begin(file, mapping, curpos, len,
2518 zero_user(page, zerofrom, len);
2519 err = aops->write_end(file, mapping, curpos, len, len,
2526 balance_dirty_pages_ratelimited(mapping);
2528 if (fatal_signal_pending(current)) {
2534 /* page covers the boundary, find the boundary offset */
2535 if (index == curidx) {
2536 zerofrom = curpos & ~PAGE_MASK;
2537 /* if we will expand the thing last block will be filled */
2538 if (offset <= zerofrom) {
2541 if (zerofrom & (blocksize-1)) {
2542 *bytes |= (blocksize-1);
2545 len = offset - zerofrom;
2547 err = aops->write_begin(file, mapping, curpos, len,
2551 zero_user(page, zerofrom, len);
2552 err = aops->write_end(file, mapping, curpos, len, len,
2564 * For moronic filesystems that do not allow holes in file.
2565 * We may have to extend the file.
2567 int cont_write_begin(struct file *file, struct address_space *mapping,
2568 loff_t pos, unsigned len,
2569 struct page **pagep, void **fsdata,
2570 get_block_t *get_block, loff_t *bytes)
2572 struct inode *inode = mapping->host;
2573 unsigned int blocksize = i_blocksize(inode);
2574 unsigned int zerofrom;
2577 err = cont_expand_zero(file, mapping, pos, bytes);
2581 zerofrom = *bytes & ~PAGE_MASK;
2582 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2583 *bytes |= (blocksize-1);
2587 return block_write_begin(mapping, pos, len, pagep, get_block);
2589 EXPORT_SYMBOL(cont_write_begin);
2591 void block_commit_write(struct page *page, unsigned from, unsigned to)
2593 struct folio *folio = page_folio(page);
2594 __block_commit_write(folio, from, to);
2596 EXPORT_SYMBOL(block_commit_write);
2599 * block_page_mkwrite() is not allowed to change the file size as it gets
2600 * called from a page fault handler when a page is first dirtied. Hence we must
2601 * be careful to check for EOF conditions here. We set the page up correctly
2602 * for a written page which means we get ENOSPC checking when writing into
2603 * holes and correct delalloc and unwritten extent mapping on filesystems that
2604 * support these features.
2606 * We are not allowed to take the i_mutex here so we have to play games to
2607 * protect against truncate races as the page could now be beyond EOF. Because
2608 * truncate writes the inode size before removing pages, once we have the
2609 * page lock we can determine safely if the page is beyond EOF. If it is not
2610 * beyond EOF, then the page is guaranteed safe against truncation until we
2613 * Direct callers of this function should protect against filesystem freezing
2614 * using sb_start_pagefault() - sb_end_pagefault() functions.
2616 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2617 get_block_t get_block)
2619 struct folio *folio = page_folio(vmf->page);
2620 struct inode *inode = file_inode(vma->vm_file);
2626 size = i_size_read(inode);
2627 if ((folio->mapping != inode->i_mapping) ||
2628 (folio_pos(folio) >= size)) {
2629 /* We overload EFAULT to mean page got truncated */
2634 end = folio_size(folio);
2635 /* folio is wholly or partially inside EOF */
2636 if (folio_pos(folio) + end > size)
2637 end = size - folio_pos(folio);
2639 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2643 __block_commit_write(folio, 0, end);
2645 folio_mark_dirty(folio);
2646 folio_wait_stable(folio);
2649 folio_unlock(folio);
2652 EXPORT_SYMBOL(block_page_mkwrite);
2654 int block_truncate_page(struct address_space *mapping,
2655 loff_t from, get_block_t *get_block)
2657 pgoff_t index = from >> PAGE_SHIFT;
2660 size_t offset, length, pos;
2661 struct inode *inode = mapping->host;
2662 struct folio *folio;
2663 struct buffer_head *bh;
2666 blocksize = i_blocksize(inode);
2667 length = from & (blocksize - 1);
2669 /* Block boundary? Nothing to do */
2673 length = blocksize - length;
2674 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2676 folio = filemap_grab_folio(mapping, index);
2678 return PTR_ERR(folio);
2680 bh = folio_buffers(folio);
2682 bh = create_empty_buffers(folio, blocksize, 0);
2684 /* Find the buffer that contains "offset" */
2685 offset = offset_in_folio(folio, from);
2687 while (offset >= pos) {
2688 bh = bh->b_this_page;
2693 if (!buffer_mapped(bh)) {
2694 WARN_ON(bh->b_size != blocksize);
2695 err = get_block(inode, iblock, bh, 0);
2698 /* unmapped? It's a hole - nothing to do */
2699 if (!buffer_mapped(bh))
2703 /* Ok, it's mapped. Make sure it's up-to-date */
2704 if (folio_test_uptodate(folio))
2705 set_buffer_uptodate(bh);
2707 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708 err = bh_read(bh, 0);
2709 /* Uhhuh. Read error. Complain and punt. */
2714 folio_zero_range(folio, offset, length);
2715 mark_buffer_dirty(bh);
2718 folio_unlock(folio);
2723 EXPORT_SYMBOL(block_truncate_page);
2726 * The generic ->writepage function for buffer-backed address_spaces
2728 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2731 struct inode * const inode = folio->mapping->host;
2732 loff_t i_size = i_size_read(inode);
2734 /* Is the folio fully inside i_size? */
2735 if (folio_pos(folio) + folio_size(folio) <= i_size)
2736 return __block_write_full_folio(inode, folio, get_block, wbc);
2738 /* Is the folio fully outside i_size? (truncate in progress) */
2739 if (folio_pos(folio) >= i_size) {
2740 folio_unlock(folio);
2741 return 0; /* don't care */
2745 * The folio straddles i_size. It must be zeroed out on each and every
2746 * writepage invocation because it may be mmapped. "A file is mapped
2747 * in multiples of the page size. For a file that is not a multiple of
2748 * the page size, the remaining memory is zeroed when mapped, and
2749 * writes to that region are not written out to the file."
2751 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2753 return __block_write_full_folio(inode, folio, get_block, wbc);
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 get_block_t *get_block)
2759 struct inode *inode = mapping->host;
2760 struct buffer_head tmp = {
2761 .b_size = i_blocksize(inode),
2764 get_block(inode, block, &tmp, 0);
2765 return tmp.b_blocknr;
2767 EXPORT_SYMBOL(generic_block_bmap);
2769 static void end_bio_bh_io_sync(struct bio *bio)
2771 struct buffer_head *bh = bio->bi_private;
2773 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2774 set_bit(BH_Quiet, &bh->b_state);
2776 bh->b_end_io(bh, !bio->bi_status);
2780 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2781 enum rw_hint write_hint,
2782 struct writeback_control *wbc)
2784 const enum req_op op = opf & REQ_OP_MASK;
2787 BUG_ON(!buffer_locked(bh));
2788 BUG_ON(!buffer_mapped(bh));
2789 BUG_ON(!bh->b_end_io);
2790 BUG_ON(buffer_delay(bh));
2791 BUG_ON(buffer_unwritten(bh));
2794 * Only clear out a write error when rewriting
2796 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2797 clear_buffer_write_io_error(bh);
2799 if (buffer_meta(bh))
2801 if (buffer_prio(bh))
2804 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2806 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2808 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809 bio->bi_write_hint = write_hint;
2811 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2813 bio->bi_end_io = end_bio_bh_io_sync;
2814 bio->bi_private = bh;
2816 /* Take care of bh's that straddle the end of the device */
2820 wbc_init_bio(wbc, bio);
2821 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2827 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2829 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2831 EXPORT_SYMBOL(submit_bh);
2833 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2836 if (!test_clear_buffer_dirty(bh)) {
2840 bh->b_end_io = end_buffer_write_sync;
2842 submit_bh(REQ_OP_WRITE | op_flags, bh);
2844 EXPORT_SYMBOL(write_dirty_buffer);
2847 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2848 * and then start new I/O and then wait upon it. The caller must have a ref on
2851 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2853 WARN_ON(atomic_read(&bh->b_count) < 1);
2855 if (test_clear_buffer_dirty(bh)) {
2857 * The bh should be mapped, but it might not be if the
2858 * device was hot-removed. Not much we can do but fail the I/O.
2860 if (!buffer_mapped(bh)) {
2866 bh->b_end_io = end_buffer_write_sync;
2867 submit_bh(REQ_OP_WRITE | op_flags, bh);
2869 if (!buffer_uptodate(bh))
2876 EXPORT_SYMBOL(__sync_dirty_buffer);
2878 int sync_dirty_buffer(struct buffer_head *bh)
2880 return __sync_dirty_buffer(bh, REQ_SYNC);
2882 EXPORT_SYMBOL(sync_dirty_buffer);
2884 static inline int buffer_busy(struct buffer_head *bh)
2886 return atomic_read(&bh->b_count) |
2887 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2893 struct buffer_head *head = folio_buffers(folio);
2894 struct buffer_head *bh;
2898 if (buffer_busy(bh))
2900 bh = bh->b_this_page;
2901 } while (bh != head);
2904 struct buffer_head *next = bh->b_this_page;
2906 if (bh->b_assoc_map)
2907 __remove_assoc_queue(bh);
2909 } while (bh != head);
2910 *buffers_to_free = head;
2911 folio_detach_private(folio);
2918 * try_to_free_buffers - Release buffers attached to this folio.
2919 * @folio: The folio.
2921 * If any buffers are in use (dirty, under writeback, elevated refcount),
2922 * no buffers will be freed.
2924 * If the folio is dirty but all the buffers are clean then we need to
2925 * be sure to mark the folio clean as well. This is because the folio
2926 * may be against a block device, and a later reattachment of buffers
2927 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2928 * filesystem data on the same device.
2930 * The same applies to regular filesystem folios: if all the buffers are
2931 * clean then we set the folio clean and proceed. To do that, we require
2932 * total exclusion from block_dirty_folio(). That is obtained with
2935 * Exclusion against try_to_free_buffers may be obtained by either
2936 * locking the folio or by holding its mapping's i_private_lock.
2938 * Context: Process context. @folio must be locked. Will not sleep.
2939 * Return: true if all buffers attached to this folio were freed.
2941 bool try_to_free_buffers(struct folio *folio)
2943 struct address_space * const mapping = folio->mapping;
2944 struct buffer_head *buffers_to_free = NULL;
2947 BUG_ON(!folio_test_locked(folio));
2948 if (folio_test_writeback(folio))
2951 if (mapping == NULL) { /* can this still happen? */
2952 ret = drop_buffers(folio, &buffers_to_free);
2956 spin_lock(&mapping->i_private_lock);
2957 ret = drop_buffers(folio, &buffers_to_free);
2960 * If the filesystem writes its buffers by hand (eg ext3)
2961 * then we can have clean buffers against a dirty folio. We
2962 * clean the folio here; otherwise the VM will never notice
2963 * that the filesystem did any IO at all.
2965 * Also, during truncate, discard_buffer will have marked all
2966 * the folio's buffers clean. We discover that here and clean
2969 * i_private_lock must be held over this entire operation in order
2970 * to synchronise against block_dirty_folio and prevent the
2971 * dirty bit from being lost.
2974 folio_cancel_dirty(folio);
2975 spin_unlock(&mapping->i_private_lock);
2977 if (buffers_to_free) {
2978 struct buffer_head *bh = buffers_to_free;
2981 struct buffer_head *next = bh->b_this_page;
2982 free_buffer_head(bh);
2984 } while (bh != buffers_to_free);
2988 EXPORT_SYMBOL(try_to_free_buffers);
2991 * Buffer-head allocation
2993 static struct kmem_cache *bh_cachep __ro_after_init;
2996 * Once the number of bh's in the machine exceeds this level, we start
2997 * stripping them in writeback.
2999 static unsigned long max_buffer_heads __ro_after_init;
3001 int buffer_heads_over_limit;
3003 struct bh_accounting {
3004 int nr; /* Number of live bh's */
3005 int ratelimit; /* Limit cacheline bouncing */
3008 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3010 static void recalc_bh_state(void)
3015 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3017 __this_cpu_write(bh_accounting.ratelimit, 0);
3018 for_each_online_cpu(i)
3019 tot += per_cpu(bh_accounting, i).nr;
3020 buffer_heads_over_limit = (tot > max_buffer_heads);
3023 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3025 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3027 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3028 spin_lock_init(&ret->b_uptodate_lock);
3030 __this_cpu_inc(bh_accounting.nr);
3036 EXPORT_SYMBOL(alloc_buffer_head);
3038 void free_buffer_head(struct buffer_head *bh)
3040 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3041 kmem_cache_free(bh_cachep, bh);
3043 __this_cpu_dec(bh_accounting.nr);
3047 EXPORT_SYMBOL(free_buffer_head);
3049 static int buffer_exit_cpu_dead(unsigned int cpu)
3052 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3054 for (i = 0; i < BH_LRU_SIZE; i++) {
3058 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3059 per_cpu(bh_accounting, cpu).nr = 0;
3064 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3065 * @bh: struct buffer_head
3067 * Return true if the buffer is up-to-date and false,
3068 * with the buffer locked, if not.
3070 int bh_uptodate_or_lock(struct buffer_head *bh)
3072 if (!buffer_uptodate(bh)) {
3074 if (!buffer_uptodate(bh))
3080 EXPORT_SYMBOL(bh_uptodate_or_lock);
3083 * __bh_read - Submit read for a locked buffer
3084 * @bh: struct buffer_head
3085 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3086 * @wait: wait until reading finish
3088 * Returns zero on success or don't wait, and -EIO on error.
3090 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3094 BUG_ON(!buffer_locked(bh));
3097 bh->b_end_io = end_buffer_read_sync;
3098 submit_bh(REQ_OP_READ | op_flags, bh);
3101 if (!buffer_uptodate(bh))
3106 EXPORT_SYMBOL(__bh_read);
3109 * __bh_read_batch - Submit read for a batch of unlocked buffers
3110 * @nr: entry number of the buffer batch
3111 * @bhs: a batch of struct buffer_head
3112 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3113 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3114 * buffer that cannot lock.
3116 * Returns zero on success or don't wait, and -EIO on error.
3118 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3119 blk_opf_t op_flags, bool force_lock)
3123 for (i = 0; i < nr; i++) {
3124 struct buffer_head *bh = bhs[i];
3126 if (buffer_uptodate(bh))
3132 if (!trylock_buffer(bh))
3135 if (buffer_uptodate(bh)) {
3140 bh->b_end_io = end_buffer_read_sync;
3142 submit_bh(REQ_OP_READ | op_flags, bh);
3145 EXPORT_SYMBOL(__bh_read_batch);
3147 void __init buffer_init(void)
3149 unsigned long nrpages;
3152 bh_cachep = KMEM_CACHE(buffer_head,
3153 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3155 * Limit the bh occupancy to 10% of ZONE_NORMAL
3157 nrpages = (nr_free_buffer_pages() * 10) / 100;
3158 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3159 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3160 NULL, buffer_exit_cpu_dead);