2 * (C) 1997 Linus Torvalds
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops = {
66 EXPORT_SYMBOL(empty_aops);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 static struct kmem_cache *inode_cachep __read_mostly;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 static int no_open(struct inode *inode, struct file *file)
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block *sb, struct inode *inode)
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
136 inode->i_blkbits = sb->s_blocksize_bits;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_dir_seq = 0;
158 inode->dirtied_when = 0;
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode->i_wb_frn_winner = 0;
162 inode->i_wb_frn_avg_time = 0;
163 inode->i_wb_frn_history = 0;
166 if (security_inode_alloc(inode))
168 spin_lock_init(&inode->i_lock);
169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
171 init_rwsem(&inode->i_rwsem);
172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
174 atomic_set(&inode->i_dio_count, 0);
176 mapping->a_ops = &empty_aops;
177 mapping->host = inode;
179 atomic_set(&mapping->i_mmap_writable, 0);
180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 mapping->private_data = NULL;
182 mapping->writeback_index = 0;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
193 inode->i_flctx = NULL;
194 this_cpu_inc(nr_inodes);
200 EXPORT_SYMBOL(inode_init_always);
202 static struct inode *alloc_inode(struct super_block *sb)
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
218 kmem_cache_free(inode_cachep, inode);
225 void free_inode_nonrcu(struct inode *inode)
227 kmem_cache_free(inode_cachep, inode);
229 EXPORT_SYMBOL(free_inode_nonrcu);
231 void __destroy_inode(struct inode *inode)
233 BUG_ON(inode_has_buffers(inode));
234 inode_detach_wb(inode);
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 locks_free_lock_context(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 posix_acl_release(inode->i_default_acl);
249 this_cpu_dec(nr_inodes);
251 EXPORT_SYMBOL(__destroy_inode);
253 static void i_callback(struct rcu_head *head)
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
259 static void destroy_inode(struct inode *inode)
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
266 call_rcu(&inode->i_rcu, i_callback);
270 * drop_nlink - directly drop an inode's link count
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
280 void drop_nlink(struct inode *inode)
282 WARN_ON(inode->i_nlink == 0);
285 atomic_long_inc(&inode->i_sb->s_remove_count);
287 EXPORT_SYMBOL(drop_nlink);
290 * clear_nlink - directly zero an inode's link count
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
297 void clear_nlink(struct inode *inode)
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
304 EXPORT_SYMBOL(clear_nlink);
307 * set_nlink - directly set an inode's link count
309 * @nlink: new nlink (should be non-zero)
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
314 void set_nlink(struct inode *inode, unsigned int nlink)
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
323 inode->__i_nlink = nlink;
326 EXPORT_SYMBOL(set_nlink);
329 * inc_nlink - directly increment an inode's link count
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
336 void inc_nlink(struct inode *inode)
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
345 EXPORT_SYMBOL(inc_nlink);
347 void address_space_init_once(struct address_space *mapping)
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 spin_lock_init(&mapping->tree_lock);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
357 EXPORT_SYMBOL(address_space_init_once);
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
364 void inode_init_once(struct inode *inode)
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_io_list);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
375 EXPORT_SYMBOL(inode_init_once);
377 static void init_once(void *foo)
379 struct inode *inode = (struct inode *) foo;
381 inode_init_once(inode);
385 * inode->i_lock must be held
387 void __iget(struct inode *inode)
389 atomic_inc(&inode->i_count);
393 * get additional reference to inode; caller must already hold one.
395 void ihold(struct inode *inode)
397 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
399 EXPORT_SYMBOL(ihold);
401 static void inode_lru_list_add(struct inode *inode)
403 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 this_cpu_inc(nr_unused);
408 * Add inode to LRU if needed (inode is unused and clean).
410 * Needs inode->i_lock held.
412 void inode_add_lru(struct inode *inode)
414 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
415 I_FREEING | I_WILL_FREE)) &&
416 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
417 inode_lru_list_add(inode);
421 static void inode_lru_list_del(struct inode *inode)
424 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
425 this_cpu_dec(nr_unused);
429 * inode_sb_list_add - add inode to the superblock list of inodes
430 * @inode: inode to add
432 void inode_sb_list_add(struct inode *inode)
434 spin_lock(&inode->i_sb->s_inode_list_lock);
435 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
436 spin_unlock(&inode->i_sb->s_inode_list_lock);
438 EXPORT_SYMBOL_GPL(inode_sb_list_add);
440 static inline void inode_sb_list_del(struct inode *inode)
442 if (!list_empty(&inode->i_sb_list)) {
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_del_init(&inode->i_sb_list);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
449 static unsigned long hash(struct super_block *sb, unsigned long hashval)
453 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
456 return tmp & i_hash_mask;
460 * __insert_inode_hash - hash an inode
461 * @inode: unhashed inode
462 * @hashval: unsigned long value used to locate this object in the
465 * Add an inode to the inode hash for this superblock.
467 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471 spin_lock(&inode_hash_lock);
472 spin_lock(&inode->i_lock);
473 hlist_add_head(&inode->i_hash, b);
474 spin_unlock(&inode->i_lock);
475 spin_unlock(&inode_hash_lock);
477 EXPORT_SYMBOL(__insert_inode_hash);
480 * __remove_inode_hash - remove an inode from the hash
481 * @inode: inode to unhash
483 * Remove an inode from the superblock.
485 void __remove_inode_hash(struct inode *inode)
487 spin_lock(&inode_hash_lock);
488 spin_lock(&inode->i_lock);
489 hlist_del_init(&inode->i_hash);
490 spin_unlock(&inode->i_lock);
491 spin_unlock(&inode_hash_lock);
493 EXPORT_SYMBOL(__remove_inode_hash);
495 void clear_inode(struct inode *inode)
499 * We have to cycle tree_lock here because reclaim can be still in the
500 * process of removing the last page (in __delete_from_page_cache())
501 * and we must not free mapping under it.
503 spin_lock_irq(&inode->i_data.tree_lock);
504 BUG_ON(inode->i_data.nrpages);
505 BUG_ON(inode->i_data.nrexceptional);
506 spin_unlock_irq(&inode->i_data.tree_lock);
507 BUG_ON(!list_empty(&inode->i_data.private_list));
508 BUG_ON(!(inode->i_state & I_FREEING));
509 BUG_ON(inode->i_state & I_CLEAR);
510 BUG_ON(!list_empty(&inode->i_wb_list));
511 /* don't need i_lock here, no concurrent mods to i_state */
512 inode->i_state = I_FREEING | I_CLEAR;
514 EXPORT_SYMBOL(clear_inode);
517 * Free the inode passed in, removing it from the lists it is still connected
518 * to. We remove any pages still attached to the inode and wait for any IO that
519 * is still in progress before finally destroying the inode.
521 * An inode must already be marked I_FREEING so that we avoid the inode being
522 * moved back onto lists if we race with other code that manipulates the lists
523 * (e.g. writeback_single_inode). The caller is responsible for setting this.
525 * An inode must already be removed from the LRU list before being evicted from
526 * the cache. This should occur atomically with setting the I_FREEING state
527 * flag, so no inodes here should ever be on the LRU when being evicted.
529 static void evict(struct inode *inode)
531 const struct super_operations *op = inode->i_sb->s_op;
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(!list_empty(&inode->i_lru));
536 if (!list_empty(&inode->i_io_list))
537 inode_io_list_del(inode);
539 inode_sb_list_del(inode);
542 * Wait for flusher thread to be done with the inode so that filesystem
543 * does not start destroying it while writeback is still running. Since
544 * the inode has I_FREEING set, flusher thread won't start new work on
545 * the inode. We just have to wait for running writeback to finish.
547 inode_wait_for_writeback(inode);
549 if (op->evict_inode) {
550 op->evict_inode(inode);
552 truncate_inode_pages_final(&inode->i_data);
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
560 remove_inode_hash(inode);
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
567 destroy_inode(inode);
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
577 static void dispose_list(struct list_head *head)
579 while (!list_empty(head)) {
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
591 * evict_inodes - evict all evictable inodes for a superblock
592 * @sb: superblock to operate on
594 * Make sure that no inodes with zero refcount are retained. This is
595 * called by superblock shutdown after having MS_ACTIVE flag removed,
596 * so any inode reaching zero refcount during or after that call will
597 * be immediately evicted.
599 void evict_inodes(struct super_block *sb)
601 struct inode *inode, *next;
605 spin_lock(&sb->s_inode_list_lock);
606 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
607 if (atomic_read(&inode->i_count))
610 spin_lock(&inode->i_lock);
611 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
612 spin_unlock(&inode->i_lock);
616 inode->i_state |= I_FREEING;
617 inode_lru_list_del(inode);
618 spin_unlock(&inode->i_lock);
619 list_add(&inode->i_lru, &dispose);
622 * We can have a ton of inodes to evict at unmount time given
623 * enough memory, check to see if we need to go to sleep for a
624 * bit so we don't livelock.
626 if (need_resched()) {
627 spin_unlock(&sb->s_inode_list_lock);
629 dispose_list(&dispose);
633 spin_unlock(&sb->s_inode_list_lock);
635 dispose_list(&dispose);
639 * invalidate_inodes - attempt to free all inodes on a superblock
640 * @sb: superblock to operate on
641 * @kill_dirty: flag to guide handling of dirty inodes
643 * Attempts to free all inodes for a given superblock. If there were any
644 * busy inodes return a non-zero value, else zero.
645 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
648 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
651 struct inode *inode, *next;
654 spin_lock(&sb->s_inode_list_lock);
655 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
656 spin_lock(&inode->i_lock);
657 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
658 spin_unlock(&inode->i_lock);
661 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
662 spin_unlock(&inode->i_lock);
666 if (atomic_read(&inode->i_count)) {
667 spin_unlock(&inode->i_lock);
672 inode->i_state |= I_FREEING;
673 inode_lru_list_del(inode);
674 spin_unlock(&inode->i_lock);
675 list_add(&inode->i_lru, &dispose);
677 spin_unlock(&sb->s_inode_list_lock);
679 dispose_list(&dispose);
685 * Isolate the inode from the LRU in preparation for freeing it.
687 * Any inodes which are pinned purely because of attached pagecache have their
688 * pagecache removed. If the inode has metadata buffers attached to
689 * mapping->private_list then try to remove them.
691 * If the inode has the I_REFERENCED flag set, then it means that it has been
692 * used recently - the flag is set in iput_final(). When we encounter such an
693 * inode, clear the flag and move it to the back of the LRU so it gets another
694 * pass through the LRU before it gets reclaimed. This is necessary because of
695 * the fact we are doing lazy LRU updates to minimise lock contention so the
696 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
697 * with this flag set because they are the inodes that are out of order.
699 static enum lru_status inode_lru_isolate(struct list_head *item,
700 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
702 struct list_head *freeable = arg;
703 struct inode *inode = container_of(item, struct inode, i_lru);
706 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
707 * If we fail to get the lock, just skip it.
709 if (!spin_trylock(&inode->i_lock))
713 * Referenced or dirty inodes are still in use. Give them another pass
714 * through the LRU as we canot reclaim them now.
716 if (atomic_read(&inode->i_count) ||
717 (inode->i_state & ~I_REFERENCED)) {
718 list_lru_isolate(lru, &inode->i_lru);
719 spin_unlock(&inode->i_lock);
720 this_cpu_dec(nr_unused);
724 /* recently referenced inodes get one more pass */
725 if (inode->i_state & I_REFERENCED) {
726 inode->i_state &= ~I_REFERENCED;
727 spin_unlock(&inode->i_lock);
731 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
733 spin_unlock(&inode->i_lock);
734 spin_unlock(lru_lock);
735 if (remove_inode_buffers(inode)) {
737 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
738 if (current_is_kswapd())
739 __count_vm_events(KSWAPD_INODESTEAL, reap);
741 __count_vm_events(PGINODESTEAL, reap);
742 if (current->reclaim_state)
743 current->reclaim_state->reclaimed_slab += reap;
750 WARN_ON(inode->i_state & I_NEW);
751 inode->i_state |= I_FREEING;
752 list_lru_isolate_move(lru, &inode->i_lru, freeable);
753 spin_unlock(&inode->i_lock);
755 this_cpu_dec(nr_unused);
760 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
761 * This is called from the superblock shrinker function with a number of inodes
762 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
763 * then are freed outside inode_lock by dispose_list().
765 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
770 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
771 inode_lru_isolate, &freeable);
772 dispose_list(&freeable);
776 static void __wait_on_freeing_inode(struct inode *inode);
778 * Called with the inode lock held.
780 static struct inode *find_inode(struct super_block *sb,
781 struct hlist_head *head,
782 int (*test)(struct inode *, void *),
785 struct inode *inode = NULL;
788 hlist_for_each_entry(inode, head, i_hash) {
789 if (inode->i_sb != sb)
791 if (!test(inode, data))
793 spin_lock(&inode->i_lock);
794 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
795 __wait_on_freeing_inode(inode);
799 spin_unlock(&inode->i_lock);
806 * find_inode_fast is the fast path version of find_inode, see the comment at
807 * iget_locked for details.
809 static struct inode *find_inode_fast(struct super_block *sb,
810 struct hlist_head *head, unsigned long ino)
812 struct inode *inode = NULL;
815 hlist_for_each_entry(inode, head, i_hash) {
816 if (inode->i_ino != ino)
818 if (inode->i_sb != sb)
820 spin_lock(&inode->i_lock);
821 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
822 __wait_on_freeing_inode(inode);
826 spin_unlock(&inode->i_lock);
833 * Each cpu owns a range of LAST_INO_BATCH numbers.
834 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
835 * to renew the exhausted range.
837 * This does not significantly increase overflow rate because every CPU can
838 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
839 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
840 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
841 * overflow rate by 2x, which does not seem too significant.
843 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
844 * error if st_ino won't fit in target struct field. Use 32bit counter
845 * here to attempt to avoid that.
847 #define LAST_INO_BATCH 1024
848 static DEFINE_PER_CPU(unsigned int, last_ino);
850 unsigned int get_next_ino(void)
852 unsigned int *p = &get_cpu_var(last_ino);
853 unsigned int res = *p;
856 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
857 static atomic_t shared_last_ino;
858 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
860 res = next - LAST_INO_BATCH;
865 /* get_next_ino should not provide a 0 inode number */
869 put_cpu_var(last_ino);
872 EXPORT_SYMBOL(get_next_ino);
875 * new_inode_pseudo - obtain an inode
878 * Allocates a new inode for given superblock.
879 * Inode wont be chained in superblock s_inodes list
881 * - fs can't be unmount
882 * - quotas, fsnotify, writeback can't work
884 struct inode *new_inode_pseudo(struct super_block *sb)
886 struct inode *inode = alloc_inode(sb);
889 spin_lock(&inode->i_lock);
891 spin_unlock(&inode->i_lock);
892 INIT_LIST_HEAD(&inode->i_sb_list);
898 * new_inode - obtain an inode
901 * Allocates a new inode for given superblock. The default gfp_mask
902 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
903 * If HIGHMEM pages are unsuitable or it is known that pages allocated
904 * for the page cache are not reclaimable or migratable,
905 * mapping_set_gfp_mask() must be called with suitable flags on the
906 * newly created inode's mapping
909 struct inode *new_inode(struct super_block *sb)
913 spin_lock_prefetch(&sb->s_inode_list_lock);
915 inode = new_inode_pseudo(sb);
917 inode_sb_list_add(inode);
920 EXPORT_SYMBOL(new_inode);
922 #ifdef CONFIG_DEBUG_LOCK_ALLOC
923 void lockdep_annotate_inode_mutex_key(struct inode *inode)
925 if (S_ISDIR(inode->i_mode)) {
926 struct file_system_type *type = inode->i_sb->s_type;
928 /* Set new key only if filesystem hasn't already changed it */
929 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
931 * ensure nobody is actually holding i_mutex
933 // mutex_destroy(&inode->i_mutex);
934 init_rwsem(&inode->i_rwsem);
935 lockdep_set_class(&inode->i_rwsem,
936 &type->i_mutex_dir_key);
940 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
944 * unlock_new_inode - clear the I_NEW state and wake up any waiters
945 * @inode: new inode to unlock
947 * Called when the inode is fully initialised to clear the new state of the
948 * inode and wake up anyone waiting for the inode to finish initialisation.
950 void unlock_new_inode(struct inode *inode)
952 lockdep_annotate_inode_mutex_key(inode);
953 spin_lock(&inode->i_lock);
954 WARN_ON(!(inode->i_state & I_NEW));
955 inode->i_state &= ~I_NEW;
957 wake_up_bit(&inode->i_state, __I_NEW);
958 spin_unlock(&inode->i_lock);
960 EXPORT_SYMBOL(unlock_new_inode);
963 * lock_two_nondirectories - take two i_mutexes on non-directory objects
965 * Lock any non-NULL argument that is not a directory.
966 * Zero, one or two objects may be locked by this function.
968 * @inode1: first inode to lock
969 * @inode2: second inode to lock
971 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
974 swap(inode1, inode2);
976 if (inode1 && !S_ISDIR(inode1->i_mode))
978 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
981 EXPORT_SYMBOL(lock_two_nondirectories);
984 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
985 * @inode1: first inode to unlock
986 * @inode2: second inode to unlock
988 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
990 if (inode1 && !S_ISDIR(inode1->i_mode))
991 inode_unlock(inode1);
992 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
993 inode_unlock(inode2);
995 EXPORT_SYMBOL(unlock_two_nondirectories);
998 * iget5_locked - obtain an inode from a mounted file system
999 * @sb: super block of file system
1000 * @hashval: hash value (usually inode number) to get
1001 * @test: callback used for comparisons between inodes
1002 * @set: callback used to initialize a new struct inode
1003 * @data: opaque data pointer to pass to @test and @set
1005 * Search for the inode specified by @hashval and @data in the inode cache,
1006 * and if present it is return it with an increased reference count. This is
1007 * a generalized version of iget_locked() for file systems where the inode
1008 * number is not sufficient for unique identification of an inode.
1010 * If the inode is not in cache, allocate a new inode and return it locked,
1011 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1012 * before unlocking it via unlock_new_inode().
1014 * Note both @test and @set are called with the inode_hash_lock held, so can't
1017 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1018 int (*test)(struct inode *, void *),
1019 int (*set)(struct inode *, void *), void *data)
1021 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1022 struct inode *inode;
1024 spin_lock(&inode_hash_lock);
1025 inode = find_inode(sb, head, test, data);
1026 spin_unlock(&inode_hash_lock);
1029 wait_on_inode(inode);
1030 if (unlikely(inode_unhashed(inode))) {
1037 inode = alloc_inode(sb);
1041 spin_lock(&inode_hash_lock);
1042 /* We released the lock, so.. */
1043 old = find_inode(sb, head, test, data);
1045 if (set(inode, data))
1048 spin_lock(&inode->i_lock);
1049 inode->i_state = I_NEW;
1050 hlist_add_head(&inode->i_hash, head);
1051 spin_unlock(&inode->i_lock);
1052 inode_sb_list_add(inode);
1053 spin_unlock(&inode_hash_lock);
1055 /* Return the locked inode with I_NEW set, the
1056 * caller is responsible for filling in the contents
1062 * Uhhuh, somebody else created the same inode under
1063 * us. Use the old inode instead of the one we just
1066 spin_unlock(&inode_hash_lock);
1067 destroy_inode(inode);
1069 wait_on_inode(inode);
1070 if (unlikely(inode_unhashed(inode))) {
1078 spin_unlock(&inode_hash_lock);
1079 destroy_inode(inode);
1082 EXPORT_SYMBOL(iget5_locked);
1085 * iget_locked - obtain an inode from a mounted file system
1086 * @sb: super block of file system
1087 * @ino: inode number to get
1089 * Search for the inode specified by @ino in the inode cache and if present
1090 * return it with an increased reference count. This is for file systems
1091 * where the inode number is sufficient for unique identification of an inode.
1093 * If the inode is not in cache, allocate a new inode and return it locked,
1094 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1095 * before unlocking it via unlock_new_inode().
1097 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1099 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1100 struct inode *inode;
1102 spin_lock(&inode_hash_lock);
1103 inode = find_inode_fast(sb, head, ino);
1104 spin_unlock(&inode_hash_lock);
1106 wait_on_inode(inode);
1107 if (unlikely(inode_unhashed(inode))) {
1114 inode = alloc_inode(sb);
1118 spin_lock(&inode_hash_lock);
1119 /* We released the lock, so.. */
1120 old = find_inode_fast(sb, head, ino);
1123 spin_lock(&inode->i_lock);
1124 inode->i_state = I_NEW;
1125 hlist_add_head(&inode->i_hash, head);
1126 spin_unlock(&inode->i_lock);
1127 inode_sb_list_add(inode);
1128 spin_unlock(&inode_hash_lock);
1130 /* Return the locked inode with I_NEW set, the
1131 * caller is responsible for filling in the contents
1137 * Uhhuh, somebody else created the same inode under
1138 * us. Use the old inode instead of the one we just
1141 spin_unlock(&inode_hash_lock);
1142 destroy_inode(inode);
1144 wait_on_inode(inode);
1145 if (unlikely(inode_unhashed(inode))) {
1152 EXPORT_SYMBOL(iget_locked);
1155 * search the inode cache for a matching inode number.
1156 * If we find one, then the inode number we are trying to
1157 * allocate is not unique and so we should not use it.
1159 * Returns 1 if the inode number is unique, 0 if it is not.
1161 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1163 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1164 struct inode *inode;
1166 spin_lock(&inode_hash_lock);
1167 hlist_for_each_entry(inode, b, i_hash) {
1168 if (inode->i_ino == ino && inode->i_sb == sb) {
1169 spin_unlock(&inode_hash_lock);
1173 spin_unlock(&inode_hash_lock);
1179 * iunique - get a unique inode number
1181 * @max_reserved: highest reserved inode number
1183 * Obtain an inode number that is unique on the system for a given
1184 * superblock. This is used by file systems that have no natural
1185 * permanent inode numbering system. An inode number is returned that
1186 * is higher than the reserved limit but unique.
1189 * With a large number of inodes live on the file system this function
1190 * currently becomes quite slow.
1192 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1195 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1196 * error if st_ino won't fit in target struct field. Use 32bit counter
1197 * here to attempt to avoid that.
1199 static DEFINE_SPINLOCK(iunique_lock);
1200 static unsigned int counter;
1203 spin_lock(&iunique_lock);
1205 if (counter <= max_reserved)
1206 counter = max_reserved + 1;
1208 } while (!test_inode_iunique(sb, res));
1209 spin_unlock(&iunique_lock);
1213 EXPORT_SYMBOL(iunique);
1215 struct inode *igrab(struct inode *inode)
1217 spin_lock(&inode->i_lock);
1218 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1220 spin_unlock(&inode->i_lock);
1222 spin_unlock(&inode->i_lock);
1224 * Handle the case where s_op->clear_inode is not been
1225 * called yet, and somebody is calling igrab
1226 * while the inode is getting freed.
1232 EXPORT_SYMBOL(igrab);
1235 * ilookup5_nowait - search for an inode in the inode cache
1236 * @sb: super block of file system to search
1237 * @hashval: hash value (usually inode number) to search for
1238 * @test: callback used for comparisons between inodes
1239 * @data: opaque data pointer to pass to @test
1241 * Search for the inode specified by @hashval and @data in the inode cache.
1242 * If the inode is in the cache, the inode is returned with an incremented
1245 * Note: I_NEW is not waited upon so you have to be very careful what you do
1246 * with the returned inode. You probably should be using ilookup5() instead.
1248 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1250 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1251 int (*test)(struct inode *, void *), void *data)
1253 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1254 struct inode *inode;
1256 spin_lock(&inode_hash_lock);
1257 inode = find_inode(sb, head, test, data);
1258 spin_unlock(&inode_hash_lock);
1262 EXPORT_SYMBOL(ilookup5_nowait);
1265 * ilookup5 - search for an inode in the inode cache
1266 * @sb: super block of file system to search
1267 * @hashval: hash value (usually inode number) to search for
1268 * @test: callback used for comparisons between inodes
1269 * @data: opaque data pointer to pass to @test
1271 * Search for the inode specified by @hashval and @data in the inode cache,
1272 * and if the inode is in the cache, return the inode with an incremented
1273 * reference count. Waits on I_NEW before returning the inode.
1274 * returned with an incremented reference count.
1276 * This is a generalized version of ilookup() for file systems where the
1277 * inode number is not sufficient for unique identification of an inode.
1279 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1281 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1282 int (*test)(struct inode *, void *), void *data)
1284 struct inode *inode;
1286 inode = ilookup5_nowait(sb, hashval, test, data);
1288 wait_on_inode(inode);
1289 if (unlikely(inode_unhashed(inode))) {
1296 EXPORT_SYMBOL(ilookup5);
1299 * ilookup - search for an inode in the inode cache
1300 * @sb: super block of file system to search
1301 * @ino: inode number to search for
1303 * Search for the inode @ino in the inode cache, and if the inode is in the
1304 * cache, the inode is returned with an incremented reference count.
1306 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1308 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1309 struct inode *inode;
1311 spin_lock(&inode_hash_lock);
1312 inode = find_inode_fast(sb, head, ino);
1313 spin_unlock(&inode_hash_lock);
1316 wait_on_inode(inode);
1317 if (unlikely(inode_unhashed(inode))) {
1324 EXPORT_SYMBOL(ilookup);
1327 * find_inode_nowait - find an inode in the inode cache
1328 * @sb: super block of file system to search
1329 * @hashval: hash value (usually inode number) to search for
1330 * @match: callback used for comparisons between inodes
1331 * @data: opaque data pointer to pass to @match
1333 * Search for the inode specified by @hashval and @data in the inode
1334 * cache, where the helper function @match will return 0 if the inode
1335 * does not match, 1 if the inode does match, and -1 if the search
1336 * should be stopped. The @match function must be responsible for
1337 * taking the i_lock spin_lock and checking i_state for an inode being
1338 * freed or being initialized, and incrementing the reference count
1339 * before returning 1. It also must not sleep, since it is called with
1340 * the inode_hash_lock spinlock held.
1342 * This is a even more generalized version of ilookup5() when the
1343 * function must never block --- find_inode() can block in
1344 * __wait_on_freeing_inode() --- or when the caller can not increment
1345 * the reference count because the resulting iput() might cause an
1346 * inode eviction. The tradeoff is that the @match funtion must be
1347 * very carefully implemented.
1349 struct inode *find_inode_nowait(struct super_block *sb,
1350 unsigned long hashval,
1351 int (*match)(struct inode *, unsigned long,
1355 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1356 struct inode *inode, *ret_inode = NULL;
1359 spin_lock(&inode_hash_lock);
1360 hlist_for_each_entry(inode, head, i_hash) {
1361 if (inode->i_sb != sb)
1363 mval = match(inode, hashval, data);
1371 spin_unlock(&inode_hash_lock);
1374 EXPORT_SYMBOL(find_inode_nowait);
1376 int insert_inode_locked(struct inode *inode)
1378 struct super_block *sb = inode->i_sb;
1379 ino_t ino = inode->i_ino;
1380 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1383 struct inode *old = NULL;
1384 spin_lock(&inode_hash_lock);
1385 hlist_for_each_entry(old, head, i_hash) {
1386 if (old->i_ino != ino)
1388 if (old->i_sb != sb)
1390 spin_lock(&old->i_lock);
1391 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1392 spin_unlock(&old->i_lock);
1398 spin_lock(&inode->i_lock);
1399 inode->i_state |= I_NEW;
1400 hlist_add_head(&inode->i_hash, head);
1401 spin_unlock(&inode->i_lock);
1402 spin_unlock(&inode_hash_lock);
1406 spin_unlock(&old->i_lock);
1407 spin_unlock(&inode_hash_lock);
1409 if (unlikely(!inode_unhashed(old))) {
1416 EXPORT_SYMBOL(insert_inode_locked);
1418 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1419 int (*test)(struct inode *, void *), void *data)
1421 struct super_block *sb = inode->i_sb;
1422 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425 struct inode *old = NULL;
1427 spin_lock(&inode_hash_lock);
1428 hlist_for_each_entry(old, head, i_hash) {
1429 if (old->i_sb != sb)
1431 if (!test(old, data))
1433 spin_lock(&old->i_lock);
1434 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1435 spin_unlock(&old->i_lock);
1441 spin_lock(&inode->i_lock);
1442 inode->i_state |= I_NEW;
1443 hlist_add_head(&inode->i_hash, head);
1444 spin_unlock(&inode->i_lock);
1445 spin_unlock(&inode_hash_lock);
1449 spin_unlock(&old->i_lock);
1450 spin_unlock(&inode_hash_lock);
1452 if (unlikely(!inode_unhashed(old))) {
1459 EXPORT_SYMBOL(insert_inode_locked4);
1462 int generic_delete_inode(struct inode *inode)
1466 EXPORT_SYMBOL(generic_delete_inode);
1469 * Called when we're dropping the last reference
1472 * Call the FS "drop_inode()" function, defaulting to
1473 * the legacy UNIX filesystem behaviour. If it tells
1474 * us to evict inode, do so. Otherwise, retain inode
1475 * in cache if fs is alive, sync and evict if fs is
1478 static void iput_final(struct inode *inode)
1480 struct super_block *sb = inode->i_sb;
1481 const struct super_operations *op = inode->i_sb->s_op;
1484 WARN_ON(inode->i_state & I_NEW);
1487 drop = op->drop_inode(inode);
1489 drop = generic_drop_inode(inode);
1491 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1492 inode->i_state |= I_REFERENCED;
1493 inode_add_lru(inode);
1494 spin_unlock(&inode->i_lock);
1499 inode->i_state |= I_WILL_FREE;
1500 spin_unlock(&inode->i_lock);
1501 write_inode_now(inode, 1);
1502 spin_lock(&inode->i_lock);
1503 WARN_ON(inode->i_state & I_NEW);
1504 inode->i_state &= ~I_WILL_FREE;
1507 inode->i_state |= I_FREEING;
1508 if (!list_empty(&inode->i_lru))
1509 inode_lru_list_del(inode);
1510 spin_unlock(&inode->i_lock);
1516 * iput - put an inode
1517 * @inode: inode to put
1519 * Puts an inode, dropping its usage count. If the inode use count hits
1520 * zero, the inode is then freed and may also be destroyed.
1522 * Consequently, iput() can sleep.
1524 void iput(struct inode *inode)
1528 BUG_ON(inode->i_state & I_CLEAR);
1530 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1531 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1532 atomic_inc(&inode->i_count);
1533 inode->i_state &= ~I_DIRTY_TIME;
1534 spin_unlock(&inode->i_lock);
1535 trace_writeback_lazytime_iput(inode);
1536 mark_inode_dirty_sync(inode);
1542 EXPORT_SYMBOL(iput);
1545 * bmap - find a block number in a file
1546 * @inode: inode of file
1547 * @block: block to find
1549 * Returns the block number on the device holding the inode that
1550 * is the disk block number for the block of the file requested.
1551 * That is, asked for block 4 of inode 1 the function will return the
1552 * disk block relative to the disk start that holds that block of the
1555 sector_t bmap(struct inode *inode, sector_t block)
1558 if (inode->i_mapping->a_ops->bmap)
1559 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1562 EXPORT_SYMBOL(bmap);
1565 * Update times in overlayed inode from underlying real inode
1567 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571 struct inode *realinode = d_real_inode(dentry);
1573 if (unlikely(inode != realinode) &&
1574 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1575 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1576 inode->i_mtime = realinode->i_mtime;
1577 inode->i_ctime = realinode->i_ctime;
1583 * With relative atime, only update atime if the previous atime is
1584 * earlier than either the ctime or mtime or if at least a day has
1585 * passed since the last atime update.
1587 static int relatime_need_update(const struct path *path, struct inode *inode,
1588 struct timespec now, bool rcu)
1591 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1594 update_ovl_inode_times(path->dentry, inode, rcu);
1596 * Is mtime younger than atime? If yes, update atime:
1598 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1601 * Is ctime younger than atime? If yes, update atime:
1603 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1607 * Is the previous atime value older than a day? If yes,
1610 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1613 * Good, we can skip the atime update:
1618 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1620 int iflags = I_DIRTY_TIME;
1622 if (flags & S_ATIME)
1623 inode->i_atime = *time;
1624 if (flags & S_VERSION)
1625 inode_inc_iversion(inode);
1626 if (flags & S_CTIME)
1627 inode->i_ctime = *time;
1628 if (flags & S_MTIME)
1629 inode->i_mtime = *time;
1631 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1632 iflags |= I_DIRTY_SYNC;
1633 __mark_inode_dirty(inode, iflags);
1636 EXPORT_SYMBOL(generic_update_time);
1639 * This does the actual work of updating an inodes time or version. Must have
1640 * had called mnt_want_write() before calling this.
1642 static int update_time(struct inode *inode, struct timespec *time, int flags)
1644 int (*update_time)(struct inode *, struct timespec *, int);
1646 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1647 generic_update_time;
1649 return update_time(inode, time, flags);
1653 * touch_atime - update the access time
1654 * @path: the &struct path to update
1655 * @inode: inode to update
1657 * Update the accessed time on an inode and mark it for writeback.
1658 * This function automatically handles read only file systems and media,
1659 * as well as the "noatime" flag and inode specific "noatime" markers.
1661 bool __atime_needs_update(const struct path *path, struct inode *inode,
1664 struct vfsmount *mnt = path->mnt;
1665 struct timespec now;
1667 if (inode->i_flags & S_NOATIME)
1670 /* Atime updates will likely cause i_uid and i_gid to be written
1671 * back improprely if their true value is unknown to the vfs.
1673 if (HAS_UNMAPPED_ID(inode))
1676 if (IS_NOATIME(inode))
1678 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1681 if (mnt->mnt_flags & MNT_NOATIME)
1683 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1686 now = current_time(inode);
1688 if (!relatime_need_update(path, inode, now, rcu))
1691 if (timespec_equal(&inode->i_atime, &now))
1697 void touch_atime(const struct path *path)
1699 struct vfsmount *mnt = path->mnt;
1700 struct inode *inode = d_inode(path->dentry);
1701 struct timespec now;
1703 if (!__atime_needs_update(path, inode, false))
1706 if (!sb_start_write_trylock(inode->i_sb))
1709 if (__mnt_want_write(mnt) != 0)
1712 * File systems can error out when updating inodes if they need to
1713 * allocate new space to modify an inode (such is the case for
1714 * Btrfs), but since we touch atime while walking down the path we
1715 * really don't care if we failed to update the atime of the file,
1716 * so just ignore the return value.
1717 * We may also fail on filesystems that have the ability to make parts
1718 * of the fs read only, e.g. subvolumes in Btrfs.
1720 now = current_time(inode);
1721 update_time(inode, &now, S_ATIME);
1722 __mnt_drop_write(mnt);
1724 sb_end_write(inode->i_sb);
1726 EXPORT_SYMBOL(touch_atime);
1729 * The logic we want is
1731 * if suid or (sgid and xgrp)
1734 int should_remove_suid(struct dentry *dentry)
1736 umode_t mode = d_inode(dentry)->i_mode;
1739 /* suid always must be killed */
1740 if (unlikely(mode & S_ISUID))
1741 kill = ATTR_KILL_SUID;
1744 * sgid without any exec bits is just a mandatory locking mark; leave
1745 * it alone. If some exec bits are set, it's a real sgid; kill it.
1747 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1748 kill |= ATTR_KILL_SGID;
1750 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1755 EXPORT_SYMBOL(should_remove_suid);
1758 * Return mask of changes for notify_change() that need to be done as a
1759 * response to write or truncate. Return 0 if nothing has to be changed.
1760 * Negative value on error (change should be denied).
1762 int dentry_needs_remove_privs(struct dentry *dentry)
1764 struct inode *inode = d_inode(dentry);
1768 if (IS_NOSEC(inode))
1771 mask = should_remove_suid(dentry);
1772 ret = security_inode_need_killpriv(dentry);
1776 mask |= ATTR_KILL_PRIV;
1780 static int __remove_privs(struct dentry *dentry, int kill)
1782 struct iattr newattrs;
1784 newattrs.ia_valid = ATTR_FORCE | kill;
1786 * Note we call this on write, so notify_change will not
1787 * encounter any conflicting delegations:
1789 return notify_change(dentry, &newattrs, NULL);
1793 * Remove special file priviledges (suid, capabilities) when file is written
1796 int file_remove_privs(struct file *file)
1798 struct dentry *dentry = file_dentry(file);
1799 struct inode *inode = file_inode(file);
1803 /* Fast path for nothing security related */
1804 if (IS_NOSEC(inode))
1807 kill = dentry_needs_remove_privs(dentry);
1811 error = __remove_privs(dentry, kill);
1813 inode_has_no_xattr(inode);
1817 EXPORT_SYMBOL(file_remove_privs);
1820 * file_update_time - update mtime and ctime time
1821 * @file: file accessed
1823 * Update the mtime and ctime members of an inode and mark the inode
1824 * for writeback. Note that this function is meant exclusively for
1825 * usage in the file write path of filesystems, and filesystems may
1826 * choose to explicitly ignore update via this function with the
1827 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1828 * timestamps are handled by the server. This can return an error for
1829 * file systems who need to allocate space in order to update an inode.
1832 int file_update_time(struct file *file)
1834 struct inode *inode = file_inode(file);
1835 struct timespec now;
1839 /* First try to exhaust all avenues to not sync */
1840 if (IS_NOCMTIME(inode))
1843 now = current_time(inode);
1844 if (!timespec_equal(&inode->i_mtime, &now))
1847 if (!timespec_equal(&inode->i_ctime, &now))
1850 if (IS_I_VERSION(inode))
1851 sync_it |= S_VERSION;
1856 /* Finally allowed to write? Takes lock. */
1857 if (__mnt_want_write_file(file))
1860 ret = update_time(inode, &now, sync_it);
1861 __mnt_drop_write_file(file);
1865 EXPORT_SYMBOL(file_update_time);
1867 int inode_needs_sync(struct inode *inode)
1871 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1875 EXPORT_SYMBOL(inode_needs_sync);
1878 * If we try to find an inode in the inode hash while it is being
1879 * deleted, we have to wait until the filesystem completes its
1880 * deletion before reporting that it isn't found. This function waits
1881 * until the deletion _might_ have completed. Callers are responsible
1882 * to recheck inode state.
1884 * It doesn't matter if I_NEW is not set initially, a call to
1885 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1888 static void __wait_on_freeing_inode(struct inode *inode)
1890 wait_queue_head_t *wq;
1891 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1892 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1893 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1894 spin_unlock(&inode->i_lock);
1895 spin_unlock(&inode_hash_lock);
1897 finish_wait(wq, &wait.wait);
1898 spin_lock(&inode_hash_lock);
1901 static __initdata unsigned long ihash_entries;
1902 static int __init set_ihash_entries(char *str)
1906 ihash_entries = simple_strtoul(str, &str, 0);
1909 __setup("ihash_entries=", set_ihash_entries);
1912 * Initialize the waitqueues and inode hash table.
1914 void __init inode_init_early(void)
1918 /* If hashes are distributed across NUMA nodes, defer
1919 * hash allocation until vmalloc space is available.
1925 alloc_large_system_hash("Inode-cache",
1926 sizeof(struct hlist_head),
1935 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1936 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1939 void __init inode_init(void)
1943 /* inode slab cache */
1944 inode_cachep = kmem_cache_create("inode_cache",
1945 sizeof(struct inode),
1947 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1948 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1951 /* Hash may have been set up in inode_init_early */
1956 alloc_large_system_hash("Inode-cache",
1957 sizeof(struct hlist_head),
1966 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1967 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1972 inode->i_mode = mode;
1973 if (S_ISCHR(mode)) {
1974 inode->i_fop = &def_chr_fops;
1975 inode->i_rdev = rdev;
1976 } else if (S_ISBLK(mode)) {
1977 inode->i_fop = &def_blk_fops;
1978 inode->i_rdev = rdev;
1979 } else if (S_ISFIFO(mode))
1980 inode->i_fop = &pipefifo_fops;
1981 else if (S_ISSOCK(mode))
1982 ; /* leave it no_open_fops */
1984 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1985 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1988 EXPORT_SYMBOL(init_special_inode);
1991 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1993 * @dir: Directory inode
1994 * @mode: mode of the new inode
1996 void inode_init_owner(struct inode *inode, const struct inode *dir,
1999 inode->i_uid = current_fsuid();
2000 if (dir && dir->i_mode & S_ISGID) {
2001 inode->i_gid = dir->i_gid;
2005 inode->i_gid = current_fsgid();
2006 inode->i_mode = mode;
2008 EXPORT_SYMBOL(inode_init_owner);
2011 * inode_owner_or_capable - check current task permissions to inode
2012 * @inode: inode being checked
2014 * Return true if current either has CAP_FOWNER in a namespace with the
2015 * inode owner uid mapped, or owns the file.
2017 bool inode_owner_or_capable(const struct inode *inode)
2019 struct user_namespace *ns;
2021 if (uid_eq(current_fsuid(), inode->i_uid))
2024 ns = current_user_ns();
2025 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2029 EXPORT_SYMBOL(inode_owner_or_capable);
2032 * Direct i/o helper functions
2034 static void __inode_dio_wait(struct inode *inode)
2036 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2037 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2040 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2041 if (atomic_read(&inode->i_dio_count))
2043 } while (atomic_read(&inode->i_dio_count));
2044 finish_wait(wq, &q.wait);
2048 * inode_dio_wait - wait for outstanding DIO requests to finish
2049 * @inode: inode to wait for
2051 * Waits for all pending direct I/O requests to finish so that we can
2052 * proceed with a truncate or equivalent operation.
2054 * Must be called under a lock that serializes taking new references
2055 * to i_dio_count, usually by inode->i_mutex.
2057 void inode_dio_wait(struct inode *inode)
2059 if (atomic_read(&inode->i_dio_count))
2060 __inode_dio_wait(inode);
2062 EXPORT_SYMBOL(inode_dio_wait);
2065 * inode_set_flags - atomically set some inode flags
2067 * Note: the caller should be holding i_mutex, or else be sure that
2068 * they have exclusive access to the inode structure (i.e., while the
2069 * inode is being instantiated). The reason for the cmpxchg() loop
2070 * --- which wouldn't be necessary if all code paths which modify
2071 * i_flags actually followed this rule, is that there is at least one
2072 * code path which doesn't today so we use cmpxchg() out of an abundance
2075 * In the long run, i_mutex is overkill, and we should probably look
2076 * at using the i_lock spinlock to protect i_flags, and then make sure
2077 * it is so documented in include/linux/fs.h and that all code follows
2078 * the locking convention!!
2080 void inode_set_flags(struct inode *inode, unsigned int flags,
2083 unsigned int old_flags, new_flags;
2085 WARN_ON_ONCE(flags & ~mask);
2087 old_flags = ACCESS_ONCE(inode->i_flags);
2088 new_flags = (old_flags & ~mask) | flags;
2089 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2090 new_flags) != old_flags));
2092 EXPORT_SYMBOL(inode_set_flags);
2094 void inode_nohighmem(struct inode *inode)
2096 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2098 EXPORT_SYMBOL(inode_nohighmem);
2101 * current_time - Return FS time
2104 * Return the current time truncated to the time granularity supported by
2107 * Note that inode and inode->sb cannot be NULL.
2108 * Otherwise, the function warns and returns time without truncation.
2110 struct timespec current_time(struct inode *inode)
2112 struct timespec now = current_kernel_time();
2114 if (unlikely(!inode->i_sb)) {
2115 WARN(1, "current_time() called with uninitialized super_block in the inode");
2119 return timespec_trunc(now, inode->i_sb->s_time_gran);
2121 EXPORT_SYMBOL(current_time);