2 * AT86RF230/RF231 driver
4 * Copyright (C) 2009-2012 Siemens AG
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
35 #include <net/mac802154.h>
36 #include <net/cfg802154.h>
38 struct at86rf230_local;
39 /* at86rf2xx chip depend data.
40 * All timings are in us.
42 struct at86rf2xx_chip_data {
52 int (*set_channel)(struct at86rf230_local *, u8, u8);
53 int (*get_desense_steps)(struct at86rf230_local *, s32);
56 #define AT86RF2XX_MAX_BUF (127 + 3)
57 /* tx retries to access the TX_ON state
58 * if it's above then force change will be started.
60 * We assume the max_frame_retries (7) value of 802.15.4 here.
62 #define AT86RF2XX_MAX_TX_RETRIES 7
63 /* We use the recommended 5 minutes timeout to recalibrate */
64 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ)
66 struct at86rf230_state_change {
67 struct at86rf230_local *lp;
71 struct spi_message msg;
72 struct spi_transfer trx;
73 u8 buf[AT86RF2XX_MAX_BUF];
75 void (*complete)(void *context);
82 struct at86rf230_local {
83 struct spi_device *spi;
85 struct ieee802154_hw *hw;
86 struct at86rf2xx_chip_data *data;
87 struct regmap *regmap;
89 struct completion state_complete;
90 struct at86rf230_state_change state;
92 struct at86rf230_state_change irq;
95 unsigned long cal_timeout;
99 struct sk_buff *tx_skb;
100 struct at86rf230_state_change tx;
103 #define RG_TRX_STATUS (0x01)
104 #define SR_TRX_STATUS 0x01, 0x1f, 0
105 #define SR_RESERVED_01_3 0x01, 0x20, 5
106 #define SR_CCA_STATUS 0x01, 0x40, 6
107 #define SR_CCA_DONE 0x01, 0x80, 7
108 #define RG_TRX_STATE (0x02)
109 #define SR_TRX_CMD 0x02, 0x1f, 0
110 #define SR_TRAC_STATUS 0x02, 0xe0, 5
111 #define RG_TRX_CTRL_0 (0x03)
112 #define SR_CLKM_CTRL 0x03, 0x07, 0
113 #define SR_CLKM_SHA_SEL 0x03, 0x08, 3
114 #define SR_PAD_IO_CLKM 0x03, 0x30, 4
115 #define SR_PAD_IO 0x03, 0xc0, 6
116 #define RG_TRX_CTRL_1 (0x04)
117 #define SR_IRQ_POLARITY 0x04, 0x01, 0
118 #define SR_IRQ_MASK_MODE 0x04, 0x02, 1
119 #define SR_SPI_CMD_MODE 0x04, 0x0c, 2
120 #define SR_RX_BL_CTRL 0x04, 0x10, 4
121 #define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5
122 #define SR_IRQ_2_EXT_EN 0x04, 0x40, 6
123 #define SR_PA_EXT_EN 0x04, 0x80, 7
124 #define RG_PHY_TX_PWR (0x05)
125 #define SR_TX_PWR 0x05, 0x0f, 0
126 #define SR_PA_LT 0x05, 0x30, 4
127 #define SR_PA_BUF_LT 0x05, 0xc0, 6
128 #define RG_PHY_RSSI (0x06)
129 #define SR_RSSI 0x06, 0x1f, 0
130 #define SR_RND_VALUE 0x06, 0x60, 5
131 #define SR_RX_CRC_VALID 0x06, 0x80, 7
132 #define RG_PHY_ED_LEVEL (0x07)
133 #define SR_ED_LEVEL 0x07, 0xff, 0
134 #define RG_PHY_CC_CCA (0x08)
135 #define SR_CHANNEL 0x08, 0x1f, 0
136 #define SR_CCA_MODE 0x08, 0x60, 5
137 #define SR_CCA_REQUEST 0x08, 0x80, 7
138 #define RG_CCA_THRES (0x09)
139 #define SR_CCA_ED_THRES 0x09, 0x0f, 0
140 #define SR_RESERVED_09_1 0x09, 0xf0, 4
141 #define RG_RX_CTRL (0x0a)
142 #define SR_PDT_THRES 0x0a, 0x0f, 0
143 #define SR_RESERVED_0a_1 0x0a, 0xf0, 4
144 #define RG_SFD_VALUE (0x0b)
145 #define SR_SFD_VALUE 0x0b, 0xff, 0
146 #define RG_TRX_CTRL_2 (0x0c)
147 #define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0
148 #define SR_SUB_MODE 0x0c, 0x04, 2
149 #define SR_BPSK_QPSK 0x0c, 0x08, 3
150 #define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4
151 #define SR_RESERVED_0c_5 0x0c, 0x60, 5
152 #define SR_RX_SAFE_MODE 0x0c, 0x80, 7
153 #define RG_ANT_DIV (0x0d)
154 #define SR_ANT_CTRL 0x0d, 0x03, 0
155 #define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2
156 #define SR_ANT_DIV_EN 0x0d, 0x08, 3
157 #define SR_RESERVED_0d_2 0x0d, 0x70, 4
158 #define SR_ANT_SEL 0x0d, 0x80, 7
159 #define RG_IRQ_MASK (0x0e)
160 #define SR_IRQ_MASK 0x0e, 0xff, 0
161 #define RG_IRQ_STATUS (0x0f)
162 #define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0
163 #define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1
164 #define SR_IRQ_2_RX_START 0x0f, 0x04, 2
165 #define SR_IRQ_3_TRX_END 0x0f, 0x08, 3
166 #define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4
167 #define SR_IRQ_5_AMI 0x0f, 0x20, 5
168 #define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6
169 #define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7
170 #define RG_VREG_CTRL (0x10)
171 #define SR_RESERVED_10_6 0x10, 0x03, 0
172 #define SR_DVDD_OK 0x10, 0x04, 2
173 #define SR_DVREG_EXT 0x10, 0x08, 3
174 #define SR_RESERVED_10_3 0x10, 0x30, 4
175 #define SR_AVDD_OK 0x10, 0x40, 6
176 #define SR_AVREG_EXT 0x10, 0x80, 7
177 #define RG_BATMON (0x11)
178 #define SR_BATMON_VTH 0x11, 0x0f, 0
179 #define SR_BATMON_HR 0x11, 0x10, 4
180 #define SR_BATMON_OK 0x11, 0x20, 5
181 #define SR_RESERVED_11_1 0x11, 0xc0, 6
182 #define RG_XOSC_CTRL (0x12)
183 #define SR_XTAL_TRIM 0x12, 0x0f, 0
184 #define SR_XTAL_MODE 0x12, 0xf0, 4
185 #define RG_RX_SYN (0x15)
186 #define SR_RX_PDT_LEVEL 0x15, 0x0f, 0
187 #define SR_RESERVED_15_2 0x15, 0x70, 4
188 #define SR_RX_PDT_DIS 0x15, 0x80, 7
189 #define RG_XAH_CTRL_1 (0x17)
190 #define SR_RESERVED_17_8 0x17, 0x01, 0
191 #define SR_AACK_PROM_MODE 0x17, 0x02, 1
192 #define SR_AACK_ACK_TIME 0x17, 0x04, 2
193 #define SR_RESERVED_17_5 0x17, 0x08, 3
194 #define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4
195 #define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5
196 #define SR_CSMA_LBT_MODE 0x17, 0x40, 6
197 #define SR_RESERVED_17_1 0x17, 0x80, 7
198 #define RG_FTN_CTRL (0x18)
199 #define SR_RESERVED_18_2 0x18, 0x7f, 0
200 #define SR_FTN_START 0x18, 0x80, 7
201 #define RG_PLL_CF (0x1a)
202 #define SR_RESERVED_1a_2 0x1a, 0x7f, 0
203 #define SR_PLL_CF_START 0x1a, 0x80, 7
204 #define RG_PLL_DCU (0x1b)
205 #define SR_RESERVED_1b_3 0x1b, 0x3f, 0
206 #define SR_RESERVED_1b_2 0x1b, 0x40, 6
207 #define SR_PLL_DCU_START 0x1b, 0x80, 7
208 #define RG_PART_NUM (0x1c)
209 #define SR_PART_NUM 0x1c, 0xff, 0
210 #define RG_VERSION_NUM (0x1d)
211 #define SR_VERSION_NUM 0x1d, 0xff, 0
212 #define RG_MAN_ID_0 (0x1e)
213 #define SR_MAN_ID_0 0x1e, 0xff, 0
214 #define RG_MAN_ID_1 (0x1f)
215 #define SR_MAN_ID_1 0x1f, 0xff, 0
216 #define RG_SHORT_ADDR_0 (0x20)
217 #define SR_SHORT_ADDR_0 0x20, 0xff, 0
218 #define RG_SHORT_ADDR_1 (0x21)
219 #define SR_SHORT_ADDR_1 0x21, 0xff, 0
220 #define RG_PAN_ID_0 (0x22)
221 #define SR_PAN_ID_0 0x22, 0xff, 0
222 #define RG_PAN_ID_1 (0x23)
223 #define SR_PAN_ID_1 0x23, 0xff, 0
224 #define RG_IEEE_ADDR_0 (0x24)
225 #define SR_IEEE_ADDR_0 0x24, 0xff, 0
226 #define RG_IEEE_ADDR_1 (0x25)
227 #define SR_IEEE_ADDR_1 0x25, 0xff, 0
228 #define RG_IEEE_ADDR_2 (0x26)
229 #define SR_IEEE_ADDR_2 0x26, 0xff, 0
230 #define RG_IEEE_ADDR_3 (0x27)
231 #define SR_IEEE_ADDR_3 0x27, 0xff, 0
232 #define RG_IEEE_ADDR_4 (0x28)
233 #define SR_IEEE_ADDR_4 0x28, 0xff, 0
234 #define RG_IEEE_ADDR_5 (0x29)
235 #define SR_IEEE_ADDR_5 0x29, 0xff, 0
236 #define RG_IEEE_ADDR_6 (0x2a)
237 #define SR_IEEE_ADDR_6 0x2a, 0xff, 0
238 #define RG_IEEE_ADDR_7 (0x2b)
239 #define SR_IEEE_ADDR_7 0x2b, 0xff, 0
240 #define RG_XAH_CTRL_0 (0x2c)
241 #define SR_SLOTTED_OPERATION 0x2c, 0x01, 0
242 #define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1
243 #define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4
244 #define RG_CSMA_SEED_0 (0x2d)
245 #define SR_CSMA_SEED_0 0x2d, 0xff, 0
246 #define RG_CSMA_SEED_1 (0x2e)
247 #define SR_CSMA_SEED_1 0x2e, 0x07, 0
248 #define SR_AACK_I_AM_COORD 0x2e, 0x08, 3
249 #define SR_AACK_DIS_ACK 0x2e, 0x10, 4
250 #define SR_AACK_SET_PD 0x2e, 0x20, 5
251 #define SR_AACK_FVN_MODE 0x2e, 0xc0, 6
252 #define RG_CSMA_BE (0x2f)
253 #define SR_MIN_BE 0x2f, 0x0f, 0
254 #define SR_MAX_BE 0x2f, 0xf0, 4
257 #define CMD_REG_MASK 0x3f
258 #define CMD_WRITE 0x40
261 #define IRQ_BAT_LOW (1 << 7)
262 #define IRQ_TRX_UR (1 << 6)
263 #define IRQ_AMI (1 << 5)
264 #define IRQ_CCA_ED (1 << 4)
265 #define IRQ_TRX_END (1 << 3)
266 #define IRQ_RX_START (1 << 2)
267 #define IRQ_PLL_UNL (1 << 1)
268 #define IRQ_PLL_LOCK (1 << 0)
270 #define IRQ_ACTIVE_HIGH 0
271 #define IRQ_ACTIVE_LOW 1
273 #define STATE_P_ON 0x00 /* BUSY */
274 #define STATE_BUSY_RX 0x01
275 #define STATE_BUSY_TX 0x02
276 #define STATE_FORCE_TRX_OFF 0x03
277 #define STATE_FORCE_TX_ON 0x04 /* IDLE */
278 /* 0x05 */ /* INVALID_PARAMETER */
279 #define STATE_RX_ON 0x06
280 /* 0x07 */ /* SUCCESS */
281 #define STATE_TRX_OFF 0x08
282 #define STATE_TX_ON 0x09
283 /* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */
284 #define STATE_SLEEP 0x0F
285 #define STATE_PREP_DEEP_SLEEP 0x10
286 #define STATE_BUSY_RX_AACK 0x11
287 #define STATE_BUSY_TX_ARET 0x12
288 #define STATE_RX_AACK_ON 0x16
289 #define STATE_TX_ARET_ON 0x19
290 #define STATE_RX_ON_NOCLK 0x1C
291 #define STATE_RX_AACK_ON_NOCLK 0x1D
292 #define STATE_BUSY_RX_AACK_NOCLK 0x1E
293 #define STATE_TRANSITION_IN_PROGRESS 0x1F
295 #define TRX_STATE_MASK (0x1F)
297 #define AT86RF2XX_NUMREGS 0x3F
300 at86rf230_async_state_change(struct at86rf230_local *lp,
301 struct at86rf230_state_change *ctx,
302 const u8 state, void (*complete)(void *context),
303 const bool irq_enable);
306 __at86rf230_write(struct at86rf230_local *lp,
307 unsigned int addr, unsigned int data)
309 return regmap_write(lp->regmap, addr, data);
313 __at86rf230_read(struct at86rf230_local *lp,
314 unsigned int addr, unsigned int *data)
316 return regmap_read(lp->regmap, addr, data);
320 at86rf230_read_subreg(struct at86rf230_local *lp,
321 unsigned int addr, unsigned int mask,
322 unsigned int shift, unsigned int *data)
326 rc = __at86rf230_read(lp, addr, data);
328 *data = (*data & mask) >> shift;
334 at86rf230_write_subreg(struct at86rf230_local *lp,
335 unsigned int addr, unsigned int mask,
336 unsigned int shift, unsigned int data)
338 return regmap_update_bits(lp->regmap, addr, mask, data << shift);
342 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
349 case RG_PHY_ED_LEVEL:
365 case RG_SHORT_ADDR_0:
366 case RG_SHORT_ADDR_1:
388 at86rf230_reg_readable(struct device *dev, unsigned int reg)
392 /* all writeable are also readable */
393 rc = at86rf230_reg_writeable(dev, reg);
413 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
415 /* can be changed during runtime */
420 case RG_PHY_ED_LEVEL:
432 at86rf230_reg_precious(struct device *dev, unsigned int reg)
434 /* don't clear irq line on read */
443 static const struct regmap_config at86rf230_regmap_spi_config = {
446 .write_flag_mask = CMD_REG | CMD_WRITE,
447 .read_flag_mask = CMD_REG,
448 .cache_type = REGCACHE_RBTREE,
449 .max_register = AT86RF2XX_NUMREGS,
450 .writeable_reg = at86rf230_reg_writeable,
451 .readable_reg = at86rf230_reg_readable,
452 .volatile_reg = at86rf230_reg_volatile,
453 .precious_reg = at86rf230_reg_precious,
457 at86rf230_async_error_recover(void *context)
459 struct at86rf230_state_change *ctx = context;
460 struct at86rf230_local *lp = ctx->lp;
463 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
464 ieee802154_wake_queue(lp->hw);
468 at86rf230_async_error(struct at86rf230_local *lp,
469 struct at86rf230_state_change *ctx, int rc)
471 dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
473 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
474 at86rf230_async_error_recover, false);
477 /* Generic function to get some register value in async mode */
479 at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
480 struct at86rf230_state_change *ctx,
481 void (*complete)(void *context),
482 const bool irq_enable)
486 u8 *tx_buf = ctx->buf;
488 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
489 ctx->msg.complete = complete;
490 ctx->irq_enable = irq_enable;
491 rc = spi_async(lp->spi, &ctx->msg);
494 enable_irq(ctx->irq);
496 at86rf230_async_error(lp, ctx, rc);
500 static inline u8 at86rf230_state_to_force(u8 state)
502 if (state == STATE_TX_ON)
503 return STATE_FORCE_TX_ON;
505 return STATE_FORCE_TRX_OFF;
509 at86rf230_async_state_assert(void *context)
511 struct at86rf230_state_change *ctx = context;
512 struct at86rf230_local *lp = ctx->lp;
513 const u8 *buf = ctx->buf;
514 const u8 trx_state = buf[1] & TRX_STATE_MASK;
516 /* Assert state change */
517 if (trx_state != ctx->to_state) {
518 /* Special handling if transceiver state is in
519 * STATE_BUSY_RX_AACK and a SHR was detected.
521 if (trx_state == STATE_BUSY_RX_AACK) {
522 /* Undocumented race condition. If we send a state
523 * change to STATE_RX_AACK_ON the transceiver could
524 * change his state automatically to STATE_BUSY_RX_AACK
525 * if a SHR was detected. This is not an error, but we
528 if (ctx->to_state == STATE_RX_AACK_ON)
531 /* If we change to STATE_TX_ON without forcing and
532 * transceiver state is STATE_BUSY_RX_AACK, we wait
533 * 'tFrame + tPAck' receiving time. In this time the
534 * PDU should be received. If the transceiver is still
535 * in STATE_BUSY_RX_AACK, we run a force state change
536 * to STATE_TX_ON. This is a timeout handling, if the
537 * transceiver stucks in STATE_BUSY_RX_AACK.
539 * Additional we do several retries to try to get into
540 * TX_ON state without forcing. If the retries are
541 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
542 * will do a force change.
544 if (ctx->to_state == STATE_TX_ON ||
545 ctx->to_state == STATE_TRX_OFF) {
546 u8 state = ctx->to_state;
548 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
549 state = at86rf230_state_to_force(state);
552 at86rf230_async_state_change(lp, ctx, state,
559 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
560 ctx->from_state, ctx->to_state, trx_state);
565 ctx->complete(context);
568 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
570 struct at86rf230_state_change *ctx =
571 container_of(timer, struct at86rf230_state_change, timer);
572 struct at86rf230_local *lp = ctx->lp;
574 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
575 at86rf230_async_state_assert,
578 return HRTIMER_NORESTART;
581 /* Do state change timing delay. */
583 at86rf230_async_state_delay(void *context)
585 struct at86rf230_state_change *ctx = context;
586 struct at86rf230_local *lp = ctx->lp;
587 struct at86rf2xx_chip_data *c = lp->data;
591 /* The force state changes are will show as normal states in the
592 * state status subregister. We change the to_state to the
593 * corresponding one and remember if it was a force change, this
594 * differs if we do a state change from STATE_BUSY_RX_AACK.
596 switch (ctx->to_state) {
597 case STATE_FORCE_TX_ON:
598 ctx->to_state = STATE_TX_ON;
601 case STATE_FORCE_TRX_OFF:
602 ctx->to_state = STATE_TRX_OFF;
609 switch (ctx->from_state) {
611 switch (ctx->to_state) {
612 case STATE_RX_AACK_ON:
613 tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
614 /* state change from TRX_OFF to RX_AACK_ON to do a
615 * calibration, we need to reset the timeout for the
618 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
621 tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
622 /* state change from TRX_OFF to TX_ON to do a
623 * calibration, we need to reset the timeout for the
626 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
632 case STATE_BUSY_RX_AACK:
633 switch (ctx->to_state) {
636 /* Wait for worst case receiving time if we
637 * didn't make a force change from BUSY_RX_AACK
638 * to TX_ON or TRX_OFF.
641 tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
650 /* Default value, means RESET state */
652 switch (ctx->to_state) {
654 tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
664 /* Default delay is 1us in the most cases */
665 tim = ktime_set(0, NSEC_PER_USEC);
668 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
672 at86rf230_async_state_change_start(void *context)
674 struct at86rf230_state_change *ctx = context;
675 struct at86rf230_local *lp = ctx->lp;
677 const u8 trx_state = buf[1] & TRX_STATE_MASK;
680 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
681 if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
683 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
684 at86rf230_async_state_change_start,
689 /* Check if we already are in the state which we change in */
690 if (trx_state == ctx->to_state) {
692 ctx->complete(context);
696 /* Set current state to the context of state change */
697 ctx->from_state = trx_state;
699 /* Going into the next step for a state change which do a timing
702 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
703 buf[1] = ctx->to_state;
704 ctx->msg.complete = at86rf230_async_state_delay;
705 rc = spi_async(lp->spi, &ctx->msg);
708 enable_irq(ctx->irq);
710 at86rf230_async_error(lp, ctx, rc);
715 at86rf230_async_state_change(struct at86rf230_local *lp,
716 struct at86rf230_state_change *ctx,
717 const u8 state, void (*complete)(void *context),
718 const bool irq_enable)
720 /* Initialization for the state change context */
721 ctx->to_state = state;
722 ctx->complete = complete;
723 ctx->irq_enable = irq_enable;
724 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
725 at86rf230_async_state_change_start,
730 at86rf230_sync_state_change_complete(void *context)
732 struct at86rf230_state_change *ctx = context;
733 struct at86rf230_local *lp = ctx->lp;
735 complete(&lp->state_complete);
738 /* This function do a sync framework above the async state change.
739 * Some callbacks of the IEEE 802.15.4 driver interface need to be
740 * handled synchronously.
743 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
747 at86rf230_async_state_change(lp, &lp->state, state,
748 at86rf230_sync_state_change_complete,
751 rc = wait_for_completion_timeout(&lp->state_complete,
752 msecs_to_jiffies(100));
754 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
762 at86rf230_tx_complete(void *context)
764 struct at86rf230_state_change *ctx = context;
765 struct at86rf230_local *lp = ctx->lp;
767 enable_irq(ctx->irq);
769 ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
773 at86rf230_tx_on(void *context)
775 struct at86rf230_state_change *ctx = context;
776 struct at86rf230_local *lp = ctx->lp;
778 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
779 at86rf230_tx_complete, true);
783 at86rf230_tx_trac_error(void *context)
785 struct at86rf230_state_change *ctx = context;
786 struct at86rf230_local *lp = ctx->lp;
788 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
789 at86rf230_tx_on, true);
793 at86rf230_tx_trac_check(void *context)
795 struct at86rf230_state_change *ctx = context;
796 struct at86rf230_local *lp = ctx->lp;
797 const u8 *buf = ctx->buf;
798 const u8 trac = (buf[1] & 0xe0) >> 5;
800 /* If trac status is different than zero we need to do a state change
801 * to STATE_FORCE_TRX_OFF then STATE_TX_ON to recover the transceiver
805 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
806 at86rf230_tx_trac_error, true);
808 at86rf230_tx_on(context);
812 at86rf230_tx_trac_status(void *context)
814 struct at86rf230_state_change *ctx = context;
815 struct at86rf230_local *lp = ctx->lp;
817 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
818 at86rf230_tx_trac_check, true);
822 at86rf230_rx_read_frame_complete(void *context)
824 struct at86rf230_state_change *ctx = context;
825 struct at86rf230_local *lp = ctx->lp;
826 u8 rx_local_buf[AT86RF2XX_MAX_BUF];
827 const u8 *buf = ctx->buf;
832 if (!ieee802154_is_valid_psdu_len(len)) {
833 dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
834 len = IEEE802154_MTU;
838 memcpy(rx_local_buf, buf + 2, len);
840 enable_irq(ctx->irq);
842 skb = dev_alloc_skb(IEEE802154_MTU);
844 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
848 memcpy(skb_put(skb, len), rx_local_buf, len);
849 ieee802154_rx_irqsafe(lp->hw, skb, lqi);
853 at86rf230_rx_read_frame(void *context)
855 struct at86rf230_state_change *ctx = context;
856 struct at86rf230_local *lp = ctx->lp;
861 ctx->trx.len = AT86RF2XX_MAX_BUF;
862 ctx->msg.complete = at86rf230_rx_read_frame_complete;
863 rc = spi_async(lp->spi, &ctx->msg);
866 enable_irq(ctx->irq);
867 at86rf230_async_error(lp, ctx, rc);
872 at86rf230_rx_trac_check(void *context)
874 /* Possible check on trac status here. This could be useful to make
875 * some stats why receive is failed. Not used at the moment, but it's
876 * maybe timing relevant. Datasheet doesn't say anything about this.
877 * The programming guide say do it so.
880 at86rf230_rx_read_frame(context);
884 at86rf230_irq_trx_end(struct at86rf230_local *lp)
890 at86rf230_async_state_change(lp, &lp->irq,
892 at86rf230_tx_trac_status,
895 at86rf230_async_state_change(lp, &lp->irq,
897 at86rf230_tx_complete,
900 at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
901 at86rf230_rx_trac_check, true);
906 at86rf230_irq_status(void *context)
908 struct at86rf230_state_change *ctx = context;
909 struct at86rf230_local *lp = ctx->lp;
910 const u8 *buf = ctx->buf;
911 const u8 irq = buf[1];
913 if (irq & IRQ_TRX_END) {
914 at86rf230_irq_trx_end(lp);
916 enable_irq(ctx->irq);
917 dev_err(&lp->spi->dev, "not supported irq %02x received\n",
922 static irqreturn_t at86rf230_isr(int irq, void *data)
924 struct at86rf230_local *lp = data;
925 struct at86rf230_state_change *ctx = &lp->irq;
929 disable_irq_nosync(irq);
931 buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
932 ctx->msg.complete = at86rf230_irq_status;
933 rc = spi_async(lp->spi, &ctx->msg);
936 at86rf230_async_error(lp, ctx, rc);
944 at86rf230_write_frame_complete(void *context)
946 struct at86rf230_state_change *ctx = context;
947 struct at86rf230_local *lp = ctx->lp;
951 buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
952 buf[1] = STATE_BUSY_TX;
954 ctx->msg.complete = NULL;
955 rc = spi_async(lp->spi, &ctx->msg);
957 at86rf230_async_error(lp, ctx, rc);
961 at86rf230_write_frame(void *context)
963 struct at86rf230_state_change *ctx = context;
964 struct at86rf230_local *lp = ctx->lp;
965 struct sk_buff *skb = lp->tx_skb;
971 buf[0] = CMD_FB | CMD_WRITE;
972 buf[1] = skb->len + 2;
973 memcpy(buf + 2, skb->data, skb->len);
974 ctx->trx.len = skb->len + 2;
975 ctx->msg.complete = at86rf230_write_frame_complete;
976 rc = spi_async(lp->spi, &ctx->msg);
979 at86rf230_async_error(lp, ctx, rc);
984 at86rf230_xmit_tx_on(void *context)
986 struct at86rf230_state_change *ctx = context;
987 struct at86rf230_local *lp = ctx->lp;
989 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
990 at86rf230_write_frame, false);
994 at86rf230_xmit_start(void *context)
996 struct at86rf230_state_change *ctx = context;
997 struct at86rf230_local *lp = ctx->lp;
999 /* In ARET mode we need to go into STATE_TX_ARET_ON after we
1000 * are in STATE_TX_ON. The pfad differs here, so we change
1001 * the complete handler.
1004 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1005 at86rf230_xmit_tx_on, false);
1007 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1008 at86rf230_write_frame, false);
1012 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
1014 struct at86rf230_local *lp = hw->priv;
1015 struct at86rf230_state_change *ctx = &lp->tx;
1020 /* After 5 minutes in PLL and the same frequency we run again the
1021 * calibration loops which is recommended by at86rf2xx datasheets.
1023 * The calibration is initiate by a state change from TRX_OFF
1024 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
1025 * function then to start in the next 5 minutes.
1027 if (time_is_before_jiffies(lp->cal_timeout))
1028 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
1029 at86rf230_xmit_start, false);
1031 at86rf230_xmit_start(ctx);
1037 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
1045 at86rf230_start(struct ieee802154_hw *hw)
1047 return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON);
1051 at86rf230_stop(struct ieee802154_hw *hw)
1053 at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF);
1057 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1059 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1063 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1068 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1070 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1075 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1076 lp->data->rssi_base_val = -100;
1078 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1079 lp->data->rssi_base_val = -98;
1084 /* This sets the symbol_duration according frequency on the 212.
1085 * TODO move this handling while set channel and page in cfg802154.
1086 * We can do that, this timings are according 802.15.4 standard.
1087 * If we do that in cfg802154, this is a more generic calculation.
1089 * This should also protected from ifs_timer. Means cancel timer and
1090 * init with a new value. For now, this is okay.
1094 /* SUB:0 and BPSK:0 -> BPSK-20 */
1095 lp->hw->phy->symbol_duration = 50;
1097 /* SUB:1 and BPSK:0 -> BPSK-40 */
1098 lp->hw->phy->symbol_duration = 25;
1102 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1103 lp->hw->phy->symbol_duration = 40;
1105 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1106 lp->hw->phy->symbol_duration = 16;
1109 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1110 lp->hw->phy->symbol_duration;
1111 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1112 lp->hw->phy->symbol_duration;
1114 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1118 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1120 struct at86rf230_local *lp = hw->priv;
1123 rc = lp->data->set_channel(lp, page, channel);
1125 usleep_range(lp->data->t_channel_switch,
1126 lp->data->t_channel_switch + 10);
1128 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1133 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1134 struct ieee802154_hw_addr_filt *filt,
1135 unsigned long changed)
1137 struct at86rf230_local *lp = hw->priv;
1139 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1140 u16 addr = le16_to_cpu(filt->short_addr);
1142 dev_vdbg(&lp->spi->dev,
1143 "at86rf230_set_hw_addr_filt called for saddr\n");
1144 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1145 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1148 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1149 u16 pan = le16_to_cpu(filt->pan_id);
1151 dev_vdbg(&lp->spi->dev,
1152 "at86rf230_set_hw_addr_filt called for pan id\n");
1153 __at86rf230_write(lp, RG_PAN_ID_0, pan);
1154 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1157 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1160 memcpy(addr, &filt->ieee_addr, 8);
1161 dev_vdbg(&lp->spi->dev,
1162 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1163 for (i = 0; i < 8; i++)
1164 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1167 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1168 dev_vdbg(&lp->spi->dev,
1169 "at86rf230_set_hw_addr_filt called for panc change\n");
1170 if (filt->pan_coord)
1171 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1173 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1180 at86rf230_set_txpower(struct ieee802154_hw *hw, s8 db)
1182 struct at86rf230_local *lp = hw->priv;
1184 /* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1185 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1187 * thus, supported values for db range from -26 to 5, for 31dB of
1188 * reduction to 0dB of reduction.
1190 if (db > 5 || db < -26)
1195 return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1199 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1201 struct at86rf230_local *lp = hw->priv;
1203 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1207 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1208 const struct wpan_phy_cca *cca)
1210 struct at86rf230_local *lp = hw->priv;
1213 /* mapping 802.15.4 to driver spec */
1214 switch (cca->mode) {
1215 case NL802154_CCA_ENERGY:
1218 case NL802154_CCA_CARRIER:
1221 case NL802154_CCA_ENERGY_CARRIER:
1223 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1226 case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1237 return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1241 at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1243 return (level - lp->data->rssi_base_val) * 100 / 207;
1247 at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1249 return (level - lp->data->rssi_base_val) / 2;
1253 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
1255 struct at86rf230_local *lp = hw->priv;
1257 if (level < lp->data->rssi_base_val || level > 30)
1260 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1261 lp->data->get_desense_steps(lp, level));
1265 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1268 struct at86rf230_local *lp = hw->priv;
1271 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1275 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1279 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1283 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1285 struct at86rf230_local *lp = hw->priv;
1288 lp->tx_aret = retries >= 0;
1289 lp->max_frame_retries = retries;
1292 rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1298 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1300 struct at86rf230_local *lp = hw->priv;
1304 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1308 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1312 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1316 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1324 static const struct ieee802154_ops at86rf230_ops = {
1325 .owner = THIS_MODULE,
1326 .xmit_async = at86rf230_xmit,
1328 .set_channel = at86rf230_channel,
1329 .start = at86rf230_start,
1330 .stop = at86rf230_stop,
1331 .set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1332 .set_txpower = at86rf230_set_txpower,
1333 .set_lbt = at86rf230_set_lbt,
1334 .set_cca_mode = at86rf230_set_cca_mode,
1335 .set_cca_ed_level = at86rf230_set_cca_ed_level,
1336 .set_csma_params = at86rf230_set_csma_params,
1337 .set_frame_retries = at86rf230_set_frame_retries,
1338 .set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1341 static struct at86rf2xx_chip_data at86rf233_data = {
1342 .t_sleep_cycle = 330,
1343 .t_channel_switch = 11,
1344 .t_reset_to_off = 26,
1345 .t_off_to_aack = 80,
1346 .t_off_to_tx_on = 80,
1349 .rssi_base_val = -91,
1350 .set_channel = at86rf23x_set_channel,
1351 .get_desense_steps = at86rf23x_get_desens_steps
1354 static struct at86rf2xx_chip_data at86rf231_data = {
1355 .t_sleep_cycle = 330,
1356 .t_channel_switch = 24,
1357 .t_reset_to_off = 37,
1358 .t_off_to_aack = 110,
1359 .t_off_to_tx_on = 110,
1362 .rssi_base_val = -91,
1363 .set_channel = at86rf23x_set_channel,
1364 .get_desense_steps = at86rf23x_get_desens_steps
1367 static struct at86rf2xx_chip_data at86rf212_data = {
1368 .t_sleep_cycle = 330,
1369 .t_channel_switch = 11,
1370 .t_reset_to_off = 26,
1371 .t_off_to_aack = 200,
1372 .t_off_to_tx_on = 200,
1375 .rssi_base_val = -100,
1376 .set_channel = at86rf212_set_channel,
1377 .get_desense_steps = at86rf212_get_desens_steps
1380 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1382 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1386 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1390 irq_type = irq_get_trigger_type(lp->spi->irq);
1391 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1392 irq_type == IRQ_TYPE_EDGE_FALLING)
1393 dev_warn(&lp->spi->dev,
1394 "Using edge triggered irq's are not recommended!\n");
1395 if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1396 irq_type == IRQ_TYPE_LEVEL_LOW)
1397 irq_pol = IRQ_ACTIVE_LOW;
1399 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1403 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1407 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1411 /* reset values differs in at86rf231 and at86rf233 */
1412 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1416 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1417 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1420 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1424 /* CLKM changes are applied immediately */
1425 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1430 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1433 /* Wait the next SLEEP cycle */
1434 usleep_range(lp->data->t_sleep_cycle,
1435 lp->data->t_sleep_cycle + 100);
1437 /* xtal_trim value is calculated by:
1438 * CL = 0.5 * (CX + CTRIM + CPAR)
1441 * CL = capacitor of used crystal
1442 * CX = connected capacitors at xtal pins
1443 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1444 * but this is different on each board setup. You need to fine
1445 * tuning this value via CTRIM.
1446 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1450 * atben transceiver:
1454 * CPAR = 3 pF (We assume the magic constant from datasheet)
1457 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1461 * openlabs transceiver:
1465 * CPAR = 3 pF (We assume the magic constant from datasheet)
1468 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1472 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1476 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1480 dev_err(&lp->spi->dev, "DVDD error\n");
1484 /* Force setting slotted operation bit to 0. Sometimes the atben
1485 * sets this bit and I don't know why. We set this always force
1486 * to zero while probing.
1488 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1492 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1495 struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1498 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1502 *rstn = pdata->rstn;
1503 *slp_tr = pdata->slp_tr;
1504 *xtal_trim = pdata->xtal_trim;
1508 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1509 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1510 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1511 if (ret < 0 && ret != -EINVAL)
1518 at86rf230_detect_device(struct at86rf230_local *lp)
1520 unsigned int part, version, val;
1525 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1530 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1533 man_id |= (val << 8);
1535 rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1539 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1543 if (man_id != 0x001f) {
1544 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1545 man_id >> 8, man_id & 0xFF);
1549 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK |
1550 IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET |
1551 IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS;
1553 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1562 lp->data = &at86rf231_data;
1563 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1564 lp->hw->phy->current_channel = 11;
1565 lp->hw->phy->symbol_duration = 16;
1569 lp->data = &at86rf212_data;
1570 lp->hw->flags |= IEEE802154_HW_LBT;
1571 lp->hw->phy->channels_supported[0] = 0x00007FF;
1572 lp->hw->phy->channels_supported[2] = 0x00007FF;
1573 lp->hw->phy->current_channel = 5;
1574 lp->hw->phy->symbol_duration = 25;
1578 lp->data = &at86rf233_data;
1579 lp->hw->phy->channels_supported[0] = 0x7FFF800;
1580 lp->hw->phy->current_channel = 13;
1581 lp->hw->phy->symbol_duration = 16;
1589 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1595 at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1598 lp->state.irq = lp->spi->irq;
1599 spi_message_init(&lp->state.msg);
1600 lp->state.msg.context = &lp->state;
1601 lp->state.trx.len = 2;
1602 lp->state.trx.tx_buf = lp->state.buf;
1603 lp->state.trx.rx_buf = lp->state.buf;
1604 spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1605 hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1606 lp->state.timer.function = at86rf230_async_state_timer;
1609 lp->irq.irq = lp->spi->irq;
1610 spi_message_init(&lp->irq.msg);
1611 lp->irq.msg.context = &lp->irq;
1612 lp->irq.trx.len = 2;
1613 lp->irq.trx.tx_buf = lp->irq.buf;
1614 lp->irq.trx.rx_buf = lp->irq.buf;
1615 spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1616 hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1617 lp->irq.timer.function = at86rf230_async_state_timer;
1620 lp->tx.irq = lp->spi->irq;
1621 spi_message_init(&lp->tx.msg);
1622 lp->tx.msg.context = &lp->tx;
1624 lp->tx.trx.tx_buf = lp->tx.buf;
1625 lp->tx.trx.rx_buf = lp->tx.buf;
1626 spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1627 hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1628 lp->tx.timer.function = at86rf230_async_state_timer;
1631 static int at86rf230_probe(struct spi_device *spi)
1633 struct ieee802154_hw *hw;
1634 struct at86rf230_local *lp;
1635 unsigned int status;
1636 int rc, irq_type, rstn, slp_tr;
1640 dev_err(&spi->dev, "no IRQ specified\n");
1644 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1646 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1650 if (gpio_is_valid(rstn)) {
1651 rc = devm_gpio_request_one(&spi->dev, rstn,
1652 GPIOF_OUT_INIT_HIGH, "rstn");
1657 if (gpio_is_valid(slp_tr)) {
1658 rc = devm_gpio_request_one(&spi->dev, slp_tr,
1659 GPIOF_OUT_INIT_LOW, "slp_tr");
1665 if (gpio_is_valid(rstn)) {
1667 gpio_set_value(rstn, 0);
1669 gpio_set_value(rstn, 1);
1670 usleep_range(120, 240);
1673 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1680 hw->parent = &spi->dev;
1681 hw->vif_data_size = sizeof(*lp);
1682 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1684 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1685 if (IS_ERR(lp->regmap)) {
1686 rc = PTR_ERR(lp->regmap);
1687 dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1692 at86rf230_setup_spi_messages(lp);
1694 rc = at86rf230_detect_device(lp);
1698 init_completion(&lp->state_complete);
1700 spi_set_drvdata(spi, lp);
1702 rc = at86rf230_hw_init(lp, xtal_trim);
1706 /* Read irq status register to reset irq line */
1707 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1711 irq_type = irq_get_trigger_type(spi->irq);
1713 irq_type = IRQF_TRIGGER_RISING;
1715 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1716 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1720 rc = ieee802154_register_hw(lp->hw);
1727 ieee802154_free_hw(lp->hw);
1732 static int at86rf230_remove(struct spi_device *spi)
1734 struct at86rf230_local *lp = spi_get_drvdata(spi);
1736 /* mask all at86rf230 irq's */
1737 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1738 ieee802154_unregister_hw(lp->hw);
1739 ieee802154_free_hw(lp->hw);
1740 dev_dbg(&spi->dev, "unregistered at86rf230\n");
1745 static const struct of_device_id at86rf230_of_match[] = {
1746 { .compatible = "atmel,at86rf230", },
1747 { .compatible = "atmel,at86rf231", },
1748 { .compatible = "atmel,at86rf233", },
1749 { .compatible = "atmel,at86rf212", },
1752 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1754 static const struct spi_device_id at86rf230_device_id[] = {
1755 { .name = "at86rf230", },
1756 { .name = "at86rf231", },
1757 { .name = "at86rf233", },
1758 { .name = "at86rf212", },
1761 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1763 static struct spi_driver at86rf230_driver = {
1764 .id_table = at86rf230_device_id,
1766 .of_match_table = of_match_ptr(at86rf230_of_match),
1767 .name = "at86rf230",
1768 .owner = THIS_MODULE,
1770 .probe = at86rf230_probe,
1771 .remove = at86rf230_remove,
1774 module_spi_driver(at86rf230_driver);
1776 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1777 MODULE_LICENSE("GPL v2");