2 * Kernel Debugger Architecture Independent Main Code
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include "kdb_private.h"
50 #undef MODULE_PARAM_PREFIX
51 #define MODULE_PARAM_PREFIX "kdb."
53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
56 char kdb_grep_string[KDB_GREP_STRLEN];
57 int kdb_grepping_flag;
58 EXPORT_SYMBOL(kdb_grepping_flag);
60 int kdb_grep_trailing;
63 * Kernel debugger state flags
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
73 int kdb_state; /* General KDB state */
75 struct task_struct *kdb_current_task;
76 EXPORT_SYMBOL(kdb_current_task);
77 struct pt_regs *kdb_current_regs;
79 const char *kdb_diemsg;
80 static int kdb_go_count;
81 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82 static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
85 static unsigned int kdb_continue_catastrophic;
88 /* kdb_commands describes the available commands. */
89 static kdbtab_t *kdb_commands;
90 #define KDB_BASE_CMD_MAX 50
91 static int kdb_max_commands = KDB_BASE_CMD_MAX;
92 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93 #define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
98 typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
103 #define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
106 static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118 #ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
137 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
150 static char *__env[] = {
151 #if defined(CONFIG_SMP)
158 "MDCOUNT=8", /* lines of md output */
188 static const int __nenv = ARRAY_SIZE(__env);
190 struct task_struct *kdb_curr_task(int cpu)
192 struct task_struct *p = curr_task(cpu);
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
204 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
211 /* some commands change group when launched with no arguments */
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
215 flags |= KDB_ENABLE_ALL;
217 return permissions & flags;
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
224 * match A character string representing an environment variable.
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
229 char *kdbgetenv(const char *match)
232 int matchlen = strlen(match);
235 for (i = 0; i < __nenv; i++) {
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
255 * match A character string representing a numeric value
257 * *value the unsigned long representation of the env variable 'match'
259 * Zero on success, a kdb diagnostic on failure.
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
267 static char *kdballocenv(size_t bytes)
269 #define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
285 * match A character string representing a numeric value
287 * *value the unsigned long represntation of the env variable 'match'
289 * Zero on success, a kdb diagnostic on failure.
291 static int kdbgetulenv(const char *match, unsigned long *value)
295 ep = kdbgetenv(match);
299 return KDB_NOENVVALUE;
301 *value = simple_strtoul(ep, NULL, 0);
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
310 * match A character string representing an integer-valued env variable
312 * *value the integer representation of the environment variable 'match'
314 * Zero on success, a kdb diagnostic on failure.
316 int kdbgetintenv(const char *match, int *value)
321 diag = kdbgetulenv(match, &val);
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
331 * arg A character string representing a numeric value
333 * *value the unsigned long represntation of arg.
335 * Zero on success, a kdb diagnostic on failure.
337 int kdbgetularg(const char *arg, unsigned long *value)
342 val = simple_strtoul(arg, &endp, 0);
346 * Also try base 16, for us folks too lazy to type the
349 val = simple_strtoul(arg, &endp, 16);
359 int kdbgetu64arg(const char *arg, u64 *value)
364 val = simple_strtoull(arg, &endp, 0);
368 val = simple_strtoull(arg, &endp, 16);
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
382 int kdb_set(int argc, const char **argv)
386 size_t varlen, vallen;
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
403 * Check for internal variables
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
430 return KDB_ENVBUFFULL;
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
434 ep[varlen+vallen+1] = '\0';
436 for (i = 0; i < __nenv; i++) {
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
447 * Wasn't existing variable. Fit into slot.
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
459 static int kdb_check_regs(void)
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
491 * zero is returned on success, a kdb diagnostic code is
494 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
499 unsigned long off = 0;
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
518 * Process arguments which follow the following syntax:
520 * symbol | numeric-address [+/- numeric-offset]
522 * $environment-variable
528 symname = (char *)argv[*nextarg];
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
536 cp = strpbrk(symname, "+-");
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
550 /* Implement register values with % at a later time as it is
555 found = kdbgetsymval(symname, &symtab);
557 addr = symtab.sym_start;
559 diag = kdbgetularg(argv[*nextarg], &addr);
566 found = kdbnearsym(addr, &symtab);
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
577 if ((*nextarg > argc)
582 * check for +/- and offset
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
589 * Not our argument. Return.
593 positive = (argv[*nextarg][0] == '+');
597 positive = (symbol == '+');
600 * Now there must be an offset!
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
608 cp = (char *)argv[*nextarg];
612 diag = kdbgetularg(cp, &off);
628 static void kdb_cmderror(int diag)
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
644 kdb_printf("Unknown diag %d\n", -diag);
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
654 * argc argument count
655 * argv argument vector
657 * zero for success, a kdb diagnostic if error
667 static struct defcmd_set *defcmd_set;
668 static int defcmd_set_count;
669 static int defcmd_in_progress;
671 /* Forward references */
672 static int kdb_exec_defcmd(int argc, const char **argv);
674 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
689 KDB_ENABLE_ALWAYS_SAFE);
694 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
707 static int kdb_defcmd(int argc, const char **argv)
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
713 kdb_defcmd2("endefcmd", "endefcmd");
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
732 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
741 s->name = kdb_strdup(argv[1], GFP_KDB);
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
747 s->help = kdb_strdup(argv[3], GFP_KDB);
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
775 * kdb_exec_defcmd - Execute the set of commands associated with this
778 * argc argument count
779 * argv argument vector
781 * zero for success, a kdb diagnostic if error
783 static int kdb_exec_defcmd(int argc, const char **argv)
786 struct defcmd_set *s;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
810 /* Command history */
811 #define KDB_CMD_HISTORY_COUNT 32
812 #define CMD_BUFLEN 200 /* kdb_printf: max printline
814 static unsigned int cmd_head, cmd_tail;
815 static unsigned int cmdptr;
816 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817 static char cmd_cur[CMD_BUFLEN];
820 * The "str" argument may point to something like | grep xyz
822 static void parse_grep(const char *str)
825 char *cp = (char *)str, *cp2;
827 /* sanity check: we should have been called with the \ first */
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
840 cp2 = strchr(cp, '\n');
842 *cp2 = '\0'; /* remove the trailing newline */
845 kdb_printf("invalid 'pipe', see grephelp\n");
848 /* now cp points to a nonzero length search string */
850 /* allow it be "x y z" by removing the "'s - there must
853 cp2 = strchr(cp, '"');
855 kdb_printf("invalid quoted string, see grephelp\n");
858 *cp2 = '\0'; /* end the string where the 2nd " was */
860 kdb_grep_leading = 0;
862 kdb_grep_leading = 1;
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
878 strcpy(kdb_grep_string, cp);
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
894 * Zero for success, a kdb diagnostic if failure.
896 * Limited to 20 tokens.
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
911 int kdb_parse(const char *cmdstr)
913 static char *argv[MAXARGC];
915 static char cbuf[CMD_BUFLEN+2];
919 int i, escaped, ignore_errors = 0, check_grep = 0;
922 * First tokenize the command string.
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
934 if (*cp != '\n' && *cp != '\0') {
938 /* skip whitespace */
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
944 /* special case: check for | grep pattern */
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
981 else if (*cp == '\'' || *cp == '"')
984 if (*cpp == '=' && !quoted)
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1009 for_each_kdbcmd(tp, i) {
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1020 tp->cmd_minlen) == 0) {
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1038 if (strncmp(argv[0],
1040 strlen(tp->cmd_name)) == 0) {
1047 if (i < kdb_max_commands) {
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1057 KDB_STATE_CLEAR(CMD);
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1064 *(argv[argc]) = '\0';
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1076 unsigned long value;
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1094 static int handle_ctrl_cmd(char *cmd)
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1121 static int kdb_reboot(int argc, const char **argv)
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 static void kdb_dumpregs(struct pt_regs *regs)
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1139 console_loglevel = old_lvl;
1142 void kdb_set_current_task(struct task_struct *p)
1144 kdb_current_task = p;
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1150 kdb_current_regs = NULL;
1153 static void drop_newline(char *buf)
1155 size_t len = strlen(buf);
1159 if (*(buf + len - 1) == '\n')
1160 *(buf + len - 1) = '\0';
1164 * kdb_local - The main code for kdb. This routine is invoked on a
1165 * specific processor, it is not global. The main kdb() routine
1166 * ensures that only one processor at a time is in this routine.
1167 * This code is called with the real reason code on the first
1168 * entry to a kdb session, thereafter it is called with reason
1169 * SWITCH, even if the user goes back to the original cpu.
1171 * reason The reason KDB was invoked
1172 * error The hardware-defined error code
1173 * regs The exception frame at time of fault/breakpoint.
1174 * db_result Result code from the break or debug point.
1176 * 0 KDB was invoked for an event which it wasn't responsible
1177 * 1 KDB handled the event for which it was invoked.
1178 * KDB_CMD_GO User typed 'go'.
1179 * KDB_CMD_CPU User switched to another cpu.
1180 * KDB_CMD_SS Single step.
1182 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183 kdb_dbtrap_t db_result)
1187 struct task_struct *kdb_current =
1188 kdb_curr_task(raw_smp_processor_id());
1190 KDB_DEBUG_STATE("kdb_local 1", reason);
1192 if (reason == KDB_REASON_DEBUG) {
1193 /* special case below */
1195 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1196 kdb_current, kdb_current ? kdb_current->pid : 0);
1197 #if defined(CONFIG_SMP)
1198 kdb_printf("on processor %d ", raw_smp_processor_id());
1203 case KDB_REASON_DEBUG:
1206 * If re-entering kdb after a single step
1207 * command, don't print the message.
1209 switch (db_result) {
1211 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1212 kdb_current, kdb_current->pid);
1213 #if defined(CONFIG_SMP)
1214 kdb_printf("on processor %d ", raw_smp_processor_id());
1216 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217 instruction_pointer(regs));
1222 KDB_DEBUG_STATE("kdb_local 4", reason);
1223 return 1; /* kdba_db_trap did the work */
1225 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232 case KDB_REASON_ENTER:
1233 if (KDB_STATE(KEYBOARD))
1234 kdb_printf("due to Keyboard Entry\n");
1236 kdb_printf("due to KDB_ENTER()\n");
1238 case KDB_REASON_KEYBOARD:
1239 KDB_STATE_SET(KEYBOARD);
1240 kdb_printf("due to Keyboard Entry\n");
1242 case KDB_REASON_ENTER_SLAVE:
1243 /* drop through, slaves only get released via cpu switch */
1244 case KDB_REASON_SWITCH:
1245 kdb_printf("due to cpu switch\n");
1247 case KDB_REASON_OOPS:
1248 kdb_printf("Oops: %s\n", kdb_diemsg);
1249 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250 instruction_pointer(regs));
1253 case KDB_REASON_SYSTEM_NMI:
1254 kdb_printf("due to System NonMaskable Interrupt\n");
1256 case KDB_REASON_NMI:
1257 kdb_printf("due to NonMaskable Interrupt @ "
1258 kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1261 case KDB_REASON_SSTEP:
1262 case KDB_REASON_BREAK:
1263 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264 reason == KDB_REASON_BREAK ?
1265 "Breakpoint" : "SS trap", instruction_pointer(regs));
1267 * Determine if this breakpoint is one that we
1268 * are interested in.
1270 if (db_result != KDB_DB_BPT) {
1271 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1273 KDB_DEBUG_STATE("kdb_local 6", reason);
1274 return 0; /* Not for us, dismiss it */
1277 case KDB_REASON_RECURSE:
1278 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279 instruction_pointer(regs));
1282 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283 KDB_DEBUG_STATE("kdb_local 8", reason);
1284 return 0; /* Not for us, dismiss it */
1289 * Initialize pager context.
1292 KDB_STATE_CLEAR(SUPPRESS);
1293 kdb_grepping_flag = 0;
1294 /* ensure the old search does not leak into '/' commands */
1295 kdb_grep_string[0] = '\0';
1299 *(cmd_hist[cmd_head]) = '\0';
1302 #if defined(CONFIG_SMP)
1303 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304 raw_smp_processor_id());
1306 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1308 if (defcmd_in_progress)
1309 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1312 * Fetch command from keyboard
1314 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315 if (*cmdbuf != '\n') {
1317 if (cmdptr == cmd_head) {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1320 *(cmd_hist[cmd_head] +
1321 strlen(cmd_hist[cmd_head])-1) = '\0';
1323 if (!handle_ctrl_cmd(cmdbuf))
1324 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1326 goto do_full_getstr;
1328 strncpy(cmd_hist[cmd_head], cmd_cur,
1332 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333 if (cmd_head == cmd_tail)
1334 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338 diag = kdb_parse(cmdbuf);
1339 if (diag == KDB_NOTFOUND) {
1340 drop_newline(cmdbuf);
1341 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1344 if (diag == KDB_CMD_GO
1345 || diag == KDB_CMD_CPU
1346 || diag == KDB_CMD_SS
1347 || diag == KDB_CMD_KGDB)
1353 KDB_DEBUG_STATE("kdb_local 9", diag);
1359 * kdb_print_state - Print the state data for the current processor
1362 * text Identifies the debug point
1363 * value Any integer value to be printed, e.g. reason code.
1365 void kdb_print_state(const char *text, int value)
1367 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373 * kdb_main_loop - After initial setup and assignment of the
1374 * controlling cpu, all cpus are in this loop. One cpu is in
1375 * control and will issue the kdb prompt, the others will spin
1376 * until 'go' or cpu switch.
1378 * To get a consistent view of the kernel stacks for all
1379 * processes, this routine is invoked from the main kdb code via
1380 * an architecture specific routine. kdba_main_loop is
1381 * responsible for making the kernel stacks consistent for all
1382 * processes, there should be no difference between a blocked
1383 * process and a running process as far as kdb is concerned.
1385 * reason The reason KDB was invoked
1386 * error The hardware-defined error code
1387 * reason2 kdb's current reason code.
1388 * Initially error but can change
1389 * according to kdb state.
1390 * db_result Result code from break or debug point.
1391 * regs The exception frame at time of fault/breakpoint.
1392 * should always be valid.
1394 * 0 KDB was invoked for an event which it wasn't responsible
1395 * 1 KDB handled the event for which it was invoked.
1397 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398 kdb_dbtrap_t db_result, struct pt_regs *regs)
1401 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1404 * All processors except the one that is in control
1407 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408 while (KDB_STATE(HOLD_CPU)) {
1409 /* state KDB is turned off by kdb_cpu to see if the
1410 * other cpus are still live, each cpu in this loop
1413 if (!KDB_STATE(KDB))
1417 KDB_STATE_CLEAR(SUPPRESS);
1418 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419 if (KDB_STATE(LEAVING))
1420 break; /* Another cpu said 'go' */
1421 /* Still using kdb, this processor is in control */
1422 result = kdb_local(reason2, error, regs, db_result);
1423 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1425 if (result == KDB_CMD_CPU)
1428 if (result == KDB_CMD_SS) {
1429 KDB_STATE_SET(DOING_SS);
1433 if (result == KDB_CMD_KGDB) {
1434 if (!KDB_STATE(DOING_KGDB))
1435 kdb_printf("Entering please attach debugger "
1436 "or use $D#44+ or $3#33\n");
1439 if (result && result != 1 && result != KDB_CMD_GO)
1440 kdb_printf("\nUnexpected kdb_local return code %d\n",
1442 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1445 if (KDB_STATE(DOING_SS))
1446 KDB_STATE_CLEAR(SSBPT);
1448 /* Clean up any keyboard devices before leaving */
1449 kdb_kbd_cleanup_state();
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1457 * mdr <addr arg>,<byte count>
1459 * addr Start address
1460 * count Number of bytes
1462 * Always 0. Any errors are detected and printed by kdb_getarea.
1464 static int kdb_mdr(unsigned long addr, unsigned int count)
1468 if (kdb_getarea(c, addr))
1470 kdb_printf("%02x", c);
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 * 'md8' 'mdr' and 'mds' commands.
1481 * md|mds [<addr arg> [<line count> [<radix>]]]
1482 * mdWcN [<addr arg> [<line count> [<radix>]]]
1483 * where W = is the width (1, 2, 4 or 8) and N is the count.
1484 * for eg., md1c20 reads 20 bytes, 1 at a time.
1485 * mdr <addr arg>,<byte count>
1487 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488 int symbolic, int nosect, int bytesperword,
1489 int num, int repeat, int phys)
1491 /* print just one line of data */
1492 kdb_symtab_t symtab;
1498 memset(cbuf, '\0', sizeof(cbuf));
1500 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1502 kdb_printf(kdb_machreg_fmt0 " ", addr);
1504 for (i = 0; i < num && repeat--; i++) {
1506 if (kdb_getphysword(&word, addr, bytesperword))
1508 } else if (kdb_getword(&word, addr, bytesperword))
1510 kdb_printf(fmtstr, word);
1512 kdbnearsym(word, &symtab);
1514 memset(&symtab, 0, sizeof(symtab));
1515 if (symtab.sym_name) {
1516 kdb_symbol_print(word, &symtab, 0);
1519 kdb_printf(" %s %s "
1522 kdb_machreg_fmt, symtab.mod_name,
1523 symtab.sec_name, symtab.sec_start,
1524 symtab.sym_start, symtab.sym_end);
1526 addr += bytesperword;
1534 cp = wc.c + 8 - bytesperword;
1539 #define printable_char(c) \
1540 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1541 switch (bytesperword) {
1543 *c++ = printable_char(*cp++);
1544 *c++ = printable_char(*cp++);
1545 *c++ = printable_char(*cp++);
1546 *c++ = printable_char(*cp++);
1549 *c++ = printable_char(*cp++);
1550 *c++ = printable_char(*cp++);
1553 *c++ = printable_char(*cp++);
1556 *c++ = printable_char(*cp++);
1560 #undef printable_char
1563 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1567 static int kdb_md(int argc, const char **argv)
1569 static unsigned long last_addr;
1570 static int last_radix, last_bytesperword, last_repeat;
1571 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1573 char fmtchar, fmtstr[64];
1582 kdbgetintenv("MDCOUNT", &mdcount);
1583 kdbgetintenv("RADIX", &radix);
1584 kdbgetintenv("BYTESPERWORD", &bytesperword);
1586 /* Assume 'md <addr>' and start with environment values */
1587 repeat = mdcount * 16 / bytesperword;
1589 if (strcmp(argv[0], "mdr") == 0) {
1590 if (argc == 2 || (argc == 0 && last_addr != 0))
1593 return KDB_ARGCOUNT;
1594 } else if (isdigit(argv[0][2])) {
1595 bytesperword = (int)(argv[0][2] - '0');
1596 if (bytesperword == 0) {
1597 bytesperword = last_bytesperword;
1598 if (bytesperword == 0)
1601 last_bytesperword = bytesperword;
1602 repeat = mdcount * 16 / bytesperword;
1605 else if (argv[0][3] == 'c' && argv[0][4]) {
1607 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1608 mdcount = ((repeat * bytesperword) + 15) / 16;
1611 last_repeat = repeat;
1612 } else if (strcmp(argv[0], "md") == 0)
1614 else if (strcmp(argv[0], "mds") == 0)
1616 else if (strcmp(argv[0], "mdp") == 0) {
1620 return KDB_NOTFOUND;
1624 return KDB_ARGCOUNT;
1627 bytesperword = last_bytesperword;
1628 repeat = last_repeat;
1632 mdcount = ((repeat * bytesperword) + 15) / 16;
1637 int diag, nextarg = 1;
1638 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1642 if (argc > nextarg+2)
1643 return KDB_ARGCOUNT;
1645 if (argc >= nextarg) {
1646 diag = kdbgetularg(argv[nextarg], &val);
1648 mdcount = (int) val;
1652 repeat = mdcount * 16 / bytesperword;
1655 if (argc >= nextarg+1) {
1656 diag = kdbgetularg(argv[nextarg+1], &val);
1662 if (strcmp(argv[0], "mdr") == 0) {
1665 ret = kdb_mdr(addr, mdcount);
1666 last_addr += mdcount;
1667 last_repeat = mdcount;
1668 last_bytesperword = bytesperword; // to make REPEAT happy
1683 return KDB_BADRADIX;
1688 if (bytesperword > KDB_WORD_SIZE)
1689 return KDB_BADWIDTH;
1691 switch (bytesperword) {
1693 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1696 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1699 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1702 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1705 return KDB_BADWIDTH;
1708 last_repeat = repeat;
1709 last_bytesperword = bytesperword;
1711 if (strcmp(argv[0], "mds") == 0) {
1713 /* Do not save these changes as last_*, they are temporary mds
1716 bytesperword = KDB_WORD_SIZE;
1718 kdbgetintenv("NOSECT", &nosect);
1721 /* Round address down modulo BYTESPERWORD */
1723 addr &= ~(bytesperword-1);
1725 while (repeat > 0) {
1727 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1729 if (KDB_FLAG(CMD_INTERRUPT))
1731 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1733 if (kdb_getphysword(&word, a, bytesperword)
1736 } else if (kdb_getword(&word, a, bytesperword) || word)
1739 n = min(num, repeat);
1740 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1742 addr += bytesperword * n;
1744 z = (z + num - 1) / num;
1746 int s = num * (z-2);
1747 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1748 " zero suppressed\n",
1749 addr, addr + bytesperword * s - 1);
1750 addr += bytesperword * s;
1760 * kdb_mm - This function implements the 'mm' command.
1761 * mm address-expression new-value
1763 * mm works on machine words, mmW works on bytes.
1765 static int kdb_mm(int argc, const char **argv)
1770 unsigned long contents;
1774 if (argv[0][2] && !isdigit(argv[0][2]))
1775 return KDB_NOTFOUND;
1778 return KDB_ARGCOUNT;
1781 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1786 return KDB_ARGCOUNT;
1787 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1791 if (nextarg != argc + 1)
1792 return KDB_ARGCOUNT;
1794 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1795 diag = kdb_putword(addr, contents, width);
1799 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1805 * kdb_go - This function implements the 'go' command.
1806 * go [address-expression]
1808 static int kdb_go(int argc, const char **argv)
1815 if (raw_smp_processor_id() != kdb_initial_cpu) {
1816 kdb_printf("go must execute on the entry cpu, "
1817 "please use \"cpu %d\" and then execute go\n",
1819 return KDB_BADCPUNUM;
1823 diag = kdbgetaddrarg(argc, argv, &nextarg,
1824 &addr, &offset, NULL);
1828 return KDB_ARGCOUNT;
1832 if (KDB_FLAG(CATASTROPHIC)) {
1833 kdb_printf("Catastrophic error detected\n");
1834 kdb_printf("kdb_continue_catastrophic=%d, ",
1835 kdb_continue_catastrophic);
1836 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1837 kdb_printf("type go a second time if you really want "
1841 if (kdb_continue_catastrophic == 2) {
1842 kdb_printf("forcing reboot\n");
1843 kdb_reboot(0, NULL);
1845 kdb_printf("attempting to continue\n");
1851 * kdb_rd - This function implements the 'rd' command.
1853 static int kdb_rd(int argc, const char **argv)
1855 int len = kdb_check_regs();
1856 #if DBG_MAX_REG_NUM > 0
1868 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1869 rsize = dbg_reg_def[i].size * 2;
1872 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1877 len += kdb_printf(" ");
1878 switch(dbg_reg_def[i].size * 8) {
1880 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1883 len += kdb_printf("%s: %02x", rname, reg8);
1886 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1889 len += kdb_printf("%s: %04x", rname, reg16);
1892 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1895 len += kdb_printf("%s: %08x", rname, reg32);
1898 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1901 len += kdb_printf("%s: %016llx", rname, reg64);
1904 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1912 kdb_dumpregs(kdb_current_regs);
1918 * kdb_rm - This function implements the 'rm' (register modify) command.
1919 * rm register-name new-contents
1921 * Allows register modification with the same restrictions as gdb
1923 static int kdb_rm(int argc, const char **argv)
1925 #if DBG_MAX_REG_NUM > 0
1935 return KDB_ARGCOUNT;
1937 * Allow presence or absence of leading '%' symbol.
1943 diag = kdbgetu64arg(argv[2], ®64);
1947 diag = kdb_check_regs();
1952 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1953 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1959 switch(dbg_reg_def[i].size * 8) {
1962 dbg_set_reg(i, ®8, kdb_current_regs);
1966 dbg_set_reg(i, ®16, kdb_current_regs);
1970 dbg_set_reg(i, ®32, kdb_current_regs);
1973 dbg_set_reg(i, ®64, kdb_current_regs);
1979 kdb_printf("ERROR: Register set currently not implemented\n");
1984 #if defined(CONFIG_MAGIC_SYSRQ)
1986 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1987 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1988 * sr <magic-sysrq-code>
1990 static int kdb_sr(int argc, const char **argv)
1993 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1996 return KDB_ARGCOUNT;
1999 __handle_sysrq(*argv[1], check_mask);
2004 #endif /* CONFIG_MAGIC_SYSRQ */
2007 * kdb_ef - This function implements the 'regs' (display exception
2008 * frame) command. This command takes an address and expects to
2009 * find an exception frame at that address, formats and prints
2011 * regs address-expression
2015 static int kdb_ef(int argc, const char **argv)
2023 return KDB_ARGCOUNT;
2026 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2029 show_regs((struct pt_regs *)addr);
2033 #if defined(CONFIG_MODULES)
2035 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2036 * currently loaded kernel modules.
2037 * Mostly taken from userland lsmod.
2039 static int kdb_lsmod(int argc, const char **argv)
2044 return KDB_ARGCOUNT;
2046 kdb_printf("Module Size modstruct Used by\n");
2047 list_for_each_entry(mod, kdb_modules, list) {
2048 if (mod->state == MODULE_STATE_UNFORMED)
2051 kdb_printf("%-20s%8u 0x%p ", mod->name,
2052 mod->core_layout.size, (void *)mod);
2053 #ifdef CONFIG_MODULE_UNLOAD
2054 kdb_printf("%4d ", module_refcount(mod));
2056 if (mod->state == MODULE_STATE_GOING)
2057 kdb_printf(" (Unloading)");
2058 else if (mod->state == MODULE_STATE_COMING)
2059 kdb_printf(" (Loading)");
2061 kdb_printf(" (Live)");
2062 kdb_printf(" 0x%p", mod->core_layout.base);
2064 #ifdef CONFIG_MODULE_UNLOAD
2066 struct module_use *use;
2068 list_for_each_entry(use, &mod->source_list,
2070 kdb_printf("%s ", use->target->name);
2079 #endif /* CONFIG_MODULES */
2082 * kdb_env - This function implements the 'env' command. Display the
2083 * current environment variables.
2086 static int kdb_env(int argc, const char **argv)
2090 for (i = 0; i < __nenv; i++) {
2092 kdb_printf("%s\n", __env[i]);
2095 if (KDB_DEBUG(MASK))
2096 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2101 #ifdef CONFIG_PRINTK
2103 * kdb_dmesg - This function implements the 'dmesg' command to display
2104 * the contents of the syslog buffer.
2105 * dmesg [lines] [adjust]
2107 static int kdb_dmesg(int argc, const char **argv)
2115 struct kmsg_dumper dumper = { .active = 1 };
2120 return KDB_ARGCOUNT;
2123 lines = simple_strtol(argv[1], &cp, 0);
2127 adjust = simple_strtoul(argv[2], &cp, 0);
2128 if (*cp || adjust < 0)
2133 /* disable LOGGING if set */
2134 diag = kdbgetintenv("LOGGING", &logging);
2135 if (!diag && logging) {
2136 const char *setargs[] = { "set", "LOGGING", "0" };
2137 kdb_set(2, setargs);
2140 kmsg_dump_rewind_nolock(&dumper);
2141 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2146 kdb_printf("buffer only contains %d lines, nothing "
2148 else if (adjust - lines >= n)
2149 kdb_printf("buffer only contains %d lines, last %d "
2150 "lines printed\n", n, n - adjust);
2153 } else if (lines > 0) {
2154 skip = n - lines - adjust;
2157 kdb_printf("buffer only contains %d lines, "
2158 "nothing printed\n", n);
2160 } else if (skip < 0) {
2163 kdb_printf("buffer only contains %d lines, first "
2164 "%d lines printed\n", n, lines);
2170 if (skip >= n || skip < 0)
2173 kmsg_dump_rewind_nolock(&dumper);
2174 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2181 if (KDB_FLAG(CMD_INTERRUPT))
2184 kdb_printf("%.*s\n", (int)len - 1, buf);
2189 #endif /* CONFIG_PRINTK */
2191 /* Make sure we balance enable/disable calls, must disable first. */
2192 static atomic_t kdb_nmi_disabled;
2194 static int kdb_disable_nmi(int argc, const char *argv[])
2196 if (atomic_read(&kdb_nmi_disabled))
2198 atomic_set(&kdb_nmi_disabled, 1);
2199 arch_kgdb_ops.enable_nmi(0);
2203 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2205 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2207 arch_kgdb_ops.enable_nmi(1);
2211 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2212 .set = kdb_param_enable_nmi,
2214 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2217 * kdb_cpu - This function implements the 'cpu' command.
2220 * KDB_CMD_CPU for success, a kdb diagnostic if error
2222 static void kdb_cpu_status(void)
2224 int i, start_cpu, first_print = 1;
2225 char state, prev_state = '?';
2227 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2228 kdb_printf("Available cpus: ");
2229 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2230 if (!cpu_online(i)) {
2231 state = 'F'; /* cpu is offline */
2232 } else if (!kgdb_info[i].enter_kgdb) {
2233 state = 'D'; /* cpu is online but unresponsive */
2235 state = ' '; /* cpu is responding to kdb */
2236 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2237 state = 'I'; /* idle task */
2239 if (state != prev_state) {
2240 if (prev_state != '?') {
2244 kdb_printf("%d", start_cpu);
2245 if (start_cpu < i-1)
2246 kdb_printf("-%d", i-1);
2247 if (prev_state != ' ')
2248 kdb_printf("(%c)", prev_state);
2254 /* print the trailing cpus, ignoring them if they are all offline */
2255 if (prev_state != 'F') {
2258 kdb_printf("%d", start_cpu);
2259 if (start_cpu < i-1)
2260 kdb_printf("-%d", i-1);
2261 if (prev_state != ' ')
2262 kdb_printf("(%c)", prev_state);
2267 static int kdb_cpu(int argc, const char **argv)
2269 unsigned long cpunum;
2278 return KDB_ARGCOUNT;
2280 diag = kdbgetularg(argv[1], &cpunum);
2287 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2288 return KDB_BADCPUNUM;
2290 dbg_switch_cpu = cpunum;
2293 * Switch to other cpu
2298 /* The user may not realize that ps/bta with no parameters does not print idle
2299 * or sleeping system daemon processes, so tell them how many were suppressed.
2301 void kdb_ps_suppressed(void)
2303 int idle = 0, daemon = 0;
2304 unsigned long mask_I = kdb_task_state_string("I"),
2305 mask_M = kdb_task_state_string("M");
2307 const struct task_struct *p, *g;
2308 for_each_online_cpu(cpu) {
2309 p = kdb_curr_task(cpu);
2310 if (kdb_task_state(p, mask_I))
2313 kdb_do_each_thread(g, p) {
2314 if (kdb_task_state(p, mask_M))
2316 } kdb_while_each_thread(g, p);
2317 if (idle || daemon) {
2319 kdb_printf("%d idle process%s (state I)%s\n",
2320 idle, idle == 1 ? "" : "es",
2321 daemon ? " and " : "");
2323 kdb_printf("%d sleeping system daemon (state M) "
2324 "process%s", daemon,
2325 daemon == 1 ? "" : "es");
2326 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2335 void kdb_ps1(const struct task_struct *p)
2340 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2343 cpu = kdb_process_cpu(p);
2344 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2345 (void *)p, p->pid, p->parent->pid,
2346 kdb_task_has_cpu(p), kdb_process_cpu(p),
2347 kdb_task_state_char(p),
2348 (void *)(&p->thread),
2349 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2351 if (kdb_task_has_cpu(p)) {
2352 if (!KDB_TSK(cpu)) {
2353 kdb_printf(" Error: no saved data for this cpu\n");
2355 if (KDB_TSK(cpu) != p)
2356 kdb_printf(" Error: does not match running "
2357 "process table (0x%p)\n", KDB_TSK(cpu));
2362 static int kdb_ps(int argc, const char **argv)
2364 struct task_struct *g, *p;
2365 unsigned long mask, cpu;
2368 kdb_ps_suppressed();
2369 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2370 (int)(2*sizeof(void *))+2, "Task Addr",
2371 (int)(2*sizeof(void *))+2, "Thread");
2372 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2373 /* Run the active tasks first */
2374 for_each_online_cpu(cpu) {
2375 if (KDB_FLAG(CMD_INTERRUPT))
2377 p = kdb_curr_task(cpu);
2378 if (kdb_task_state(p, mask))
2382 /* Now the real tasks */
2383 kdb_do_each_thread(g, p) {
2384 if (KDB_FLAG(CMD_INTERRUPT))
2386 if (kdb_task_state(p, mask))
2388 } kdb_while_each_thread(g, p);
2394 * kdb_pid - This function implements the 'pid' command which switches
2395 * the currently active process.
2398 static int kdb_pid(int argc, const char **argv)
2400 struct task_struct *p;
2405 return KDB_ARGCOUNT;
2408 if (strcmp(argv[1], "R") == 0) {
2409 p = KDB_TSK(kdb_initial_cpu);
2411 diag = kdbgetularg(argv[1], &val);
2415 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2417 kdb_printf("No task with pid=%d\n", (pid_t)val);
2421 kdb_set_current_task(p);
2423 kdb_printf("KDB current process is %s(pid=%d)\n",
2424 kdb_current_task->comm,
2425 kdb_current_task->pid);
2430 static int kdb_kgdb(int argc, const char **argv)
2432 return KDB_CMD_KGDB;
2436 * kdb_help - This function implements the 'help' and '?' commands.
2438 static int kdb_help(int argc, const char **argv)
2443 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2444 kdb_printf("-----------------------------"
2445 "-----------------------------\n");
2446 for_each_kdbcmd(kt, i) {
2448 if (KDB_FLAG(CMD_INTERRUPT))
2452 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2454 if (strlen(kt->cmd_usage) > 20)
2456 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2457 kt->cmd_usage, space, kt->cmd_help);
2463 * kdb_kill - This function implements the 'kill' commands.
2465 static int kdb_kill(int argc, const char **argv)
2469 struct task_struct *p;
2472 return KDB_ARGCOUNT;
2474 sig = simple_strtol(argv[1], &endp, 0);
2477 if ((sig >= 0) || !valid_signal(-sig)) {
2478 kdb_printf("Invalid signal parameter.<-signal>\n");
2483 pid = simple_strtol(argv[2], &endp, 0);
2487 kdb_printf("Process ID must be large than 0.\n");
2491 /* Find the process. */
2492 p = find_task_by_pid_ns(pid, &init_pid_ns);
2494 kdb_printf("The specified process isn't found.\n");
2497 p = p->group_leader;
2498 kdb_send_sig(p, sig);
2503 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2504 * I cannot call that code directly from kdb, it has an unconditional
2505 * cli()/sti() and calls routines that take locks which can stop the debugger.
2507 static void kdb_sysinfo(struct sysinfo *val)
2509 u64 uptime = ktime_get_mono_fast_ns();
2511 memset(val, 0, sizeof(*val));
2512 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2513 val->loads[0] = avenrun[0];
2514 val->loads[1] = avenrun[1];
2515 val->loads[2] = avenrun[2];
2516 val->procs = nr_threads-1;
2523 * kdb_summary - This function implements the 'summary' command.
2525 static int kdb_summary(int argc, const char **argv)
2532 return KDB_ARGCOUNT;
2534 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2535 kdb_printf("release %s\n", init_uts_ns.name.release);
2536 kdb_printf("version %s\n", init_uts_ns.name.version);
2537 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2538 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2539 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2540 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2542 now = __ktime_get_real_seconds();
2543 time64_to_tm(now, 0, &tm);
2544 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2545 "tz_minuteswest %d\n",
2546 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2547 tm.tm_hour, tm.tm_min, tm.tm_sec,
2548 sys_tz.tz_minuteswest);
2551 kdb_printf("uptime ");
2552 if (val.uptime > (24*60*60)) {
2553 int days = val.uptime / (24*60*60);
2554 val.uptime %= (24*60*60);
2555 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2557 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2559 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2560 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2561 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2562 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2564 /* Display in kilobytes */
2565 #define K(x) ((x) << (PAGE_SHIFT - 10))
2566 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2567 "Buffers: %8lu kB\n",
2568 K(val.totalram), K(val.freeram), K(val.bufferram));
2573 * kdb_per_cpu - This function implements the 'per_cpu' command.
2575 static int kdb_per_cpu(int argc, const char **argv)
2578 int cpu, diag, nextarg = 1;
2579 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2581 if (argc < 1 || argc > 3)
2582 return KDB_ARGCOUNT;
2584 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2589 diag = kdbgetularg(argv[2], &bytesperword);
2594 bytesperword = KDB_WORD_SIZE;
2595 else if (bytesperword > KDB_WORD_SIZE)
2596 return KDB_BADWIDTH;
2597 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2599 diag = kdbgetularg(argv[3], &whichcpu);
2602 if (!cpu_online(whichcpu)) {
2603 kdb_printf("cpu %ld is not online\n", whichcpu);
2604 return KDB_BADCPUNUM;
2608 /* Most architectures use __per_cpu_offset[cpu], some use
2609 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2611 #ifdef __per_cpu_offset
2612 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2615 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2617 #define KDB_PCU(cpu) 0
2620 for_each_online_cpu(cpu) {
2621 if (KDB_FLAG(CMD_INTERRUPT))
2624 if (whichcpu != ~0UL && whichcpu != cpu)
2626 addr = symaddr + KDB_PCU(cpu);
2627 diag = kdb_getword(&val, addr, bytesperword);
2629 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2630 "read, diag=%d\n", cpu, addr, diag);
2633 kdb_printf("%5d ", cpu);
2634 kdb_md_line(fmtstr, addr,
2635 bytesperword == KDB_WORD_SIZE,
2636 1, bytesperword, 1, 1, 0);
2643 * display help for the use of cmd | grep pattern
2645 static int kdb_grep_help(int argc, const char **argv)
2647 kdb_printf("Usage of cmd args | grep pattern:\n");
2648 kdb_printf(" Any command's output may be filtered through an ");
2649 kdb_printf("emulated 'pipe'.\n");
2650 kdb_printf(" 'grep' is just a key word.\n");
2651 kdb_printf(" The pattern may include a very limited set of "
2652 "metacharacters:\n");
2653 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2654 kdb_printf(" And if there are spaces in the pattern, you may "
2656 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2657 " or \"^pat tern$\"\n");
2662 * kdb_register_flags - This function is used to register a kernel
2666 * func Function to execute the command
2667 * usage A simple usage string showing arguments
2668 * help A simple help string describing command
2669 * repeat Does the command auto repeat on enter?
2671 * zero for success, one if a duplicate command.
2673 #define kdb_command_extend 50 /* arbitrary */
2674 int kdb_register_flags(char *cmd,
2679 kdb_cmdflags_t flags)
2685 * Brute force method to determine duplicates
2687 for_each_kdbcmd(kp, i) {
2688 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2689 kdb_printf("Duplicate kdb command registered: "
2690 "%s, func %p help %s\n", cmd, func, help);
2696 * Insert command into first available location in table
2698 for_each_kdbcmd(kp, i) {
2699 if (kp->cmd_name == NULL)
2703 if (i >= kdb_max_commands) {
2704 kdbtab_t *new = kmalloc_array(kdb_max_commands -
2710 kdb_printf("Could not allocate new kdb_command "
2715 memcpy(new, kdb_commands,
2716 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2717 kfree(kdb_commands);
2719 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2720 kdb_command_extend * sizeof(*new));
2722 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2723 kdb_max_commands += kdb_command_extend;
2727 kp->cmd_func = func;
2728 kp->cmd_usage = usage;
2729 kp->cmd_help = help;
2730 kp->cmd_minlen = minlen;
2731 kp->cmd_flags = flags;
2735 EXPORT_SYMBOL_GPL(kdb_register_flags);
2739 * kdb_register - Compatibility register function for commands that do
2740 * not need to specify a repeat state. Equivalent to
2741 * kdb_register_flags with flags set to 0.
2744 * func Function to execute the command
2745 * usage A simple usage string showing arguments
2746 * help A simple help string describing command
2748 * zero for success, one if a duplicate command.
2750 int kdb_register(char *cmd,
2756 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2758 EXPORT_SYMBOL_GPL(kdb_register);
2761 * kdb_unregister - This function is used to unregister a kernel
2762 * debugger command. It is generally called when a module which
2763 * implements kdb commands is unloaded.
2767 * zero for success, one command not registered.
2769 int kdb_unregister(char *cmd)
2777 for_each_kdbcmd(kp, i) {
2778 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2779 kp->cmd_name = NULL;
2784 /* Couldn't find it. */
2787 EXPORT_SYMBOL_GPL(kdb_unregister);
2789 /* Initialize the kdb command table. */
2790 static void __init kdb_inittab(void)
2795 for_each_kdbcmd(kp, i)
2796 kp->cmd_name = NULL;
2798 kdb_register_flags("md", kdb_md, "<vaddr>",
2799 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2800 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2801 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2802 "Display Raw Memory", 0,
2803 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2804 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2805 "Display Physical Memory", 0,
2806 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2807 kdb_register_flags("mds", kdb_md, "<vaddr>",
2808 "Display Memory Symbolically", 0,
2809 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2810 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2811 "Modify Memory Contents", 0,
2812 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2813 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2814 "Continue Execution", 1,
2815 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2816 kdb_register_flags("rd", kdb_rd, "",
2817 "Display Registers", 0,
2818 KDB_ENABLE_REG_READ);
2819 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2820 "Modify Registers", 0,
2821 KDB_ENABLE_REG_WRITE);
2822 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2823 "Display exception frame", 0,
2824 KDB_ENABLE_MEM_READ);
2825 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2826 "Stack traceback", 1,
2827 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2828 kdb_register_flags("btp", kdb_bt, "<pid>",
2829 "Display stack for process <pid>", 0,
2830 KDB_ENABLE_INSPECT);
2831 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2832 "Backtrace all processes matching state flag", 0,
2833 KDB_ENABLE_INSPECT);
2834 kdb_register_flags("btc", kdb_bt, "",
2835 "Backtrace current process on each cpu", 0,
2836 KDB_ENABLE_INSPECT);
2837 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2838 "Backtrace process given its struct task address", 0,
2839 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2840 kdb_register_flags("env", kdb_env, "",
2841 "Show environment variables", 0,
2842 KDB_ENABLE_ALWAYS_SAFE);
2843 kdb_register_flags("set", kdb_set, "",
2844 "Set environment variables", 0,
2845 KDB_ENABLE_ALWAYS_SAFE);
2846 kdb_register_flags("help", kdb_help, "",
2847 "Display Help Message", 1,
2848 KDB_ENABLE_ALWAYS_SAFE);
2849 kdb_register_flags("?", kdb_help, "",
2850 "Display Help Message", 0,
2851 KDB_ENABLE_ALWAYS_SAFE);
2852 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2853 "Switch to new cpu", 0,
2854 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2855 kdb_register_flags("kgdb", kdb_kgdb, "",
2856 "Enter kgdb mode", 0, 0);
2857 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2858 "Display active task list", 0,
2859 KDB_ENABLE_INSPECT);
2860 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2861 "Switch to another task", 0,
2862 KDB_ENABLE_INSPECT);
2863 kdb_register_flags("reboot", kdb_reboot, "",
2864 "Reboot the machine immediately", 0,
2866 #if defined(CONFIG_MODULES)
2867 kdb_register_flags("lsmod", kdb_lsmod, "",
2868 "List loaded kernel modules", 0,
2869 KDB_ENABLE_INSPECT);
2871 #if defined(CONFIG_MAGIC_SYSRQ)
2872 kdb_register_flags("sr", kdb_sr, "<key>",
2873 "Magic SysRq key", 0,
2874 KDB_ENABLE_ALWAYS_SAFE);
2876 #if defined(CONFIG_PRINTK)
2877 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2878 "Display syslog buffer", 0,
2879 KDB_ENABLE_ALWAYS_SAFE);
2881 if (arch_kgdb_ops.enable_nmi) {
2882 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2883 "Disable NMI entry to KDB", 0,
2884 KDB_ENABLE_ALWAYS_SAFE);
2886 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2887 "Define a set of commands, down to endefcmd", 0,
2888 KDB_ENABLE_ALWAYS_SAFE);
2889 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2890 "Send a signal to a process", 0,
2892 kdb_register_flags("summary", kdb_summary, "",
2893 "Summarize the system", 4,
2894 KDB_ENABLE_ALWAYS_SAFE);
2895 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3,
2897 KDB_ENABLE_MEM_READ);
2898 kdb_register_flags("grephelp", kdb_grep_help, "",
2899 "Display help on | grep", 0,
2900 KDB_ENABLE_ALWAYS_SAFE);
2903 /* Execute any commands defined in kdb_cmds. */
2904 static void __init kdb_cmd_init(void)
2907 for (i = 0; kdb_cmds[i]; ++i) {
2908 diag = kdb_parse(kdb_cmds[i]);
2910 kdb_printf("kdb command %s failed, kdb diag %d\n",
2913 if (defcmd_in_progress) {
2914 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2915 kdb_parse("endefcmd");
2919 /* Initialize kdb_printf, breakpoint tables and kdb state */
2920 void __init kdb_init(int lvl)
2922 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2925 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2927 for (i = kdb_init_lvl; i < lvl; i++) {
2929 case KDB_NOT_INITIALIZED:
2930 kdb_inittab(); /* Initialize Command Table */
2931 kdb_initbptab(); /* Initialize Breakpoints */
2933 case KDB_INIT_EARLY:
2934 kdb_cmd_init(); /* Build kdb_cmds tables */