3 * Copyright 2017 Free Electrons
7 * Derived from the atmel_nand.c driver which contained the following
10 * Copyright 2003 Rick Bronson
12 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
15 * Derived from drivers/mtd/spia.c (removed in v3.8)
19 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
22 * Derived from Das U-Boot source code
23 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 * Add Programmable Multibit ECC support for various AT91 SoC
27 * Copyright 2012 ATMEL, Hong Xu
29 * Add Nand Flash Controller support for SAMA5 SoC
32 * This program is free software; you can redistribute it and/or modify
33 * it under the terms of the GNU General Public License version 2 as
34 * published by the Free Software Foundation.
36 * A few words about the naming convention in this file. This convention
37 * applies to structure and function names.
41 * - atmel_nand_: all generic structures/functions
42 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
43 * (at91sam9 and avr32 SoCs)
44 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
45 * (sama5 SoCs and later)
46 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
47 * that is available in the HSMC block
48 * - <soc>_nand_: all SoC specific structures/functions
51 #include <linux/clk.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/dmaengine.h>
54 #include <linux/genalloc.h>
55 #include <linux/gpio/consumer.h>
56 #include <linux/interrupt.h>
57 #include <linux/mfd/syscon.h>
58 #include <linux/mfd/syscon/atmel-matrix.h>
59 #include <linux/mfd/syscon/atmel-smc.h>
60 #include <linux/module.h>
61 #include <linux/mtd/rawnand.h>
62 #include <linux/of_address.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_platform.h>
65 #include <linux/iopoll.h>
66 #include <linux/platform_device.h>
67 #include <linux/regmap.h>
71 #define ATMEL_HSMC_NFC_CFG 0x0
72 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
73 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
74 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
75 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
76 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
77 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
78 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
79 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
80 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
81 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
83 #define ATMEL_HSMC_NFC_CTRL 0x4
84 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
85 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
87 #define ATMEL_HSMC_NFC_SR 0x8
88 #define ATMEL_HSMC_NFC_IER 0xc
89 #define ATMEL_HSMC_NFC_IDR 0x10
90 #define ATMEL_HSMC_NFC_IMR 0x14
91 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
92 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
93 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
94 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
95 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
96 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
97 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
98 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
99 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
100 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
101 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
102 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
103 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
104 ATMEL_HSMC_NFC_SR_UNDEF | \
105 ATMEL_HSMC_NFC_SR_AWB | \
106 ATMEL_HSMC_NFC_SR_NFCASE)
107 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
109 #define ATMEL_HSMC_NFC_ADDR 0x18
110 #define ATMEL_HSMC_NFC_BANK 0x1c
112 #define ATMEL_NFC_MAX_RB_ID 7
114 #define ATMEL_NFC_SRAM_SIZE 0x2400
116 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
117 #define ATMEL_NFC_VCMD2 BIT(18)
118 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
119 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
120 #define ATMEL_NFC_DATAEN BIT(25)
121 #define ATMEL_NFC_NFCWR BIT(26)
123 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
125 #define ATMEL_NAND_ALE_OFFSET BIT(21)
126 #define ATMEL_NAND_CLE_OFFSET BIT(22)
128 #define DEFAULT_TIMEOUT_MS 1000
129 #define MIN_DMA_LEN 128
131 static bool atmel_nand_avoid_dma __read_mostly;
133 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
134 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
136 enum atmel_nand_rb_type {
138 ATMEL_NAND_NATIVE_RB,
142 struct atmel_nand_rb {
143 enum atmel_nand_rb_type type;
145 struct gpio_desc *gpio;
150 struct atmel_nand_cs {
152 struct atmel_nand_rb rb;
153 struct gpio_desc *csgpio;
159 struct atmel_smc_cs_conf smcconf;
163 struct list_head node;
165 struct nand_chip base;
166 struct atmel_nand_cs *activecs;
167 struct atmel_pmecc_user *pmecc;
168 struct gpio_desc *cdgpio;
170 struct atmel_nand_cs cs[];
173 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
175 return container_of(chip, struct atmel_nand, base);
178 enum atmel_nfc_data_xfer {
181 ATMEL_NFC_WRITE_DATA,
184 struct atmel_nfc_op {
190 enum atmel_nfc_data_xfer data;
195 struct atmel_nand_controller;
196 struct atmel_nand_controller_caps;
198 struct atmel_nand_controller_ops {
199 int (*probe)(struct platform_device *pdev,
200 const struct atmel_nand_controller_caps *caps);
201 int (*remove)(struct atmel_nand_controller *nc);
202 void (*nand_init)(struct atmel_nand_controller *nc,
203 struct atmel_nand *nand);
204 int (*ecc_init)(struct nand_chip *chip);
205 int (*setup_data_interface)(struct atmel_nand *nand, int csline,
206 const struct nand_data_interface *conf);
209 struct atmel_nand_controller_caps {
211 bool legacy_of_bindings;
214 const struct atmel_nand_controller_ops *ops;
217 struct atmel_nand_controller {
218 struct nand_controller base;
219 const struct atmel_nand_controller_caps *caps;
222 struct dma_chan *dmac;
223 struct atmel_pmecc *pmecc;
224 struct list_head chips;
228 static inline struct atmel_nand_controller *
229 to_nand_controller(struct nand_controller *ctl)
231 return container_of(ctl, struct atmel_nand_controller, base);
234 struct atmel_smc_nand_controller {
235 struct atmel_nand_controller base;
236 struct regmap *matrix;
237 unsigned int ebi_csa_offs;
240 static inline struct atmel_smc_nand_controller *
241 to_smc_nand_controller(struct nand_controller *ctl)
243 return container_of(to_nand_controller(ctl),
244 struct atmel_smc_nand_controller, base);
247 struct atmel_hsmc_nand_controller {
248 struct atmel_nand_controller base;
250 struct gen_pool *pool;
254 const struct atmel_hsmc_reg_layout *hsmc_layout;
256 struct atmel_nfc_op op;
257 struct completion complete;
260 /* Only used when instantiating from legacy DT bindings. */
264 static inline struct atmel_hsmc_nand_controller *
265 to_hsmc_nand_controller(struct nand_controller *ctl)
267 return container_of(to_nand_controller(ctl),
268 struct atmel_hsmc_nand_controller, base);
271 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
273 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
274 op->wait ^= status & op->wait;
276 return !op->wait || op->errors;
279 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
281 struct atmel_hsmc_nand_controller *nc = data;
285 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
287 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
288 done = atmel_nfc_op_done(&nc->op, sr);
291 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
294 complete(&nc->complete);
296 return rcvd ? IRQ_HANDLED : IRQ_NONE;
299 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
300 unsigned int timeout_ms)
305 timeout_ms = DEFAULT_TIMEOUT_MS;
310 ret = regmap_read_poll_timeout(nc->base.smc,
311 ATMEL_HSMC_NFC_SR, status,
312 atmel_nfc_op_done(&nc->op,
314 0, timeout_ms * 1000);
316 init_completion(&nc->complete);
317 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
318 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
319 ret = wait_for_completion_timeout(&nc->complete,
320 msecs_to_jiffies(timeout_ms));
326 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
329 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
330 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
334 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
335 dev_err(nc->base.dev, "Access to an undefined area\n");
339 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
340 dev_err(nc->base.dev, "Access while busy\n");
344 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
345 dev_err(nc->base.dev, "Wrong access size\n");
352 static void atmel_nand_dma_transfer_finished(void *data)
354 struct completion *finished = data;
359 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
360 void *buf, dma_addr_t dev_dma, size_t len,
361 enum dma_data_direction dir)
363 DECLARE_COMPLETION_ONSTACK(finished);
364 dma_addr_t src_dma, dst_dma, buf_dma;
365 struct dma_async_tx_descriptor *tx;
368 buf_dma = dma_map_single(nc->dev, buf, len, dir);
369 if (dma_mapping_error(nc->dev, dev_dma)) {
371 "Failed to prepare a buffer for DMA access\n");
375 if (dir == DMA_FROM_DEVICE) {
383 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
384 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
386 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
390 tx->callback = atmel_nand_dma_transfer_finished;
391 tx->callback_param = &finished;
393 cookie = dmaengine_submit(tx);
394 if (dma_submit_error(cookie)) {
395 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
399 dma_async_issue_pending(nc->dmac);
400 wait_for_completion(&finished);
405 dma_unmap_single(nc->dev, buf_dma, len, dir);
408 dev_dbg(nc->dev, "Fall back to CPU I/O\n");
413 static u8 atmel_nand_read_byte(struct nand_chip *chip)
415 struct atmel_nand *nand = to_atmel_nand(chip);
417 return ioread8(nand->activecs->io.virt);
420 static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
422 struct atmel_nand *nand = to_atmel_nand(chip);
424 if (chip->options & NAND_BUSWIDTH_16)
425 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
427 iowrite8(byte, nand->activecs->io.virt);
430 static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
432 struct atmel_nand *nand = to_atmel_nand(chip);
433 struct atmel_nand_controller *nc;
435 nc = to_nand_controller(chip->controller);
438 * If the controller supports DMA, the buffer address is DMA-able and
439 * len is long enough to make DMA transfers profitable, let's trigger
440 * a DMA transfer. If it fails, fallback to PIO mode.
442 if (nc->dmac && virt_addr_valid(buf) &&
443 len >= MIN_DMA_LEN &&
444 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
448 if (chip->options & NAND_BUSWIDTH_16)
449 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
451 ioread8_rep(nand->activecs->io.virt, buf, len);
454 static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
456 struct atmel_nand *nand = to_atmel_nand(chip);
457 struct atmel_nand_controller *nc;
459 nc = to_nand_controller(chip->controller);
462 * If the controller supports DMA, the buffer address is DMA-able and
463 * len is long enough to make DMA transfers profitable, let's trigger
464 * a DMA transfer. If it fails, fallback to PIO mode.
466 if (nc->dmac && virt_addr_valid(buf) &&
467 len >= MIN_DMA_LEN &&
468 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
472 if (chip->options & NAND_BUSWIDTH_16)
473 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
475 iowrite8_rep(nand->activecs->io.virt, buf, len);
478 static int atmel_nand_dev_ready(struct nand_chip *chip)
480 struct atmel_nand *nand = to_atmel_nand(chip);
482 return gpiod_get_value(nand->activecs->rb.gpio);
485 static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
487 struct atmel_nand *nand = to_atmel_nand(chip);
489 if (cs < 0 || cs >= nand->numcs) {
490 nand->activecs = NULL;
491 chip->legacy.dev_ready = NULL;
495 nand->activecs = &nand->cs[cs];
497 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
498 chip->legacy.dev_ready = atmel_nand_dev_ready;
501 static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip)
503 struct atmel_nand *nand = to_atmel_nand(chip);
504 struct atmel_hsmc_nand_controller *nc;
507 nc = to_hsmc_nand_controller(chip->controller);
509 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
511 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
514 static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
516 struct mtd_info *mtd = nand_to_mtd(chip);
517 struct atmel_nand *nand = to_atmel_nand(chip);
518 struct atmel_hsmc_nand_controller *nc;
520 nc = to_hsmc_nand_controller(chip->controller);
522 atmel_nand_select_chip(chip, cs);
524 if (!nand->activecs) {
525 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
526 ATMEL_HSMC_NFC_CTRL_DIS);
530 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
531 chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready;
533 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
534 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
535 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
536 ATMEL_HSMC_NFC_CFG_RSPARE |
537 ATMEL_HSMC_NFC_CFG_WSPARE,
538 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
539 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
540 ATMEL_HSMC_NFC_CFG_RSPARE);
541 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
542 ATMEL_HSMC_NFC_CTRL_EN);
545 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
547 u8 *addrs = nc->op.addrs;
552 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
554 for (i = 0; i < nc->op.ncmds; i++)
555 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
557 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
558 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
560 op |= ATMEL_NFC_CSID(nc->op.cs) |
561 ATMEL_NFC_ACYCLE(nc->op.naddrs);
563 if (nc->op.ncmds > 1)
564 op |= ATMEL_NFC_VCMD2;
566 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
569 if (nc->op.data != ATMEL_NFC_NO_DATA) {
570 op |= ATMEL_NFC_DATAEN;
571 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
573 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
574 op |= ATMEL_NFC_NFCWR;
577 /* Clear all flags. */
578 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
580 /* Send the command. */
581 regmap_write(nc->io, op, addr);
583 ret = atmel_nfc_wait(nc, poll, 0);
585 dev_err(nc->base.dev,
586 "Failed to send NAND command (err = %d)!",
589 /* Reset the op state. */
590 memset(&nc->op, 0, sizeof(nc->op));
595 static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat,
598 struct atmel_nand *nand = to_atmel_nand(chip);
599 struct atmel_hsmc_nand_controller *nc;
601 nc = to_hsmc_nand_controller(chip->controller);
603 if (ctrl & NAND_ALE) {
604 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
607 nc->op.addrs[nc->op.naddrs++] = dat;
608 } else if (ctrl & NAND_CLE) {
609 if (nc->op.ncmds > 1)
612 nc->op.cmds[nc->op.ncmds++] = dat;
615 if (dat == NAND_CMD_NONE) {
616 nc->op.cs = nand->activecs->id;
617 atmel_nfc_exec_op(nc, true);
621 static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
624 struct atmel_nand *nand = to_atmel_nand(chip);
625 struct atmel_nand_controller *nc;
627 nc = to_nand_controller(chip->controller);
629 if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
631 gpiod_set_value(nand->activecs->csgpio, 0);
633 gpiod_set_value(nand->activecs->csgpio, 1);
637 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
638 else if (ctrl & NAND_CLE)
639 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
642 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
645 struct mtd_info *mtd = nand_to_mtd(chip);
646 struct atmel_hsmc_nand_controller *nc;
649 nc = to_hsmc_nand_controller(chip->controller);
652 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
653 nc->sram.dma, mtd->writesize,
656 /* Falling back to CPU copy. */
658 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
661 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
665 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
668 struct mtd_info *mtd = nand_to_mtd(chip);
669 struct atmel_hsmc_nand_controller *nc;
672 nc = to_hsmc_nand_controller(chip->controller);
675 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
676 mtd->writesize, DMA_FROM_DEVICE);
678 /* Falling back to CPU copy. */
680 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
683 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
687 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
689 struct mtd_info *mtd = nand_to_mtd(chip);
690 struct atmel_hsmc_nand_controller *nc;
692 nc = to_hsmc_nand_controller(chip->controller);
695 nc->op.addrs[nc->op.naddrs++] = column;
698 * 2 address cycles for the column offset on large page NANDs.
700 if (mtd->writesize > 512)
701 nc->op.addrs[nc->op.naddrs++] = column >> 8;
705 nc->op.addrs[nc->op.naddrs++] = page;
706 nc->op.addrs[nc->op.naddrs++] = page >> 8;
708 if (chip->options & NAND_ROW_ADDR_3)
709 nc->op.addrs[nc->op.naddrs++] = page >> 16;
713 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
715 struct atmel_nand *nand = to_atmel_nand(chip);
716 struct atmel_nand_controller *nc;
719 nc = to_nand_controller(chip->controller);
724 ret = atmel_pmecc_enable(nand->pmecc, op);
727 "Failed to enable ECC engine (err = %d)\n", ret);
732 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
734 struct atmel_nand *nand = to_atmel_nand(chip);
737 atmel_pmecc_disable(nand->pmecc);
740 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
742 struct atmel_nand *nand = to_atmel_nand(chip);
743 struct mtd_info *mtd = nand_to_mtd(chip);
744 struct atmel_nand_controller *nc;
745 struct mtd_oob_region oobregion;
749 nc = to_nand_controller(chip->controller);
754 ret = atmel_pmecc_wait_rdy(nand->pmecc);
757 "Failed to transfer NAND page data (err = %d)\n",
762 mtd_ooblayout_ecc(mtd, 0, &oobregion);
763 eccbuf = chip->oob_poi + oobregion.offset;
765 for (i = 0; i < chip->ecc.steps; i++) {
766 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
768 eccbuf += chip->ecc.bytes;
774 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
777 struct atmel_nand *nand = to_atmel_nand(chip);
778 struct mtd_info *mtd = nand_to_mtd(chip);
779 struct atmel_nand_controller *nc;
780 struct mtd_oob_region oobregion;
781 int ret, i, max_bitflips = 0;
782 void *databuf, *eccbuf;
784 nc = to_nand_controller(chip->controller);
789 ret = atmel_pmecc_wait_rdy(nand->pmecc);
792 "Failed to read NAND page data (err = %d)\n",
797 mtd_ooblayout_ecc(mtd, 0, &oobregion);
798 eccbuf = chip->oob_poi + oobregion.offset;
801 for (i = 0; i < chip->ecc.steps; i++) {
802 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
804 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
805 ret = nand_check_erased_ecc_chunk(databuf,
813 max_bitflips = max(ret, max_bitflips);
815 mtd->ecc_stats.failed++;
817 databuf += chip->ecc.size;
818 eccbuf += chip->ecc.bytes;
824 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
825 bool oob_required, int page, bool raw)
827 struct mtd_info *mtd = nand_to_mtd(chip);
828 struct atmel_nand *nand = to_atmel_nand(chip);
831 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
833 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
837 atmel_nand_write_buf(chip, buf, mtd->writesize);
839 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
841 atmel_pmecc_disable(nand->pmecc);
845 atmel_nand_pmecc_disable(chip, raw);
847 atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
849 return nand_prog_page_end_op(chip);
852 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
853 int oob_required, int page)
855 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
858 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
859 const u8 *buf, int oob_required,
862 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
865 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
866 bool oob_required, int page, bool raw)
868 struct mtd_info *mtd = nand_to_mtd(chip);
871 nand_read_page_op(chip, page, 0, NULL, 0);
873 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
877 atmel_nand_read_buf(chip, buf, mtd->writesize);
878 atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
880 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
882 atmel_nand_pmecc_disable(chip, raw);
887 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
888 int oob_required, int page)
890 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
893 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
894 int oob_required, int page)
896 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
899 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
900 const u8 *buf, bool oob_required,
903 struct mtd_info *mtd = nand_to_mtd(chip);
904 struct atmel_nand *nand = to_atmel_nand(chip);
905 struct atmel_hsmc_nand_controller *nc;
908 nc = to_hsmc_nand_controller(chip->controller);
910 atmel_nfc_copy_to_sram(chip, buf, false);
912 nc->op.cmds[0] = NAND_CMD_SEQIN;
914 atmel_nfc_set_op_addr(chip, page, 0x0);
915 nc->op.cs = nand->activecs->id;
916 nc->op.data = ATMEL_NFC_WRITE_DATA;
918 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
922 ret = atmel_nfc_exec_op(nc, false);
924 atmel_nand_pmecc_disable(chip, raw);
925 dev_err(nc->base.dev,
926 "Failed to transfer NAND page data (err = %d)\n",
931 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
933 atmel_nand_pmecc_disable(chip, raw);
938 atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
940 nc->op.cmds[0] = NAND_CMD_PAGEPROG;
942 nc->op.cs = nand->activecs->id;
943 ret = atmel_nfc_exec_op(nc, false);
945 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
948 status = chip->legacy.waitfunc(chip);
949 if (status & NAND_STATUS_FAIL)
955 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
956 const u8 *buf, int oob_required,
959 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
963 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
965 int oob_required, int page)
967 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
971 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
972 bool oob_required, int page,
975 struct mtd_info *mtd = nand_to_mtd(chip);
976 struct atmel_nand *nand = to_atmel_nand(chip);
977 struct atmel_hsmc_nand_controller *nc;
980 nc = to_hsmc_nand_controller(chip->controller);
983 * Optimized read page accessors only work when the NAND R/B pin is
984 * connected to a native SoC R/B pin. If that's not the case, fallback
985 * to the non-optimized one.
987 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
988 nand_read_page_op(chip, page, 0, NULL, 0);
990 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
994 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
996 if (mtd->writesize > 512)
997 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
999 atmel_nfc_set_op_addr(chip, page, 0x0);
1000 nc->op.cs = nand->activecs->id;
1001 nc->op.data = ATMEL_NFC_READ_DATA;
1003 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1007 ret = atmel_nfc_exec_op(nc, false);
1009 atmel_nand_pmecc_disable(chip, raw);
1010 dev_err(nc->base.dev,
1011 "Failed to load NAND page data (err = %d)\n",
1016 atmel_nfc_copy_from_sram(chip, buf, true);
1018 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1020 atmel_nand_pmecc_disable(chip, raw);
1025 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1026 int oob_required, int page)
1028 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1032 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1033 u8 *buf, int oob_required,
1036 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1040 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1042 struct mtd_info *mtd = nand_to_mtd(chip);
1043 struct atmel_nand *nand = to_atmel_nand(chip);
1044 struct atmel_nand_controller *nc;
1045 struct atmel_pmecc_user_req req;
1047 nc = to_nand_controller(chip->controller);
1050 dev_err(nc->dev, "HW ECC not supported\n");
1054 if (nc->caps->legacy_of_bindings) {
1057 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1059 chip->ecc.strength = val;
1061 if (!of_property_read_u32(nc->dev->of_node,
1062 "atmel,pmecc-sector-size",
1064 chip->ecc.size = val;
1067 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1068 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1069 else if (chip->ecc.strength)
1070 req.ecc.strength = chip->ecc.strength;
1071 else if (chip->ecc_strength_ds)
1072 req.ecc.strength = chip->ecc_strength_ds;
1074 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1077 req.ecc.sectorsize = chip->ecc.size;
1078 else if (chip->ecc_step_ds)
1079 req.ecc.sectorsize = chip->ecc_step_ds;
1081 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1083 req.pagesize = mtd->writesize;
1084 req.oobsize = mtd->oobsize;
1086 if (mtd->writesize <= 512) {
1088 req.ecc.ooboffset = 0;
1090 req.ecc.bytes = mtd->oobsize - 2;
1091 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1094 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1095 if (IS_ERR(nand->pmecc))
1096 return PTR_ERR(nand->pmecc);
1098 chip->ecc.algo = NAND_ECC_BCH;
1099 chip->ecc.size = req.ecc.sectorsize;
1100 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1101 chip->ecc.strength = req.ecc.strength;
1103 chip->options |= NAND_NO_SUBPAGE_WRITE;
1105 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1110 static int atmel_nand_ecc_init(struct nand_chip *chip)
1112 struct atmel_nand_controller *nc;
1115 nc = to_nand_controller(chip->controller);
1117 switch (chip->ecc.mode) {
1121 * Nothing to do, the core will initialize everything for us.
1126 ret = atmel_nand_pmecc_init(chip);
1130 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1131 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1132 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1133 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1137 /* Other modes are not supported. */
1138 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1146 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1150 ret = atmel_nand_ecc_init(chip);
1154 if (chip->ecc.mode != NAND_ECC_HW)
1157 /* Adjust the ECC operations for the HSMC IP. */
1158 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1159 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1160 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1161 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1166 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1167 const struct nand_data_interface *conf,
1168 struct atmel_smc_cs_conf *smcconf)
1170 u32 ncycles, totalcycles, timeps, mckperiodps;
1171 struct atmel_nand_controller *nc;
1174 nc = to_nand_controller(nand->base.controller);
1176 /* DDR interface not supported. */
1177 if (conf->type != NAND_SDR_IFACE)
1181 * tRC < 30ns implies EDO mode. This controller does not support this
1184 if (conf->timings.sdr.tRC_min < 30000)
1187 atmel_smc_cs_conf_init(smcconf);
1189 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1190 mckperiodps *= 1000;
1193 * Set write pulse timing. This one is easy to extract:
1197 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1198 totalcycles = ncycles;
1199 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1205 * The write setup timing depends on the operation done on the NAND.
1206 * All operations goes through the same data bus, but the operation
1207 * type depends on the address we are writing to (ALE/CLE address
1209 * Since we have no way to differentiate the different operations at
1210 * the SMC level, we must consider the worst case (the biggest setup
1211 * time among all operation types):
1213 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1215 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1216 conf->timings.sdr.tALS_min);
1217 timeps = max(timeps, conf->timings.sdr.tDS_min);
1218 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1219 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1220 totalcycles += ncycles;
1221 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1227 * As for the write setup timing, the write hold timing depends on the
1228 * operation done on the NAND:
1230 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1232 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1233 conf->timings.sdr.tALH_min);
1234 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1235 conf->timings.sdr.tWH_min);
1236 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1237 totalcycles += ncycles;
1240 * The write cycle timing is directly matching tWC, but is also
1241 * dependent on the other timings on the setup and hold timings we
1242 * calculated earlier, which gives:
1244 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1246 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1247 ncycles = max(totalcycles, ncycles);
1248 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1254 * We don't want the CS line to be toggled between each byte/word
1255 * transfer to the NAND. The only way to guarantee that is to have the
1256 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1258 * NCS_WR_PULSE = NWE_CYCLE
1260 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1266 * As for the write setup timing, the read hold timing depends on the
1267 * operation done on the NAND:
1269 * NRD_HOLD = max(tREH, tRHOH)
1271 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1272 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1273 totalcycles = ncycles;
1276 * TDF = tRHZ - NRD_HOLD
1278 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1279 ncycles -= totalcycles;
1282 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1283 * we might end up with a config that does not fit in the TDF field.
1284 * Just take the max value in this case and hope that the NAND is more
1285 * tolerant than advertised.
1287 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1288 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1289 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1290 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1292 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1293 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1296 * Read pulse timing directly matches tRP:
1300 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1301 totalcycles += ncycles;
1302 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1308 * The write cycle timing is directly matching tWC, but is also
1309 * dependent on the setup and hold timings we calculated earlier,
1312 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1314 * NRD_SETUP is always 0.
1316 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1317 ncycles = max(totalcycles, ncycles);
1318 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1324 * We don't want the CS line to be toggled between each byte/word
1325 * transfer from the NAND. The only way to guarantee that is to have
1326 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1328 * NCS_RD_PULSE = NRD_CYCLE
1330 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1335 /* Txxx timings are directly matching tXXX ones. */
1336 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1337 ret = atmel_smc_cs_conf_set_timing(smcconf,
1338 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1343 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1344 ret = atmel_smc_cs_conf_set_timing(smcconf,
1345 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1348 * Version 4 of the ONFI spec mandates that tADL be at least 400
1349 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1350 * fit in the tADL field of the SMC reg. We need to relax the check and
1351 * accept the -ERANGE return code.
1353 * Note that previous versions of the ONFI spec had a lower tADL_min
1354 * (100 or 200 ns). It's not clear why this timing constraint got
1355 * increased but it seems most NANDs are fine with values lower than
1356 * 400ns, so we should be safe.
1358 if (ret && ret != -ERANGE)
1361 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1362 ret = atmel_smc_cs_conf_set_timing(smcconf,
1363 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1368 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1369 ret = atmel_smc_cs_conf_set_timing(smcconf,
1370 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1375 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1376 ret = atmel_smc_cs_conf_set_timing(smcconf,
1377 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1382 /* Attach the CS line to the NFC logic. */
1383 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1385 /* Set the appropriate data bus width. */
1386 if (nand->base.options & NAND_BUSWIDTH_16)
1387 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1389 /* Operate in NRD/NWE READ/WRITEMODE. */
1390 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1391 ATMEL_SMC_MODE_WRITEMODE_NWE;
1396 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1398 const struct nand_data_interface *conf)
1400 struct atmel_nand_controller *nc;
1401 struct atmel_smc_cs_conf smcconf;
1402 struct atmel_nand_cs *cs;
1405 nc = to_nand_controller(nand->base.controller);
1407 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1411 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1414 cs = &nand->cs[csline];
1415 cs->smcconf = smcconf;
1416 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1421 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1423 const struct nand_data_interface *conf)
1425 struct atmel_hsmc_nand_controller *nc;
1426 struct atmel_smc_cs_conf smcconf;
1427 struct atmel_nand_cs *cs;
1430 nc = to_hsmc_nand_controller(nand->base.controller);
1432 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1436 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1439 cs = &nand->cs[csline];
1440 cs->smcconf = smcconf;
1442 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1443 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1445 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1451 static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline,
1452 const struct nand_data_interface *conf)
1454 struct atmel_nand *nand = to_atmel_nand(chip);
1455 struct atmel_nand_controller *nc;
1457 nc = to_nand_controller(nand->base.controller);
1459 if (csline >= nand->numcs ||
1460 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1463 return nc->caps->ops->setup_data_interface(nand, csline, conf);
1466 static void atmel_nand_init(struct atmel_nand_controller *nc,
1467 struct atmel_nand *nand)
1469 struct nand_chip *chip = &nand->base;
1470 struct mtd_info *mtd = nand_to_mtd(chip);
1472 mtd->dev.parent = nc->dev;
1473 nand->base.controller = &nc->base;
1475 chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
1476 chip->legacy.read_byte = atmel_nand_read_byte;
1477 chip->legacy.write_byte = atmel_nand_write_byte;
1478 chip->legacy.read_buf = atmel_nand_read_buf;
1479 chip->legacy.write_buf = atmel_nand_write_buf;
1480 chip->select_chip = atmel_nand_select_chip;
1482 if (nc->mck && nc->caps->ops->setup_data_interface)
1483 chip->setup_data_interface = atmel_nand_setup_data_interface;
1485 /* Some NANDs require a longer delay than the default one (20us). */
1486 chip->legacy.chip_delay = 40;
1489 * Use a bounce buffer when the buffer passed by the MTD user is not
1493 chip->options |= NAND_USE_BOUNCE_BUFFER;
1495 /* Default to HW ECC if pmecc is available. */
1497 chip->ecc.mode = NAND_ECC_HW;
1500 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1501 struct atmel_nand *nand)
1503 struct nand_chip *chip = &nand->base;
1504 struct atmel_smc_nand_controller *smc_nc;
1507 atmel_nand_init(nc, nand);
1509 smc_nc = to_smc_nand_controller(chip->controller);
1510 if (!smc_nc->matrix)
1513 /* Attach the CS to the NAND Flash logic. */
1514 for (i = 0; i < nand->numcs; i++)
1515 regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
1516 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1519 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1520 struct atmel_nand *nand)
1522 struct nand_chip *chip = &nand->base;
1524 atmel_nand_init(nc, nand);
1526 /* Overload some methods for the HSMC controller. */
1527 chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1528 chip->select_chip = atmel_hsmc_nand_select_chip;
1531 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1533 struct nand_chip *chip = &nand->base;
1534 struct mtd_info *mtd = nand_to_mtd(chip);
1537 ret = mtd_device_unregister(mtd);
1542 list_del(&nand->node);
1547 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1548 struct device_node *np,
1551 struct atmel_nand *nand;
1552 struct gpio_desc *gpio;
1555 numcs = of_property_count_elems_of_size(np, "reg",
1556 reg_cells * sizeof(u32));
1558 dev_err(nc->dev, "Missing or invalid reg property\n");
1559 return ERR_PTR(-EINVAL);
1562 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1564 dev_err(nc->dev, "Failed to allocate NAND object\n");
1565 return ERR_PTR(-ENOMEM);
1568 nand->numcs = numcs;
1570 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1571 &np->fwnode, GPIOD_IN,
1573 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1575 "Failed to get detect gpio (err = %ld)\n",
1577 return ERR_CAST(gpio);
1581 nand->cdgpio = gpio;
1583 for (i = 0; i < numcs; i++) {
1584 struct resource res;
1587 ret = of_address_to_resource(np, 0, &res);
1589 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1591 return ERR_PTR(ret);
1594 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1597 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1599 return ERR_PTR(ret);
1602 nand->cs[i].id = val;
1604 nand->cs[i].io.dma = res.start;
1605 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1606 if (IS_ERR(nand->cs[i].io.virt))
1607 return ERR_CAST(nand->cs[i].io.virt);
1609 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1610 if (val > ATMEL_NFC_MAX_RB_ID)
1611 return ERR_PTR(-EINVAL);
1613 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1614 nand->cs[i].rb.id = val;
1616 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1617 "rb", i, &np->fwnode,
1618 GPIOD_IN, "nand-rb");
1619 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1621 "Failed to get R/B gpio (err = %ld)\n",
1623 return ERR_CAST(gpio);
1626 if (!IS_ERR(gpio)) {
1627 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1628 nand->cs[i].rb.gpio = gpio;
1632 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1636 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1638 "Failed to get CS gpio (err = %ld)\n",
1640 return ERR_CAST(gpio);
1644 nand->cs[i].csgpio = gpio;
1647 nand_set_flash_node(&nand->base, np);
1653 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1654 struct atmel_nand *nand)
1656 struct nand_chip *chip = &nand->base;
1657 struct mtd_info *mtd = nand_to_mtd(chip);
1660 /* No card inserted, skip this NAND. */
1661 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1662 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1666 nc->caps->ops->nand_init(nc, nand);
1668 ret = nand_scan(chip, nand->numcs);
1670 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1674 ret = mtd_device_register(mtd, NULL, 0);
1676 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1681 list_add_tail(&nand->node, &nc->chips);
1687 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1689 struct atmel_nand *nand, *tmp;
1692 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1693 ret = atmel_nand_controller_remove_nand(nand);
1702 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1704 struct device *dev = nc->dev;
1705 struct platform_device *pdev = to_platform_device(dev);
1706 struct atmel_nand *nand;
1707 struct gpio_desc *gpio;
1708 struct resource *res;
1711 * Legacy bindings only allow connecting a single NAND with a unique CS
1712 * line to the controller.
1714 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1721 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1722 nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1723 if (IS_ERR(nand->cs[0].io.virt))
1724 return PTR_ERR(nand->cs[0].io.virt);
1726 nand->cs[0].io.dma = res->start;
1729 * The old driver was hardcoding the CS id to 3 for all sama5
1730 * controllers. Since this id is only meaningful for the sama5
1731 * controller we can safely assign this id to 3 no matter the
1733 * If one wants to connect a NAND to a different CS line, he will
1734 * have to use the new bindings.
1739 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
1741 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1743 return PTR_ERR(gpio);
1747 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1748 nand->cs[0].rb.gpio = gpio;
1752 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1754 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1756 return PTR_ERR(gpio);
1759 nand->cs[0].csgpio = gpio;
1761 /* Card detect GPIO. */
1762 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1765 "Failed to get detect gpio (err = %ld)\n",
1767 return PTR_ERR(gpio);
1770 nand->cdgpio = gpio;
1772 nand_set_flash_node(&nand->base, nc->dev->of_node);
1774 return atmel_nand_controller_add_nand(nc, nand);
1777 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1779 struct device_node *np, *nand_np;
1780 struct device *dev = nc->dev;
1784 /* We do not retrieve the SMC syscon when parsing old DTs. */
1785 if (nc->caps->legacy_of_bindings)
1786 return atmel_nand_controller_legacy_add_nands(nc);
1790 ret = of_property_read_u32(np, "#address-cells", &val);
1792 dev_err(dev, "missing #address-cells property\n");
1798 ret = of_property_read_u32(np, "#size-cells", &val);
1800 dev_err(dev, "missing #address-cells property\n");
1806 for_each_child_of_node(np, nand_np) {
1807 struct atmel_nand *nand;
1809 nand = atmel_nand_create(nc, nand_np, reg_cells);
1811 ret = PTR_ERR(nand);
1815 ret = atmel_nand_controller_add_nand(nc, nand);
1823 atmel_nand_controller_remove_nands(nc);
1828 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1831 dma_release_channel(nc->dmac);
1836 static const struct of_device_id atmel_matrix_of_ids[] = {
1838 .compatible = "atmel,at91sam9260-matrix",
1839 .data = (void *)AT91SAM9260_MATRIX_EBICSA,
1842 .compatible = "atmel,at91sam9261-matrix",
1843 .data = (void *)AT91SAM9261_MATRIX_EBICSA,
1846 .compatible = "atmel,at91sam9263-matrix",
1847 .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
1850 .compatible = "atmel,at91sam9rl-matrix",
1851 .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
1854 .compatible = "atmel,at91sam9g45-matrix",
1855 .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
1858 .compatible = "atmel,at91sam9n12-matrix",
1859 .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
1862 .compatible = "atmel,at91sam9x5-matrix",
1863 .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
1868 static int atmel_nand_attach_chip(struct nand_chip *chip)
1870 struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1871 struct atmel_nand *nand = to_atmel_nand(chip);
1872 struct mtd_info *mtd = nand_to_mtd(chip);
1875 ret = nc->caps->ops->ecc_init(chip);
1879 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1881 * We keep the MTD name unchanged to avoid breaking platforms
1882 * where the MTD cmdline parser is used and the bootloader
1883 * has not been updated to use the new naming scheme.
1885 mtd->name = "atmel_nand";
1886 } else if (!mtd->name) {
1888 * If the new bindings are used and the bootloader has not been
1889 * updated to pass a new mtdparts parameter on the cmdline, you
1890 * should define the following property in your nand node:
1892 * label = "atmel_nand";
1894 * This way, mtd->name will be set by the core when
1895 * nand_set_flash_node() is called.
1897 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1898 "%s:nand.%d", dev_name(nc->dev),
1901 dev_err(nc->dev, "Failed to allocate mtd->name\n");
1909 static const struct nand_controller_ops atmel_nand_controller_ops = {
1910 .attach_chip = atmel_nand_attach_chip,
1913 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1914 struct platform_device *pdev,
1915 const struct atmel_nand_controller_caps *caps)
1917 struct device *dev = &pdev->dev;
1918 struct device_node *np = dev->of_node;
1921 nand_controller_init(&nc->base);
1922 nc->base.ops = &atmel_nand_controller_ops;
1923 INIT_LIST_HEAD(&nc->chips);
1927 platform_set_drvdata(pdev, nc);
1929 nc->pmecc = devm_atmel_pmecc_get(dev);
1930 if (IS_ERR(nc->pmecc)) {
1931 ret = PTR_ERR(nc->pmecc);
1932 if (ret != -EPROBE_DEFER)
1933 dev_err(dev, "Could not get PMECC object (err = %d)\n",
1938 if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
1939 dma_cap_mask_t mask;
1942 dma_cap_set(DMA_MEMCPY, mask);
1944 nc->dmac = dma_request_channel(mask, NULL, NULL);
1946 dev_err(nc->dev, "Failed to request DMA channel\n");
1949 /* We do not retrieve the SMC syscon when parsing old DTs. */
1950 if (nc->caps->legacy_of_bindings)
1953 nc->mck = of_clk_get(dev->parent->of_node, 0);
1954 if (IS_ERR(nc->mck)) {
1955 dev_err(dev, "Failed to retrieve MCK clk\n");
1956 return PTR_ERR(nc->mck);
1959 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
1961 dev_err(dev, "Missing or invalid atmel,smc property\n");
1965 nc->smc = syscon_node_to_regmap(np);
1967 if (IS_ERR(nc->smc)) {
1968 ret = PTR_ERR(nc->smc);
1969 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1977 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
1979 struct device *dev = nc->base.dev;
1980 const struct of_device_id *match;
1981 struct device_node *np;
1984 /* We do not retrieve the matrix syscon when parsing old DTs. */
1985 if (nc->base.caps->legacy_of_bindings)
1988 np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
1992 match = of_match_node(atmel_matrix_of_ids, np);
1998 nc->matrix = syscon_node_to_regmap(np);
2000 if (IS_ERR(nc->matrix)) {
2001 ret = PTR_ERR(nc->matrix);
2002 dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
2006 nc->ebi_csa_offs = (uintptr_t)match->data;
2009 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2010 * add 4 to ->ebi_csa_offs.
2012 if (of_device_is_compatible(dev->parent->of_node,
2013 "atmel,at91sam9263-ebi1"))
2014 nc->ebi_csa_offs += 4;
2020 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2022 struct regmap_config regmap_conf = {
2028 struct device *dev = nc->base.dev;
2029 struct device_node *nand_np, *nfc_np;
2030 void __iomem *iomem;
2031 struct resource res;
2034 nand_np = dev->of_node;
2035 nfc_np = of_find_compatible_node(dev->of_node, NULL,
2036 "atmel,sama5d3-nfc");
2038 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2042 nc->clk = of_clk_get(nfc_np, 0);
2043 if (IS_ERR(nc->clk)) {
2044 ret = PTR_ERR(nc->clk);
2045 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2050 ret = clk_prepare_enable(nc->clk);
2052 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2057 nc->irq = of_irq_get(nand_np, 0);
2059 ret = nc->irq ?: -ENXIO;
2060 if (ret != -EPROBE_DEFER)
2061 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2066 ret = of_address_to_resource(nfc_np, 0, &res);
2068 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2073 iomem = devm_ioremap_resource(dev, &res);
2074 if (IS_ERR(iomem)) {
2075 ret = PTR_ERR(iomem);
2079 regmap_conf.name = "nfc-io";
2080 regmap_conf.max_register = resource_size(&res) - 4;
2081 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2082 if (IS_ERR(nc->io)) {
2083 ret = PTR_ERR(nc->io);
2084 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2089 ret = of_address_to_resource(nfc_np, 1, &res);
2091 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2096 iomem = devm_ioremap_resource(dev, &res);
2097 if (IS_ERR(iomem)) {
2098 ret = PTR_ERR(iomem);
2102 regmap_conf.name = "smc";
2103 regmap_conf.max_register = resource_size(&res) - 4;
2104 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf);
2105 if (IS_ERR(nc->base.smc)) {
2106 ret = PTR_ERR(nc->base.smc);
2107 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2112 ret = of_address_to_resource(nfc_np, 2, &res);
2114 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2119 nc->sram.virt = devm_ioremap_resource(dev, &res);
2120 if (IS_ERR(nc->sram.virt)) {
2121 ret = PTR_ERR(nc->sram.virt);
2125 nc->sram.dma = res.start;
2128 of_node_put(nfc_np);
2134 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2136 struct device *dev = nc->base.dev;
2137 struct device_node *np;
2140 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2142 dev_err(dev, "Missing or invalid atmel,smc property\n");
2146 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2148 nc->irq = of_irq_get(np, 0);
2151 ret = nc->irq ?: -ENXIO;
2152 if (ret != -EPROBE_DEFER)
2153 dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2158 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2160 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2164 nc->io = syscon_node_to_regmap(np);
2166 if (IS_ERR(nc->io)) {
2167 ret = PTR_ERR(nc->io);
2168 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2172 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2173 "atmel,nfc-sram", 0);
2174 if (!nc->sram.pool) {
2175 dev_err(nc->base.dev, "Missing SRAM\n");
2179 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2180 ATMEL_NFC_SRAM_SIZE,
2182 if (!nc->sram.virt) {
2183 dev_err(nc->base.dev,
2184 "Could not allocate memory from the NFC SRAM pool\n");
2192 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2194 struct atmel_hsmc_nand_controller *hsmc_nc;
2197 ret = atmel_nand_controller_remove_nands(nc);
2201 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2202 if (hsmc_nc->sram.pool)
2203 gen_pool_free(hsmc_nc->sram.pool,
2204 (unsigned long)hsmc_nc->sram.virt,
2205 ATMEL_NFC_SRAM_SIZE);
2208 clk_disable_unprepare(hsmc_nc->clk);
2209 clk_put(hsmc_nc->clk);
2212 atmel_nand_controller_cleanup(nc);
2217 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2218 const struct atmel_nand_controller_caps *caps)
2220 struct device *dev = &pdev->dev;
2221 struct atmel_hsmc_nand_controller *nc;
2224 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2228 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2232 if (caps->legacy_of_bindings)
2233 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2235 ret = atmel_hsmc_nand_controller_init(nc);
2240 /* Make sure all irqs are masked before registering our IRQ handler. */
2241 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2242 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2243 IRQF_SHARED, "nfc", nc);
2246 "Could not get register NFC interrupt handler (err = %d)\n",
2251 /* Initial NFC configuration. */
2252 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2253 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2255 ret = atmel_nand_controller_add_nands(&nc->base);
2262 atmel_hsmc_nand_controller_remove(&nc->base);
2267 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2268 .probe = atmel_hsmc_nand_controller_probe,
2269 .remove = atmel_hsmc_nand_controller_remove,
2270 .ecc_init = atmel_hsmc_nand_ecc_init,
2271 .nand_init = atmel_hsmc_nand_init,
2272 .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2275 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2277 .ale_offs = BIT(21),
2278 .cle_offs = BIT(22),
2279 .ops = &atmel_hsmc_nc_ops,
2282 /* Only used to parse old bindings. */
2283 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2285 .ale_offs = BIT(21),
2286 .cle_offs = BIT(22),
2287 .ops = &atmel_hsmc_nc_ops,
2288 .legacy_of_bindings = true,
2291 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2292 const struct atmel_nand_controller_caps *caps)
2294 struct device *dev = &pdev->dev;
2295 struct atmel_smc_nand_controller *nc;
2298 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2302 ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2306 ret = atmel_smc_nand_controller_init(nc);
2310 return atmel_nand_controller_add_nands(&nc->base);
2314 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2318 ret = atmel_nand_controller_remove_nands(nc);
2322 atmel_nand_controller_cleanup(nc);
2328 * The SMC reg layout of at91rm9200 is completely different which prevents us
2329 * from re-using atmel_smc_nand_setup_data_interface() for the
2330 * ->setup_data_interface() hook.
2331 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2332 * ->setup_data_interface() unassigned.
2334 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2335 .probe = atmel_smc_nand_controller_probe,
2336 .remove = atmel_smc_nand_controller_remove,
2337 .ecc_init = atmel_nand_ecc_init,
2338 .nand_init = atmel_smc_nand_init,
2341 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2342 .ale_offs = BIT(21),
2343 .cle_offs = BIT(22),
2344 .ops = &at91rm9200_nc_ops,
2347 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2348 .probe = atmel_smc_nand_controller_probe,
2349 .remove = atmel_smc_nand_controller_remove,
2350 .ecc_init = atmel_nand_ecc_init,
2351 .nand_init = atmel_smc_nand_init,
2352 .setup_data_interface = atmel_smc_nand_setup_data_interface,
2355 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2356 .ale_offs = BIT(21),
2357 .cle_offs = BIT(22),
2358 .ops = &atmel_smc_nc_ops,
2361 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2362 .ale_offs = BIT(22),
2363 .cle_offs = BIT(21),
2364 .ops = &atmel_smc_nc_ops,
2367 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2369 .ale_offs = BIT(21),
2370 .cle_offs = BIT(22),
2371 .ops = &atmel_smc_nc_ops,
2374 /* Only used to parse old bindings. */
2375 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2376 .ale_offs = BIT(21),
2377 .cle_offs = BIT(22),
2378 .ops = &atmel_smc_nc_ops,
2379 .legacy_of_bindings = true,
2382 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2383 .ale_offs = BIT(22),
2384 .cle_offs = BIT(21),
2385 .ops = &atmel_smc_nc_ops,
2386 .legacy_of_bindings = true,
2389 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2391 .ale_offs = BIT(21),
2392 .cle_offs = BIT(22),
2393 .ops = &atmel_smc_nc_ops,
2394 .legacy_of_bindings = true,
2397 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2399 .compatible = "atmel,at91rm9200-nand-controller",
2400 .data = &atmel_rm9200_nc_caps,
2403 .compatible = "atmel,at91sam9260-nand-controller",
2404 .data = &atmel_sam9260_nc_caps,
2407 .compatible = "atmel,at91sam9261-nand-controller",
2408 .data = &atmel_sam9261_nc_caps,
2411 .compatible = "atmel,at91sam9g45-nand-controller",
2412 .data = &atmel_sam9g45_nc_caps,
2415 .compatible = "atmel,sama5d3-nand-controller",
2416 .data = &atmel_sama5_nc_caps,
2418 /* Support for old/deprecated bindings: */
2420 .compatible = "atmel,at91rm9200-nand",
2421 .data = &atmel_rm9200_nand_caps,
2424 .compatible = "atmel,sama5d4-nand",
2425 .data = &atmel_rm9200_nand_caps,
2428 .compatible = "atmel,sama5d2-nand",
2429 .data = &atmel_rm9200_nand_caps,
2433 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2435 static int atmel_nand_controller_probe(struct platform_device *pdev)
2437 const struct atmel_nand_controller_caps *caps;
2440 caps = (void *)pdev->id_entry->driver_data;
2442 caps = of_device_get_match_data(&pdev->dev);
2445 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2449 if (caps->legacy_of_bindings) {
2453 * If we are parsing legacy DT props and the DT contains a
2454 * valid NFC node, forward the request to the sama5 logic.
2456 if (of_find_compatible_node(pdev->dev.of_node, NULL,
2457 "atmel,sama5d3-nfc"))
2458 caps = &atmel_sama5_nand_caps;
2461 * Even if the compatible says we are dealing with an
2462 * at91rm9200 controller, the atmel,nand-has-dma specify that
2463 * this controller supports DMA, which means we are in fact
2464 * dealing with an at91sam9g45+ controller.
2466 if (!caps->has_dma &&
2467 of_property_read_bool(pdev->dev.of_node,
2468 "atmel,nand-has-dma"))
2469 caps = &atmel_sam9g45_nand_caps;
2472 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2473 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2474 * actually dealing with an at91sam9261 controller.
2476 of_property_read_u32(pdev->dev.of_node,
2477 "atmel,nand-addr-offset", &ale_offs);
2479 caps = &atmel_sam9261_nand_caps;
2482 return caps->ops->probe(pdev, caps);
2485 static int atmel_nand_controller_remove(struct platform_device *pdev)
2487 struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2489 return nc->caps->ops->remove(nc);
2492 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2494 struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2495 struct atmel_nand *nand;
2498 atmel_pmecc_reset(nc->pmecc);
2500 list_for_each_entry(nand, &nc->chips, node) {
2503 for (i = 0; i < nand->numcs; i++)
2504 nand_reset(&nand->base, i);
2510 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2511 atmel_nand_controller_resume);
2513 static struct platform_driver atmel_nand_controller_driver = {
2515 .name = "atmel-nand-controller",
2516 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2517 .pm = &atmel_nand_controller_pm_ops,
2519 .probe = atmel_nand_controller_probe,
2520 .remove = atmel_nand_controller_remove,
2522 module_platform_driver(atmel_nand_controller_driver);
2524 MODULE_LICENSE("GPL");
2526 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2527 MODULE_ALIAS("platform:atmel-nand-controller");