2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
41 /* Rough estimate of the typical request size, performing a flush,
42 * set-context and then emitting the batch.
44 #define LEGACY_REQUEST_SIZE 200
46 static unsigned int __intel_ring_space(unsigned int head,
51 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52 * same cacheline, the Head Pointer must not be greater than the Tail
55 GEM_BUG_ON(!is_power_of_2(size));
56 return (head - tail - CACHELINE_BYTES) & (size - 1);
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
63 space = __intel_ring_space(ring->head, ring->emit, ring->size);
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
76 if (mode & EMIT_INVALIDATE)
79 cs = intel_ring_begin(rq, 2);
85 intel_ring_advance(rq, cs);
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
98 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
99 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
100 * also flushed at 2d versus 3d pipeline switches.
104 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
105 * MI_READ_FLUSH is set, and is always flushed on 965.
107 * I915_GEM_DOMAIN_COMMAND may not exist?
109 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
110 * invalidated when MI_EXE_FLUSH is set.
112 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
113 * invalidated with every MI_FLUSH.
117 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
118 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
119 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
120 * are flushed at any MI_FLUSH.
124 if (mode & EMIT_INVALIDATE) {
126 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127 cmd |= MI_INVALIDATE_ISP;
130 cs = intel_ring_begin(rq, 2);
136 intel_ring_advance(rq, cs);
142 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
143 * implementing two workarounds on gen6. From section 1.4.7.1
144 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
146 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
147 * produced by non-pipelined state commands), software needs to first
148 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
151 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
152 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
154 * And the workaround for these two requires this workaround first:
156 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
157 * BEFORE the pipe-control with a post-sync op and no write-cache
160 * And this last workaround is tricky because of the requirements on
161 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
164 * "1 of the following must also be set:
165 * - Render Target Cache Flush Enable ([12] of DW1)
166 * - Depth Cache Flush Enable ([0] of DW1)
167 * - Stall at Pixel Scoreboard ([1] of DW1)
168 * - Depth Stall ([13] of DW1)
169 * - Post-Sync Operation ([13] of DW1)
170 * - Notify Enable ([8] of DW1)"
172 * The cache flushes require the workaround flush that triggered this
173 * one, so we can't use it. Depth stall would trigger the same.
174 * Post-sync nonzero is what triggered this second workaround, so we
175 * can't use that one either. Notify enable is IRQs, which aren't
176 * really our business. That leaves only stall at scoreboard.
179 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
182 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
185 cs = intel_ring_begin(rq, 6);
189 *cs++ = GFX_OP_PIPE_CONTROL(5);
190 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
191 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
192 *cs++ = 0; /* low dword */
193 *cs++ = 0; /* high dword */
195 intel_ring_advance(rq, cs);
197 cs = intel_ring_begin(rq, 6);
201 *cs++ = GFX_OP_PIPE_CONTROL(5);
202 *cs++ = PIPE_CONTROL_QW_WRITE;
203 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
207 intel_ring_advance(rq, cs);
213 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
216 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(rq);
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
229 if (mode & EMIT_FLUSH) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
236 flags |= PIPE_CONTROL_CS_STALL;
238 if (mode & EMIT_INVALIDATE) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
246 * TLB invalidate requires a post-sync write.
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
251 cs = intel_ring_begin(rq, 4);
255 *cs++ = GFX_OP_PIPE_CONTROL(4);
257 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
259 intel_ring_advance(rq, cs);
265 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
269 cs = intel_ring_begin(rq, 4);
273 *cs++ = GFX_OP_PIPE_CONTROL(4);
274 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
277 intel_ring_advance(rq, cs);
283 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
286 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
290 * Ensure that any following seqno writes only happen when the render
291 * cache is indeed flushed.
293 * Workaround: 4th PIPE_CONTROL command (except the ones with only
294 * read-cache invalidate bits set) must have the CS_STALL bit set. We
295 * don't try to be clever and just set it unconditionally.
297 flags |= PIPE_CONTROL_CS_STALL;
299 /* Just flush everything. Experiments have shown that reducing the
300 * number of bits based on the write domains has little performance
303 if (mode & EMIT_FLUSH) {
304 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
305 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307 flags |= PIPE_CONTROL_FLUSH_ENABLE;
309 if (mode & EMIT_INVALIDATE) {
310 flags |= PIPE_CONTROL_TLB_INVALIDATE;
311 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
318 * TLB invalidate requires a post-sync write.
320 flags |= PIPE_CONTROL_QW_WRITE;
321 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
323 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
325 /* Workaround: we must issue a pipe_control with CS-stall bit
326 * set before a pipe_control command that has the state cache
327 * invalidate bit set. */
328 gen7_render_ring_cs_stall_wa(rq);
331 cs = intel_ring_begin(rq, 4);
335 *cs++ = GFX_OP_PIPE_CONTROL(4);
337 *cs++ = scratch_addr;
339 intel_ring_advance(rq, cs);
344 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
346 struct drm_i915_private *dev_priv = engine->i915;
347 struct page *page = virt_to_page(engine->status_page.page_addr);
348 phys_addr_t phys = PFN_PHYS(page_to_pfn(page));
351 addr = lower_32_bits(phys);
352 if (INTEL_GEN(dev_priv) >= 4)
353 addr |= (phys >> 28) & 0xf0;
355 I915_WRITE(HWS_PGA, addr);
358 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
360 struct drm_i915_private *dev_priv = engine->i915;
363 /* The ring status page addresses are no longer next to the rest of
364 * the ring registers as of gen7.
366 if (IS_GEN7(dev_priv)) {
367 switch (engine->id) {
369 * No more rings exist on Gen7. Default case is only to shut up
370 * gcc switch check warning.
373 GEM_BUG_ON(engine->id);
375 mmio = RENDER_HWS_PGA_GEN7;
378 mmio = BLT_HWS_PGA_GEN7;
381 mmio = BSD_HWS_PGA_GEN7;
384 mmio = VEBOX_HWS_PGA_GEN7;
387 } else if (IS_GEN6(dev_priv)) {
388 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
390 mmio = RING_HWS_PGA(engine->mmio_base);
393 if (INTEL_GEN(dev_priv) >= 6) {
397 * Keep the render interrupt unmasked as this papers over
398 * lost interrupts following a reset.
400 if (engine->id == RCS)
403 I915_WRITE(RING_HWSTAM(engine->mmio_base), mask);
406 I915_WRITE(mmio, engine->status_page.ggtt_offset);
409 /* Flush the TLB for this page */
410 if (IS_GEN(dev_priv, 6, 7)) {
411 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
413 /* ring should be idle before issuing a sync flush*/
414 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
417 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
419 if (intel_wait_for_register(dev_priv,
420 reg, INSTPM_SYNC_FLUSH, 0,
422 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
427 static bool stop_ring(struct intel_engine_cs *engine)
429 struct drm_i915_private *dev_priv = engine->i915;
431 if (INTEL_GEN(dev_priv) > 2) {
432 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
433 if (intel_wait_for_register(dev_priv,
434 RING_MI_MODE(engine->mmio_base),
438 DRM_ERROR("%s : timed out trying to stop ring\n",
440 /* Sometimes we observe that the idle flag is not
441 * set even though the ring is empty. So double
442 * check before giving up.
444 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
449 I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
451 I915_WRITE_HEAD(engine, 0);
452 I915_WRITE_TAIL(engine, 0);
454 /* The ring must be empty before it is disabled */
455 I915_WRITE_CTL(engine, 0);
457 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
460 static int init_ring_common(struct intel_engine_cs *engine)
462 struct drm_i915_private *dev_priv = engine->i915;
463 struct intel_ring *ring = engine->buffer;
466 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
468 if (!stop_ring(engine)) {
469 /* G45 ring initialization often fails to reset head to zero */
470 DRM_DEBUG_DRIVER("%s head not reset to zero "
471 "ctl %08x head %08x tail %08x start %08x\n",
473 I915_READ_CTL(engine),
474 I915_READ_HEAD(engine),
475 I915_READ_TAIL(engine),
476 I915_READ_START(engine));
478 if (!stop_ring(engine)) {
479 DRM_ERROR("failed to set %s head to zero "
480 "ctl %08x head %08x tail %08x start %08x\n",
482 I915_READ_CTL(engine),
483 I915_READ_HEAD(engine),
484 I915_READ_TAIL(engine),
485 I915_READ_START(engine));
491 if (HWS_NEEDS_PHYSICAL(dev_priv))
492 ring_setup_phys_status_page(engine);
494 intel_ring_setup_status_page(engine);
496 intel_engine_reset_breadcrumbs(engine);
498 /* Enforce ordering by reading HEAD register back */
499 I915_READ_HEAD(engine);
501 /* Initialize the ring. This must happen _after_ we've cleared the ring
502 * registers with the above sequence (the readback of the HEAD registers
503 * also enforces ordering), otherwise the hw might lose the new ring
504 * register values. */
505 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
507 /* WaClearRingBufHeadRegAtInit:ctg,elk */
508 if (I915_READ_HEAD(engine))
509 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
510 engine->name, I915_READ_HEAD(engine));
512 /* Check that the ring offsets point within the ring! */
513 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
514 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
516 intel_ring_update_space(ring);
517 I915_WRITE_HEAD(engine, ring->head);
518 I915_WRITE_TAIL(engine, ring->tail);
519 (void)I915_READ_TAIL(engine);
521 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
523 /* If the head is still not zero, the ring is dead */
524 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
525 RING_VALID, RING_VALID,
527 DRM_ERROR("%s initialization failed "
528 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
530 I915_READ_CTL(engine),
531 I915_READ_CTL(engine) & RING_VALID,
532 I915_READ_HEAD(engine), ring->head,
533 I915_READ_TAIL(engine), ring->tail,
534 I915_READ_START(engine),
535 i915_ggtt_offset(ring->vma));
540 if (INTEL_GEN(dev_priv) > 2)
541 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
543 /* Papering over lost _interrupts_ immediately following the restart */
544 intel_engine_wakeup(engine);
546 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
551 static struct i915_request *reset_prepare(struct intel_engine_cs *engine)
553 intel_engine_stop_cs(engine);
555 if (engine->irq_seqno_barrier)
556 engine->irq_seqno_barrier(engine);
558 return i915_gem_find_active_request(engine);
561 static void skip_request(struct i915_request *rq)
563 void *vaddr = rq->ring->vaddr;
567 if (rq->postfix < head) {
568 memset32(vaddr + head, MI_NOOP,
569 (rq->ring->size - head) / sizeof(u32));
572 memset32(vaddr + head, MI_NOOP, (rq->postfix - head) / sizeof(u32));
575 static void reset_ring(struct intel_engine_cs *engine, struct i915_request *rq)
577 GEM_TRACE("%s seqno=%x\n", engine->name, rq ? rq->global_seqno : 0);
580 * Try to restore the logical GPU state to match the continuation
581 * of the request queue. If we skip the context/PD restore, then
582 * the next request may try to execute assuming that its context
583 * is valid and loaded on the GPU and so may try to access invalid
584 * memory, prompting repeated GPU hangs.
586 * If the request was guilty, we still restore the logical state
587 * in case the next request requires it (e.g. the aliasing ppgtt),
588 * but skip over the hung batch.
590 * If the request was innocent, we try to replay the request with
591 * the restored context.
594 /* If the rq hung, jump to its breadcrumb and skip the batch */
595 rq->ring->head = intel_ring_wrap(rq->ring, rq->head);
596 if (rq->fence.error == -EIO)
601 static void reset_finish(struct intel_engine_cs *engine)
605 static int intel_rcs_ctx_init(struct i915_request *rq)
609 ret = intel_ctx_workarounds_emit(rq);
613 ret = i915_gem_render_state_emit(rq);
620 static int init_render_ring(struct intel_engine_cs *engine)
622 struct drm_i915_private *dev_priv = engine->i915;
623 int ret = init_ring_common(engine);
627 intel_whitelist_workarounds_apply(engine);
629 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
630 if (IS_GEN(dev_priv, 4, 6))
631 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
633 /* We need to disable the AsyncFlip performance optimisations in order
634 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
635 * programmed to '1' on all products.
637 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
639 if (IS_GEN(dev_priv, 6, 7))
640 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
642 /* Required for the hardware to program scanline values for waiting */
643 /* WaEnableFlushTlbInvalidationMode:snb */
644 if (IS_GEN6(dev_priv))
646 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
648 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
649 if (IS_GEN7(dev_priv))
650 I915_WRITE(GFX_MODE_GEN7,
651 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
652 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
654 if (IS_GEN6(dev_priv)) {
655 /* From the Sandybridge PRM, volume 1 part 3, page 24:
656 * "If this bit is set, STCunit will have LRA as replacement
657 * policy. [...] This bit must be reset. LRA replacement
658 * policy is not supported."
660 I915_WRITE(CACHE_MODE_0,
661 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
664 if (IS_GEN(dev_priv, 6, 7))
665 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
667 if (INTEL_GEN(dev_priv) >= 6)
668 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
673 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
675 struct drm_i915_private *dev_priv = rq->i915;
676 struct intel_engine_cs *engine;
677 enum intel_engine_id id;
680 for_each_engine(engine, dev_priv, id) {
683 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
686 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
687 if (i915_mmio_reg_valid(mbox_reg)) {
688 *cs++ = MI_LOAD_REGISTER_IMM(1);
689 *cs++ = i915_mmio_reg_offset(mbox_reg);
690 *cs++ = rq->global_seqno;
700 static void cancel_requests(struct intel_engine_cs *engine)
702 struct i915_request *request;
705 spin_lock_irqsave(&engine->timeline.lock, flags);
707 /* Mark all submitted requests as skipped. */
708 list_for_each_entry(request, &engine->timeline.requests, link) {
709 GEM_BUG_ON(!request->global_seqno);
710 if (!i915_request_completed(request))
711 dma_fence_set_error(&request->fence, -EIO);
713 /* Remaining _unready_ requests will be nop'ed when submitted */
715 spin_unlock_irqrestore(&engine->timeline.lock, flags);
718 static void i9xx_submit_request(struct i915_request *request)
720 struct drm_i915_private *dev_priv = request->i915;
722 i915_request_submit(request);
724 I915_WRITE_TAIL(request->engine,
725 intel_ring_set_tail(request->ring, request->tail));
728 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
730 *cs++ = MI_STORE_DWORD_INDEX;
731 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
732 *cs++ = rq->global_seqno;
733 *cs++ = MI_USER_INTERRUPT;
735 rq->tail = intel_ring_offset(rq, cs);
736 assert_ring_tail_valid(rq->ring, rq->tail);
739 static const int i9xx_emit_breadcrumb_sz = 4;
741 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
743 return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
747 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
749 u32 dw1 = MI_SEMAPHORE_MBOX |
750 MI_SEMAPHORE_COMPARE |
751 MI_SEMAPHORE_REGISTER;
752 u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
755 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
757 cs = intel_ring_begin(rq, 4);
761 *cs++ = dw1 | wait_mbox;
762 /* Throughout all of the GEM code, seqno passed implies our current
763 * seqno is >= the last seqno executed. However for hardware the
764 * comparison is strictly greater than.
766 *cs++ = signal->global_seqno - 1;
769 intel_ring_advance(rq, cs);
775 gen5_seqno_barrier(struct intel_engine_cs *engine)
777 /* MI_STORE are internally buffered by the GPU and not flushed
778 * either by MI_FLUSH or SyncFlush or any other combination of
781 * "Only the submission of the store operation is guaranteed.
782 * The write result will be complete (coherent) some time later
783 * (this is practically a finite period but there is no guaranteed
786 * Empirically, we observe that we need a delay of at least 75us to
787 * be sure that the seqno write is visible by the CPU.
789 usleep_range(125, 250);
793 gen6_seqno_barrier(struct intel_engine_cs *engine)
795 struct drm_i915_private *dev_priv = engine->i915;
797 /* Workaround to force correct ordering between irq and seqno writes on
798 * ivb (and maybe also on snb) by reading from a CS register (like
799 * ACTHD) before reading the status page.
801 * Note that this effectively stalls the read by the time it takes to
802 * do a memory transaction, which more or less ensures that the write
803 * from the GPU has sufficient time to invalidate the CPU cacheline.
804 * Alternatively we could delay the interrupt from the CS ring to give
805 * the write time to land, but that would incur a delay after every
806 * batch i.e. much more frequent than a delay when waiting for the
807 * interrupt (with the same net latency).
809 * Also note that to prevent whole machine hangs on gen7, we have to
810 * take the spinlock to guard against concurrent cacheline access.
812 spin_lock_irq(&dev_priv->uncore.lock);
813 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
814 spin_unlock_irq(&dev_priv->uncore.lock);
818 gen5_irq_enable(struct intel_engine_cs *engine)
820 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
824 gen5_irq_disable(struct intel_engine_cs *engine)
826 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
830 i9xx_irq_enable(struct intel_engine_cs *engine)
832 struct drm_i915_private *dev_priv = engine->i915;
834 dev_priv->irq_mask &= ~engine->irq_enable_mask;
835 I915_WRITE(IMR, dev_priv->irq_mask);
836 POSTING_READ_FW(RING_IMR(engine->mmio_base));
840 i9xx_irq_disable(struct intel_engine_cs *engine)
842 struct drm_i915_private *dev_priv = engine->i915;
844 dev_priv->irq_mask |= engine->irq_enable_mask;
845 I915_WRITE(IMR, dev_priv->irq_mask);
849 i8xx_irq_enable(struct intel_engine_cs *engine)
851 struct drm_i915_private *dev_priv = engine->i915;
853 dev_priv->irq_mask &= ~engine->irq_enable_mask;
854 I915_WRITE16(IMR, dev_priv->irq_mask);
855 POSTING_READ16(RING_IMR(engine->mmio_base));
859 i8xx_irq_disable(struct intel_engine_cs *engine)
861 struct drm_i915_private *dev_priv = engine->i915;
863 dev_priv->irq_mask |= engine->irq_enable_mask;
864 I915_WRITE16(IMR, dev_priv->irq_mask);
868 bsd_ring_flush(struct i915_request *rq, u32 mode)
872 cs = intel_ring_begin(rq, 2);
878 intel_ring_advance(rq, cs);
883 gen6_irq_enable(struct intel_engine_cs *engine)
885 struct drm_i915_private *dev_priv = engine->i915;
887 I915_WRITE_IMR(engine,
888 ~(engine->irq_enable_mask |
889 engine->irq_keep_mask));
890 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
894 gen6_irq_disable(struct intel_engine_cs *engine)
896 struct drm_i915_private *dev_priv = engine->i915;
898 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
899 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
903 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
905 struct drm_i915_private *dev_priv = engine->i915;
907 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
908 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
912 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
914 struct drm_i915_private *dev_priv = engine->i915;
916 I915_WRITE_IMR(engine, ~0);
917 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
921 i965_emit_bb_start(struct i915_request *rq,
922 u64 offset, u32 length,
923 unsigned int dispatch_flags)
927 cs = intel_ring_begin(rq, 2);
931 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
932 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
934 intel_ring_advance(rq, cs);
939 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
940 #define I830_BATCH_LIMIT (256*1024)
941 #define I830_TLB_ENTRIES (2)
942 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
944 i830_emit_bb_start(struct i915_request *rq,
946 unsigned int dispatch_flags)
948 u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
950 cs = intel_ring_begin(rq, 6);
954 /* Evict the invalid PTE TLBs */
955 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
956 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
957 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
961 intel_ring_advance(rq, cs);
963 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
964 if (len > I830_BATCH_LIMIT)
967 cs = intel_ring_begin(rq, 6 + 2);
971 /* Blit the batch (which has now all relocs applied) to the
972 * stable batch scratch bo area (so that the CS never
973 * stumbles over its tlb invalidation bug) ...
975 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
976 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
977 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
984 intel_ring_advance(rq, cs);
986 /* ... and execute it. */
990 cs = intel_ring_begin(rq, 2);
994 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
995 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
996 MI_BATCH_NON_SECURE);
997 intel_ring_advance(rq, cs);
1003 i915_emit_bb_start(struct i915_request *rq,
1004 u64 offset, u32 len,
1005 unsigned int dispatch_flags)
1009 cs = intel_ring_begin(rq, 2);
1013 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1014 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1015 MI_BATCH_NON_SECURE);
1016 intel_ring_advance(rq, cs);
1021 int intel_ring_pin(struct intel_ring *ring)
1023 struct i915_vma *vma = ring->vma;
1024 enum i915_map_type map =
1025 HAS_LLC(vma->vm->i915) ? I915_MAP_WB : I915_MAP_WC;
1030 GEM_BUG_ON(ring->vaddr);
1034 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1035 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1037 if (vma->obj->stolen)
1038 flags |= PIN_MAPPABLE;
1042 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1043 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1044 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1046 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1051 ret = i915_vma_pin(vma, 0, 0, flags);
1055 if (i915_vma_is_map_and_fenceable(vma))
1056 addr = (void __force *)i915_vma_pin_iomap(vma);
1058 addr = i915_gem_object_pin_map(vma->obj, map);
1062 vma->obj->pin_global++;
1068 i915_vma_unpin(vma);
1069 return PTR_ERR(addr);
1072 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1074 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1079 intel_ring_update_space(ring);
1082 void intel_ring_unpin(struct intel_ring *ring)
1084 GEM_BUG_ON(!ring->vma);
1085 GEM_BUG_ON(!ring->vaddr);
1087 /* Discard any unused bytes beyond that submitted to hw. */
1088 intel_ring_reset(ring, ring->tail);
1090 if (i915_vma_is_map_and_fenceable(ring->vma))
1091 i915_vma_unpin_iomap(ring->vma);
1093 i915_gem_object_unpin_map(ring->vma->obj);
1096 ring->vma->obj->pin_global--;
1097 i915_vma_unpin(ring->vma);
1100 static struct i915_vma *
1101 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1103 struct i915_address_space *vm = &dev_priv->ggtt.vm;
1104 struct drm_i915_gem_object *obj;
1105 struct i915_vma *vma;
1107 obj = i915_gem_object_create_stolen(dev_priv, size);
1109 obj = i915_gem_object_create_internal(dev_priv, size);
1111 return ERR_CAST(obj);
1114 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1115 * if supported by the platform's GGTT.
1117 if (vm->has_read_only)
1118 i915_gem_object_set_readonly(obj);
1120 vma = i915_vma_instance(obj, vm, NULL);
1127 i915_gem_object_put(obj);
1132 intel_engine_create_ring(struct intel_engine_cs *engine,
1133 struct i915_timeline *timeline,
1136 struct intel_ring *ring;
1137 struct i915_vma *vma;
1139 GEM_BUG_ON(!is_power_of_2(size));
1140 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1141 GEM_BUG_ON(timeline == &engine->timeline);
1142 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1144 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1146 return ERR_PTR(-ENOMEM);
1148 INIT_LIST_HEAD(&ring->request_list);
1149 ring->timeline = i915_timeline_get(timeline);
1152 /* Workaround an erratum on the i830 which causes a hang if
1153 * the TAIL pointer points to within the last 2 cachelines
1156 ring->effective_size = size;
1157 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1158 ring->effective_size -= 2 * CACHELINE_BYTES;
1160 intel_ring_update_space(ring);
1162 vma = intel_ring_create_vma(engine->i915, size);
1165 return ERR_CAST(vma);
1173 intel_ring_free(struct intel_ring *ring)
1175 struct drm_i915_gem_object *obj = ring->vma->obj;
1177 i915_vma_close(ring->vma);
1178 __i915_gem_object_release_unless_active(obj);
1180 i915_timeline_put(ring->timeline);
1184 static void intel_ring_context_destroy(struct intel_context *ce)
1186 GEM_BUG_ON(ce->pin_count);
1191 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1192 i915_gem_object_put(ce->state->obj);
1195 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1197 struct i915_hw_ppgtt *ppgtt;
1200 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1202 err = gen6_ppgtt_pin(ppgtt);
1207 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1209 struct i915_hw_ppgtt *ppgtt;
1211 ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1213 gen6_ppgtt_unpin(ppgtt);
1216 static int __context_pin(struct intel_context *ce)
1218 struct i915_vma *vma;
1226 * Clear this page out of any CPU caches for coherent swap-in/out.
1227 * We only want to do this on the first bind so that we do not stall
1228 * on an active context (which by nature is already on the GPU).
1230 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1231 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1236 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1241 * And mark is as a globally pinned object to let the shrinker know
1242 * it cannot reclaim the object until we release it.
1244 vma->obj->pin_global++;
1249 static void __context_unpin(struct intel_context *ce)
1251 struct i915_vma *vma;
1257 vma->obj->pin_global--;
1258 i915_vma_unpin(vma);
1261 static void intel_ring_context_unpin(struct intel_context *ce)
1263 __context_unpin_ppgtt(ce->gem_context);
1264 __context_unpin(ce);
1266 i915_gem_context_put(ce->gem_context);
1269 static struct i915_vma *
1270 alloc_context_vma(struct intel_engine_cs *engine)
1272 struct drm_i915_private *i915 = engine->i915;
1273 struct drm_i915_gem_object *obj;
1274 struct i915_vma *vma;
1277 obj = i915_gem_object_create(i915, engine->context_size);
1279 return ERR_CAST(obj);
1281 if (engine->default_state) {
1282 void *defaults, *vaddr;
1284 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1285 if (IS_ERR(vaddr)) {
1286 err = PTR_ERR(vaddr);
1290 defaults = i915_gem_object_pin_map(engine->default_state,
1292 if (IS_ERR(defaults)) {
1293 err = PTR_ERR(defaults);
1297 memcpy(vaddr, defaults, engine->context_size);
1299 i915_gem_object_unpin_map(engine->default_state);
1300 i915_gem_object_unpin_map(obj);
1304 * Try to make the context utilize L3 as well as LLC.
1306 * On VLV we don't have L3 controls in the PTEs so we
1307 * shouldn't touch the cache level, especially as that
1308 * would make the object snooped which might have a
1309 * negative performance impact.
1311 * Snooping is required on non-llc platforms in execlist
1312 * mode, but since all GGTT accesses use PAT entry 0 we
1313 * get snooping anyway regardless of cache_level.
1315 * This is only applicable for Ivy Bridge devices since
1316 * later platforms don't have L3 control bits in the PTE.
1318 if (IS_IVYBRIDGE(i915)) {
1319 /* Ignore any error, regard it as a simple optimisation */
1320 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1323 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1332 i915_gem_object_unpin_map(obj);
1334 i915_gem_object_put(obj);
1335 return ERR_PTR(err);
1338 static struct intel_context *
1339 __ring_context_pin(struct intel_engine_cs *engine,
1340 struct i915_gem_context *ctx,
1341 struct intel_context *ce)
1345 if (!ce->state && engine->context_size) {
1346 struct i915_vma *vma;
1348 vma = alloc_context_vma(engine);
1357 err = __context_pin(ce);
1361 err = __context_pin_ppgtt(ce->gem_context);
1365 i915_gem_context_get(ctx);
1367 /* One ringbuffer to rule them all */
1368 GEM_BUG_ON(!engine->buffer);
1369 ce->ring = engine->buffer;
1374 __context_unpin(ce);
1377 return ERR_PTR(err);
1380 static const struct intel_context_ops ring_context_ops = {
1381 .unpin = intel_ring_context_unpin,
1382 .destroy = intel_ring_context_destroy,
1385 static struct intel_context *
1386 intel_ring_context_pin(struct intel_engine_cs *engine,
1387 struct i915_gem_context *ctx)
1389 struct intel_context *ce = to_intel_context(ctx, engine);
1391 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1393 if (likely(ce->pin_count++))
1395 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1397 ce->ops = &ring_context_ops;
1399 return __ring_context_pin(engine, ctx, ce);
1402 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1404 struct i915_timeline *timeline;
1405 struct intel_ring *ring;
1409 intel_engine_setup_common(engine);
1411 timeline = i915_timeline_create(engine->i915, engine->name);
1412 if (IS_ERR(timeline)) {
1413 err = PTR_ERR(timeline);
1417 ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1418 i915_timeline_put(timeline);
1420 err = PTR_ERR(ring);
1424 err = intel_ring_pin(ring);
1428 GEM_BUG_ON(engine->buffer);
1429 engine->buffer = ring;
1432 if (HAS_BROKEN_CS_TLB(engine->i915))
1433 size = I830_WA_SIZE;
1434 err = intel_engine_create_scratch(engine, size);
1438 err = intel_engine_init_common(engine);
1445 intel_engine_cleanup_scratch(engine);
1447 intel_ring_unpin(ring);
1449 intel_ring_free(ring);
1451 intel_engine_cleanup_common(engine);
1455 void intel_engine_cleanup(struct intel_engine_cs *engine)
1457 struct drm_i915_private *dev_priv = engine->i915;
1459 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1460 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1462 intel_ring_unpin(engine->buffer);
1463 intel_ring_free(engine->buffer);
1465 if (engine->cleanup)
1466 engine->cleanup(engine);
1468 intel_engine_cleanup_common(engine);
1470 dev_priv->engine[engine->id] = NULL;
1474 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1476 struct intel_engine_cs *engine;
1477 enum intel_engine_id id;
1479 /* Restart from the beginning of the rings for convenience */
1480 for_each_engine(engine, dev_priv, id)
1481 intel_ring_reset(engine->buffer, 0);
1484 static int load_pd_dir(struct i915_request *rq,
1485 const struct i915_hw_ppgtt *ppgtt)
1487 const struct intel_engine_cs * const engine = rq->engine;
1490 cs = intel_ring_begin(rq, 6);
1494 *cs++ = MI_LOAD_REGISTER_IMM(1);
1495 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1496 *cs++ = PP_DIR_DCLV_2G;
1498 *cs++ = MI_LOAD_REGISTER_IMM(1);
1499 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1500 *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1502 intel_ring_advance(rq, cs);
1507 static int flush_pd_dir(struct i915_request *rq)
1509 const struct intel_engine_cs * const engine = rq->engine;
1512 cs = intel_ring_begin(rq, 4);
1516 /* Stall until the page table load is complete */
1517 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1518 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1519 *cs++ = i915_ggtt_offset(engine->scratch);
1522 intel_ring_advance(rq, cs);
1526 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1528 struct drm_i915_private *i915 = rq->i915;
1529 struct intel_engine_cs *engine = rq->engine;
1530 enum intel_engine_id id;
1531 const int num_rings =
1532 /* Use an extended w/a on gen7 if signalling from other rings */
1533 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1534 INTEL_INFO(i915)->num_rings - 1 :
1536 bool force_restore = false;
1540 flags |= MI_MM_SPACE_GTT;
1541 if (IS_HASWELL(i915))
1542 /* These flags are for resource streamer on HSW+ */
1543 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1545 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1549 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1550 if (flags & MI_FORCE_RESTORE) {
1551 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1552 flags &= ~MI_FORCE_RESTORE;
1553 force_restore = true;
1557 cs = intel_ring_begin(rq, len);
1561 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1562 if (IS_GEN7(i915)) {
1563 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1565 struct intel_engine_cs *signaller;
1567 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1568 for_each_engine(signaller, i915, id) {
1569 if (signaller == engine)
1572 *cs++ = i915_mmio_reg_offset(
1573 RING_PSMI_CTL(signaller->mmio_base));
1574 *cs++ = _MASKED_BIT_ENABLE(
1575 GEN6_PSMI_SLEEP_MSG_DISABLE);
1580 if (force_restore) {
1582 * The HW doesn't handle being told to restore the current
1583 * context very well. Quite often it likes goes to go off and
1584 * sulk, especially when it is meant to be reloading PP_DIR.
1585 * A very simple fix to force the reload is to simply switch
1586 * away from the current context and back again.
1588 * Note that the kernel_context will contain random state
1589 * following the INHIBIT_RESTORE. We accept this since we
1590 * never use the kernel_context state; it is merely a
1591 * placeholder we use to flush other contexts.
1593 *cs++ = MI_SET_CONTEXT;
1594 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1601 *cs++ = MI_SET_CONTEXT;
1602 *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1604 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1605 * WaMiSetContext_Hang:snb,ivb,vlv
1609 if (IS_GEN7(i915)) {
1611 struct intel_engine_cs *signaller;
1612 i915_reg_t last_reg = {}; /* keep gcc quiet */
1614 *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1615 for_each_engine(signaller, i915, id) {
1616 if (signaller == engine)
1619 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1620 *cs++ = i915_mmio_reg_offset(last_reg);
1621 *cs++ = _MASKED_BIT_DISABLE(
1622 GEN6_PSMI_SLEEP_MSG_DISABLE);
1625 /* Insert a delay before the next switch! */
1626 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1627 *cs++ = i915_mmio_reg_offset(last_reg);
1628 *cs++ = i915_ggtt_offset(engine->scratch);
1631 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1634 intel_ring_advance(rq, cs);
1639 static int remap_l3(struct i915_request *rq, int slice)
1641 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1647 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1652 * Note: We do not worry about the concurrent register cacheline hang
1653 * here because no other code should access these registers other than
1654 * at initialization time.
1656 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1657 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1658 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1659 *cs++ = remap_info[i];
1662 intel_ring_advance(rq, cs);
1667 static int switch_context(struct i915_request *rq)
1669 struct intel_engine_cs *engine = rq->engine;
1670 struct i915_gem_context *ctx = rq->gem_context;
1671 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1672 unsigned int unwind_mm = 0;
1676 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1677 GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1683 * Baytail takes a little more convincing that it really needs
1684 * to reload the PD between contexts. It is not just a little
1685 * longer, as adding more stalls after the load_pd_dir (i.e.
1686 * adding a long loop around flush_pd_dir) is not as effective
1687 * as reloading the PD umpteen times. 32 is derived from
1688 * experimentation (gem_exec_parallel/fds) and has no good
1692 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1696 ret = load_pd_dir(rq, ppgtt);
1701 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1702 unwind_mm = intel_engine_flag(engine);
1703 ppgtt->pd_dirty_rings &= ~unwind_mm;
1704 hw_flags = MI_FORCE_RESTORE;
1708 if (rq->hw_context->state) {
1709 GEM_BUG_ON(engine->id != RCS);
1712 * The kernel context(s) is treated as pure scratch and is not
1713 * expected to retain any state (as we sacrifice it during
1714 * suspend and on resume it may be corrupted). This is ok,
1715 * as nothing actually executes using the kernel context; it
1716 * is purely used for flushing user contexts.
1718 if (i915_gem_context_is_kernel(ctx))
1719 hw_flags = MI_RESTORE_INHIBIT;
1721 ret = mi_set_context(rq, hw_flags);
1727 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1731 ret = flush_pd_dir(rq);
1736 * Not only do we need a full barrier (post-sync write) after
1737 * invalidating the TLBs, but we need to wait a little bit
1738 * longer. Whether this is merely delaying us, or the
1739 * subsequent flush is a key part of serialising with the
1740 * post-sync op, this extra pass appears vital before a
1743 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1747 ret = engine->emit_flush(rq, EMIT_FLUSH);
1752 if (ctx->remap_slice) {
1753 for (i = 0; i < MAX_L3_SLICES; i++) {
1754 if (!(ctx->remap_slice & BIT(i)))
1757 ret = remap_l3(rq, i);
1762 ctx->remap_slice = 0;
1769 ppgtt->pd_dirty_rings |= unwind_mm;
1774 static int ring_request_alloc(struct i915_request *request)
1778 GEM_BUG_ON(!request->hw_context->pin_count);
1780 /* Flush enough space to reduce the likelihood of waiting after
1781 * we start building the request - in which case we will just
1782 * have to repeat work.
1784 request->reserved_space += LEGACY_REQUEST_SIZE;
1786 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1790 ret = switch_context(request);
1794 request->reserved_space -= LEGACY_REQUEST_SIZE;
1798 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1800 struct i915_request *target;
1803 lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1805 if (intel_ring_update_space(ring) >= bytes)
1808 GEM_BUG_ON(list_empty(&ring->request_list));
1809 list_for_each_entry(target, &ring->request_list, ring_link) {
1810 /* Would completion of this request free enough space? */
1811 if (bytes <= __intel_ring_space(target->postfix,
1812 ring->emit, ring->size))
1816 if (WARN_ON(&target->ring_link == &ring->request_list))
1819 timeout = i915_request_wait(target,
1820 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1821 MAX_SCHEDULE_TIMEOUT);
1825 i915_request_retire_upto(target);
1827 intel_ring_update_space(ring);
1828 GEM_BUG_ON(ring->space < bytes);
1832 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1834 GEM_BUG_ON(bytes > ring->effective_size);
1835 if (unlikely(bytes > ring->effective_size - ring->emit))
1836 bytes += ring->size - ring->emit;
1838 if (unlikely(bytes > ring->space)) {
1839 int ret = wait_for_space(ring, bytes);
1844 GEM_BUG_ON(ring->space < bytes);
1848 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1850 struct intel_ring *ring = rq->ring;
1851 const unsigned int remain_usable = ring->effective_size - ring->emit;
1852 const unsigned int bytes = num_dwords * sizeof(u32);
1853 unsigned int need_wrap = 0;
1854 unsigned int total_bytes;
1857 /* Packets must be qword aligned. */
1858 GEM_BUG_ON(num_dwords & 1);
1860 total_bytes = bytes + rq->reserved_space;
1861 GEM_BUG_ON(total_bytes > ring->effective_size);
1863 if (unlikely(total_bytes > remain_usable)) {
1864 const int remain_actual = ring->size - ring->emit;
1866 if (bytes > remain_usable) {
1868 * Not enough space for the basic request. So need to
1869 * flush out the remainder and then wait for
1872 total_bytes += remain_actual;
1873 need_wrap = remain_actual | 1;
1876 * The base request will fit but the reserved space
1877 * falls off the end. So we don't need an immediate
1878 * wrap and only need to effectively wait for the
1879 * reserved size from the start of ringbuffer.
1881 total_bytes = rq->reserved_space + remain_actual;
1885 if (unlikely(total_bytes > ring->space)) {
1889 * Space is reserved in the ringbuffer for finalising the
1890 * request, as that cannot be allowed to fail. During request
1891 * finalisation, reserved_space is set to 0 to stop the
1892 * overallocation and the assumption is that then we never need
1893 * to wait (which has the risk of failing with EINTR).
1895 * See also i915_request_alloc() and i915_request_add().
1897 GEM_BUG_ON(!rq->reserved_space);
1899 ret = wait_for_space(ring, total_bytes);
1901 return ERR_PTR(ret);
1904 if (unlikely(need_wrap)) {
1906 GEM_BUG_ON(need_wrap > ring->space);
1907 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1908 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1910 /* Fill the tail with MI_NOOP */
1911 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1912 ring->space -= need_wrap;
1916 GEM_BUG_ON(ring->emit > ring->size - bytes);
1917 GEM_BUG_ON(ring->space < bytes);
1918 cs = ring->vaddr + ring->emit;
1919 GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1920 ring->emit += bytes;
1921 ring->space -= bytes;
1926 /* Align the ring tail to a cacheline boundary */
1927 int intel_ring_cacheline_align(struct i915_request *rq)
1932 num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1933 if (num_dwords == 0)
1936 num_dwords = CACHELINE_DWORDS - num_dwords;
1937 GEM_BUG_ON(num_dwords & 1);
1939 cs = intel_ring_begin(rq, num_dwords);
1943 memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1944 intel_ring_advance(rq, cs);
1946 GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1950 static void gen6_bsd_submit_request(struct i915_request *request)
1952 struct drm_i915_private *dev_priv = request->i915;
1954 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1956 /* Every tail move must follow the sequence below */
1958 /* Disable notification that the ring is IDLE. The GT
1959 * will then assume that it is busy and bring it out of rc6.
1961 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1962 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1964 /* Clear the context id. Here be magic! */
1965 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1967 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1968 if (__intel_wait_for_register_fw(dev_priv,
1969 GEN6_BSD_SLEEP_PSMI_CONTROL,
1970 GEN6_BSD_SLEEP_INDICATOR,
1973 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1975 /* Now that the ring is fully powered up, update the tail */
1976 i9xx_submit_request(request);
1978 /* Let the ring send IDLE messages to the GT again,
1979 * and so let it sleep to conserve power when idle.
1981 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1982 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1984 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1987 static int mi_flush_dw(struct i915_request *rq, u32 flags)
1991 cs = intel_ring_begin(rq, 4);
1998 * We always require a command barrier so that subsequent
1999 * commands, such as breadcrumb interrupts, are strictly ordered
2000 * wrt the contents of the write cache being flushed to memory
2001 * (and thus being coherent from the CPU).
2003 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2006 * Bspec vol 1c.3 - blitter engine command streamer:
2007 * "If ENABLED, all TLBs will be invalidated once the flush
2008 * operation is complete. This bit is only valid when the
2009 * Post-Sync Operation field is a value of 1h or 3h."
2014 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2018 intel_ring_advance(rq, cs);
2023 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2025 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2028 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2030 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2034 hsw_emit_bb_start(struct i915_request *rq,
2035 u64 offset, u32 len,
2036 unsigned int dispatch_flags)
2040 cs = intel_ring_begin(rq, 2);
2044 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2045 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2046 /* bit0-7 is the length on GEN6+ */
2048 intel_ring_advance(rq, cs);
2054 gen6_emit_bb_start(struct i915_request *rq,
2055 u64 offset, u32 len,
2056 unsigned int dispatch_flags)
2060 cs = intel_ring_begin(rq, 2);
2064 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2065 0 : MI_BATCH_NON_SECURE_I965);
2066 /* bit0-7 is the length on GEN6+ */
2068 intel_ring_advance(rq, cs);
2073 /* Blitter support (SandyBridge+) */
2075 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2077 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2080 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2081 struct intel_engine_cs *engine)
2085 if (!HAS_LEGACY_SEMAPHORES(dev_priv))
2088 GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2089 engine->semaphore.sync_to = gen6_ring_sync_to;
2090 engine->semaphore.signal = gen6_signal;
2093 * The current semaphore is only applied on pre-gen8
2094 * platform. And there is no VCS2 ring on the pre-gen8
2095 * platform. So the semaphore between RCS and VCS2 is
2096 * initialized as INVALID.
2098 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2099 static const struct {
2101 i915_reg_t mbox_reg;
2102 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2104 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2105 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2106 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2109 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2110 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2111 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2114 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2115 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2116 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2119 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2120 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2121 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2125 i915_reg_t mbox_reg;
2127 if (i == engine->hw_id) {
2128 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2129 mbox_reg = GEN6_NOSYNC;
2131 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2132 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
2135 engine->semaphore.mbox.wait[i] = wait_mbox;
2136 engine->semaphore.mbox.signal[i] = mbox_reg;
2140 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2141 struct intel_engine_cs *engine)
2143 if (INTEL_GEN(dev_priv) >= 6) {
2144 engine->irq_enable = gen6_irq_enable;
2145 engine->irq_disable = gen6_irq_disable;
2146 engine->irq_seqno_barrier = gen6_seqno_barrier;
2147 } else if (INTEL_GEN(dev_priv) >= 5) {
2148 engine->irq_enable = gen5_irq_enable;
2149 engine->irq_disable = gen5_irq_disable;
2150 engine->irq_seqno_barrier = gen5_seqno_barrier;
2151 } else if (INTEL_GEN(dev_priv) >= 3) {
2152 engine->irq_enable = i9xx_irq_enable;
2153 engine->irq_disable = i9xx_irq_disable;
2155 engine->irq_enable = i8xx_irq_enable;
2156 engine->irq_disable = i8xx_irq_disable;
2160 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2162 engine->submit_request = i9xx_submit_request;
2163 engine->cancel_requests = cancel_requests;
2165 engine->park = NULL;
2166 engine->unpark = NULL;
2169 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2171 i9xx_set_default_submission(engine);
2172 engine->submit_request = gen6_bsd_submit_request;
2175 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2176 struct intel_engine_cs *engine)
2178 /* gen8+ are only supported with execlists */
2179 GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2181 intel_ring_init_irq(dev_priv, engine);
2182 intel_ring_init_semaphores(dev_priv, engine);
2184 engine->init_hw = init_ring_common;
2185 engine->reset.prepare = reset_prepare;
2186 engine->reset.reset = reset_ring;
2187 engine->reset.finish = reset_finish;
2189 engine->context_pin = intel_ring_context_pin;
2190 engine->request_alloc = ring_request_alloc;
2192 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2193 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2194 if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2197 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2199 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2200 engine->emit_breadcrumb_sz += num_rings * 3;
2202 engine->emit_breadcrumb_sz++;
2205 engine->set_default_submission = i9xx_set_default_submission;
2207 if (INTEL_GEN(dev_priv) >= 6)
2208 engine->emit_bb_start = gen6_emit_bb_start;
2209 else if (INTEL_GEN(dev_priv) >= 4)
2210 engine->emit_bb_start = i965_emit_bb_start;
2211 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2212 engine->emit_bb_start = i830_emit_bb_start;
2214 engine->emit_bb_start = i915_emit_bb_start;
2217 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2219 struct drm_i915_private *dev_priv = engine->i915;
2222 intel_ring_default_vfuncs(dev_priv, engine);
2224 if (HAS_L3_DPF(dev_priv))
2225 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2227 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2229 if (INTEL_GEN(dev_priv) >= 6) {
2230 engine->init_context = intel_rcs_ctx_init;
2231 engine->emit_flush = gen7_render_ring_flush;
2232 if (IS_GEN6(dev_priv))
2233 engine->emit_flush = gen6_render_ring_flush;
2234 } else if (IS_GEN5(dev_priv)) {
2235 engine->emit_flush = gen4_render_ring_flush;
2237 if (INTEL_GEN(dev_priv) < 4)
2238 engine->emit_flush = gen2_render_ring_flush;
2240 engine->emit_flush = gen4_render_ring_flush;
2241 engine->irq_enable_mask = I915_USER_INTERRUPT;
2244 if (IS_HASWELL(dev_priv))
2245 engine->emit_bb_start = hsw_emit_bb_start;
2247 engine->init_hw = init_render_ring;
2249 ret = intel_init_ring_buffer(engine);
2256 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2258 struct drm_i915_private *dev_priv = engine->i915;
2260 intel_ring_default_vfuncs(dev_priv, engine);
2262 if (INTEL_GEN(dev_priv) >= 6) {
2263 /* gen6 bsd needs a special wa for tail updates */
2264 if (IS_GEN6(dev_priv))
2265 engine->set_default_submission = gen6_bsd_set_default_submission;
2266 engine->emit_flush = gen6_bsd_ring_flush;
2267 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2269 engine->emit_flush = bsd_ring_flush;
2270 if (IS_GEN5(dev_priv))
2271 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2273 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2276 return intel_init_ring_buffer(engine);
2279 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2281 struct drm_i915_private *dev_priv = engine->i915;
2283 intel_ring_default_vfuncs(dev_priv, engine);
2285 engine->emit_flush = gen6_ring_flush;
2286 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2288 return intel_init_ring_buffer(engine);
2291 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2293 struct drm_i915_private *dev_priv = engine->i915;
2295 intel_ring_default_vfuncs(dev_priv, engine);
2297 engine->emit_flush = gen6_ring_flush;
2298 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2299 engine->irq_enable = hsw_vebox_irq_enable;
2300 engine->irq_disable = hsw_vebox_irq_disable;
2302 return intel_init_ring_buffer(engine);