2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include <linux/cpufreq.h>
29 #include <linux/pm_runtime.h>
30 #include <drm/drm_plane_helper.h>
32 #include "intel_drv.h"
33 #include "../../../platform/x86/intel_ips.h"
34 #include <linux/module.h>
35 #include <drm/drm_atomic_helper.h>
40 * RC6 is a special power stage which allows the GPU to enter an very
41 * low-voltage mode when idle, using down to 0V while at this stage. This
42 * stage is entered automatically when the GPU is idle when RC6 support is
43 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
45 * There are different RC6 modes available in Intel GPU, which differentiate
46 * among each other with the latency required to enter and leave RC6 and
47 * voltage consumed by the GPU in different states.
49 * The combination of the following flags define which states GPU is allowed
50 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51 * RC6pp is deepest RC6. Their support by hardware varies according to the
52 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53 * which brings the most power savings; deeper states save more power, but
54 * require higher latency to switch to and wake up.
57 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
59 if (HAS_LLC(dev_priv)) {
61 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62 * Display WA #0390: skl,kbl
64 * Must match Sampler, Pixel Back End, and Media. See
65 * WaCompressedResourceSamplerPbeMediaNewHashMode.
67 I915_WRITE(CHICKEN_PAR1_1,
68 I915_READ(CHICKEN_PAR1_1) |
69 SKL_DE_COMPRESSED_HASH_MODE);
72 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 I915_WRITE(CHICKEN_PAR1_1,
74 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
76 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 I915_WRITE(GEN8_CHICKEN_DCPR_1,
78 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
80 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
81 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
84 DISP_FBC_MEMORY_WAKE);
86 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
88 ILK_DPFC_DISABLE_DUMMY0);
90 if (IS_SKYLAKE(dev_priv)) {
91 /* WaDisableDopClockGating */
92 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
93 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
97 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
99 gen9_init_clock_gating(dev_priv);
101 /* WaDisableSDEUnitClockGating:bxt */
102 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
103 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
107 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
109 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
113 * Wa: Backlight PWM may stop in the asserted state, causing backlight
116 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
117 PWM1_GATING_DIS | PWM2_GATING_DIS);
120 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
122 gen9_init_clock_gating(dev_priv);
125 * WaDisablePWMClockGating:glk
126 * Backlight PWM may stop in the asserted state, causing backlight
129 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
130 PWM1_GATING_DIS | PWM2_GATING_DIS);
132 /* WaDDIIOTimeout:glk */
133 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
134 u32 val = I915_READ(CHICKEN_MISC_2);
135 val &= ~(GLK_CL0_PWR_DOWN |
138 I915_WRITE(CHICKEN_MISC_2, val);
143 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
147 tmp = I915_READ(CLKCFG);
149 switch (tmp & CLKCFG_FSB_MASK) {
151 dev_priv->fsb_freq = 533; /* 133*4 */
154 dev_priv->fsb_freq = 800; /* 200*4 */
157 dev_priv->fsb_freq = 667; /* 167*4 */
160 dev_priv->fsb_freq = 400; /* 100*4 */
164 switch (tmp & CLKCFG_MEM_MASK) {
166 dev_priv->mem_freq = 533;
169 dev_priv->mem_freq = 667;
172 dev_priv->mem_freq = 800;
176 /* detect pineview DDR3 setting */
177 tmp = I915_READ(CSHRDDR3CTL);
178 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
181 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
185 ddrpll = I915_READ16(DDRMPLL1);
186 csipll = I915_READ16(CSIPLL0);
188 switch (ddrpll & 0xff) {
190 dev_priv->mem_freq = 800;
193 dev_priv->mem_freq = 1066;
196 dev_priv->mem_freq = 1333;
199 dev_priv->mem_freq = 1600;
202 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
204 dev_priv->mem_freq = 0;
208 dev_priv->ips.r_t = dev_priv->mem_freq;
210 switch (csipll & 0x3ff) {
212 dev_priv->fsb_freq = 3200;
215 dev_priv->fsb_freq = 3733;
218 dev_priv->fsb_freq = 4266;
221 dev_priv->fsb_freq = 4800;
224 dev_priv->fsb_freq = 5333;
227 dev_priv->fsb_freq = 5866;
230 dev_priv->fsb_freq = 6400;
233 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
235 dev_priv->fsb_freq = 0;
239 if (dev_priv->fsb_freq == 3200) {
240 dev_priv->ips.c_m = 0;
241 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242 dev_priv->ips.c_m = 1;
244 dev_priv->ips.c_m = 2;
248 static const struct cxsr_latency cxsr_latency_table[] = {
249 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
250 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
251 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
252 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
253 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
255 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
256 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
257 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
258 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
259 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
261 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
262 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
263 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
264 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
265 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
267 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
268 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
269 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
270 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
271 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
273 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
274 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
275 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
276 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
277 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
279 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
280 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
281 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
282 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
283 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
286 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
291 const struct cxsr_latency *latency;
294 if (fsb == 0 || mem == 0)
297 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
298 latency = &cxsr_latency_table[i];
299 if (is_desktop == latency->is_desktop &&
300 is_ddr3 == latency->is_ddr3 &&
301 fsb == latency->fsb_freq && mem == latency->mem_freq)
305 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
314 mutex_lock(&dev_priv->pcu_lock);
316 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
318 val &= ~FORCE_DDR_HIGH_FREQ;
320 val |= FORCE_DDR_HIGH_FREQ;
321 val &= ~FORCE_DDR_LOW_FREQ;
322 val |= FORCE_DDR_FREQ_REQ_ACK;
323 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
325 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
326 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
327 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
329 mutex_unlock(&dev_priv->pcu_lock);
332 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
336 mutex_lock(&dev_priv->pcu_lock);
338 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
340 val |= DSP_MAXFIFO_PM5_ENABLE;
342 val &= ~DSP_MAXFIFO_PM5_ENABLE;
343 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
345 mutex_unlock(&dev_priv->pcu_lock);
348 #define FW_WM(value, plane) \
349 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
351 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
356 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359 POSTING_READ(FW_BLC_SELF_VLV);
360 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363 POSTING_READ(FW_BLC_SELF);
364 } else if (IS_PINEVIEW(dev_priv)) {
365 val = I915_READ(DSPFW3);
366 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
368 val |= PINEVIEW_SELF_REFRESH_EN;
370 val &= ~PINEVIEW_SELF_REFRESH_EN;
371 I915_WRITE(DSPFW3, val);
372 POSTING_READ(DSPFW3);
373 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
376 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
377 I915_WRITE(FW_BLC_SELF, val);
378 POSTING_READ(FW_BLC_SELF);
379 } else if (IS_I915GM(dev_priv)) {
381 * FIXME can't find a bit like this for 915G, and
382 * and yet it does have the related watermark in
383 * FW_BLC_SELF. What's going on?
385 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
387 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
388 I915_WRITE(INSTPM, val);
389 POSTING_READ(INSTPM);
394 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
396 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
397 enableddisabled(enable),
398 enableddisabled(was_enabled));
404 * intel_set_memory_cxsr - Configure CxSR state
405 * @dev_priv: i915 device
406 * @enable: Allow vs. disallow CxSR
408 * Allow or disallow the system to enter a special CxSR
409 * (C-state self refresh) state. What typically happens in CxSR mode
410 * is that several display FIFOs may get combined into a single larger
411 * FIFO for a particular plane (so called max FIFO mode) to allow the
412 * system to defer memory fetches longer, and the memory will enter
415 * Note that enabling CxSR does not guarantee that the system enter
416 * this special mode, nor does it guarantee that the system stays
417 * in that mode once entered. So this just allows/disallows the system
418 * to autonomously utilize the CxSR mode. Other factors such as core
419 * C-states will affect when/if the system actually enters/exits the
422 * Note that on VLV/CHV this actually only controls the max FIFO mode,
423 * and the system is free to enter/exit memory self refresh at any time
424 * even when the use of CxSR has been disallowed.
426 * While the system is actually in the CxSR/max FIFO mode, some plane
427 * control registers will not get latched on vblank. Thus in order to
428 * guarantee the system will respond to changes in the plane registers
429 * we must always disallow CxSR prior to making changes to those registers.
430 * Unfortunately the system will re-evaluate the CxSR conditions at
431 * frame start which happens after vblank start (which is when the plane
432 * registers would get latched), so we can't proceed with the plane update
433 * during the same frame where we disallowed CxSR.
435 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
436 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
437 * the hardware w.r.t. HPLL SR when writing to plane registers.
438 * Disallowing just CxSR is sufficient.
440 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
444 mutex_lock(&dev_priv->wm.wm_mutex);
445 ret = _intel_set_memory_cxsr(dev_priv, enable);
446 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
447 dev_priv->wm.vlv.cxsr = enable;
448 else if (IS_G4X(dev_priv))
449 dev_priv->wm.g4x.cxsr = enable;
450 mutex_unlock(&dev_priv->wm.wm_mutex);
456 * Latency for FIFO fetches is dependent on several factors:
457 * - memory configuration (speed, channels)
459 * - current MCH state
460 * It can be fairly high in some situations, so here we assume a fairly
461 * pessimal value. It's a tradeoff between extra memory fetches (if we
462 * set this value too high, the FIFO will fetch frequently to stay full)
463 * and power consumption (set it too low to save power and we might see
464 * FIFO underruns and display "flicker").
466 * A value of 5us seems to be a good balance; safe for very low end
467 * platforms but not overly aggressive on lower latency configs.
469 static const int pessimal_latency_ns = 5000;
471 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
472 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
474 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
476 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 enum pipe pipe = crtc->pipe;
480 int sprite0_start, sprite1_start;
483 uint32_t dsparb, dsparb2, dsparb3;
485 dsparb = I915_READ(DSPARB);
486 dsparb2 = I915_READ(DSPARB2);
487 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
488 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
491 dsparb = I915_READ(DSPARB);
492 dsparb2 = I915_READ(DSPARB2);
493 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
494 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
497 dsparb2 = I915_READ(DSPARB2);
498 dsparb3 = I915_READ(DSPARB3);
499 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
500 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
507 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
508 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
509 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
510 fifo_state->plane[PLANE_CURSOR] = 63;
513 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
514 enum i9xx_plane_id i9xx_plane)
516 uint32_t dsparb = I915_READ(DSPARB);
519 size = dsparb & 0x7f;
520 if (i9xx_plane == PLANE_B)
521 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
523 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
524 dsparb, plane_name(i9xx_plane), size);
529 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
530 enum i9xx_plane_id i9xx_plane)
532 uint32_t dsparb = I915_READ(DSPARB);
535 size = dsparb & 0x1ff;
536 if (i9xx_plane == PLANE_B)
537 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
538 size >>= 1; /* Convert to cachelines */
540 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
541 dsparb, plane_name(i9xx_plane), size);
546 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
547 enum i9xx_plane_id i9xx_plane)
549 uint32_t dsparb = I915_READ(DSPARB);
552 size = dsparb & 0x7f;
553 size >>= 2; /* Convert to cachelines */
555 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
556 dsparb, plane_name(i9xx_plane), size);
561 /* Pineview has different values for various configs */
562 static const struct intel_watermark_params pineview_display_wm = {
563 .fifo_size = PINEVIEW_DISPLAY_FIFO,
564 .max_wm = PINEVIEW_MAX_WM,
565 .default_wm = PINEVIEW_DFT_WM,
566 .guard_size = PINEVIEW_GUARD_WM,
567 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
569 static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 .fifo_size = PINEVIEW_DISPLAY_FIFO,
571 .max_wm = PINEVIEW_MAX_WM,
572 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
573 .guard_size = PINEVIEW_GUARD_WM,
574 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
576 static const struct intel_watermark_params pineview_cursor_wm = {
577 .fifo_size = PINEVIEW_CURSOR_FIFO,
578 .max_wm = PINEVIEW_CURSOR_MAX_WM,
579 .default_wm = PINEVIEW_CURSOR_DFT_WM,
580 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
581 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
583 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 .fifo_size = PINEVIEW_CURSOR_FIFO,
585 .max_wm = PINEVIEW_CURSOR_MAX_WM,
586 .default_wm = PINEVIEW_CURSOR_DFT_WM,
587 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590 static const struct intel_watermark_params i965_cursor_wm_info = {
591 .fifo_size = I965_CURSOR_FIFO,
592 .max_wm = I965_CURSOR_MAX_WM,
593 .default_wm = I965_CURSOR_DFT_WM,
595 .cacheline_size = I915_FIFO_LINE_SIZE,
597 static const struct intel_watermark_params i945_wm_info = {
598 .fifo_size = I945_FIFO_SIZE,
599 .max_wm = I915_MAX_WM,
602 .cacheline_size = I915_FIFO_LINE_SIZE,
604 static const struct intel_watermark_params i915_wm_info = {
605 .fifo_size = I915_FIFO_SIZE,
606 .max_wm = I915_MAX_WM,
609 .cacheline_size = I915_FIFO_LINE_SIZE,
611 static const struct intel_watermark_params i830_a_wm_info = {
612 .fifo_size = I855GM_FIFO_SIZE,
613 .max_wm = I915_MAX_WM,
616 .cacheline_size = I830_FIFO_LINE_SIZE,
618 static const struct intel_watermark_params i830_bc_wm_info = {
619 .fifo_size = I855GM_FIFO_SIZE,
620 .max_wm = I915_MAX_WM/2,
623 .cacheline_size = I830_FIFO_LINE_SIZE,
625 static const struct intel_watermark_params i845_wm_info = {
626 .fifo_size = I830_FIFO_SIZE,
627 .max_wm = I915_MAX_WM,
630 .cacheline_size = I830_FIFO_LINE_SIZE,
634 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
635 * @pixel_rate: Pipe pixel rate in kHz
636 * @cpp: Plane bytes per pixel
637 * @latency: Memory wakeup latency in 0.1us units
639 * Compute the watermark using the method 1 or "small buffer"
640 * formula. The caller may additonally add extra cachelines
641 * to account for TLB misses and clock crossings.
643 * This method is concerned with the short term drain rate
644 * of the FIFO, ie. it does not account for blanking periods
645 * which would effectively reduce the average drain rate across
646 * a longer period. The name "small" refers to the fact the
647 * FIFO is relatively small compared to the amount of data
650 * The FIFO level vs. time graph might look something like:
654 * __---__---__ (- plane active, _ blanking)
657 * or perhaps like this:
660 * __----__----__ (- plane active, _ blanking)
664 * The watermark in bytes
666 static unsigned int intel_wm_method1(unsigned int pixel_rate,
668 unsigned int latency)
672 ret = (uint64_t) pixel_rate * cpp * latency;
673 ret = DIV_ROUND_UP_ULL(ret, 10000);
679 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
680 * @pixel_rate: Pipe pixel rate in kHz
681 * @htotal: Pipe horizontal total
682 * @width: Plane width in pixels
683 * @cpp: Plane bytes per pixel
684 * @latency: Memory wakeup latency in 0.1us units
686 * Compute the watermark using the method 2 or "large buffer"
687 * formula. The caller may additonally add extra cachelines
688 * to account for TLB misses and clock crossings.
690 * This method is concerned with the long term drain rate
691 * of the FIFO, ie. it does account for blanking periods
692 * which effectively reduce the average drain rate across
693 * a longer period. The name "large" refers to the fact the
694 * FIFO is relatively large compared to the amount of data
697 * The FIFO level vs. time graph might look something like:
702 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
706 * The watermark in bytes
708 static unsigned int intel_wm_method2(unsigned int pixel_rate,
712 unsigned int latency)
717 * FIXME remove once all users are computing
718 * watermarks in the correct place.
720 if (WARN_ON_ONCE(htotal == 0))
723 ret = (latency * pixel_rate) / (htotal * 10000);
724 ret = (ret + 1) * width * cpp;
730 * intel_calculate_wm - calculate watermark level
731 * @pixel_rate: pixel clock
732 * @wm: chip FIFO params
733 * @fifo_size: size of the FIFO buffer
734 * @cpp: bytes per pixel
735 * @latency_ns: memory latency for the platform
737 * Calculate the watermark level (the level at which the display plane will
738 * start fetching from memory again). Each chip has a different display
739 * FIFO size and allocation, so the caller needs to figure that out and pass
740 * in the correct intel_watermark_params structure.
742 * As the pixel clock runs, the FIFO will be drained at a rate that depends
743 * on the pixel size. When it reaches the watermark level, it'll start
744 * fetching FIFO line sized based chunks from memory until the FIFO fills
745 * past the watermark point. If the FIFO drains completely, a FIFO underrun
746 * will occur, and a display engine hang could result.
748 static unsigned int intel_calculate_wm(int pixel_rate,
749 const struct intel_watermark_params *wm,
750 int fifo_size, int cpp,
751 unsigned int latency_ns)
753 int entries, wm_size;
756 * Note: we need to make sure we don't overflow for various clock &
758 * clocks go from a few thousand to several hundred thousand.
759 * latency is usually a few thousand
761 entries = intel_wm_method1(pixel_rate, cpp,
763 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
765 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
767 wm_size = fifo_size - entries;
768 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
770 /* Don't promote wm_size to unsigned... */
771 if (wm_size > wm->max_wm)
772 wm_size = wm->max_wm;
774 wm_size = wm->default_wm;
777 * Bspec seems to indicate that the value shouldn't be lower than
778 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
779 * Lets go for 8 which is the burst size since certain platforms
780 * already use a hardcoded 8 (which is what the spec says should be
789 static bool is_disabling(int old, int new, int threshold)
791 return old >= threshold && new < threshold;
794 static bool is_enabling(int old, int new, int threshold)
796 return old < threshold && new >= threshold;
799 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
801 return dev_priv->wm.max_level + 1;
804 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
805 const struct intel_plane_state *plane_state)
807 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
809 /* FIXME check the 'enable' instead */
810 if (!crtc_state->base.active)
814 * Treat cursor with fb as always visible since cursor updates
815 * can happen faster than the vrefresh rate, and the current
816 * watermark code doesn't handle that correctly. Cursor updates
817 * which set/clear the fb or change the cursor size are going
818 * to get throttled by intel_legacy_cursor_update() to work
819 * around this problem with the watermark code.
821 if (plane->id == PLANE_CURSOR)
822 return plane_state->base.fb != NULL;
824 return plane_state->base.visible;
827 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
829 struct intel_crtc *crtc, *enabled = NULL;
831 for_each_intel_crtc(&dev_priv->drm, crtc) {
832 if (intel_crtc_active(crtc)) {
842 static void pineview_update_wm(struct intel_crtc *unused_crtc)
844 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845 struct intel_crtc *crtc;
846 const struct cxsr_latency *latency;
850 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
855 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856 intel_set_memory_cxsr(dev_priv, false);
860 crtc = single_enabled_crtc(dev_priv);
862 const struct drm_display_mode *adjusted_mode =
863 &crtc->config->base.adjusted_mode;
864 const struct drm_framebuffer *fb =
865 crtc->base.primary->state->fb;
866 int cpp = fb->format->cpp[0];
867 int clock = adjusted_mode->crtc_clock;
870 wm = intel_calculate_wm(clock, &pineview_display_wm,
871 pineview_display_wm.fifo_size,
872 cpp, latency->display_sr);
873 reg = I915_READ(DSPFW1);
874 reg &= ~DSPFW_SR_MASK;
875 reg |= FW_WM(wm, SR);
876 I915_WRITE(DSPFW1, reg);
877 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
880 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
881 pineview_display_wm.fifo_size,
882 4, latency->cursor_sr);
883 reg = I915_READ(DSPFW3);
884 reg &= ~DSPFW_CURSOR_SR_MASK;
885 reg |= FW_WM(wm, CURSOR_SR);
886 I915_WRITE(DSPFW3, reg);
888 /* Display HPLL off SR */
889 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
890 pineview_display_hplloff_wm.fifo_size,
891 cpp, latency->display_hpll_disable);
892 reg = I915_READ(DSPFW3);
893 reg &= ~DSPFW_HPLL_SR_MASK;
894 reg |= FW_WM(wm, HPLL_SR);
895 I915_WRITE(DSPFW3, reg);
897 /* cursor HPLL off SR */
898 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
899 pineview_display_hplloff_wm.fifo_size,
900 4, latency->cursor_hpll_disable);
901 reg = I915_READ(DSPFW3);
902 reg &= ~DSPFW_HPLL_CURSOR_MASK;
903 reg |= FW_WM(wm, HPLL_CURSOR);
904 I915_WRITE(DSPFW3, reg);
905 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
907 intel_set_memory_cxsr(dev_priv, true);
909 intel_set_memory_cxsr(dev_priv, false);
914 * Documentation says:
915 * "If the line size is small, the TLB fetches can get in the way of the
916 * data fetches, causing some lag in the pixel data return which is not
917 * accounted for in the above formulas. The following adjustment only
918 * needs to be applied if eight whole lines fit in the buffer at once.
919 * The WM is adjusted upwards by the difference between the FIFO size
920 * and the size of 8 whole lines. This adjustment is always performed
921 * in the actual pixel depth regardless of whether FBC is enabled or not."
923 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
925 int tlb_miss = fifo_size * 64 - width * cpp * 8;
927 return max(0, tlb_miss);
930 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
931 const struct g4x_wm_values *wm)
935 for_each_pipe(dev_priv, pipe)
936 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
939 FW_WM(wm->sr.plane, SR) |
940 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
941 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
942 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
944 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
945 FW_WM(wm->sr.fbc, FBC_SR) |
946 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
947 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
948 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
949 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
951 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
952 FW_WM(wm->sr.cursor, CURSOR_SR) |
953 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
954 FW_WM(wm->hpll.plane, HPLL_SR));
956 POSTING_READ(DSPFW1);
959 #define FW_WM_VLV(value, plane) \
960 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
962 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 const struct vlv_wm_values *wm)
967 for_each_pipe(dev_priv, pipe) {
968 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
970 I915_WRITE(VLV_DDL(pipe),
971 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
972 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
973 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
974 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
978 * Zero the (unused) WM1 watermarks, and also clear all the
979 * high order bits so that there are no out of bounds values
980 * present in the registers during the reprogramming.
982 I915_WRITE(DSPHOWM, 0);
983 I915_WRITE(DSPHOWM1, 0);
984 I915_WRITE(DSPFW4, 0);
985 I915_WRITE(DSPFW5, 0);
986 I915_WRITE(DSPFW6, 0);
989 FW_WM(wm->sr.plane, SR) |
990 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
991 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
992 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
994 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
995 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
996 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
998 FW_WM(wm->sr.cursor, CURSOR_SR));
1000 if (IS_CHERRYVIEW(dev_priv)) {
1001 I915_WRITE(DSPFW7_CHV,
1002 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1003 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004 I915_WRITE(DSPFW8_CHV,
1005 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1006 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007 I915_WRITE(DSPFW9_CHV,
1008 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1009 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1011 FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1013 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1014 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1015 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1016 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1017 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1018 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1019 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1020 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1024 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1026 FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1028 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1029 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1030 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1031 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1032 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1035 POSTING_READ(DSPFW1);
1040 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1042 /* all latencies in usec */
1043 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1044 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1047 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1050 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1053 * DSPCNTR[13] supposedly controls whether the
1054 * primary plane can use the FIFO space otherwise
1055 * reserved for the sprite plane. It's not 100% clear
1056 * what the actual FIFO size is, but it looks like we
1057 * can happily set both primary and sprite watermarks
1058 * up to 127 cachelines. So that would seem to mean
1059 * that either DSPCNTR[13] doesn't do anything, or that
1060 * the total FIFO is >= 256 cachelines in size. Either
1061 * way, we don't seem to have to worry about this
1062 * repartitioning as the maximum watermark value the
1063 * register can hold for each plane is lower than the
1064 * minimum FIFO size.
1070 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1072 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1074 MISSING_CASE(plane_id);
1079 static int g4x_fbc_fifo_size(int level)
1082 case G4X_WM_LEVEL_SR:
1084 case G4X_WM_LEVEL_HPLL:
1087 MISSING_CASE(level);
1092 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1093 const struct intel_plane_state *plane_state,
1096 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1097 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1098 const struct drm_display_mode *adjusted_mode =
1099 &crtc_state->base.adjusted_mode;
1100 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1101 unsigned int clock, htotal, cpp, width, wm;
1106 if (!intel_wm_plane_visible(crtc_state, plane_state))
1110 * Not 100% sure which way ELK should go here as the
1111 * spec only says CL/CTG should assume 32bpp and BW
1112 * doesn't need to. But as these things followed the
1113 * mobile vs. desktop lines on gen3 as well, let's
1114 * assume ELK doesn't need this.
1116 * The spec also fails to list such a restriction for
1117 * the HPLL watermark, which seems a little strange.
1118 * Let's use 32bpp for the HPLL watermark as well.
1120 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1121 level != G4X_WM_LEVEL_NORMAL)
1124 cpp = plane_state->base.fb->format->cpp[0];
1126 clock = adjusted_mode->crtc_clock;
1127 htotal = adjusted_mode->crtc_htotal;
1129 if (plane->id == PLANE_CURSOR)
1130 width = plane_state->base.crtc_w;
1132 width = drm_rect_width(&plane_state->base.dst);
1134 if (plane->id == PLANE_CURSOR) {
1135 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1136 } else if (plane->id == PLANE_PRIMARY &&
1137 level == G4X_WM_LEVEL_NORMAL) {
1138 wm = intel_wm_method1(clock, cpp, latency);
1140 unsigned int small, large;
1142 small = intel_wm_method1(clock, cpp, latency);
1143 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1145 wm = min(small, large);
1148 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1151 wm = DIV_ROUND_UP(wm, 64) + 2;
1153 return min_t(unsigned int, wm, USHRT_MAX);
1156 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1157 int level, enum plane_id plane_id, u16 value)
1159 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1162 for (; level < intel_wm_num_levels(dev_priv); level++) {
1163 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1165 dirty |= raw->plane[plane_id] != value;
1166 raw->plane[plane_id] = value;
1172 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1173 int level, u16 value)
1175 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1178 /* NORMAL level doesn't have an FBC watermark */
1179 level = max(level, G4X_WM_LEVEL_SR);
1181 for (; level < intel_wm_num_levels(dev_priv); level++) {
1182 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1184 dirty |= raw->fbc != value;
1191 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1192 const struct intel_plane_state *pstate,
1195 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1196 const struct intel_plane_state *plane_state)
1198 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1199 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1200 enum plane_id plane_id = plane->id;
1204 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1205 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1206 if (plane_id == PLANE_PRIMARY)
1207 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1211 for (level = 0; level < num_levels; level++) {
1212 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1215 wm = g4x_compute_wm(crtc_state, plane_state, level);
1216 max_wm = g4x_plane_fifo_size(plane_id, level);
1221 dirty |= raw->plane[plane_id] != wm;
1222 raw->plane[plane_id] = wm;
1224 if (plane_id != PLANE_PRIMARY ||
1225 level == G4X_WM_LEVEL_NORMAL)
1228 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1229 raw->plane[plane_id]);
1230 max_wm = g4x_fbc_fifo_size(level);
1233 * FBC wm is not mandatory as we
1234 * can always just disable its use.
1239 dirty |= raw->fbc != wm;
1243 /* mark watermarks as invalid */
1244 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1246 if (plane_id == PLANE_PRIMARY)
1247 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1251 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1253 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1254 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1255 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1257 if (plane_id == PLANE_PRIMARY)
1258 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1259 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1260 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1266 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1267 enum plane_id plane_id, int level)
1269 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1271 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1274 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1277 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1279 if (level > dev_priv->wm.max_level)
1282 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1283 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1284 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1287 /* mark all levels starting from 'level' as invalid */
1288 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1289 struct g4x_wm_state *wm_state, int level)
1291 if (level <= G4X_WM_LEVEL_NORMAL) {
1292 enum plane_id plane_id;
1294 for_each_plane_id_on_crtc(crtc, plane_id)
1295 wm_state->wm.plane[plane_id] = USHRT_MAX;
1298 if (level <= G4X_WM_LEVEL_SR) {
1299 wm_state->cxsr = false;
1300 wm_state->sr.cursor = USHRT_MAX;
1301 wm_state->sr.plane = USHRT_MAX;
1302 wm_state->sr.fbc = USHRT_MAX;
1305 if (level <= G4X_WM_LEVEL_HPLL) {
1306 wm_state->hpll_en = false;
1307 wm_state->hpll.cursor = USHRT_MAX;
1308 wm_state->hpll.plane = USHRT_MAX;
1309 wm_state->hpll.fbc = USHRT_MAX;
1313 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1315 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1316 struct intel_atomic_state *state =
1317 to_intel_atomic_state(crtc_state->base.state);
1318 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1319 int num_active_planes = hweight32(crtc_state->active_planes &
1320 ~BIT(PLANE_CURSOR));
1321 const struct g4x_pipe_wm *raw;
1322 const struct intel_plane_state *old_plane_state;
1323 const struct intel_plane_state *new_plane_state;
1324 struct intel_plane *plane;
1325 enum plane_id plane_id;
1327 unsigned int dirty = 0;
1329 for_each_oldnew_intel_plane_in_state(state, plane,
1331 new_plane_state, i) {
1332 if (new_plane_state->base.crtc != &crtc->base &&
1333 old_plane_state->base.crtc != &crtc->base)
1336 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 dirty |= BIT(plane->id);
1343 level = G4X_WM_LEVEL_NORMAL;
1344 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1347 raw = &crtc_state->wm.g4x.raw[level];
1348 for_each_plane_id_on_crtc(crtc, plane_id)
1349 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1351 level = G4X_WM_LEVEL_SR;
1353 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1356 raw = &crtc_state->wm.g4x.raw[level];
1357 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1358 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1359 wm_state->sr.fbc = raw->fbc;
1361 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1363 level = G4X_WM_LEVEL_HPLL;
1365 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1368 raw = &crtc_state->wm.g4x.raw[level];
1369 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1370 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1371 wm_state->hpll.fbc = raw->fbc;
1373 wm_state->hpll_en = wm_state->cxsr;
1378 if (level == G4X_WM_LEVEL_NORMAL)
1381 /* invalidate the higher levels */
1382 g4x_invalidate_wms(crtc, wm_state, level);
1385 * Determine if the FBC watermark(s) can be used. IF
1386 * this isn't the case we prefer to disable the FBC
1387 ( watermark(s) rather than disable the SR/HPLL
1388 * level(s) entirely.
1390 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1392 if (level >= G4X_WM_LEVEL_SR &&
1393 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1394 wm_state->fbc_en = false;
1395 else if (level >= G4X_WM_LEVEL_HPLL &&
1396 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1397 wm_state->fbc_en = false;
1402 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1403 struct intel_crtc *crtc,
1404 struct intel_crtc_state *new_crtc_state)
1406 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1407 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1408 struct intel_atomic_state *intel_state =
1409 to_intel_atomic_state(new_crtc_state->base.state);
1410 const struct intel_crtc_state *old_crtc_state =
1411 intel_atomic_get_old_crtc_state(intel_state, crtc);
1412 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1413 enum plane_id plane_id;
1415 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1416 *intermediate = *optimal;
1418 intermediate->cxsr = false;
1419 intermediate->hpll_en = false;
1423 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1424 !new_crtc_state->disable_cxsr;
1425 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1426 !new_crtc_state->disable_cxsr;
1427 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1429 for_each_plane_id_on_crtc(crtc, plane_id) {
1430 intermediate->wm.plane[plane_id] =
1431 max(optimal->wm.plane[plane_id],
1432 active->wm.plane[plane_id]);
1434 WARN_ON(intermediate->wm.plane[plane_id] >
1435 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1438 intermediate->sr.plane = max(optimal->sr.plane,
1440 intermediate->sr.cursor = max(optimal->sr.cursor,
1442 intermediate->sr.fbc = max(optimal->sr.fbc,
1445 intermediate->hpll.plane = max(optimal->hpll.plane,
1446 active->hpll.plane);
1447 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1448 active->hpll.cursor);
1449 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1452 WARN_ON((intermediate->sr.plane >
1453 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1454 intermediate->sr.cursor >
1455 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1456 intermediate->cxsr);
1457 WARN_ON((intermediate->sr.plane >
1458 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1459 intermediate->sr.cursor >
1460 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1461 intermediate->hpll_en);
1463 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1464 intermediate->fbc_en && intermediate->cxsr);
1465 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1466 intermediate->fbc_en && intermediate->hpll_en);
1470 * If our intermediate WM are identical to the final WM, then we can
1471 * omit the post-vblank programming; only update if it's different.
1473 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1474 new_crtc_state->wm.need_postvbl_update = true;
1479 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1480 struct g4x_wm_values *wm)
1482 struct intel_crtc *crtc;
1483 int num_active_crtcs = 0;
1489 for_each_intel_crtc(&dev_priv->drm, crtc) {
1490 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1495 if (!wm_state->cxsr)
1497 if (!wm_state->hpll_en)
1498 wm->hpll_en = false;
1499 if (!wm_state->fbc_en)
1505 if (num_active_crtcs != 1) {
1507 wm->hpll_en = false;
1511 for_each_intel_crtc(&dev_priv->drm, crtc) {
1512 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1513 enum pipe pipe = crtc->pipe;
1515 wm->pipe[pipe] = wm_state->wm;
1516 if (crtc->active && wm->cxsr)
1517 wm->sr = wm_state->sr;
1518 if (crtc->active && wm->hpll_en)
1519 wm->hpll = wm_state->hpll;
1523 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1525 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1526 struct g4x_wm_values new_wm = {};
1528 g4x_merge_wm(dev_priv, &new_wm);
1530 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1533 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1534 _intel_set_memory_cxsr(dev_priv, false);
1536 g4x_write_wm_values(dev_priv, &new_wm);
1538 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1539 _intel_set_memory_cxsr(dev_priv, true);
1544 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1545 struct intel_crtc_state *crtc_state)
1547 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1548 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1550 mutex_lock(&dev_priv->wm.wm_mutex);
1551 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1552 g4x_program_watermarks(dev_priv);
1553 mutex_unlock(&dev_priv->wm.wm_mutex);
1556 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1557 struct intel_crtc_state *crtc_state)
1559 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1562 if (!crtc_state->wm.need_postvbl_update)
1565 mutex_lock(&dev_priv->wm.wm_mutex);
1566 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1567 g4x_program_watermarks(dev_priv);
1568 mutex_unlock(&dev_priv->wm.wm_mutex);
1571 /* latency must be in 0.1us units. */
1572 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1573 unsigned int htotal,
1576 unsigned int latency)
1580 ret = intel_wm_method2(pixel_rate, htotal,
1581 width, cpp, latency);
1582 ret = DIV_ROUND_UP(ret, 64);
1587 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1589 /* all latencies in usec */
1590 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1592 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1594 if (IS_CHERRYVIEW(dev_priv)) {
1595 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1596 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1598 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1602 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1603 const struct intel_plane_state *plane_state,
1606 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1607 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1608 const struct drm_display_mode *adjusted_mode =
1609 &crtc_state->base.adjusted_mode;
1610 unsigned int clock, htotal, cpp, width, wm;
1612 if (dev_priv->wm.pri_latency[level] == 0)
1615 if (!intel_wm_plane_visible(crtc_state, plane_state))
1618 cpp = plane_state->base.fb->format->cpp[0];
1619 clock = adjusted_mode->crtc_clock;
1620 htotal = adjusted_mode->crtc_htotal;
1621 width = crtc_state->pipe_src_w;
1623 if (plane->id == PLANE_CURSOR) {
1625 * FIXME the formula gives values that are
1626 * too big for the cursor FIFO, and hence we
1627 * would never be able to use cursors. For
1628 * now just hardcode the watermark.
1632 wm = vlv_wm_method2(clock, htotal, width, cpp,
1633 dev_priv->wm.pri_latency[level] * 10);
1636 return min_t(unsigned int, wm, USHRT_MAX);
1639 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1641 return (active_planes & (BIT(PLANE_SPRITE0) |
1642 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1645 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1648 const struct g4x_pipe_wm *raw =
1649 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1650 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1651 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1652 int num_active_planes = hweight32(active_planes);
1653 const int fifo_size = 511;
1654 int fifo_extra, fifo_left = fifo_size;
1655 int sprite0_fifo_extra = 0;
1656 unsigned int total_rate;
1657 enum plane_id plane_id;
1660 * When enabling sprite0 after sprite1 has already been enabled
1661 * we tend to get an underrun unless sprite0 already has some
1662 * FIFO space allcoated. Hence we always allocate at least one
1663 * cacheline for sprite0 whenever sprite1 is enabled.
1665 * All other plane enable sequences appear immune to this problem.
1667 if (vlv_need_sprite0_fifo_workaround(active_planes))
1668 sprite0_fifo_extra = 1;
1670 total_rate = raw->plane[PLANE_PRIMARY] +
1671 raw->plane[PLANE_SPRITE0] +
1672 raw->plane[PLANE_SPRITE1] +
1675 if (total_rate > fifo_size)
1678 if (total_rate == 0)
1681 for_each_plane_id_on_crtc(crtc, plane_id) {
1684 if ((active_planes & BIT(plane_id)) == 0) {
1685 fifo_state->plane[plane_id] = 0;
1689 rate = raw->plane[plane_id];
1690 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1691 fifo_left -= fifo_state->plane[plane_id];
1694 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1695 fifo_left -= sprite0_fifo_extra;
1697 fifo_state->plane[PLANE_CURSOR] = 63;
1699 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1701 /* spread the remainder evenly */
1702 for_each_plane_id_on_crtc(crtc, plane_id) {
1708 if ((active_planes & BIT(plane_id)) == 0)
1711 plane_extra = min(fifo_extra, fifo_left);
1712 fifo_state->plane[plane_id] += plane_extra;
1713 fifo_left -= plane_extra;
1716 WARN_ON(active_planes != 0 && fifo_left != 0);
1718 /* give it all to the first plane if none are active */
1719 if (active_planes == 0) {
1720 WARN_ON(fifo_left != fifo_size);
1721 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1727 /* mark all levels starting from 'level' as invalid */
1728 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1729 struct vlv_wm_state *wm_state, int level)
1731 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1733 for (; level < intel_wm_num_levels(dev_priv); level++) {
1734 enum plane_id plane_id;
1736 for_each_plane_id_on_crtc(crtc, plane_id)
1737 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1739 wm_state->sr[level].cursor = USHRT_MAX;
1740 wm_state->sr[level].plane = USHRT_MAX;
1744 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1749 return fifo_size - wm;
1753 * Starting from 'level' set all higher
1754 * levels to 'value' in the "raw" watermarks.
1756 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1757 int level, enum plane_id plane_id, u16 value)
1759 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1760 int num_levels = intel_wm_num_levels(dev_priv);
1763 for (; level < num_levels; level++) {
1764 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1766 dirty |= raw->plane[plane_id] != value;
1767 raw->plane[plane_id] = value;
1773 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1774 const struct intel_plane_state *plane_state)
1776 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1777 enum plane_id plane_id = plane->id;
1778 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1782 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1783 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1787 for (level = 0; level < num_levels; level++) {
1788 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1789 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1790 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1795 dirty |= raw->plane[plane_id] != wm;
1796 raw->plane[plane_id] = wm;
1799 /* mark all higher levels as invalid */
1800 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1804 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1806 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1807 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1808 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1813 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1814 enum plane_id plane_id, int level)
1816 const struct g4x_pipe_wm *raw =
1817 &crtc_state->wm.vlv.raw[level];
1818 const struct vlv_fifo_state *fifo_state =
1819 &crtc_state->wm.vlv.fifo_state;
1821 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1824 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1826 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1827 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1828 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1829 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1832 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1835 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1836 struct intel_atomic_state *state =
1837 to_intel_atomic_state(crtc_state->base.state);
1838 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1839 const struct vlv_fifo_state *fifo_state =
1840 &crtc_state->wm.vlv.fifo_state;
1841 int num_active_planes = hweight32(crtc_state->active_planes &
1842 ~BIT(PLANE_CURSOR));
1843 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1844 const struct intel_plane_state *old_plane_state;
1845 const struct intel_plane_state *new_plane_state;
1846 struct intel_plane *plane;
1847 enum plane_id plane_id;
1849 unsigned int dirty = 0;
1851 for_each_oldnew_intel_plane_in_state(state, plane,
1853 new_plane_state, i) {
1854 if (new_plane_state->base.crtc != &crtc->base &&
1855 old_plane_state->base.crtc != &crtc->base)
1858 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1859 dirty |= BIT(plane->id);
1863 * DSPARB registers may have been reset due to the
1864 * power well being turned off. Make sure we restore
1865 * them to a consistent state even if no primary/sprite
1866 * planes are initially active.
1869 crtc_state->fifo_changed = true;
1874 /* cursor changes don't warrant a FIFO recompute */
1875 if (dirty & ~BIT(PLANE_CURSOR)) {
1876 const struct intel_crtc_state *old_crtc_state =
1877 intel_atomic_get_old_crtc_state(state, crtc);
1878 const struct vlv_fifo_state *old_fifo_state =
1879 &old_crtc_state->wm.vlv.fifo_state;
1881 ret = vlv_compute_fifo(crtc_state);
1885 if (needs_modeset ||
1886 memcmp(old_fifo_state, fifo_state,
1887 sizeof(*fifo_state)) != 0)
1888 crtc_state->fifo_changed = true;
1891 /* initially allow all levels */
1892 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1894 * Note that enabling cxsr with no primary/sprite planes
1895 * enabled can wedge the pipe. Hence we only allow cxsr
1896 * with exactly one enabled primary/sprite plane.
1898 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1900 for (level = 0; level < wm_state->num_levels; level++) {
1901 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1902 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1904 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1907 for_each_plane_id_on_crtc(crtc, plane_id) {
1908 wm_state->wm[level].plane[plane_id] =
1909 vlv_invert_wm_value(raw->plane[plane_id],
1910 fifo_state->plane[plane_id]);
1913 wm_state->sr[level].plane =
1914 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1915 raw->plane[PLANE_SPRITE0],
1916 raw->plane[PLANE_SPRITE1]),
1919 wm_state->sr[level].cursor =
1920 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1927 /* limit to only levels we can actually handle */
1928 wm_state->num_levels = level;
1930 /* invalidate the higher levels */
1931 vlv_invalidate_wms(crtc, wm_state, level);
1936 #define VLV_FIFO(plane, value) \
1937 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1939 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1940 struct intel_crtc_state *crtc_state)
1942 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1943 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1944 const struct vlv_fifo_state *fifo_state =
1945 &crtc_state->wm.vlv.fifo_state;
1946 int sprite0_start, sprite1_start, fifo_size;
1948 if (!crtc_state->fifo_changed)
1951 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1952 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1953 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1955 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1956 WARN_ON(fifo_size != 511);
1958 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1961 * uncore.lock serves a double purpose here. It allows us to
1962 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1963 * it protects the DSPARB registers from getting clobbered by
1964 * parallel updates from multiple pipes.
1966 * intel_pipe_update_start() has already disabled interrupts
1967 * for us, so a plain spin_lock() is sufficient here.
1969 spin_lock(&dev_priv->uncore.lock);
1971 switch (crtc->pipe) {
1972 uint32_t dsparb, dsparb2, dsparb3;
1974 dsparb = I915_READ_FW(DSPARB);
1975 dsparb2 = I915_READ_FW(DSPARB2);
1977 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1978 VLV_FIFO(SPRITEB, 0xff));
1979 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1980 VLV_FIFO(SPRITEB, sprite1_start));
1982 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1983 VLV_FIFO(SPRITEB_HI, 0x1));
1984 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1985 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1987 I915_WRITE_FW(DSPARB, dsparb);
1988 I915_WRITE_FW(DSPARB2, dsparb2);
1991 dsparb = I915_READ_FW(DSPARB);
1992 dsparb2 = I915_READ_FW(DSPARB2);
1994 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1995 VLV_FIFO(SPRITED, 0xff));
1996 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1997 VLV_FIFO(SPRITED, sprite1_start));
1999 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2000 VLV_FIFO(SPRITED_HI, 0xff));
2001 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2002 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2004 I915_WRITE_FW(DSPARB, dsparb);
2005 I915_WRITE_FW(DSPARB2, dsparb2);
2008 dsparb3 = I915_READ_FW(DSPARB3);
2009 dsparb2 = I915_READ_FW(DSPARB2);
2011 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2012 VLV_FIFO(SPRITEF, 0xff));
2013 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2014 VLV_FIFO(SPRITEF, sprite1_start));
2016 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2017 VLV_FIFO(SPRITEF_HI, 0xff));
2018 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2019 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2021 I915_WRITE_FW(DSPARB3, dsparb3);
2022 I915_WRITE_FW(DSPARB2, dsparb2);
2028 POSTING_READ_FW(DSPARB);
2030 spin_unlock(&dev_priv->uncore.lock);
2035 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2036 struct intel_crtc *crtc,
2037 struct intel_crtc_state *new_crtc_state)
2039 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2040 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2041 struct intel_atomic_state *intel_state =
2042 to_intel_atomic_state(new_crtc_state->base.state);
2043 const struct intel_crtc_state *old_crtc_state =
2044 intel_atomic_get_old_crtc_state(intel_state, crtc);
2045 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2048 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2049 *intermediate = *optimal;
2051 intermediate->cxsr = false;
2055 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2056 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2057 !new_crtc_state->disable_cxsr;
2059 for (level = 0; level < intermediate->num_levels; level++) {
2060 enum plane_id plane_id;
2062 for_each_plane_id_on_crtc(crtc, plane_id) {
2063 intermediate->wm[level].plane[plane_id] =
2064 min(optimal->wm[level].plane[plane_id],
2065 active->wm[level].plane[plane_id]);
2068 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2069 active->sr[level].plane);
2070 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2071 active->sr[level].cursor);
2074 vlv_invalidate_wms(crtc, intermediate, level);
2078 * If our intermediate WM are identical to the final WM, then we can
2079 * omit the post-vblank programming; only update if it's different.
2081 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2082 new_crtc_state->wm.need_postvbl_update = true;
2087 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2088 struct vlv_wm_values *wm)
2090 struct intel_crtc *crtc;
2091 int num_active_crtcs = 0;
2093 wm->level = dev_priv->wm.max_level;
2096 for_each_intel_crtc(&dev_priv->drm, crtc) {
2097 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2102 if (!wm_state->cxsr)
2106 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2109 if (num_active_crtcs != 1)
2112 if (num_active_crtcs > 1)
2113 wm->level = VLV_WM_LEVEL_PM2;
2115 for_each_intel_crtc(&dev_priv->drm, crtc) {
2116 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2117 enum pipe pipe = crtc->pipe;
2119 wm->pipe[pipe] = wm_state->wm[wm->level];
2120 if (crtc->active && wm->cxsr)
2121 wm->sr = wm_state->sr[wm->level];
2123 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2124 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2125 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2126 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2130 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2132 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2133 struct vlv_wm_values new_wm = {};
2135 vlv_merge_wm(dev_priv, &new_wm);
2137 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2140 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 chv_set_memory_dvfs(dev_priv, false);
2143 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2144 chv_set_memory_pm5(dev_priv, false);
2146 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2147 _intel_set_memory_cxsr(dev_priv, false);
2149 vlv_write_wm_values(dev_priv, &new_wm);
2151 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2152 _intel_set_memory_cxsr(dev_priv, true);
2154 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2155 chv_set_memory_pm5(dev_priv, true);
2157 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2158 chv_set_memory_dvfs(dev_priv, true);
2163 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2164 struct intel_crtc_state *crtc_state)
2166 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2167 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2169 mutex_lock(&dev_priv->wm.wm_mutex);
2170 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2171 vlv_program_watermarks(dev_priv);
2172 mutex_unlock(&dev_priv->wm.wm_mutex);
2175 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2176 struct intel_crtc_state *crtc_state)
2178 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2181 if (!crtc_state->wm.need_postvbl_update)
2184 mutex_lock(&dev_priv->wm.wm_mutex);
2185 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2186 vlv_program_watermarks(dev_priv);
2187 mutex_unlock(&dev_priv->wm.wm_mutex);
2190 static void i965_update_wm(struct intel_crtc *unused_crtc)
2192 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2193 struct intel_crtc *crtc;
2198 /* Calc sr entries for one plane configs */
2199 crtc = single_enabled_crtc(dev_priv);
2201 /* self-refresh has much higher latency */
2202 static const int sr_latency_ns = 12000;
2203 const struct drm_display_mode *adjusted_mode =
2204 &crtc->config->base.adjusted_mode;
2205 const struct drm_framebuffer *fb =
2206 crtc->base.primary->state->fb;
2207 int clock = adjusted_mode->crtc_clock;
2208 int htotal = adjusted_mode->crtc_htotal;
2209 int hdisplay = crtc->config->pipe_src_w;
2210 int cpp = fb->format->cpp[0];
2213 entries = intel_wm_method2(clock, htotal,
2214 hdisplay, cpp, sr_latency_ns / 100);
2215 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2216 srwm = I965_FIFO_SIZE - entries;
2220 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2223 entries = intel_wm_method2(clock, htotal,
2224 crtc->base.cursor->state->crtc_w, 4,
2225 sr_latency_ns / 100);
2226 entries = DIV_ROUND_UP(entries,
2227 i965_cursor_wm_info.cacheline_size) +
2228 i965_cursor_wm_info.guard_size;
2230 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2231 if (cursor_sr > i965_cursor_wm_info.max_wm)
2232 cursor_sr = i965_cursor_wm_info.max_wm;
2234 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2235 "cursor %d\n", srwm, cursor_sr);
2237 cxsr_enabled = true;
2239 cxsr_enabled = false;
2240 /* Turn off self refresh if both pipes are enabled */
2241 intel_set_memory_cxsr(dev_priv, false);
2244 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2247 /* 965 has limitations... */
2248 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2252 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2253 FW_WM(8, PLANEC_OLD));
2254 /* update cursor SR watermark */
2255 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2258 intel_set_memory_cxsr(dev_priv, true);
2263 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2265 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2266 const struct intel_watermark_params *wm_info;
2271 int planea_wm, planeb_wm;
2272 struct intel_crtc *crtc, *enabled = NULL;
2274 if (IS_I945GM(dev_priv))
2275 wm_info = &i945_wm_info;
2276 else if (!IS_GEN2(dev_priv))
2277 wm_info = &i915_wm_info;
2279 wm_info = &i830_a_wm_info;
2281 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2282 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2283 if (intel_crtc_active(crtc)) {
2284 const struct drm_display_mode *adjusted_mode =
2285 &crtc->config->base.adjusted_mode;
2286 const struct drm_framebuffer *fb =
2287 crtc->base.primary->state->fb;
2290 if (IS_GEN2(dev_priv))
2293 cpp = fb->format->cpp[0];
2295 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2296 wm_info, fifo_size, cpp,
2297 pessimal_latency_ns);
2300 planea_wm = fifo_size - wm_info->guard_size;
2301 if (planea_wm > (long)wm_info->max_wm)
2302 planea_wm = wm_info->max_wm;
2305 if (IS_GEN2(dev_priv))
2306 wm_info = &i830_bc_wm_info;
2308 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2309 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2310 if (intel_crtc_active(crtc)) {
2311 const struct drm_display_mode *adjusted_mode =
2312 &crtc->config->base.adjusted_mode;
2313 const struct drm_framebuffer *fb =
2314 crtc->base.primary->state->fb;
2317 if (IS_GEN2(dev_priv))
2320 cpp = fb->format->cpp[0];
2322 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2323 wm_info, fifo_size, cpp,
2324 pessimal_latency_ns);
2325 if (enabled == NULL)
2330 planeb_wm = fifo_size - wm_info->guard_size;
2331 if (planeb_wm > (long)wm_info->max_wm)
2332 planeb_wm = wm_info->max_wm;
2335 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2337 if (IS_I915GM(dev_priv) && enabled) {
2338 struct drm_i915_gem_object *obj;
2340 obj = intel_fb_obj(enabled->base.primary->state->fb);
2342 /* self-refresh seems busted with untiled */
2343 if (!i915_gem_object_is_tiled(obj))
2348 * Overlay gets an aggressive default since video jitter is bad.
2352 /* Play safe and disable self-refresh before adjusting watermarks. */
2353 intel_set_memory_cxsr(dev_priv, false);
2355 /* Calc sr entries for one plane configs */
2356 if (HAS_FW_BLC(dev_priv) && enabled) {
2357 /* self-refresh has much higher latency */
2358 static const int sr_latency_ns = 6000;
2359 const struct drm_display_mode *adjusted_mode =
2360 &enabled->config->base.adjusted_mode;
2361 const struct drm_framebuffer *fb =
2362 enabled->base.primary->state->fb;
2363 int clock = adjusted_mode->crtc_clock;
2364 int htotal = adjusted_mode->crtc_htotal;
2365 int hdisplay = enabled->config->pipe_src_w;
2369 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2372 cpp = fb->format->cpp[0];
2374 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2375 sr_latency_ns / 100);
2376 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2377 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2378 srwm = wm_info->fifo_size - entries;
2382 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2383 I915_WRITE(FW_BLC_SELF,
2384 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2386 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2389 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2390 planea_wm, planeb_wm, cwm, srwm);
2392 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2393 fwater_hi = (cwm & 0x1f);
2395 /* Set request length to 8 cachelines per fetch */
2396 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2397 fwater_hi = fwater_hi | (1 << 8);
2399 I915_WRITE(FW_BLC, fwater_lo);
2400 I915_WRITE(FW_BLC2, fwater_hi);
2403 intel_set_memory_cxsr(dev_priv, true);
2406 static void i845_update_wm(struct intel_crtc *unused_crtc)
2408 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2409 struct intel_crtc *crtc;
2410 const struct drm_display_mode *adjusted_mode;
2414 crtc = single_enabled_crtc(dev_priv);
2418 adjusted_mode = &crtc->config->base.adjusted_mode;
2419 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2421 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2422 4, pessimal_latency_ns);
2423 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2424 fwater_lo |= (3<<8) | planea_wm;
2426 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2428 I915_WRITE(FW_BLC, fwater_lo);
2431 /* latency must be in 0.1us units. */
2432 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2434 unsigned int latency)
2438 ret = intel_wm_method1(pixel_rate, cpp, latency);
2439 ret = DIV_ROUND_UP(ret, 64) + 2;
2444 /* latency must be in 0.1us units. */
2445 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2446 unsigned int htotal,
2449 unsigned int latency)
2453 ret = intel_wm_method2(pixel_rate, htotal,
2454 width, cpp, latency);
2455 ret = DIV_ROUND_UP(ret, 64) + 2;
2460 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2464 * Neither of these should be possible since this function shouldn't be
2465 * called if the CRTC is off or the plane is invisible. But let's be
2466 * extra paranoid to avoid a potential divide-by-zero if we screw up
2467 * elsewhere in the driver.
2471 if (WARN_ON(!horiz_pixels))
2474 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2477 struct ilk_wm_maximums {
2485 * For both WM_PIPE and WM_LP.
2486 * mem_value must be in 0.1us units.
2488 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2489 const struct intel_plane_state *pstate,
2493 uint32_t method1, method2;
2496 if (!intel_wm_plane_visible(cstate, pstate))
2499 cpp = pstate->base.fb->format->cpp[0];
2501 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2506 method2 = ilk_wm_method2(cstate->pixel_rate,
2507 cstate->base.adjusted_mode.crtc_htotal,
2508 drm_rect_width(&pstate->base.dst),
2511 return min(method1, method2);
2515 * For both WM_PIPE and WM_LP.
2516 * mem_value must be in 0.1us units.
2518 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2519 const struct intel_plane_state *pstate,
2522 uint32_t method1, method2;
2525 if (!intel_wm_plane_visible(cstate, pstate))
2528 cpp = pstate->base.fb->format->cpp[0];
2530 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2531 method2 = ilk_wm_method2(cstate->pixel_rate,
2532 cstate->base.adjusted_mode.crtc_htotal,
2533 drm_rect_width(&pstate->base.dst),
2535 return min(method1, method2);
2539 * For both WM_PIPE and WM_LP.
2540 * mem_value must be in 0.1us units.
2542 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2543 const struct intel_plane_state *pstate,
2548 if (!intel_wm_plane_visible(cstate, pstate))
2551 cpp = pstate->base.fb->format->cpp[0];
2553 return ilk_wm_method2(cstate->pixel_rate,
2554 cstate->base.adjusted_mode.crtc_htotal,
2555 pstate->base.crtc_w, cpp, mem_value);
2558 /* Only for WM_LP. */
2559 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2560 const struct intel_plane_state *pstate,
2565 if (!intel_wm_plane_visible(cstate, pstate))
2568 cpp = pstate->base.fb->format->cpp[0];
2570 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2574 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2576 if (INTEL_GEN(dev_priv) >= 8)
2578 else if (INTEL_GEN(dev_priv) >= 7)
2585 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2586 int level, bool is_sprite)
2588 if (INTEL_GEN(dev_priv) >= 8)
2589 /* BDW primary/sprite plane watermarks */
2590 return level == 0 ? 255 : 2047;
2591 else if (INTEL_GEN(dev_priv) >= 7)
2592 /* IVB/HSW primary/sprite plane watermarks */
2593 return level == 0 ? 127 : 1023;
2594 else if (!is_sprite)
2595 /* ILK/SNB primary plane watermarks */
2596 return level == 0 ? 127 : 511;
2598 /* ILK/SNB sprite plane watermarks */
2599 return level == 0 ? 63 : 255;
2603 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2605 if (INTEL_GEN(dev_priv) >= 7)
2606 return level == 0 ? 63 : 255;
2608 return level == 0 ? 31 : 63;
2611 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2613 if (INTEL_GEN(dev_priv) >= 8)
2619 /* Calculate the maximum primary/sprite plane watermark */
2620 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2622 const struct intel_wm_config *config,
2623 enum intel_ddb_partitioning ddb_partitioning,
2626 struct drm_i915_private *dev_priv = to_i915(dev);
2627 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2629 /* if sprites aren't enabled, sprites get nothing */
2630 if (is_sprite && !config->sprites_enabled)
2633 /* HSW allows LP1+ watermarks even with multiple pipes */
2634 if (level == 0 || config->num_pipes_active > 1) {
2635 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2638 * For some reason the non self refresh
2639 * FIFO size is only half of the self
2640 * refresh FIFO size on ILK/SNB.
2642 if (INTEL_GEN(dev_priv) <= 6)
2646 if (config->sprites_enabled) {
2647 /* level 0 is always calculated with 1:1 split */
2648 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2657 /* clamp to max that the registers can hold */
2658 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2661 /* Calculate the maximum cursor plane watermark */
2662 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2664 const struct intel_wm_config *config)
2666 /* HSW LP1+ watermarks w/ multiple pipes */
2667 if (level > 0 && config->num_pipes_active > 1)
2670 /* otherwise just report max that registers can hold */
2671 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2674 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2676 const struct intel_wm_config *config,
2677 enum intel_ddb_partitioning ddb_partitioning,
2678 struct ilk_wm_maximums *max)
2680 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2681 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2682 max->cur = ilk_cursor_wm_max(dev, level, config);
2683 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2686 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2688 struct ilk_wm_maximums *max)
2690 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2691 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2692 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2693 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2696 static bool ilk_validate_wm_level(int level,
2697 const struct ilk_wm_maximums *max,
2698 struct intel_wm_level *result)
2702 /* already determined to be invalid? */
2703 if (!result->enable)
2706 result->enable = result->pri_val <= max->pri &&
2707 result->spr_val <= max->spr &&
2708 result->cur_val <= max->cur;
2710 ret = result->enable;
2713 * HACK until we can pre-compute everything,
2714 * and thus fail gracefully if LP0 watermarks
2717 if (level == 0 && !result->enable) {
2718 if (result->pri_val > max->pri)
2719 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2720 level, result->pri_val, max->pri);
2721 if (result->spr_val > max->spr)
2722 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2723 level, result->spr_val, max->spr);
2724 if (result->cur_val > max->cur)
2725 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2726 level, result->cur_val, max->cur);
2728 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2729 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2730 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2731 result->enable = true;
2737 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2738 const struct intel_crtc *intel_crtc,
2740 struct intel_crtc_state *cstate,
2741 const struct intel_plane_state *pristate,
2742 const struct intel_plane_state *sprstate,
2743 const struct intel_plane_state *curstate,
2744 struct intel_wm_level *result)
2746 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2747 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2748 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2750 /* WM1+ latency values stored in 0.5us units */
2758 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2759 pri_latency, level);
2760 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2764 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2767 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2769 result->enable = true;
2773 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2775 const struct intel_atomic_state *intel_state =
2776 to_intel_atomic_state(cstate->base.state);
2777 const struct drm_display_mode *adjusted_mode =
2778 &cstate->base.adjusted_mode;
2779 u32 linetime, ips_linetime;
2781 if (!cstate->base.active)
2783 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2785 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2788 /* The WM are computed with base on how long it takes to fill a single
2789 * row at the given clock rate, multiplied by 8.
2791 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2792 adjusted_mode->crtc_clock);
2793 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2794 intel_state->cdclk.logical.cdclk);
2796 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2797 PIPE_WM_LINETIME_TIME(linetime);
2800 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2803 if (INTEL_GEN(dev_priv) >= 9) {
2806 int level, max_level = ilk_wm_max_level(dev_priv);
2808 /* read the first set of memory latencies[0:3] */
2809 val = 0; /* data0 to be programmed to 0 for first set */
2810 mutex_lock(&dev_priv->pcu_lock);
2811 ret = sandybridge_pcode_read(dev_priv,
2812 GEN9_PCODE_READ_MEM_LATENCY,
2814 mutex_unlock(&dev_priv->pcu_lock);
2817 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2821 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2822 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2823 GEN9_MEM_LATENCY_LEVEL_MASK;
2824 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2825 GEN9_MEM_LATENCY_LEVEL_MASK;
2826 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2827 GEN9_MEM_LATENCY_LEVEL_MASK;
2829 /* read the second set of memory latencies[4:7] */
2830 val = 1; /* data0 to be programmed to 1 for second set */
2831 mutex_lock(&dev_priv->pcu_lock);
2832 ret = sandybridge_pcode_read(dev_priv,
2833 GEN9_PCODE_READ_MEM_LATENCY,
2835 mutex_unlock(&dev_priv->pcu_lock);
2837 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2841 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2842 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2843 GEN9_MEM_LATENCY_LEVEL_MASK;
2844 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2845 GEN9_MEM_LATENCY_LEVEL_MASK;
2846 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2847 GEN9_MEM_LATENCY_LEVEL_MASK;
2850 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2851 * need to be disabled. We make sure to sanitize the values out
2852 * of the punit to satisfy this requirement.
2854 for (level = 1; level <= max_level; level++) {
2855 if (wm[level] == 0) {
2856 for (i = level + 1; i <= max_level; i++)
2863 * WaWmMemoryReadLatency:skl+,glk
2865 * punit doesn't take into account the read latency so we need
2866 * to add 2us to the various latency levels we retrieve from the
2867 * punit when level 0 response data us 0us.
2871 for (level = 1; level <= max_level; level++) {
2879 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2880 * If we could not get dimm info enable this WA to prevent from
2881 * any underrun. If not able to get Dimm info assume 16GB dimm
2882 * to avoid any underrun.
2884 if (dev_priv->dram_info.is_16gb_dimm)
2887 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2888 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2890 wm[0] = (sskpd >> 56) & 0xFF;
2892 wm[0] = sskpd & 0xF;
2893 wm[1] = (sskpd >> 4) & 0xFF;
2894 wm[2] = (sskpd >> 12) & 0xFF;
2895 wm[3] = (sskpd >> 20) & 0x1FF;
2896 wm[4] = (sskpd >> 32) & 0x1FF;
2897 } else if (INTEL_GEN(dev_priv) >= 6) {
2898 uint32_t sskpd = I915_READ(MCH_SSKPD);
2900 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2901 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2902 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2903 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2904 } else if (INTEL_GEN(dev_priv) >= 5) {
2905 uint32_t mltr = I915_READ(MLTR_ILK);
2907 /* ILK primary LP0 latency is 700 ns */
2909 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2910 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2912 MISSING_CASE(INTEL_DEVID(dev_priv));
2916 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2919 /* ILK sprite LP0 latency is 1300 ns */
2920 if (IS_GEN5(dev_priv))
2924 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2927 /* ILK cursor LP0 latency is 1300 ns */
2928 if (IS_GEN5(dev_priv))
2932 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2934 /* how many WM levels are we expecting */
2935 if (INTEL_GEN(dev_priv) >= 9)
2937 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2939 else if (INTEL_GEN(dev_priv) >= 6)
2945 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2947 const uint16_t wm[8])
2949 int level, max_level = ilk_wm_max_level(dev_priv);
2951 for (level = 0; level <= max_level; level++) {
2952 unsigned int latency = wm[level];
2955 DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2961 * - latencies are in us on gen9.
2962 * - before then, WM1+ latency values are in 0.5us units
2964 if (INTEL_GEN(dev_priv) >= 9)
2969 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2970 name, level, wm[level],
2971 latency / 10, latency % 10);
2975 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2976 uint16_t wm[5], uint16_t min)
2978 int level, max_level = ilk_wm_max_level(dev_priv);
2983 wm[0] = max(wm[0], min);
2984 for (level = 1; level <= max_level; level++)
2985 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2990 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2995 * The BIOS provided WM memory latency values are often
2996 * inadequate for high resolution displays. Adjust them.
2998 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2999 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3000 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3005 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3006 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3007 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3008 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3011 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3013 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3015 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3016 sizeof(dev_priv->wm.pri_latency));
3017 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3018 sizeof(dev_priv->wm.pri_latency));
3020 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3021 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3023 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3024 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3025 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3027 if (IS_GEN6(dev_priv))
3028 snb_wm_latency_quirk(dev_priv);
3031 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3033 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3034 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3037 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3038 struct intel_pipe_wm *pipe_wm)
3040 /* LP0 watermark maximums depend on this pipe alone */
3041 const struct intel_wm_config config = {
3042 .num_pipes_active = 1,
3043 .sprites_enabled = pipe_wm->sprites_enabled,
3044 .sprites_scaled = pipe_wm->sprites_scaled,
3046 struct ilk_wm_maximums max;
3048 /* LP0 watermarks always use 1/2 DDB partitioning */
3049 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3051 /* At least LP0 must be valid */
3052 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3053 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3060 /* Compute new watermarks for the pipe */
3061 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3063 struct drm_atomic_state *state = cstate->base.state;
3064 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3065 struct intel_pipe_wm *pipe_wm;
3066 struct drm_device *dev = state->dev;
3067 const struct drm_i915_private *dev_priv = to_i915(dev);
3068 struct drm_plane *plane;
3069 const struct drm_plane_state *plane_state;
3070 const struct intel_plane_state *pristate = NULL;
3071 const struct intel_plane_state *sprstate = NULL;
3072 const struct intel_plane_state *curstate = NULL;
3073 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3074 struct ilk_wm_maximums max;
3076 pipe_wm = &cstate->wm.ilk.optimal;
3078 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3079 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3081 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3083 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3085 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3089 pipe_wm->pipe_enabled = cstate->base.active;
3091 pipe_wm->sprites_enabled = sprstate->base.visible;
3092 pipe_wm->sprites_scaled = sprstate->base.visible &&
3093 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3094 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3097 usable_level = max_level;
3099 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3100 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3103 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3104 if (pipe_wm->sprites_scaled)
3107 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3108 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3109 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3111 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3112 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3114 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3117 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3119 for (level = 1; level <= usable_level; level++) {
3120 struct intel_wm_level *wm = &pipe_wm->wm[level];
3122 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3123 pristate, sprstate, curstate, wm);
3126 * Disable any watermark level that exceeds the
3127 * register maximums since such watermarks are
3130 if (!ilk_validate_wm_level(level, &max, wm)) {
3131 memset(wm, 0, sizeof(*wm));
3140 * Build a set of 'intermediate' watermark values that satisfy both the old
3141 * state and the new state. These can be programmed to the hardware
3144 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3145 struct intel_crtc *intel_crtc,
3146 struct intel_crtc_state *newstate)
3148 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3149 struct intel_atomic_state *intel_state =
3150 to_intel_atomic_state(newstate->base.state);
3151 const struct intel_crtc_state *oldstate =
3152 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3153 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3154 int level, max_level = ilk_wm_max_level(to_i915(dev));
3157 * Start with the final, target watermarks, then combine with the
3158 * currently active watermarks to get values that are safe both before
3159 * and after the vblank.
3161 *a = newstate->wm.ilk.optimal;
3162 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3165 a->pipe_enabled |= b->pipe_enabled;
3166 a->sprites_enabled |= b->sprites_enabled;
3167 a->sprites_scaled |= b->sprites_scaled;
3169 for (level = 0; level <= max_level; level++) {
3170 struct intel_wm_level *a_wm = &a->wm[level];
3171 const struct intel_wm_level *b_wm = &b->wm[level];
3173 a_wm->enable &= b_wm->enable;
3174 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3175 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3176 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3177 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3181 * We need to make sure that these merged watermark values are
3182 * actually a valid configuration themselves. If they're not,
3183 * there's no safe way to transition from the old state to
3184 * the new state, so we need to fail the atomic transaction.
3186 if (!ilk_validate_pipe_wm(dev, a))
3190 * If our intermediate WM are identical to the final WM, then we can
3191 * omit the post-vblank programming; only update if it's different.
3193 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3194 newstate->wm.need_postvbl_update = true;
3200 * Merge the watermarks from all active pipes for a specific level.
3202 static void ilk_merge_wm_level(struct drm_device *dev,
3204 struct intel_wm_level *ret_wm)
3206 const struct intel_crtc *intel_crtc;
3208 ret_wm->enable = true;
3210 for_each_intel_crtc(dev, intel_crtc) {
3211 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3212 const struct intel_wm_level *wm = &active->wm[level];
3214 if (!active->pipe_enabled)
3218 * The watermark values may have been used in the past,
3219 * so we must maintain them in the registers for some
3220 * time even if the level is now disabled.
3223 ret_wm->enable = false;
3225 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3226 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3227 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3228 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3233 * Merge all low power watermarks for all active pipes.
3235 static void ilk_wm_merge(struct drm_device *dev,
3236 const struct intel_wm_config *config,
3237 const struct ilk_wm_maximums *max,
3238 struct intel_pipe_wm *merged)
3240 struct drm_i915_private *dev_priv = to_i915(dev);
3241 int level, max_level = ilk_wm_max_level(dev_priv);
3242 int last_enabled_level = max_level;
3244 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3245 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3246 config->num_pipes_active > 1)
3247 last_enabled_level = 0;
3249 /* ILK: FBC WM must be disabled always */
3250 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3252 /* merge each WM1+ level */
3253 for (level = 1; level <= max_level; level++) {
3254 struct intel_wm_level *wm = &merged->wm[level];
3256 ilk_merge_wm_level(dev, level, wm);
3258 if (level > last_enabled_level)
3260 else if (!ilk_validate_wm_level(level, max, wm))
3261 /* make sure all following levels get disabled */
3262 last_enabled_level = level - 1;
3265 * The spec says it is preferred to disable
3266 * FBC WMs instead of disabling a WM level.
3268 if (wm->fbc_val > max->fbc) {
3270 merged->fbc_wm_enabled = false;
3275 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3277 * FIXME this is racy. FBC might get enabled later.
3278 * What we should check here is whether FBC can be
3279 * enabled sometime later.
3281 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3282 intel_fbc_is_active(dev_priv)) {
3283 for (level = 2; level <= max_level; level++) {
3284 struct intel_wm_level *wm = &merged->wm[level];
3291 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3293 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3294 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3297 /* The value we need to program into the WM_LPx latency field */
3298 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3300 struct drm_i915_private *dev_priv = to_i915(dev);
3302 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3305 return dev_priv->wm.pri_latency[level];
3308 static void ilk_compute_wm_results(struct drm_device *dev,
3309 const struct intel_pipe_wm *merged,
3310 enum intel_ddb_partitioning partitioning,
3311 struct ilk_wm_values *results)
3313 struct drm_i915_private *dev_priv = to_i915(dev);
3314 struct intel_crtc *intel_crtc;
3317 results->enable_fbc_wm = merged->fbc_wm_enabled;
3318 results->partitioning = partitioning;
3320 /* LP1+ register values */
3321 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3322 const struct intel_wm_level *r;
3324 level = ilk_wm_lp_to_level(wm_lp, merged);
3326 r = &merged->wm[level];
3329 * Maintain the watermark values even if the level is
3330 * disabled. Doing otherwise could cause underruns.
3332 results->wm_lp[wm_lp - 1] =
3333 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3334 (r->pri_val << WM1_LP_SR_SHIFT) |
3338 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3340 if (INTEL_GEN(dev_priv) >= 8)
3341 results->wm_lp[wm_lp - 1] |=
3342 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3344 results->wm_lp[wm_lp - 1] |=
3345 r->fbc_val << WM1_LP_FBC_SHIFT;
3348 * Always set WM1S_LP_EN when spr_val != 0, even if the
3349 * level is disabled. Doing otherwise could cause underruns.
3351 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3352 WARN_ON(wm_lp != 1);
3353 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3355 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3358 /* LP0 register values */
3359 for_each_intel_crtc(dev, intel_crtc) {
3360 enum pipe pipe = intel_crtc->pipe;
3361 const struct intel_wm_level *r =
3362 &intel_crtc->wm.active.ilk.wm[0];
3364 if (WARN_ON(!r->enable))
3367 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3369 results->wm_pipe[pipe] =
3370 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3371 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3376 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3377 * case both are at the same level. Prefer r1 in case they're the same. */
3378 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3379 struct intel_pipe_wm *r1,
3380 struct intel_pipe_wm *r2)
3382 int level, max_level = ilk_wm_max_level(to_i915(dev));
3383 int level1 = 0, level2 = 0;
3385 for (level = 1; level <= max_level; level++) {
3386 if (r1->wm[level].enable)
3388 if (r2->wm[level].enable)
3392 if (level1 == level2) {
3393 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3397 } else if (level1 > level2) {
3404 /* dirty bits used to track which watermarks need changes */
3405 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3406 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3407 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3408 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3409 #define WM_DIRTY_FBC (1 << 24)
3410 #define WM_DIRTY_DDB (1 << 25)
3412 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3413 const struct ilk_wm_values *old,
3414 const struct ilk_wm_values *new)
3416 unsigned int dirty = 0;
3420 for_each_pipe(dev_priv, pipe) {
3421 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3422 dirty |= WM_DIRTY_LINETIME(pipe);
3423 /* Must disable LP1+ watermarks too */
3424 dirty |= WM_DIRTY_LP_ALL;
3427 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3428 dirty |= WM_DIRTY_PIPE(pipe);
3429 /* Must disable LP1+ watermarks too */
3430 dirty |= WM_DIRTY_LP_ALL;
3434 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3435 dirty |= WM_DIRTY_FBC;
3436 /* Must disable LP1+ watermarks too */
3437 dirty |= WM_DIRTY_LP_ALL;
3440 if (old->partitioning != new->partitioning) {
3441 dirty |= WM_DIRTY_DDB;
3442 /* Must disable LP1+ watermarks too */
3443 dirty |= WM_DIRTY_LP_ALL;
3446 /* LP1+ watermarks already deemed dirty, no need to continue */
3447 if (dirty & WM_DIRTY_LP_ALL)
3450 /* Find the lowest numbered LP1+ watermark in need of an update... */
3451 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3452 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3453 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3457 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3458 for (; wm_lp <= 3; wm_lp++)
3459 dirty |= WM_DIRTY_LP(wm_lp);
3464 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3467 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3468 bool changed = false;
3470 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3471 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3472 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3475 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3476 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3477 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3480 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3481 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3482 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3487 * Don't touch WM1S_LP_EN here.
3488 * Doing so could cause underruns.
3495 * The spec says we shouldn't write when we don't need, because every write
3496 * causes WMs to be re-evaluated, expending some power.
3498 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3499 struct ilk_wm_values *results)
3501 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3505 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3509 _ilk_disable_lp_wm(dev_priv, dirty);
3511 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3512 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3513 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3514 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3515 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3516 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3518 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3519 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3520 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3521 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3522 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3523 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3525 if (dirty & WM_DIRTY_DDB) {
3526 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3527 val = I915_READ(WM_MISC);
3528 if (results->partitioning == INTEL_DDB_PART_1_2)
3529 val &= ~WM_MISC_DATA_PARTITION_5_6;
3531 val |= WM_MISC_DATA_PARTITION_5_6;
3532 I915_WRITE(WM_MISC, val);
3534 val = I915_READ(DISP_ARB_CTL2);
3535 if (results->partitioning == INTEL_DDB_PART_1_2)
3536 val &= ~DISP_DATA_PARTITION_5_6;
3538 val |= DISP_DATA_PARTITION_5_6;
3539 I915_WRITE(DISP_ARB_CTL2, val);
3543 if (dirty & WM_DIRTY_FBC) {
3544 val = I915_READ(DISP_ARB_CTL);
3545 if (results->enable_fbc_wm)
3546 val &= ~DISP_FBC_WM_DIS;
3548 val |= DISP_FBC_WM_DIS;
3549 I915_WRITE(DISP_ARB_CTL, val);
3552 if (dirty & WM_DIRTY_LP(1) &&
3553 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3554 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3556 if (INTEL_GEN(dev_priv) >= 7) {
3557 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3558 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3559 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3560 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3563 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3564 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3565 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3566 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3567 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3568 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3570 dev_priv->wm.hw = *results;
3573 bool ilk_disable_lp_wm(struct drm_device *dev)
3575 struct drm_i915_private *dev_priv = to_i915(dev);
3577 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3580 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3584 /* Slice 1 will always be enabled */
3587 /* Gen prior to GEN11 have only one DBuf slice */
3588 if (INTEL_GEN(dev_priv) < 11)
3589 return enabled_slices;
3591 if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3594 return enabled_slices;
3598 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3599 * so assume we'll always need it in order to avoid underruns.
3601 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3603 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3605 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3612 intel_has_sagv(struct drm_i915_private *dev_priv)
3614 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3615 IS_CANNONLAKE(dev_priv))
3618 if (IS_SKYLAKE(dev_priv) &&
3619 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3626 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3627 * depending on power and performance requirements. The display engine access
3628 * to system memory is blocked during the adjustment time. Because of the
3629 * blocking time, having this enabled can cause full system hangs and/or pipe
3630 * underruns if we don't meet all of the following requirements:
3632 * - <= 1 pipe enabled
3633 * - All planes can enable watermarks for latencies >= SAGV engine block time
3634 * - We're not using an interlaced display configuration
3637 intel_enable_sagv(struct drm_i915_private *dev_priv)
3641 if (!intel_has_sagv(dev_priv))
3644 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3647 DRM_DEBUG_KMS("Enabling the SAGV\n");
3648 mutex_lock(&dev_priv->pcu_lock);
3650 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3653 /* We don't need to wait for the SAGV when enabling */
3654 mutex_unlock(&dev_priv->pcu_lock);
3657 * Some skl systems, pre-release machines in particular,
3658 * don't actually have an SAGV.
3660 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3661 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3662 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3664 } else if (ret < 0) {
3665 DRM_ERROR("Failed to enable the SAGV\n");
3669 dev_priv->sagv_status = I915_SAGV_ENABLED;
3674 intel_disable_sagv(struct drm_i915_private *dev_priv)
3678 if (!intel_has_sagv(dev_priv))
3681 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3684 DRM_DEBUG_KMS("Disabling the SAGV\n");
3685 mutex_lock(&dev_priv->pcu_lock);
3687 /* bspec says to keep retrying for at least 1 ms */
3688 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3690 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3692 mutex_unlock(&dev_priv->pcu_lock);
3695 * Some skl systems, pre-release machines in particular,
3696 * don't actually have an SAGV.
3698 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3699 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3700 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3702 } else if (ret < 0) {
3703 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3707 dev_priv->sagv_status = I915_SAGV_DISABLED;
3711 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3713 struct drm_device *dev = state->dev;
3714 struct drm_i915_private *dev_priv = to_i915(dev);
3715 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3716 struct intel_crtc *crtc;
3717 struct intel_plane *plane;
3718 struct intel_crtc_state *cstate;
3721 int sagv_block_time_us;
3723 if (!intel_has_sagv(dev_priv))
3726 if (IS_GEN9(dev_priv))
3727 sagv_block_time_us = 30;
3728 else if (IS_GEN10(dev_priv))
3729 sagv_block_time_us = 20;
3731 sagv_block_time_us = 10;
3734 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3735 * more then one pipe enabled
3737 * If there are no active CRTCs, no additional checks need be performed
3739 if (hweight32(intel_state->active_crtcs) == 0)
3741 else if (hweight32(intel_state->active_crtcs) > 1)
3744 /* Since we're now guaranteed to only have one active CRTC... */
3745 pipe = ffs(intel_state->active_crtcs) - 1;
3746 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3747 cstate = to_intel_crtc_state(crtc->base.state);
3749 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3752 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3753 struct skl_plane_wm *wm =
3754 &cstate->wm.skl.optimal.planes[plane->id];
3756 /* Skip this plane if it's not enabled */
3757 if (!wm->wm[0].plane_en)
3760 /* Find the highest enabled wm level for this plane */
3761 for (level = ilk_wm_max_level(dev_priv);
3762 !wm->wm[level].plane_en; --level)
3765 latency = dev_priv->wm.skl_latency[level];
3767 if (skl_needs_memory_bw_wa(intel_state) &&
3768 plane->base.state->fb->modifier ==
3769 I915_FORMAT_MOD_X_TILED)
3773 * If any of the planes on this pipe don't enable wm levels that
3774 * incur memory latencies higher than sagv_block_time_us we
3775 * can't enable the SAGV.
3777 if (latency < sagv_block_time_us)
3784 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3785 const struct intel_crtc_state *cstate,
3786 const unsigned int total_data_rate,
3787 const int num_active,
3788 struct skl_ddb_allocation *ddb)
3790 const struct drm_display_mode *adjusted_mode;
3792 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3794 WARN_ON(ddb_size == 0);
3796 if (INTEL_GEN(dev_priv) < 11)
3797 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3799 adjusted_mode = &cstate->base.adjusted_mode;
3800 total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3803 * 12GB/s is maximum BW supported by single DBuf slice.
3805 if (total_data_bw >= GBps(12) || num_active > 1) {
3806 ddb->enabled_slices = 2;
3808 ddb->enabled_slices = 1;
3816 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3817 const struct intel_crtc_state *cstate,
3818 const unsigned int total_data_rate,
3819 struct skl_ddb_allocation *ddb,
3820 struct skl_ddb_entry *alloc, /* out */
3821 int *num_active /* out */)
3823 struct drm_atomic_state *state = cstate->base.state;
3824 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3825 struct drm_i915_private *dev_priv = to_i915(dev);
3826 struct drm_crtc *for_crtc = cstate->base.crtc;
3827 const struct drm_crtc_state *crtc_state;
3828 const struct drm_crtc *crtc;
3829 u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3830 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3834 if (WARN_ON(!state) || !cstate->base.active) {
3837 *num_active = hweight32(dev_priv->active_crtcs);
3841 if (intel_state->active_pipe_changes)
3842 *num_active = hweight32(intel_state->active_crtcs);
3844 *num_active = hweight32(dev_priv->active_crtcs);
3846 ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3850 * If the state doesn't change the active CRTC's or there is no
3851 * modeset request, then there's no need to recalculate;
3852 * the existing pipe allocation limits should remain unchanged.
3853 * Note that we're safe from racing commits since any racing commit
3854 * that changes the active CRTC list or do modeset would need to
3855 * grab _all_ crtc locks, including the one we currently hold.
3857 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3859 * alloc may be cleared by clear_intel_crtc_state,
3860 * copy from old state to be sure
3862 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3867 * Watermark/ddb requirement highly depends upon width of the
3868 * framebuffer, So instead of allocating DDB equally among pipes
3869 * distribute DDB based on resolution/width of the display.
3871 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3872 const struct drm_display_mode *adjusted_mode;
3873 int hdisplay, vdisplay;
3876 if (!crtc_state->enable)
3879 pipe = to_intel_crtc(crtc)->pipe;
3880 adjusted_mode = &crtc_state->adjusted_mode;
3881 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3882 total_width += hdisplay;
3884 if (pipe < for_pipe)
3885 width_before_pipe += hdisplay;
3886 else if (pipe == for_pipe)
3887 pipe_width = hdisplay;
3890 alloc->start = ddb_size * width_before_pipe / total_width;
3891 alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3894 static unsigned int skl_cursor_allocation(int num_active)
3896 if (num_active == 1)
3902 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3903 struct skl_ddb_entry *entry, u32 reg)
3907 if (INTEL_GEN(dev_priv) >= 11)
3908 mask = ICL_DDB_ENTRY_MASK;
3910 mask = SKL_DDB_ENTRY_MASK;
3911 entry->start = reg & mask;
3912 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3919 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3920 const enum pipe pipe,
3921 const enum plane_id plane_id,
3922 struct skl_ddb_allocation *ddb /* out */)
3925 int fourcc, pixel_format;
3927 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3928 if (plane_id == PLANE_CURSOR) {
3929 val = I915_READ(CUR_BUF_CFG(pipe));
3930 skl_ddb_entry_init_from_hw(dev_priv,
3931 &ddb->plane[pipe][plane_id], val);
3935 val = I915_READ(PLANE_CTL(pipe, plane_id));
3937 /* No DDB allocated for disabled planes */
3938 if (!(val & PLANE_CTL_ENABLE))
3941 pixel_format = val & PLANE_CTL_FORMAT_MASK;
3942 fourcc = skl_format_to_fourcc(pixel_format,
3943 val & PLANE_CTL_ORDER_RGBX,
3944 val & PLANE_CTL_ALPHA_MASK);
3946 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3948 * FIXME: add proper NV12 support for ICL. Avoid reading unclaimed
3949 * registers for now.
3951 if (INTEL_GEN(dev_priv) < 11)
3952 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3954 if (fourcc == DRM_FORMAT_NV12) {
3955 skl_ddb_entry_init_from_hw(dev_priv,
3956 &ddb->plane[pipe][plane_id], val2);
3957 skl_ddb_entry_init_from_hw(dev_priv,
3958 &ddb->uv_plane[pipe][plane_id], val);
3960 skl_ddb_entry_init_from_hw(dev_priv,
3961 &ddb->plane[pipe][plane_id], val);
3965 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3966 struct skl_ddb_allocation *ddb /* out */)
3968 struct intel_crtc *crtc;
3970 memset(ddb, 0, sizeof(*ddb));
3972 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3974 for_each_intel_crtc(&dev_priv->drm, crtc) {
3975 enum intel_display_power_domain power_domain;
3976 enum plane_id plane_id;
3977 enum pipe pipe = crtc->pipe;
3979 power_domain = POWER_DOMAIN_PIPE(pipe);
3980 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3983 for_each_plane_id_on_crtc(crtc, plane_id)
3984 skl_ddb_get_hw_plane_state(dev_priv, pipe,
3987 intel_display_power_put(dev_priv, power_domain);
3992 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3993 * The bspec defines downscale amount as:
3996 * Horizontal down scale amount = maximum[1, Horizontal source size /
3997 * Horizontal destination size]
3998 * Vertical down scale amount = maximum[1, Vertical source size /
3999 * Vertical destination size]
4000 * Total down scale amount = Horizontal down scale amount *
4001 * Vertical down scale amount
4004 * Return value is provided in 16.16 fixed point form to retain fractional part.
4005 * Caller should take care of dividing & rounding off the value.
4007 static uint_fixed_16_16_t
4008 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4009 const struct intel_plane_state *pstate)
4011 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4012 uint32_t src_w, src_h, dst_w, dst_h;
4013 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4014 uint_fixed_16_16_t downscale_h, downscale_w;
4016 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4017 return u32_to_fixed16(0);
4019 /* n.b., src is 16.16 fixed point, dst is whole integer */
4020 if (plane->id == PLANE_CURSOR) {
4022 * Cursors only support 0/180 degree rotation,
4023 * hence no need to account for rotation here.
4025 src_w = pstate->base.src_w >> 16;
4026 src_h = pstate->base.src_h >> 16;
4027 dst_w = pstate->base.crtc_w;
4028 dst_h = pstate->base.crtc_h;
4031 * Src coordinates are already rotated by 270 degrees for
4032 * the 90/270 degree plane rotation cases (to match the
4033 * GTT mapping), hence no need to account for rotation here.
4035 src_w = drm_rect_width(&pstate->base.src) >> 16;
4036 src_h = drm_rect_height(&pstate->base.src) >> 16;
4037 dst_w = drm_rect_width(&pstate->base.dst);
4038 dst_h = drm_rect_height(&pstate->base.dst);
4041 fp_w_ratio = div_fixed16(src_w, dst_w);
4042 fp_h_ratio = div_fixed16(src_h, dst_h);
4043 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4044 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4046 return mul_fixed16(downscale_w, downscale_h);
4049 static uint_fixed_16_16_t
4050 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4052 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4054 if (!crtc_state->base.enable)
4055 return pipe_downscale;
4057 if (crtc_state->pch_pfit.enabled) {
4058 uint32_t src_w, src_h, dst_w, dst_h;
4059 uint32_t pfit_size = crtc_state->pch_pfit.size;
4060 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4061 uint_fixed_16_16_t downscale_h, downscale_w;
4063 src_w = crtc_state->pipe_src_w;
4064 src_h = crtc_state->pipe_src_h;
4065 dst_w = pfit_size >> 16;
4066 dst_h = pfit_size & 0xffff;
4068 if (!dst_w || !dst_h)
4069 return pipe_downscale;
4071 fp_w_ratio = div_fixed16(src_w, dst_w);
4072 fp_h_ratio = div_fixed16(src_h, dst_h);
4073 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4074 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4076 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4079 return pipe_downscale;
4082 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4083 struct intel_crtc_state *cstate)
4085 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4086 struct drm_crtc_state *crtc_state = &cstate->base;
4087 struct drm_atomic_state *state = crtc_state->state;
4088 struct drm_plane *plane;
4089 const struct drm_plane_state *pstate;
4090 struct intel_plane_state *intel_pstate;
4091 int crtc_clock, dotclk;
4092 uint32_t pipe_max_pixel_rate;
4093 uint_fixed_16_16_t pipe_downscale;
4094 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4096 if (!cstate->base.enable)
4099 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4100 uint_fixed_16_16_t plane_downscale;
4101 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4104 if (!intel_wm_plane_visible(cstate,
4105 to_intel_plane_state(pstate)))
4108 if (WARN_ON(!pstate->fb))
4111 intel_pstate = to_intel_plane_state(pstate);
4112 plane_downscale = skl_plane_downscale_amount(cstate,
4114 bpp = pstate->fb->format->cpp[0] * 8;
4116 plane_downscale = mul_fixed16(plane_downscale,
4119 max_downscale = max_fixed16(plane_downscale, max_downscale);
4121 pipe_downscale = skl_pipe_downscale_amount(cstate);
4123 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4125 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4126 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4128 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4131 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4133 if (pipe_max_pixel_rate < crtc_clock) {
4134 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4142 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4143 const struct drm_plane_state *pstate,
4146 struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4147 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4149 uint32_t width = 0, height = 0;
4150 struct drm_framebuffer *fb;
4152 uint_fixed_16_16_t down_scale_amount;
4154 if (!intel_pstate->base.visible)
4158 format = fb->format->format;
4160 if (intel_plane->id == PLANE_CURSOR)
4162 if (plane == 1 && format != DRM_FORMAT_NV12)
4166 * Src coordinates are already rotated by 270 degrees for
4167 * the 90/270 degree plane rotation cases (to match the
4168 * GTT mapping), hence no need to account for rotation here.
4170 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4171 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4173 /* UV plane does 1/2 pixel sub-sampling */
4174 if (plane == 1 && format == DRM_FORMAT_NV12) {
4179 data_rate = width * height * fb->format->cpp[plane];
4181 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4183 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4187 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4188 * a 8192x4096@32bpp framebuffer:
4189 * 3 * 4096 * 8192 * 4 < 2^32
4192 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4193 unsigned int *plane_data_rate,
4194 unsigned int *uv_plane_data_rate)
4196 struct drm_crtc_state *cstate = &intel_cstate->base;
4197 struct drm_atomic_state *state = cstate->state;
4198 struct drm_plane *plane;
4199 const struct drm_plane_state *pstate;
4200 unsigned int total_data_rate = 0;
4202 if (WARN_ON(!state))
4205 /* Calculate and cache data rate for each plane */
4206 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4207 enum plane_id plane_id = to_intel_plane(plane)->id;
4211 rate = skl_plane_relative_data_rate(intel_cstate,
4213 plane_data_rate[plane_id] = rate;
4215 total_data_rate += rate;
4218 rate = skl_plane_relative_data_rate(intel_cstate,
4220 uv_plane_data_rate[plane_id] = rate;
4222 total_data_rate += rate;
4225 return total_data_rate;
4229 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4231 struct drm_framebuffer *fb = pstate->fb;
4232 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4233 uint32_t src_w, src_h;
4234 uint32_t min_scanlines = 8;
4240 /* For packed formats, and uv-plane, return 0 */
4241 if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4244 /* For Non Y-tile return 8-blocks */
4245 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4246 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4247 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4248 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4252 * Src coordinates are already rotated by 270 degrees for
4253 * the 90/270 degree plane rotation cases (to match the
4254 * GTT mapping), hence no need to account for rotation here.
4256 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4257 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4259 /* Halve UV plane width and height for NV12 */
4265 plane_bpp = fb->format->cpp[plane];
4267 if (drm_rotation_90_or_270(pstate->rotation)) {
4268 switch (plane_bpp) {
4282 WARN(1, "Unsupported pixel depth %u for rotation",
4288 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4292 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4293 uint16_t *minimum, uint16_t *uv_minimum)
4295 const struct drm_plane_state *pstate;
4296 struct drm_plane *plane;
4298 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4299 enum plane_id plane_id = to_intel_plane(plane)->id;
4301 if (plane_id == PLANE_CURSOR)
4304 if (!pstate->visible)
4307 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4308 uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4311 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4315 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4316 struct skl_ddb_allocation *ddb /* out */)
4318 struct drm_atomic_state *state = cstate->base.state;
4319 struct drm_crtc *crtc = cstate->base.crtc;
4320 struct drm_device *dev = crtc->dev;
4321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322 enum pipe pipe = intel_crtc->pipe;
4323 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4324 uint16_t alloc_size, start;
4325 uint16_t minimum[I915_MAX_PLANES] = {};
4326 uint16_t uv_minimum[I915_MAX_PLANES] = {};
4327 unsigned int total_data_rate;
4328 enum plane_id plane_id;
4330 unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4331 unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4332 uint16_t total_min_blocks = 0;
4334 /* Clear the partitioning for disabled planes. */
4335 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4336 memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4338 if (WARN_ON(!state))
4341 if (!cstate->base.active) {
4342 alloc->start = alloc->end = 0;
4346 total_data_rate = skl_get_total_relative_data_rate(cstate,
4348 uv_plane_data_rate);
4349 skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4350 alloc, &num_active);
4351 alloc_size = skl_ddb_entry_size(alloc);
4352 if (alloc_size == 0)
4355 skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4358 * 1. Allocate the mininum required blocks for each active plane
4359 * and allocate the cursor, it doesn't require extra allocation
4360 * proportional to the data rate.
4363 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4364 total_min_blocks += minimum[plane_id];
4365 total_min_blocks += uv_minimum[plane_id];
4368 if (total_min_blocks > alloc_size) {
4369 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4370 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4375 alloc_size -= total_min_blocks;
4376 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4377 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4380 * 2. Distribute the remaining space in proportion to the amount of
4381 * data each plane needs to fetch from memory.
4383 * FIXME: we may not allocate every single block here.
4385 if (total_data_rate == 0)
4388 start = alloc->start;
4389 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4390 unsigned int data_rate, uv_data_rate;
4391 uint16_t plane_blocks, uv_plane_blocks;
4393 if (plane_id == PLANE_CURSOR)
4396 data_rate = plane_data_rate[plane_id];
4399 * allocation for (packed formats) or (uv-plane part of planar format):
4400 * promote the expression to 64 bits to avoid overflowing, the
4401 * result is < available as data_rate / total_data_rate < 1
4403 plane_blocks = minimum[plane_id];
4404 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4407 /* Leave disabled planes at (0,0) */
4409 ddb->plane[pipe][plane_id].start = start;
4410 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4413 start += plane_blocks;
4415 /* Allocate DDB for UV plane for planar format/NV12 */
4416 uv_data_rate = uv_plane_data_rate[plane_id];
4418 uv_plane_blocks = uv_minimum[plane_id];
4419 uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4423 ddb->uv_plane[pipe][plane_id].start = start;
4424 ddb->uv_plane[pipe][plane_id].end =
4425 start + uv_plane_blocks;
4428 start += uv_plane_blocks;
4435 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4436 * for the read latency) and cpp should always be <= 8, so that
4437 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4438 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4440 static uint_fixed_16_16_t
4441 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4442 uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4444 uint32_t wm_intermediate_val;
4445 uint_fixed_16_16_t ret;
4448 return FP_16_16_MAX;
4450 wm_intermediate_val = latency * pixel_rate * cpp;
4451 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4453 if (INTEL_GEN(dev_priv) >= 10)
4454 ret = add_fixed16_u32(ret, 1);
4459 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4460 uint32_t pipe_htotal,
4462 uint_fixed_16_16_t plane_blocks_per_line)
4464 uint32_t wm_intermediate_val;
4465 uint_fixed_16_16_t ret;
4468 return FP_16_16_MAX;
4470 wm_intermediate_val = latency * pixel_rate;
4471 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4472 pipe_htotal * 1000);
4473 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4477 static uint_fixed_16_16_t
4478 intel_get_linetime_us(struct intel_crtc_state *cstate)
4480 uint32_t pixel_rate;
4481 uint32_t crtc_htotal;
4482 uint_fixed_16_16_t linetime_us;
4484 if (!cstate->base.active)
4485 return u32_to_fixed16(0);
4487 pixel_rate = cstate->pixel_rate;
4489 if (WARN_ON(pixel_rate == 0))
4490 return u32_to_fixed16(0);
4492 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4493 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4499 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4500 const struct intel_plane_state *pstate)
4502 uint64_t adjusted_pixel_rate;
4503 uint_fixed_16_16_t downscale_amount;
4505 /* Shouldn't reach here on disabled planes... */
4506 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4510 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4511 * with additional adjustments for plane-specific scaling.
4513 adjusted_pixel_rate = cstate->pixel_rate;
4514 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4516 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4521 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4522 struct intel_crtc_state *cstate,
4523 const struct intel_plane_state *intel_pstate,
4524 struct skl_wm_params *wp, int plane_id)
4526 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4527 const struct drm_plane_state *pstate = &intel_pstate->base;
4528 const struct drm_framebuffer *fb = pstate->fb;
4529 uint32_t interm_pbpl;
4530 struct intel_atomic_state *state =
4531 to_intel_atomic_state(cstate->base.state);
4532 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4534 if (!intel_wm_plane_visible(cstate, intel_pstate))
4537 /* only NV12 format has two planes */
4538 if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4539 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4543 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4544 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4545 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4546 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4547 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4548 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4549 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4550 wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4552 if (plane->id == PLANE_CURSOR) {
4553 wp->width = intel_pstate->base.crtc_w;
4556 * Src coordinates are already rotated by 270 degrees for
4557 * the 90/270 degree plane rotation cases (to match the
4558 * GTT mapping), hence no need to account for rotation here.
4560 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4563 if (plane_id == 1 && wp->is_planar)
4566 wp->cpp = fb->format->cpp[plane_id];
4567 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4570 if (INTEL_GEN(dev_priv) >= 11 &&
4571 fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4572 wp->dbuf_block_size = 256;
4574 wp->dbuf_block_size = 512;
4576 if (drm_rotation_90_or_270(pstate->rotation)) {
4580 wp->y_min_scanlines = 16;
4583 wp->y_min_scanlines = 8;
4586 wp->y_min_scanlines = 4;
4589 MISSING_CASE(wp->cpp);
4593 wp->y_min_scanlines = 4;
4596 if (apply_memory_bw_wa)
4597 wp->y_min_scanlines *= 2;
4599 wp->plane_bytes_per_line = wp->width * wp->cpp;
4601 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4602 wp->y_min_scanlines,
4603 wp->dbuf_block_size);
4605 if (INTEL_GEN(dev_priv) >= 10)
4608 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4609 wp->y_min_scanlines);
4610 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4611 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4612 wp->dbuf_block_size);
4613 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4615 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4616 wp->dbuf_block_size) + 1;
4617 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4620 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4621 wp->plane_blocks_per_line);
4622 wp->linetime_us = fixed16_to_u32_round_up(
4623 intel_get_linetime_us(cstate));
4628 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4629 struct intel_crtc_state *cstate,
4630 const struct intel_plane_state *intel_pstate,
4631 uint16_t ddb_allocation,
4633 const struct skl_wm_params *wp,
4634 const struct skl_wm_level *result_prev,
4635 struct skl_wm_level *result /* out */)
4637 const struct drm_plane_state *pstate = &intel_pstate->base;
4638 uint32_t latency = dev_priv->wm.skl_latency[level];
4639 uint_fixed_16_16_t method1, method2;
4640 uint_fixed_16_16_t selected_result;
4641 uint32_t res_blocks, res_lines;
4642 struct intel_atomic_state *state =
4643 to_intel_atomic_state(cstate->base.state);
4644 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4645 uint32_t min_disp_buf_needed;
4648 !intel_wm_plane_visible(cstate, intel_pstate)) {
4649 result->plane_en = false;
4653 /* Display WA #1141: kbl,cfl */
4654 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4655 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4656 dev_priv->ipc_enabled)
4659 if (apply_memory_bw_wa && wp->x_tiled)
4662 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4663 wp->cpp, latency, wp->dbuf_block_size);
4664 method2 = skl_wm_method2(wp->plane_pixel_rate,
4665 cstate->base.adjusted_mode.crtc_htotal,
4667 wp->plane_blocks_per_line);
4670 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4672 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4673 wp->dbuf_block_size < 1) &&
4674 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4675 selected_result = method2;
4676 else if (ddb_allocation >=
4677 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4678 selected_result = min_fixed16(method1, method2);
4679 else if (latency >= wp->linetime_us)
4680 selected_result = min_fixed16(method1, method2);
4682 selected_result = method1;
4685 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4686 res_lines = div_round_up_fixed16(selected_result,
4687 wp->plane_blocks_per_line);
4689 /* Display WA #1125: skl,bxt,kbl,glk */
4690 if (level == 0 && wp->rc_surface)
4691 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4693 /* Display WA #1126: skl,bxt,kbl,glk */
4694 if (level >= 1 && level <= 7) {
4696 res_blocks += fixed16_to_u32_round_up(
4697 wp->y_tile_minimum);
4698 res_lines += wp->y_min_scanlines;
4704 * Make sure result blocks for higher latency levels are atleast
4705 * as high as level below the current level.
4706 * Assumption in DDB algorithm optimization for special cases.
4707 * Also covers Display WA #1125 for RC.
4709 if (result_prev->plane_res_b > res_blocks)
4710 res_blocks = result_prev->plane_res_b;
4713 if (INTEL_GEN(dev_priv) >= 11) {
4715 uint32_t extra_lines;
4716 uint_fixed_16_16_t fp_min_disp_buf_needed;
4718 if (res_lines % wp->y_min_scanlines == 0)
4719 extra_lines = wp->y_min_scanlines;
4721 extra_lines = wp->y_min_scanlines * 2 -
4722 res_lines % wp->y_min_scanlines;
4724 fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4726 wp->plane_blocks_per_line);
4727 min_disp_buf_needed = fixed16_to_u32_round_up(
4728 fp_min_disp_buf_needed);
4730 min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4733 min_disp_buf_needed = res_blocks;
4736 if ((level > 0 && res_lines > 31) ||
4737 res_blocks >= ddb_allocation ||
4738 min_disp_buf_needed >= ddb_allocation) {
4739 result->plane_en = false;
4742 * If there are no valid level 0 watermarks, then we can't
4743 * support this display configuration.
4748 struct drm_plane *plane = pstate->plane;
4750 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4751 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4752 plane->base.id, plane->name,
4753 res_blocks, ddb_allocation, res_lines);
4759 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4760 * disable wm level 1-7 on NV12 planes
4762 if (wp->is_planar && level >= 1 &&
4763 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4764 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4765 result->plane_en = false;
4769 /* The number of lines are ignored for the level 0 watermark. */
4770 result->plane_res_b = res_blocks;
4771 result->plane_res_l = res_lines;
4772 result->plane_en = true;
4778 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4779 struct skl_ddb_allocation *ddb,
4780 struct intel_crtc_state *cstate,
4781 const struct intel_plane_state *intel_pstate,
4782 const struct skl_wm_params *wm_params,
4783 struct skl_plane_wm *wm,
4786 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4787 struct drm_plane *plane = intel_pstate->base.plane;
4788 struct intel_plane *intel_plane = to_intel_plane(plane);
4789 uint16_t ddb_blocks;
4790 enum pipe pipe = intel_crtc->pipe;
4791 int level, max_level = ilk_wm_max_level(dev_priv);
4792 enum plane_id intel_plane_id = intel_plane->id;
4795 if (WARN_ON(!intel_pstate->base.fb))
4798 ddb_blocks = plane_id ?
4799 skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4800 skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4802 for (level = 0; level <= max_level; level++) {
4803 struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4805 struct skl_wm_level *result_prev;
4808 result_prev = plane_id ? &wm->uv_wm[level - 1] :
4811 result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4813 ret = skl_compute_plane_wm(dev_priv,
4825 if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4826 wm->is_planar = true;
4832 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4834 struct drm_atomic_state *state = cstate->base.state;
4835 struct drm_i915_private *dev_priv = to_i915(state->dev);
4836 uint_fixed_16_16_t linetime_us;
4837 uint32_t linetime_wm;
4839 linetime_us = intel_get_linetime_us(cstate);
4841 if (is_fixed16_zero(linetime_us))
4844 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4846 /* Display WA #1135: bxt:ALL GLK:ALL */
4847 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4848 dev_priv->ipc_enabled)
4854 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4855 struct skl_wm_params *wp,
4856 struct skl_wm_level *wm_l0,
4857 uint16_t ddb_allocation,
4858 struct skl_wm_level *trans_wm /* out */)
4860 struct drm_device *dev = cstate->base.crtc->dev;
4861 const struct drm_i915_private *dev_priv = to_i915(dev);
4862 uint16_t trans_min, trans_y_tile_min;
4863 const uint16_t trans_amount = 10; /* This is configurable amount */
4864 uint16_t trans_offset_b, res_blocks;
4866 if (!cstate->base.active)
4869 /* Transition WM are not recommended by HW team for GEN9 */
4870 if (INTEL_GEN(dev_priv) <= 9)
4873 /* Transition WM don't make any sense if ipc is disabled */
4874 if (!dev_priv->ipc_enabled)
4878 if (INTEL_GEN(dev_priv) >= 10)
4881 trans_offset_b = trans_min + trans_amount;
4884 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4885 wp->y_tile_minimum);
4886 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4889 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4891 /* WA BUG:1938466 add one block for non y-tile planes */
4892 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4899 if (res_blocks < ddb_allocation) {
4900 trans_wm->plane_res_b = res_blocks;
4901 trans_wm->plane_en = true;
4906 trans_wm->plane_en = false;
4909 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4910 struct skl_ddb_allocation *ddb,
4911 struct skl_pipe_wm *pipe_wm)
4913 struct drm_device *dev = cstate->base.crtc->dev;
4914 struct drm_crtc_state *crtc_state = &cstate->base;
4915 const struct drm_i915_private *dev_priv = to_i915(dev);
4916 struct drm_plane *plane;
4917 const struct drm_plane_state *pstate;
4918 struct skl_plane_wm *wm;
4922 * We'll only calculate watermarks for planes that are actually
4923 * enabled, so make sure all other planes are set as disabled.
4925 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4927 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4928 const struct intel_plane_state *intel_pstate =
4929 to_intel_plane_state(pstate);
4930 enum plane_id plane_id = to_intel_plane(plane)->id;
4931 struct skl_wm_params wm_params;
4932 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4933 uint16_t ddb_blocks;
4935 wm = &pipe_wm->planes[plane_id];
4936 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4938 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4939 intel_pstate, &wm_params, 0);
4943 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4944 intel_pstate, &wm_params, wm, 0);
4948 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4949 ddb_blocks, &wm->trans_wm);
4951 /* uv plane watermarks must also be validated for NV12/Planar */
4952 if (wm_params.is_planar) {
4953 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4954 wm->is_planar = true;
4956 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4962 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4963 intel_pstate, &wm_params,
4970 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4975 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4977 const struct skl_ddb_entry *entry)
4980 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4985 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4987 const struct skl_wm_level *level)
4991 if (level->plane_en) {
4993 val |= level->plane_res_b;
4994 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4997 I915_WRITE(reg, val);
5000 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
5001 const struct skl_plane_wm *wm,
5002 const struct skl_ddb_allocation *ddb,
5003 enum plane_id plane_id)
5005 struct drm_crtc *crtc = &intel_crtc->base;
5006 struct drm_device *dev = crtc->dev;
5007 struct drm_i915_private *dev_priv = to_i915(dev);
5008 int level, max_level = ilk_wm_max_level(dev_priv);
5009 enum pipe pipe = intel_crtc->pipe;
5011 for (level = 0; level <= max_level; level++) {
5012 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5015 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5018 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5019 &ddb->plane[pipe][plane_id]);
5020 /* FIXME: add proper NV12 support for ICL. */
5021 if (INTEL_GEN(dev_priv) >= 11)
5022 return skl_ddb_entry_write(dev_priv,
5023 PLANE_BUF_CFG(pipe, plane_id),
5024 &ddb->plane[pipe][plane_id]);
5025 if (wm->is_planar) {
5026 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5027 &ddb->uv_plane[pipe][plane_id]);
5028 skl_ddb_entry_write(dev_priv,
5029 PLANE_NV12_BUF_CFG(pipe, plane_id),
5030 &ddb->plane[pipe][plane_id]);
5032 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5033 &ddb->plane[pipe][plane_id]);
5034 I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
5038 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
5039 const struct skl_plane_wm *wm,
5040 const struct skl_ddb_allocation *ddb)
5042 struct drm_crtc *crtc = &intel_crtc->base;
5043 struct drm_device *dev = crtc->dev;
5044 struct drm_i915_private *dev_priv = to_i915(dev);
5045 int level, max_level = ilk_wm_max_level(dev_priv);
5046 enum pipe pipe = intel_crtc->pipe;
5048 for (level = 0; level <= max_level; level++) {
5049 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5052 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5054 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5055 &ddb->plane[pipe][PLANE_CURSOR]);
5058 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5059 const struct skl_wm_level *l2)
5061 if (l1->plane_en != l2->plane_en)
5064 /* If both planes aren't enabled, the rest shouldn't matter */
5068 return (l1->plane_res_l == l2->plane_res_l &&
5069 l1->plane_res_b == l2->plane_res_b);
5072 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5073 const struct skl_ddb_entry *b)
5075 return a->start < b->end && b->start < a->end;
5078 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5079 const struct skl_ddb_entry **entries,
5080 const struct skl_ddb_entry *ddb,
5085 for_each_pipe(dev_priv, pipe) {
5086 if (pipe != ignore && entries[pipe] &&
5087 skl_ddb_entries_overlap(ddb, entries[pipe]))
5094 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5095 const struct skl_pipe_wm *old_pipe_wm,
5096 struct skl_pipe_wm *pipe_wm, /* out */
5097 struct skl_ddb_allocation *ddb, /* out */
5098 bool *changed /* out */)
5100 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5103 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5107 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5116 pipes_modified(struct drm_atomic_state *state)
5118 struct drm_crtc *crtc;
5119 struct drm_crtc_state *cstate;
5120 uint32_t i, ret = 0;
5122 for_each_new_crtc_in_state(state, crtc, cstate, i)
5123 ret |= drm_crtc_mask(crtc);
5129 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5131 struct drm_atomic_state *state = cstate->base.state;
5132 struct drm_device *dev = state->dev;
5133 struct drm_crtc *crtc = cstate->base.crtc;
5134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135 struct drm_i915_private *dev_priv = to_i915(dev);
5136 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5137 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5138 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5139 struct drm_plane_state *plane_state;
5140 struct drm_plane *plane;
5141 enum pipe pipe = intel_crtc->pipe;
5143 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5144 enum plane_id plane_id = to_intel_plane(plane)->id;
5146 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5147 &new_ddb->plane[pipe][plane_id]) &&
5148 skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5149 &new_ddb->uv_plane[pipe][plane_id]))
5152 plane_state = drm_atomic_get_plane_state(state, plane);
5153 if (IS_ERR(plane_state))
5154 return PTR_ERR(plane_state);
5161 skl_compute_ddb(struct drm_atomic_state *state)
5163 const struct drm_i915_private *dev_priv = to_i915(state->dev);
5164 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5165 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5166 struct intel_crtc *crtc;
5167 struct intel_crtc_state *cstate;
5170 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5172 for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5173 ret = skl_allocate_pipe_ddb(cstate, ddb);
5177 ret = skl_ddb_add_affected_planes(cstate);
5186 skl_print_wm_changes(const struct drm_atomic_state *state)
5188 const struct drm_device *dev = state->dev;
5189 const struct drm_i915_private *dev_priv = to_i915(dev);
5190 const struct intel_atomic_state *intel_state =
5191 to_intel_atomic_state(state);
5192 const struct drm_crtc *crtc;
5193 const struct drm_crtc_state *cstate;
5194 const struct intel_plane *intel_plane;
5195 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5196 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5199 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5200 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201 enum pipe pipe = intel_crtc->pipe;
5203 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5204 enum plane_id plane_id = intel_plane->id;
5205 const struct skl_ddb_entry *old, *new;
5207 old = &old_ddb->plane[pipe][plane_id];
5208 new = &new_ddb->plane[pipe][plane_id];
5210 if (skl_ddb_entry_equal(old, new))
5213 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5214 intel_plane->base.base.id,
5215 intel_plane->base.name,
5216 old->start, old->end,
5217 new->start, new->end);
5223 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5225 struct drm_device *dev = state->dev;
5226 const struct drm_i915_private *dev_priv = to_i915(dev);
5227 const struct drm_crtc *crtc;
5228 const struct drm_crtc_state *cstate;
5229 struct intel_crtc *intel_crtc;
5230 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5231 uint32_t realloc_pipes = pipes_modified(state);
5235 * When we distrust bios wm we always need to recompute to set the
5236 * expected DDB allocations for each CRTC.
5238 if (dev_priv->wm.distrust_bios_wm)
5242 * If this transaction isn't actually touching any CRTC's, don't
5243 * bother with watermark calculation. Note that if we pass this
5244 * test, we're guaranteed to hold at least one CRTC state mutex,
5245 * which means we can safely use values like dev_priv->active_crtcs
5246 * since any racing commits that want to update them would need to
5247 * hold _all_ CRTC state mutexes.
5249 for_each_new_crtc_in_state(state, crtc, cstate, i)
5256 * If this is our first atomic update following hardware readout,
5257 * we can't trust the DDB that the BIOS programmed for us. Let's
5258 * pretend that all pipes switched active status so that we'll
5259 * ensure a full DDB recompute.
5261 if (dev_priv->wm.distrust_bios_wm) {
5262 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5263 state->acquire_ctx);
5267 intel_state->active_pipe_changes = ~0;
5270 * We usually only initialize intel_state->active_crtcs if we
5271 * we're doing a modeset; make sure this field is always
5272 * initialized during the sanitization process that happens
5273 * on the first commit too.
5275 if (!intel_state->modeset)
5276 intel_state->active_crtcs = dev_priv->active_crtcs;
5280 * If the modeset changes which CRTC's are active, we need to
5281 * recompute the DDB allocation for *all* active pipes, even
5282 * those that weren't otherwise being modified in any way by this
5283 * atomic commit. Due to the shrinking of the per-pipe allocations
5284 * when new active CRTC's are added, it's possible for a pipe that
5285 * we were already using and aren't changing at all here to suddenly
5286 * become invalid if its DDB needs exceeds its new allocation.
5288 * Note that if we wind up doing a full DDB recompute, we can't let
5289 * any other display updates race with this transaction, so we need
5290 * to grab the lock on *all* CRTC's.
5292 if (intel_state->active_pipe_changes || intel_state->modeset) {
5294 intel_state->wm_results.dirty_pipes = ~0;
5298 * We're not recomputing for the pipes not included in the commit, so
5299 * make sure we start with the current state.
5301 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5302 struct intel_crtc_state *cstate;
5304 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5306 return PTR_ERR(cstate);
5313 skl_compute_wm(struct drm_atomic_state *state)
5315 struct drm_crtc *crtc;
5316 struct drm_crtc_state *cstate;
5317 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5318 struct skl_ddb_values *results = &intel_state->wm_results;
5319 struct skl_pipe_wm *pipe_wm;
5320 bool changed = false;
5323 /* Clear all dirty flags */
5324 results->dirty_pipes = 0;
5326 ret = skl_ddb_add_affected_pipes(state, &changed);
5327 if (ret || !changed)
5330 ret = skl_compute_ddb(state);
5335 * Calculate WM's for all pipes that are part of this transaction.
5336 * Note that the DDB allocation above may have added more CRTC's that
5337 * weren't otherwise being modified (and set bits in dirty_pipes) if
5338 * pipe allocations had to change.
5340 * FIXME: Now that we're doing this in the atomic check phase, we
5341 * should allow skl_update_pipe_wm() to return failure in cases where
5342 * no suitable watermark values can be found.
5344 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5345 struct intel_crtc_state *intel_cstate =
5346 to_intel_crtc_state(cstate);
5347 const struct skl_pipe_wm *old_pipe_wm =
5348 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5350 pipe_wm = &intel_cstate->wm.skl.optimal;
5351 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5352 &results->ddb, &changed);
5357 results->dirty_pipes |= drm_crtc_mask(crtc);
5359 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5360 /* This pipe's WM's did not change */
5363 intel_cstate->update_wm_pre = true;
5366 skl_print_wm_changes(state);
5371 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5372 struct intel_crtc_state *cstate)
5374 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5375 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5376 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5377 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5378 enum pipe pipe = crtc->pipe;
5379 enum plane_id plane_id;
5381 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5384 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5386 for_each_plane_id_on_crtc(crtc, plane_id) {
5387 if (plane_id != PLANE_CURSOR)
5388 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5391 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5396 static void skl_initial_wm(struct intel_atomic_state *state,
5397 struct intel_crtc_state *cstate)
5399 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5400 struct drm_device *dev = intel_crtc->base.dev;
5401 struct drm_i915_private *dev_priv = to_i915(dev);
5402 struct skl_ddb_values *results = &state->wm_results;
5403 struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5404 enum pipe pipe = intel_crtc->pipe;
5406 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5409 mutex_lock(&dev_priv->wm.wm_mutex);
5411 if (cstate->base.active_changed)
5412 skl_atomic_update_crtc_wm(state, cstate);
5414 memcpy(hw_vals->ddb.uv_plane[pipe], results->ddb.uv_plane[pipe],
5415 sizeof(hw_vals->ddb.uv_plane[pipe]));
5416 memcpy(hw_vals->ddb.plane[pipe], results->ddb.plane[pipe],
5417 sizeof(hw_vals->ddb.plane[pipe]));
5419 mutex_unlock(&dev_priv->wm.wm_mutex);
5422 static void ilk_compute_wm_config(struct drm_device *dev,
5423 struct intel_wm_config *config)
5425 struct intel_crtc *crtc;
5427 /* Compute the currently _active_ config */
5428 for_each_intel_crtc(dev, crtc) {
5429 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5431 if (!wm->pipe_enabled)
5434 config->sprites_enabled |= wm->sprites_enabled;
5435 config->sprites_scaled |= wm->sprites_scaled;
5436 config->num_pipes_active++;
5440 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5442 struct drm_device *dev = &dev_priv->drm;
5443 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5444 struct ilk_wm_maximums max;
5445 struct intel_wm_config config = {};
5446 struct ilk_wm_values results = {};
5447 enum intel_ddb_partitioning partitioning;
5449 ilk_compute_wm_config(dev, &config);
5451 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5452 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5454 /* 5/6 split only in single pipe config on IVB+ */
5455 if (INTEL_GEN(dev_priv) >= 7 &&
5456 config.num_pipes_active == 1 && config.sprites_enabled) {
5457 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5458 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5460 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5462 best_lp_wm = &lp_wm_1_2;
5465 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5466 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5468 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5470 ilk_write_wm_values(dev_priv, &results);
5473 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5474 struct intel_crtc_state *cstate)
5476 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5477 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5479 mutex_lock(&dev_priv->wm.wm_mutex);
5480 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5481 ilk_program_watermarks(dev_priv);
5482 mutex_unlock(&dev_priv->wm.wm_mutex);
5485 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5486 struct intel_crtc_state *cstate)
5488 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5489 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5491 mutex_lock(&dev_priv->wm.wm_mutex);
5492 if (cstate->wm.need_postvbl_update) {
5493 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5494 ilk_program_watermarks(dev_priv);
5496 mutex_unlock(&dev_priv->wm.wm_mutex);
5499 static inline void skl_wm_level_from_reg_val(uint32_t val,
5500 struct skl_wm_level *level)
5502 level->plane_en = val & PLANE_WM_EN;
5503 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5504 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5505 PLANE_WM_LINES_MASK;
5508 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5509 struct skl_pipe_wm *out)
5511 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5513 enum pipe pipe = intel_crtc->pipe;
5514 int level, max_level;
5515 enum plane_id plane_id;
5518 max_level = ilk_wm_max_level(dev_priv);
5520 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5521 struct skl_plane_wm *wm = &out->planes[plane_id];
5523 for (level = 0; level <= max_level; level++) {
5524 if (plane_id != PLANE_CURSOR)
5525 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5527 val = I915_READ(CUR_WM(pipe, level));
5529 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5532 if (plane_id != PLANE_CURSOR)
5533 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5535 val = I915_READ(CUR_WM_TRANS(pipe));
5537 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5540 if (!intel_crtc->active)
5543 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5546 void skl_wm_get_hw_state(struct drm_device *dev)
5548 struct drm_i915_private *dev_priv = to_i915(dev);
5549 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5550 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5551 struct drm_crtc *crtc;
5552 struct intel_crtc *intel_crtc;
5553 struct intel_crtc_state *cstate;
5555 skl_ddb_get_hw_state(dev_priv, ddb);
5556 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5557 intel_crtc = to_intel_crtc(crtc);
5558 cstate = to_intel_crtc_state(crtc->state);
5560 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5562 if (intel_crtc->active)
5563 hw->dirty_pipes |= drm_crtc_mask(crtc);
5566 if (dev_priv->active_crtcs) {
5567 /* Fully recompute DDB on first atomic commit */
5568 dev_priv->wm.distrust_bios_wm = true;
5571 * Easy/common case; just sanitize DDB now if everything off
5572 * Keep dbuf slice info intact
5574 memset(ddb->plane, 0, sizeof(ddb->plane));
5575 memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5579 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5581 struct drm_device *dev = crtc->dev;
5582 struct drm_i915_private *dev_priv = to_i915(dev);
5583 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5586 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5587 enum pipe pipe = intel_crtc->pipe;
5588 static const i915_reg_t wm0_pipe_reg[] = {
5589 [PIPE_A] = WM0_PIPEA_ILK,
5590 [PIPE_B] = WM0_PIPEB_ILK,
5591 [PIPE_C] = WM0_PIPEC_IVB,
5594 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5595 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5596 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5598 memset(active, 0, sizeof(*active));
5600 active->pipe_enabled = intel_crtc->active;
5602 if (active->pipe_enabled) {
5603 u32 tmp = hw->wm_pipe[pipe];
5606 * For active pipes LP0 watermark is marked as
5607 * enabled, and LP1+ watermaks as disabled since
5608 * we can't really reverse compute them in case
5609 * multiple pipes are active.
5611 active->wm[0].enable = true;
5612 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5613 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5614 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5615 active->linetime = hw->wm_linetime[pipe];
5617 int level, max_level = ilk_wm_max_level(dev_priv);
5620 * For inactive pipes, all watermark levels
5621 * should be marked as enabled but zeroed,
5622 * which is what we'd compute them to.
5624 for (level = 0; level <= max_level; level++)
5625 active->wm[level].enable = true;
5628 intel_crtc->wm.active.ilk = *active;
5631 #define _FW_WM(value, plane) \
5632 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5633 #define _FW_WM_VLV(value, plane) \
5634 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5636 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5637 struct g4x_wm_values *wm)
5641 tmp = I915_READ(DSPFW1);
5642 wm->sr.plane = _FW_WM(tmp, SR);
5643 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5644 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5645 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5647 tmp = I915_READ(DSPFW2);
5648 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5649 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5650 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5651 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5652 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5653 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5655 tmp = I915_READ(DSPFW3);
5656 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5657 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5658 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5659 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5662 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5663 struct vlv_wm_values *wm)
5668 for_each_pipe(dev_priv, pipe) {
5669 tmp = I915_READ(VLV_DDL(pipe));
5671 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5672 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5673 wm->ddl[pipe].plane[PLANE_CURSOR] =
5674 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5675 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5676 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5677 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5678 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5681 tmp = I915_READ(DSPFW1);
5682 wm->sr.plane = _FW_WM(tmp, SR);
5683 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5684 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5685 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5687 tmp = I915_READ(DSPFW2);
5688 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5689 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5690 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5692 tmp = I915_READ(DSPFW3);
5693 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5695 if (IS_CHERRYVIEW(dev_priv)) {
5696 tmp = I915_READ(DSPFW7_CHV);
5697 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5698 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5700 tmp = I915_READ(DSPFW8_CHV);
5701 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5702 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5704 tmp = I915_READ(DSPFW9_CHV);
5705 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5706 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5708 tmp = I915_READ(DSPHOWM);
5709 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5710 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5711 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5712 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5713 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5714 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5715 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5716 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5717 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5718 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5720 tmp = I915_READ(DSPFW7);
5721 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5722 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5724 tmp = I915_READ(DSPHOWM);
5725 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5726 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5727 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5728 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5729 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5730 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5731 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5738 void g4x_wm_get_hw_state(struct drm_device *dev)
5740 struct drm_i915_private *dev_priv = to_i915(dev);
5741 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5742 struct intel_crtc *crtc;
5744 g4x_read_wm_values(dev_priv, wm);
5746 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5748 for_each_intel_crtc(dev, crtc) {
5749 struct intel_crtc_state *crtc_state =
5750 to_intel_crtc_state(crtc->base.state);
5751 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5752 struct g4x_pipe_wm *raw;
5753 enum pipe pipe = crtc->pipe;
5754 enum plane_id plane_id;
5755 int level, max_level;
5757 active->cxsr = wm->cxsr;
5758 active->hpll_en = wm->hpll_en;
5759 active->fbc_en = wm->fbc_en;
5761 active->sr = wm->sr;
5762 active->hpll = wm->hpll;
5764 for_each_plane_id_on_crtc(crtc, plane_id) {
5765 active->wm.plane[plane_id] =
5766 wm->pipe[pipe].plane[plane_id];
5769 if (wm->cxsr && wm->hpll_en)
5770 max_level = G4X_WM_LEVEL_HPLL;
5772 max_level = G4X_WM_LEVEL_SR;
5774 max_level = G4X_WM_LEVEL_NORMAL;
5776 level = G4X_WM_LEVEL_NORMAL;
5777 raw = &crtc_state->wm.g4x.raw[level];
5778 for_each_plane_id_on_crtc(crtc, plane_id)
5779 raw->plane[plane_id] = active->wm.plane[plane_id];
5781 if (++level > max_level)
5784 raw = &crtc_state->wm.g4x.raw[level];
5785 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5786 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5787 raw->plane[PLANE_SPRITE0] = 0;
5788 raw->fbc = active->sr.fbc;
5790 if (++level > max_level)
5793 raw = &crtc_state->wm.g4x.raw[level];
5794 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5795 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5796 raw->plane[PLANE_SPRITE0] = 0;
5797 raw->fbc = active->hpll.fbc;
5800 for_each_plane_id_on_crtc(crtc, plane_id)
5801 g4x_raw_plane_wm_set(crtc_state, level,
5802 plane_id, USHRT_MAX);
5803 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5805 crtc_state->wm.g4x.optimal = *active;
5806 crtc_state->wm.g4x.intermediate = *active;
5808 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5810 wm->pipe[pipe].plane[PLANE_PRIMARY],
5811 wm->pipe[pipe].plane[PLANE_CURSOR],
5812 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5815 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5816 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5817 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5818 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5819 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5820 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5823 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5825 struct intel_plane *plane;
5826 struct intel_crtc *crtc;
5828 mutex_lock(&dev_priv->wm.wm_mutex);
5830 for_each_intel_plane(&dev_priv->drm, plane) {
5831 struct intel_crtc *crtc =
5832 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5833 struct intel_crtc_state *crtc_state =
5834 to_intel_crtc_state(crtc->base.state);
5835 struct intel_plane_state *plane_state =
5836 to_intel_plane_state(plane->base.state);
5837 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5838 enum plane_id plane_id = plane->id;
5841 if (plane_state->base.visible)
5844 for (level = 0; level < 3; level++) {
5845 struct g4x_pipe_wm *raw =
5846 &crtc_state->wm.g4x.raw[level];
5848 raw->plane[plane_id] = 0;
5849 wm_state->wm.plane[plane_id] = 0;
5852 if (plane_id == PLANE_PRIMARY) {
5853 for (level = 0; level < 3; level++) {
5854 struct g4x_pipe_wm *raw =
5855 &crtc_state->wm.g4x.raw[level];
5859 wm_state->sr.fbc = 0;
5860 wm_state->hpll.fbc = 0;
5861 wm_state->fbc_en = false;
5865 for_each_intel_crtc(&dev_priv->drm, crtc) {
5866 struct intel_crtc_state *crtc_state =
5867 to_intel_crtc_state(crtc->base.state);
5869 crtc_state->wm.g4x.intermediate =
5870 crtc_state->wm.g4x.optimal;
5871 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5874 g4x_program_watermarks(dev_priv);
5876 mutex_unlock(&dev_priv->wm.wm_mutex);
5879 void vlv_wm_get_hw_state(struct drm_device *dev)
5881 struct drm_i915_private *dev_priv = to_i915(dev);
5882 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5883 struct intel_crtc *crtc;
5886 vlv_read_wm_values(dev_priv, wm);
5888 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5889 wm->level = VLV_WM_LEVEL_PM2;
5891 if (IS_CHERRYVIEW(dev_priv)) {
5892 mutex_lock(&dev_priv->pcu_lock);
5894 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5895 if (val & DSP_MAXFIFO_PM5_ENABLE)
5896 wm->level = VLV_WM_LEVEL_PM5;
5899 * If DDR DVFS is disabled in the BIOS, Punit
5900 * will never ack the request. So if that happens
5901 * assume we don't have to enable/disable DDR DVFS
5902 * dynamically. To test that just set the REQ_ACK
5903 * bit to poke the Punit, but don't change the
5904 * HIGH/LOW bits so that we don't actually change
5905 * the current state.
5907 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5908 val |= FORCE_DDR_FREQ_REQ_ACK;
5909 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5911 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5912 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5913 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5914 "assuming DDR DVFS is disabled\n");
5915 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5917 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5918 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5919 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5922 mutex_unlock(&dev_priv->pcu_lock);
5925 for_each_intel_crtc(dev, crtc) {
5926 struct intel_crtc_state *crtc_state =
5927 to_intel_crtc_state(crtc->base.state);
5928 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5929 const struct vlv_fifo_state *fifo_state =
5930 &crtc_state->wm.vlv.fifo_state;
5931 enum pipe pipe = crtc->pipe;
5932 enum plane_id plane_id;
5935 vlv_get_fifo_size(crtc_state);
5937 active->num_levels = wm->level + 1;
5938 active->cxsr = wm->cxsr;
5940 for (level = 0; level < active->num_levels; level++) {
5941 struct g4x_pipe_wm *raw =
5942 &crtc_state->wm.vlv.raw[level];
5944 active->sr[level].plane = wm->sr.plane;
5945 active->sr[level].cursor = wm->sr.cursor;
5947 for_each_plane_id_on_crtc(crtc, plane_id) {
5948 active->wm[level].plane[plane_id] =
5949 wm->pipe[pipe].plane[plane_id];
5951 raw->plane[plane_id] =
5952 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5953 fifo_state->plane[plane_id]);
5957 for_each_plane_id_on_crtc(crtc, plane_id)
5958 vlv_raw_plane_wm_set(crtc_state, level,
5959 plane_id, USHRT_MAX);
5960 vlv_invalidate_wms(crtc, active, level);
5962 crtc_state->wm.vlv.optimal = *active;
5963 crtc_state->wm.vlv.intermediate = *active;
5965 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5967 wm->pipe[pipe].plane[PLANE_PRIMARY],
5968 wm->pipe[pipe].plane[PLANE_CURSOR],
5969 wm->pipe[pipe].plane[PLANE_SPRITE0],
5970 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5973 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5974 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5977 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5979 struct intel_plane *plane;
5980 struct intel_crtc *crtc;
5982 mutex_lock(&dev_priv->wm.wm_mutex);
5984 for_each_intel_plane(&dev_priv->drm, plane) {
5985 struct intel_crtc *crtc =
5986 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5987 struct intel_crtc_state *crtc_state =
5988 to_intel_crtc_state(crtc->base.state);
5989 struct intel_plane_state *plane_state =
5990 to_intel_plane_state(plane->base.state);
5991 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5992 const struct vlv_fifo_state *fifo_state =
5993 &crtc_state->wm.vlv.fifo_state;
5994 enum plane_id plane_id = plane->id;
5997 if (plane_state->base.visible)
6000 for (level = 0; level < wm_state->num_levels; level++) {
6001 struct g4x_pipe_wm *raw =
6002 &crtc_state->wm.vlv.raw[level];
6004 raw->plane[plane_id] = 0;
6006 wm_state->wm[level].plane[plane_id] =
6007 vlv_invert_wm_value(raw->plane[plane_id],
6008 fifo_state->plane[plane_id]);
6012 for_each_intel_crtc(&dev_priv->drm, crtc) {
6013 struct intel_crtc_state *crtc_state =
6014 to_intel_crtc_state(crtc->base.state);
6016 crtc_state->wm.vlv.intermediate =
6017 crtc_state->wm.vlv.optimal;
6018 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6021 vlv_program_watermarks(dev_priv);
6023 mutex_unlock(&dev_priv->wm.wm_mutex);
6027 * FIXME should probably kill this and improve
6028 * the real watermark readout/sanitation instead
6030 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6032 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6033 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6034 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6037 * Don't touch WM1S_LP_EN here.
6038 * Doing so could cause underruns.
6042 void ilk_wm_get_hw_state(struct drm_device *dev)
6044 struct drm_i915_private *dev_priv = to_i915(dev);
6045 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6046 struct drm_crtc *crtc;
6048 ilk_init_lp_watermarks(dev_priv);
6050 for_each_crtc(dev, crtc)
6051 ilk_pipe_wm_get_hw_state(crtc);
6053 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6054 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6055 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6057 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6058 if (INTEL_GEN(dev_priv) >= 7) {
6059 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6060 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6063 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6064 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6065 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6066 else if (IS_IVYBRIDGE(dev_priv))
6067 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6068 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6071 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6075 * intel_update_watermarks - update FIFO watermark values based on current modes
6076 * @crtc: the #intel_crtc on which to compute the WM
6078 * Calculate watermark values for the various WM regs based on current mode
6079 * and plane configuration.
6081 * There are several cases to deal with here:
6082 * - normal (i.e. non-self-refresh)
6083 * - self-refresh (SR) mode
6084 * - lines are large relative to FIFO size (buffer can hold up to 2)
6085 * - lines are small relative to FIFO size (buffer can hold more than 2
6086 * lines), so need to account for TLB latency
6088 * The normal calculation is:
6089 * watermark = dotclock * bytes per pixel * latency
6090 * where latency is platform & configuration dependent (we assume pessimal
6093 * The SR calculation is:
6094 * watermark = (trunc(latency/line time)+1) * surface width *
6097 * line time = htotal / dotclock
6098 * surface width = hdisplay for normal plane and 64 for cursor
6099 * and latency is assumed to be high, as above.
6101 * The final value programmed to the register should always be rounded up,
6102 * and include an extra 2 entries to account for clock crossings.
6104 * We don't use the sprite, so we can ignore that. And on Crestline we have
6105 * to set the non-SR watermarks to 8.
6107 void intel_update_watermarks(struct intel_crtc *crtc)
6109 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6111 if (dev_priv->display.update_wm)
6112 dev_priv->display.update_wm(crtc);
6115 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6119 /* Display WA #0477 WaDisableIPC: skl */
6120 if (IS_SKYLAKE(dev_priv))
6121 dev_priv->ipc_enabled = false;
6123 /* Display WA #1141: SKL:all KBL:all CFL */
6124 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
6125 !dev_priv->dram_info.symmetric_memory)
6126 dev_priv->ipc_enabled = false;
6128 val = I915_READ(DISP_ARB_CTL2);
6130 if (dev_priv->ipc_enabled)
6131 val |= DISP_IPC_ENABLE;
6133 val &= ~DISP_IPC_ENABLE;
6135 I915_WRITE(DISP_ARB_CTL2, val);
6138 void intel_init_ipc(struct drm_i915_private *dev_priv)
6140 dev_priv->ipc_enabled = false;
6141 if (!HAS_IPC(dev_priv))
6144 dev_priv->ipc_enabled = true;
6145 intel_enable_ipc(dev_priv);
6149 * Lock protecting IPS related data structures
6151 DEFINE_SPINLOCK(mchdev_lock);
6153 /* Global for IPS driver to get at the current i915 device. Protected by
6155 static struct drm_i915_private *i915_mch_dev;
6157 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6161 lockdep_assert_held(&mchdev_lock);
6163 rgvswctl = I915_READ16(MEMSWCTL);
6164 if (rgvswctl & MEMCTL_CMD_STS) {
6165 DRM_DEBUG("gpu busy, RCS change rejected\n");
6166 return false; /* still busy with another command */
6169 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6170 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6171 I915_WRITE16(MEMSWCTL, rgvswctl);
6172 POSTING_READ16(MEMSWCTL);
6174 rgvswctl |= MEMCTL_CMD_STS;
6175 I915_WRITE16(MEMSWCTL, rgvswctl);
6180 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6183 u8 fmax, fmin, fstart, vstart;
6185 spin_lock_irq(&mchdev_lock);
6187 rgvmodectl = I915_READ(MEMMODECTL);
6189 /* Enable temp reporting */
6190 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6191 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6193 /* 100ms RC evaluation intervals */
6194 I915_WRITE(RCUPEI, 100000);
6195 I915_WRITE(RCDNEI, 100000);
6197 /* Set max/min thresholds to 90ms and 80ms respectively */
6198 I915_WRITE(RCBMAXAVG, 90000);
6199 I915_WRITE(RCBMINAVG, 80000);
6201 I915_WRITE(MEMIHYST, 1);
6203 /* Set up min, max, and cur for interrupt handling */
6204 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6205 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6206 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6207 MEMMODE_FSTART_SHIFT;
6209 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6212 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6213 dev_priv->ips.fstart = fstart;
6215 dev_priv->ips.max_delay = fstart;
6216 dev_priv->ips.min_delay = fmin;
6217 dev_priv->ips.cur_delay = fstart;
6219 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6220 fmax, fmin, fstart);
6222 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6225 * Interrupts will be enabled in ironlake_irq_postinstall
6228 I915_WRITE(VIDSTART, vstart);
6229 POSTING_READ(VIDSTART);
6231 rgvmodectl |= MEMMODE_SWMODE_EN;
6232 I915_WRITE(MEMMODECTL, rgvmodectl);
6234 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6235 DRM_ERROR("stuck trying to change perf mode\n");
6238 ironlake_set_drps(dev_priv, fstart);
6240 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6241 I915_READ(DDREC) + I915_READ(CSIEC);
6242 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6243 dev_priv->ips.last_count2 = I915_READ(GFXEC);
6244 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6246 spin_unlock_irq(&mchdev_lock);
6249 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6253 spin_lock_irq(&mchdev_lock);
6255 rgvswctl = I915_READ16(MEMSWCTL);
6257 /* Ack interrupts, disable EFC interrupt */
6258 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6259 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6260 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6261 I915_WRITE(DEIIR, DE_PCU_EVENT);
6262 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6264 /* Go back to the starting frequency */
6265 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6267 rgvswctl |= MEMCTL_CMD_STS;
6268 I915_WRITE(MEMSWCTL, rgvswctl);
6271 spin_unlock_irq(&mchdev_lock);
6274 /* There's a funny hw issue where the hw returns all 0 when reading from
6275 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6276 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6277 * all limits and the gpu stuck at whatever frequency it is at atm).
6279 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6281 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6284 /* Only set the down limit when we've reached the lowest level to avoid
6285 * getting more interrupts, otherwise leave this clear. This prevents a
6286 * race in the hw when coming out of rc6: There's a tiny window where
6287 * the hw runs at the minimal clock before selecting the desired
6288 * frequency, if the down threshold expires in that window we will not
6289 * receive a down interrupt. */
6290 if (INTEL_GEN(dev_priv) >= 9) {
6291 limits = (rps->max_freq_softlimit) << 23;
6292 if (val <= rps->min_freq_softlimit)
6293 limits |= (rps->min_freq_softlimit) << 14;
6295 limits = rps->max_freq_softlimit << 24;
6296 if (val <= rps->min_freq_softlimit)
6297 limits |= rps->min_freq_softlimit << 16;
6303 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6305 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6306 u32 threshold_up = 0, threshold_down = 0; /* in % */
6307 u32 ei_up = 0, ei_down = 0;
6309 lockdep_assert_held(&rps->power.mutex);
6311 if (new_power == rps->power.mode)
6314 /* Note the units here are not exactly 1us, but 1280ns. */
6315 switch (new_power) {
6317 /* Upclock if more than 95% busy over 16ms */
6321 /* Downclock if less than 85% busy over 32ms */
6323 threshold_down = 85;
6327 /* Upclock if more than 90% busy over 13ms */
6331 /* Downclock if less than 75% busy over 32ms */
6333 threshold_down = 75;
6337 /* Upclock if more than 85% busy over 10ms */
6341 /* Downclock if less than 60% busy over 32ms */
6343 threshold_down = 60;
6347 /* When byt can survive without system hang with dynamic
6348 * sw freq adjustments, this restriction can be lifted.
6350 if (IS_VALLEYVIEW(dev_priv))
6353 I915_WRITE(GEN6_RP_UP_EI,
6354 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6355 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6356 GT_INTERVAL_FROM_US(dev_priv,
6357 ei_up * threshold_up / 100));
6359 I915_WRITE(GEN6_RP_DOWN_EI,
6360 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6361 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6362 GT_INTERVAL_FROM_US(dev_priv,
6363 ei_down * threshold_down / 100));
6365 I915_WRITE(GEN6_RP_CONTROL,
6366 GEN6_RP_MEDIA_TURBO |
6367 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6368 GEN6_RP_MEDIA_IS_GFX |
6370 GEN6_RP_UP_BUSY_AVG |
6371 GEN6_RP_DOWN_IDLE_AVG);
6374 rps->power.mode = new_power;
6375 rps->power.up_threshold = threshold_up;
6376 rps->power.down_threshold = threshold_down;
6379 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6381 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6384 new_power = rps->power.mode;
6385 switch (rps->power.mode) {
6387 if (val > rps->efficient_freq + 1 &&
6388 val > rps->cur_freq)
6389 new_power = BETWEEN;
6393 if (val <= rps->efficient_freq &&
6394 val < rps->cur_freq)
6395 new_power = LOW_POWER;
6396 else if (val >= rps->rp0_freq &&
6397 val > rps->cur_freq)
6398 new_power = HIGH_POWER;
6402 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6403 val < rps->cur_freq)
6404 new_power = BETWEEN;
6407 /* Max/min bins are special */
6408 if (val <= rps->min_freq_softlimit)
6409 new_power = LOW_POWER;
6410 if (val >= rps->max_freq_softlimit)
6411 new_power = HIGH_POWER;
6413 mutex_lock(&rps->power.mutex);
6414 if (rps->power.interactive)
6415 new_power = HIGH_POWER;
6416 rps_set_power(dev_priv, new_power);
6417 mutex_unlock(&rps->power.mutex);
6420 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6422 struct intel_rps *rps = &i915->gt_pm.rps;
6424 if (INTEL_GEN(i915) < 6)
6427 mutex_lock(&rps->power.mutex);
6429 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6430 rps_set_power(i915, HIGH_POWER);
6432 GEM_BUG_ON(!rps->power.interactive);
6433 rps->power.interactive--;
6435 mutex_unlock(&rps->power.mutex);
6438 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6440 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6443 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6444 if (val > rps->min_freq_softlimit)
6445 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6446 if (val < rps->max_freq_softlimit)
6447 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6449 mask &= dev_priv->pm_rps_events;
6451 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6454 /* gen6_set_rps is called to update the frequency request, but should also be
6455 * called when the range (min_delay and max_delay) is modified so that we can
6456 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6457 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6459 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6461 /* min/max delay may still have been modified so be sure to
6462 * write the limits value.
6464 if (val != rps->cur_freq) {
6465 gen6_set_rps_thresholds(dev_priv, val);
6467 if (INTEL_GEN(dev_priv) >= 9)
6468 I915_WRITE(GEN6_RPNSWREQ,
6469 GEN9_FREQUENCY(val));
6470 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6471 I915_WRITE(GEN6_RPNSWREQ,
6472 HSW_FREQUENCY(val));
6474 I915_WRITE(GEN6_RPNSWREQ,
6475 GEN6_FREQUENCY(val) |
6477 GEN6_AGGRESSIVE_TURBO);
6480 /* Make sure we continue to get interrupts
6481 * until we hit the minimum or maximum frequencies.
6483 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6484 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6486 rps->cur_freq = val;
6487 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6492 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6496 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6497 "Odd GPU freq value\n"))
6500 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6502 if (val != dev_priv->gt_pm.rps.cur_freq) {
6503 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6507 gen6_set_rps_thresholds(dev_priv, val);
6510 dev_priv->gt_pm.rps.cur_freq = val;
6511 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6516 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6518 * * If Gfx is Idle, then
6519 * 1. Forcewake Media well.
6520 * 2. Request idle freq.
6521 * 3. Release Forcewake of Media well.
6523 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6525 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6526 u32 val = rps->idle_freq;
6529 if (rps->cur_freq <= val)
6532 /* The punit delays the write of the frequency and voltage until it
6533 * determines the GPU is awake. During normal usage we don't want to
6534 * waste power changing the frequency if the GPU is sleeping (rc6).
6535 * However, the GPU and driver is now idle and we do not want to delay
6536 * switching to minimum voltage (reducing power whilst idle) as we do
6537 * not expect to be woken in the near future and so must flush the
6538 * change by waking the device.
6540 * We choose to take the media powerwell (either would do to trick the
6541 * punit into committing the voltage change) as that takes a lot less
6542 * power than the render powerwell.
6544 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6545 err = valleyview_set_rps(dev_priv, val);
6546 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6549 DRM_ERROR("Failed to set RPS for idle\n");
6552 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6554 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6556 mutex_lock(&dev_priv->pcu_lock);
6560 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6561 gen6_rps_reset_ei(dev_priv);
6562 I915_WRITE(GEN6_PMINTRMSK,
6563 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6565 gen6_enable_rps_interrupts(dev_priv);
6567 /* Use the user's desired frequency as a guide, but for better
6568 * performance, jump directly to RPe as our starting frequency.
6570 freq = max(rps->cur_freq,
6571 rps->efficient_freq);
6573 if (intel_set_rps(dev_priv,
6575 rps->min_freq_softlimit,
6576 rps->max_freq_softlimit)))
6577 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6579 mutex_unlock(&dev_priv->pcu_lock);
6582 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6584 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6586 /* Flush our bottom-half so that it does not race with us
6587 * setting the idle frequency and so that it is bounded by
6588 * our rpm wakeref. And then disable the interrupts to stop any
6589 * futher RPS reclocking whilst we are asleep.
6591 gen6_disable_rps_interrupts(dev_priv);
6593 mutex_lock(&dev_priv->pcu_lock);
6595 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6596 vlv_set_rps_idle(dev_priv);
6598 gen6_set_rps(dev_priv, rps->idle_freq);
6600 I915_WRITE(GEN6_PMINTRMSK,
6601 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6603 mutex_unlock(&dev_priv->pcu_lock);
6606 void gen6_rps_boost(struct i915_request *rq,
6607 struct intel_rps_client *rps_client)
6609 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6610 unsigned long flags;
6613 /* This is intentionally racy! We peek at the state here, then
6614 * validate inside the RPS worker.
6619 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6622 /* Serializes with i915_request_retire() */
6624 spin_lock_irqsave(&rq->lock, flags);
6625 if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6626 boost = !atomic_fetch_inc(&rps->num_waiters);
6627 rq->waitboost = true;
6629 spin_unlock_irqrestore(&rq->lock, flags);
6633 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6634 schedule_work(&rps->work);
6636 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6639 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6641 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6644 lockdep_assert_held(&dev_priv->pcu_lock);
6645 GEM_BUG_ON(val > rps->max_freq);
6646 GEM_BUG_ON(val < rps->min_freq);
6648 if (!rps->enabled) {
6649 rps->cur_freq = val;
6653 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6654 err = valleyview_set_rps(dev_priv, val);
6656 err = gen6_set_rps(dev_priv, val);
6661 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6663 I915_WRITE(GEN6_RC_CONTROL, 0);
6664 I915_WRITE(GEN9_PG_ENABLE, 0);
6667 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6669 I915_WRITE(GEN6_RP_CONTROL, 0);
6672 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6674 I915_WRITE(GEN6_RC_CONTROL, 0);
6677 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6679 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6680 I915_WRITE(GEN6_RP_CONTROL, 0);
6683 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6685 I915_WRITE(GEN6_RC_CONTROL, 0);
6688 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6690 I915_WRITE(GEN6_RP_CONTROL, 0);
6693 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6695 /* We're doing forcewake before Disabling RC6,
6696 * This what the BIOS expects when going into suspend */
6697 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6699 I915_WRITE(GEN6_RC_CONTROL, 0);
6701 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6704 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6706 I915_WRITE(GEN6_RP_CONTROL, 0);
6709 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6711 bool enable_rc6 = true;
6712 unsigned long rc6_ctx_base;
6716 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6717 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6718 RC_SW_TARGET_STATE_SHIFT;
6719 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6720 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6721 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6722 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6725 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6726 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6731 * The exact context size is not known for BXT, so assume a page size
6734 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6735 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6736 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6737 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6741 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6742 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6743 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6744 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6745 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6749 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6750 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6751 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6752 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6756 if (!I915_READ(GEN6_GFXPAUSE)) {
6757 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6761 if (!I915_READ(GEN8_MISC_CTRL0)) {
6762 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6769 static bool sanitize_rc6(struct drm_i915_private *i915)
6771 struct intel_device_info *info = mkwrite_device_info(i915);
6773 /* Powersaving is controlled by the host when inside a VM */
6774 if (intel_vgpu_active(i915))
6777 if (info->has_rc6 &&
6778 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6779 DRM_INFO("RC6 disabled by BIOS\n");
6784 * We assume that we do not have any deep rc6 levels if we don't have
6785 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6786 * as the initial coarse check for rc6 in general, moving on to
6787 * progressively finer/deeper levels.
6789 if (!info->has_rc6 && info->has_rc6p)
6792 return info->has_rc6;
6795 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6797 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6799 /* All of these values are in units of 50MHz */
6801 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6802 if (IS_GEN9_LP(dev_priv)) {
6803 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6804 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6805 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6806 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6808 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6809 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6810 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6811 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6813 /* hw_max = RP0 until we check for overclocking */
6814 rps->max_freq = rps->rp0_freq;
6816 rps->efficient_freq = rps->rp1_freq;
6817 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6818 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6819 u32 ddcc_status = 0;
6821 if (sandybridge_pcode_read(dev_priv,
6822 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6824 rps->efficient_freq =
6826 ((ddcc_status >> 8) & 0xff),
6831 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6832 /* Store the frequency values in 16.66 MHZ units, which is
6833 * the natural hardware unit for SKL
6835 rps->rp0_freq *= GEN9_FREQ_SCALER;
6836 rps->rp1_freq *= GEN9_FREQ_SCALER;
6837 rps->min_freq *= GEN9_FREQ_SCALER;
6838 rps->max_freq *= GEN9_FREQ_SCALER;
6839 rps->efficient_freq *= GEN9_FREQ_SCALER;
6843 static void reset_rps(struct drm_i915_private *dev_priv,
6844 int (*set)(struct drm_i915_private *, u8))
6846 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6847 u8 freq = rps->cur_freq;
6850 rps->power.mode = -1;
6853 if (set(dev_priv, freq))
6854 DRM_ERROR("Failed to reset RPS to initial values\n");
6857 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6858 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6860 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6862 /* Program defaults and thresholds for RPS */
6863 if (IS_GEN9(dev_priv))
6864 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6865 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6867 /* 1 second timeout*/
6868 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6869 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6871 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6873 /* Leaning on the below call to gen6_set_rps to program/setup the
6874 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6875 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6876 reset_rps(dev_priv, gen6_set_rps);
6878 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6881 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6883 struct intel_engine_cs *engine;
6884 enum intel_engine_id id;
6887 /* 1a: Software RC state - RC0 */
6888 I915_WRITE(GEN6_RC_STATE, 0);
6890 /* 1b: Get forcewake during program sequence. Although the driver
6891 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6892 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6894 /* 2a: Disable RC states. */
6895 I915_WRITE(GEN6_RC_CONTROL, 0);
6897 /* 2b: Program RC6 thresholds.*/
6898 if (INTEL_GEN(dev_priv) >= 10) {
6899 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6900 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6901 } else if (IS_SKYLAKE(dev_priv)) {
6903 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6904 * when CPG is enabled
6906 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6908 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6911 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6912 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6913 for_each_engine(engine, dev_priv, id)
6914 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6916 if (HAS_GUC(dev_priv))
6917 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6919 I915_WRITE(GEN6_RC_SLEEP, 0);
6922 * 2c: Program Coarse Power Gating Policies.
6924 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6925 * use instead is a more conservative estimate for the maximum time
6926 * it takes us to service a CS interrupt and submit a new ELSP - that
6927 * is the time which the GPU is idle waiting for the CPU to select the
6928 * next request to execute. If the idle hysteresis is less than that
6929 * interrupt service latency, the hardware will automatically gate
6930 * the power well and we will then incur the wake up cost on top of
6931 * the service latency. A similar guide from intel_pstate is that we
6932 * do not want the enable hysteresis to less than the wakeup latency.
6934 * igt/gem_exec_nop/sequential provides a rough estimate for the
6935 * service latency, and puts it around 10us for Broadwell (and other
6936 * big core) and around 40us for Broxton (and other low power cores).
6937 * [Note that for legacy ringbuffer submission, this is less than 1us!]
6938 * However, the wakeup latency on Broxton is closer to 100us. To be
6939 * conservative, we have to factor in a context switch on top (due
6942 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6943 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6945 /* 3a: Enable RC6 */
6946 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6948 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6949 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6950 rc6_mode = GEN7_RC_CTL_TO_MODE;
6952 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6954 I915_WRITE(GEN6_RC_CONTROL,
6955 GEN6_RC_CTL_HW_ENABLE |
6956 GEN6_RC_CTL_RC6_ENABLE |
6960 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6961 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6963 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6964 I915_WRITE(GEN9_PG_ENABLE, 0);
6966 I915_WRITE(GEN9_PG_ENABLE,
6967 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6969 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6972 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6974 struct intel_engine_cs *engine;
6975 enum intel_engine_id id;
6977 /* 1a: Software RC state - RC0 */
6978 I915_WRITE(GEN6_RC_STATE, 0);
6980 /* 1b: Get forcewake during program sequence. Although the driver
6981 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6982 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6984 /* 2a: Disable RC states. */
6985 I915_WRITE(GEN6_RC_CONTROL, 0);
6987 /* 2b: Program RC6 thresholds.*/
6988 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6989 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6990 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6991 for_each_engine(engine, dev_priv, id)
6992 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6993 I915_WRITE(GEN6_RC_SLEEP, 0);
6994 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6998 I915_WRITE(GEN6_RC_CONTROL,
6999 GEN6_RC_CTL_HW_ENABLE |
7000 GEN7_RC_CTL_TO_MODE |
7001 GEN6_RC_CTL_RC6_ENABLE);
7003 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7006 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7008 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7010 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7012 /* 1 Program defaults and thresholds for RPS*/
7013 I915_WRITE(GEN6_RPNSWREQ,
7014 HSW_FREQUENCY(rps->rp1_freq));
7015 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7016 HSW_FREQUENCY(rps->rp1_freq));
7017 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7018 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7020 /* Docs recommend 900MHz, and 300 MHz respectively */
7021 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7022 rps->max_freq_softlimit << 24 |
7023 rps->min_freq_softlimit << 16);
7025 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7026 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7027 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7028 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7030 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7033 I915_WRITE(GEN6_RP_CONTROL,
7034 GEN6_RP_MEDIA_TURBO |
7035 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7036 GEN6_RP_MEDIA_IS_GFX |
7038 GEN6_RP_UP_BUSY_AVG |
7039 GEN6_RP_DOWN_IDLE_AVG);
7041 reset_rps(dev_priv, gen6_set_rps);
7043 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7046 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7048 struct intel_engine_cs *engine;
7049 enum intel_engine_id id;
7050 u32 rc6vids, rc6_mask;
7054 I915_WRITE(GEN6_RC_STATE, 0);
7056 /* Clear the DBG now so we don't confuse earlier errors */
7057 gtfifodbg = I915_READ(GTFIFODBG);
7059 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7060 I915_WRITE(GTFIFODBG, gtfifodbg);
7063 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7065 /* disable the counters and set deterministic thresholds */
7066 I915_WRITE(GEN6_RC_CONTROL, 0);
7068 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7069 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7070 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7071 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7072 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7074 for_each_engine(engine, dev_priv, id)
7075 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7077 I915_WRITE(GEN6_RC_SLEEP, 0);
7078 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7079 if (IS_IVYBRIDGE(dev_priv))
7080 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7082 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7083 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7084 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7086 /* We don't use those on Haswell */
7087 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7088 if (HAS_RC6p(dev_priv))
7089 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7090 if (HAS_RC6pp(dev_priv))
7091 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7092 I915_WRITE(GEN6_RC_CONTROL,
7094 GEN6_RC_CTL_EI_MODE(1) |
7095 GEN6_RC_CTL_HW_ENABLE);
7098 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7099 if (IS_GEN6(dev_priv) && ret) {
7100 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7101 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7102 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7103 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7104 rc6vids &= 0xffff00;
7105 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7106 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7108 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7111 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7114 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7116 /* Here begins a magic sequence of register writes to enable
7117 * auto-downclocking.
7119 * Perhaps there might be some value in exposing these to
7122 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7124 /* Power down if completely idle for over 50ms */
7125 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7126 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7128 reset_rps(dev_priv, gen6_set_rps);
7130 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7133 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7135 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7136 const int min_freq = 15;
7137 const int scaling_factor = 180;
7138 unsigned int gpu_freq;
7139 unsigned int max_ia_freq, min_ring_freq;
7140 unsigned int max_gpu_freq, min_gpu_freq;
7141 struct cpufreq_policy *policy;
7143 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7145 if (rps->max_freq <= rps->min_freq)
7148 policy = cpufreq_cpu_get(0);
7150 max_ia_freq = policy->cpuinfo.max_freq;
7151 cpufreq_cpu_put(policy);
7154 * Default to measured freq if none found, PCU will ensure we
7157 max_ia_freq = tsc_khz;
7160 /* Convert from kHz to MHz */
7161 max_ia_freq /= 1000;
7163 min_ring_freq = I915_READ(DCLK) & 0xf;
7164 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7165 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7167 min_gpu_freq = rps->min_freq;
7168 max_gpu_freq = rps->max_freq;
7169 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7170 /* Convert GT frequency to 50 HZ units */
7171 min_gpu_freq /= GEN9_FREQ_SCALER;
7172 max_gpu_freq /= GEN9_FREQ_SCALER;
7176 * For each potential GPU frequency, load a ring frequency we'd like
7177 * to use for memory access. We do this by specifying the IA frequency
7178 * the PCU should use as a reference to determine the ring frequency.
7180 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7181 const int diff = max_gpu_freq - gpu_freq;
7182 unsigned int ia_freq = 0, ring_freq = 0;
7184 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7186 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7187 * No floor required for ring frequency on SKL.
7189 ring_freq = gpu_freq;
7190 } else if (INTEL_GEN(dev_priv) >= 8) {
7191 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7192 ring_freq = max(min_ring_freq, gpu_freq);
7193 } else if (IS_HASWELL(dev_priv)) {
7194 ring_freq = mult_frac(gpu_freq, 5, 4);
7195 ring_freq = max(min_ring_freq, ring_freq);
7196 /* leave ia_freq as the default, chosen by cpufreq */
7198 /* On older processors, there is no separate ring
7199 * clock domain, so in order to boost the bandwidth
7200 * of the ring, we need to upclock the CPU (ia_freq).
7202 * For GPU frequencies less than 750MHz,
7203 * just use the lowest ring freq.
7205 if (gpu_freq < min_freq)
7208 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7209 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7212 sandybridge_pcode_write(dev_priv,
7213 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7214 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7215 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7220 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7224 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7226 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7228 /* (2 * 4) config */
7229 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7232 /* (2 * 6) config */
7233 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7236 /* (2 * 8) config */
7238 /* Setting (2 * 8) Min RP0 for any other combination */
7239 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7243 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7248 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7252 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7253 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7258 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7262 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7263 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7268 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7272 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7273 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7274 FB_GFX_FREQ_FUSE_MASK);
7279 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7283 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7285 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7290 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7294 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7296 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7298 rp0 = min_t(u32, rp0, 0xea);
7303 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7307 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7308 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7309 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7310 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7315 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7319 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7321 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7322 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7323 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7324 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7325 * to make sure it matches what Punit accepts.
7327 return max_t(u32, val, 0xc0);
7330 /* Check that the pctx buffer wasn't move under us. */
7331 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7333 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7335 WARN_ON(pctx_addr != dev_priv->dsm.start +
7336 dev_priv->vlv_pctx->stolen->start);
7340 /* Check that the pcbr address is not empty. */
7341 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7343 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7345 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7348 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7350 resource_size_t pctx_paddr, paddr;
7351 resource_size_t pctx_size = 32*1024;
7354 pcbr = I915_READ(VLV_PCBR);
7355 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7356 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7357 paddr = dev_priv->dsm.end + 1 - pctx_size;
7358 GEM_BUG_ON(paddr > U32_MAX);
7360 pctx_paddr = (paddr & (~4095));
7361 I915_WRITE(VLV_PCBR, pctx_paddr);
7364 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7367 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7369 struct drm_i915_gem_object *pctx;
7370 resource_size_t pctx_paddr;
7371 resource_size_t pctx_size = 24*1024;
7374 pcbr = I915_READ(VLV_PCBR);
7376 /* BIOS set it up already, grab the pre-alloc'd space */
7377 resource_size_t pcbr_offset;
7379 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7380 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7382 I915_GTT_OFFSET_NONE,
7387 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7390 * From the Gunit register HAS:
7391 * The Gfx driver is expected to program this register and ensure
7392 * proper allocation within Gfx stolen memory. For example, this
7393 * register should be programmed such than the PCBR range does not
7394 * overlap with other ranges, such as the frame buffer, protected
7395 * memory, or any other relevant ranges.
7397 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7399 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7403 GEM_BUG_ON(range_overflows_t(u64,
7404 dev_priv->dsm.start,
7405 pctx->stolen->start,
7407 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7408 I915_WRITE(VLV_PCBR, pctx_paddr);
7411 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7412 dev_priv->vlv_pctx = pctx;
7415 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7417 struct drm_i915_gem_object *pctx;
7419 pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7421 i915_gem_object_put(pctx);
7424 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7426 dev_priv->gt_pm.rps.gpll_ref_freq =
7427 vlv_get_cck_clock(dev_priv, "GPLL ref",
7428 CCK_GPLL_CLOCK_CONTROL,
7429 dev_priv->czclk_freq);
7431 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7432 dev_priv->gt_pm.rps.gpll_ref_freq);
7435 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7437 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7440 valleyview_setup_pctx(dev_priv);
7442 vlv_init_gpll_ref_freq(dev_priv);
7444 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7445 switch ((val >> 6) & 3) {
7448 dev_priv->mem_freq = 800;
7451 dev_priv->mem_freq = 1066;
7454 dev_priv->mem_freq = 1333;
7457 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7459 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7460 rps->rp0_freq = rps->max_freq;
7461 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7462 intel_gpu_freq(dev_priv, rps->max_freq),
7465 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7466 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7467 intel_gpu_freq(dev_priv, rps->efficient_freq),
7468 rps->efficient_freq);
7470 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7471 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7472 intel_gpu_freq(dev_priv, rps->rp1_freq),
7475 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7476 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7477 intel_gpu_freq(dev_priv, rps->min_freq),
7481 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7483 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7486 cherryview_setup_pctx(dev_priv);
7488 vlv_init_gpll_ref_freq(dev_priv);
7490 mutex_lock(&dev_priv->sb_lock);
7491 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7492 mutex_unlock(&dev_priv->sb_lock);
7494 switch ((val >> 2) & 0x7) {
7496 dev_priv->mem_freq = 2000;
7499 dev_priv->mem_freq = 1600;
7502 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7504 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7505 rps->rp0_freq = rps->max_freq;
7506 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7507 intel_gpu_freq(dev_priv, rps->max_freq),
7510 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7511 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7512 intel_gpu_freq(dev_priv, rps->efficient_freq),
7513 rps->efficient_freq);
7515 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7516 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7517 intel_gpu_freq(dev_priv, rps->rp1_freq),
7520 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7521 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7522 intel_gpu_freq(dev_priv, rps->min_freq),
7525 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7527 "Odd GPU freq values\n");
7530 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7532 valleyview_cleanup_pctx(dev_priv);
7535 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7537 struct intel_engine_cs *engine;
7538 enum intel_engine_id id;
7539 u32 gtfifodbg, rc6_mode, pcbr;
7541 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7542 GT_FIFO_FREE_ENTRIES_CHV);
7544 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7546 I915_WRITE(GTFIFODBG, gtfifodbg);
7549 cherryview_check_pctx(dev_priv);
7551 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7552 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7553 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7555 /* Disable RC states. */
7556 I915_WRITE(GEN6_RC_CONTROL, 0);
7558 /* 2a: Program RC6 thresholds.*/
7559 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7560 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7561 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7563 for_each_engine(engine, dev_priv, id)
7564 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7565 I915_WRITE(GEN6_RC_SLEEP, 0);
7567 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7568 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7570 /* Allows RC6 residency counter to work */
7571 I915_WRITE(VLV_COUNTER_CONTROL,
7572 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7573 VLV_MEDIA_RC6_COUNT_EN |
7574 VLV_RENDER_RC6_COUNT_EN));
7576 /* For now we assume BIOS is allocating and populating the PCBR */
7577 pcbr = I915_READ(VLV_PCBR);
7581 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7582 rc6_mode = GEN7_RC_CTL_TO_MODE;
7583 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7585 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7588 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7592 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7594 /* 1: Program defaults and thresholds for RPS*/
7595 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7596 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7597 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7598 I915_WRITE(GEN6_RP_UP_EI, 66000);
7599 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7601 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7604 I915_WRITE(GEN6_RP_CONTROL,
7605 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7606 GEN6_RP_MEDIA_IS_GFX |
7608 GEN6_RP_UP_BUSY_AVG |
7609 GEN6_RP_DOWN_IDLE_AVG);
7611 /* Setting Fixed Bias */
7612 val = VLV_OVERRIDE_EN |
7614 CHV_BIAS_CPU_50_SOC_50;
7615 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7617 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7619 /* RPS code assumes GPLL is used */
7620 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7622 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7623 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7625 reset_rps(dev_priv, valleyview_set_rps);
7627 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7630 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7632 struct intel_engine_cs *engine;
7633 enum intel_engine_id id;
7636 valleyview_check_pctx(dev_priv);
7638 gtfifodbg = I915_READ(GTFIFODBG);
7640 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7642 I915_WRITE(GTFIFODBG, gtfifodbg);
7645 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7647 /* Disable RC states. */
7648 I915_WRITE(GEN6_RC_CONTROL, 0);
7650 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7651 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7652 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7654 for_each_engine(engine, dev_priv, id)
7655 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7657 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7659 /* Allows RC6 residency counter to work */
7660 I915_WRITE(VLV_COUNTER_CONTROL,
7661 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7662 VLV_MEDIA_RC0_COUNT_EN |
7663 VLV_RENDER_RC0_COUNT_EN |
7664 VLV_MEDIA_RC6_COUNT_EN |
7665 VLV_RENDER_RC6_COUNT_EN));
7667 I915_WRITE(GEN6_RC_CONTROL,
7668 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7670 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7673 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7677 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7679 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7680 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7681 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7682 I915_WRITE(GEN6_RP_UP_EI, 66000);
7683 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7685 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7687 I915_WRITE(GEN6_RP_CONTROL,
7688 GEN6_RP_MEDIA_TURBO |
7689 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7690 GEN6_RP_MEDIA_IS_GFX |
7692 GEN6_RP_UP_BUSY_AVG |
7693 GEN6_RP_DOWN_IDLE_CONT);
7695 /* Setting Fixed Bias */
7696 val = VLV_OVERRIDE_EN |
7698 VLV_BIAS_CPU_125_SOC_875;
7699 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7701 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7703 /* RPS code assumes GPLL is used */
7704 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7706 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7707 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7709 reset_rps(dev_priv, valleyview_set_rps);
7711 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7714 static unsigned long intel_pxfreq(u32 vidfreq)
7717 int div = (vidfreq & 0x3f0000) >> 16;
7718 int post = (vidfreq & 0x3000) >> 12;
7719 int pre = (vidfreq & 0x7);
7724 freq = ((div * 133333) / ((1<<post) * pre));
7729 static const struct cparams {
7735 { 1, 1333, 301, 28664 },
7736 { 1, 1066, 294, 24460 },
7737 { 1, 800, 294, 25192 },
7738 { 0, 1333, 276, 27605 },
7739 { 0, 1066, 276, 27605 },
7740 { 0, 800, 231, 23784 },
7743 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7745 u64 total_count, diff, ret;
7746 u32 count1, count2, count3, m = 0, c = 0;
7747 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7750 lockdep_assert_held(&mchdev_lock);
7752 diff1 = now - dev_priv->ips.last_time1;
7754 /* Prevent division-by-zero if we are asking too fast.
7755 * Also, we don't get interesting results if we are polling
7756 * faster than once in 10ms, so just return the saved value
7760 return dev_priv->ips.chipset_power;
7762 count1 = I915_READ(DMIEC);
7763 count2 = I915_READ(DDREC);
7764 count3 = I915_READ(CSIEC);
7766 total_count = count1 + count2 + count3;
7768 /* FIXME: handle per-counter overflow */
7769 if (total_count < dev_priv->ips.last_count1) {
7770 diff = ~0UL - dev_priv->ips.last_count1;
7771 diff += total_count;
7773 diff = total_count - dev_priv->ips.last_count1;
7776 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7777 if (cparams[i].i == dev_priv->ips.c_m &&
7778 cparams[i].t == dev_priv->ips.r_t) {
7785 diff = div_u64(diff, diff1);
7786 ret = ((m * diff) + c);
7787 ret = div_u64(ret, 10);
7789 dev_priv->ips.last_count1 = total_count;
7790 dev_priv->ips.last_time1 = now;
7792 dev_priv->ips.chipset_power = ret;
7797 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7801 if (!IS_GEN5(dev_priv))
7804 spin_lock_irq(&mchdev_lock);
7806 val = __i915_chipset_val(dev_priv);
7808 spin_unlock_irq(&mchdev_lock);
7813 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7815 unsigned long m, x, b;
7818 tsfs = I915_READ(TSFS);
7820 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7821 x = I915_READ8(TR1);
7823 b = tsfs & TSFS_INTR_MASK;
7825 return ((m * x) / 127) - b;
7828 static int _pxvid_to_vd(u8 pxvid)
7833 if (pxvid >= 8 && pxvid < 31)
7836 return (pxvid + 2) * 125;
7839 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7841 const int vd = _pxvid_to_vd(pxvid);
7842 const int vm = vd - 1125;
7844 if (INTEL_INFO(dev_priv)->is_mobile)
7845 return vm > 0 ? vm : 0;
7850 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7852 u64 now, diff, diffms;
7855 lockdep_assert_held(&mchdev_lock);
7857 now = ktime_get_raw_ns();
7858 diffms = now - dev_priv->ips.last_time2;
7859 do_div(diffms, NSEC_PER_MSEC);
7861 /* Don't divide by 0 */
7865 count = I915_READ(GFXEC);
7867 if (count < dev_priv->ips.last_count2) {
7868 diff = ~0UL - dev_priv->ips.last_count2;
7871 diff = count - dev_priv->ips.last_count2;
7874 dev_priv->ips.last_count2 = count;
7875 dev_priv->ips.last_time2 = now;
7877 /* More magic constants... */
7879 diff = div_u64(diff, diffms * 10);
7880 dev_priv->ips.gfx_power = diff;
7883 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7885 if (!IS_GEN5(dev_priv))
7888 spin_lock_irq(&mchdev_lock);
7890 __i915_update_gfx_val(dev_priv);
7892 spin_unlock_irq(&mchdev_lock);
7895 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7897 unsigned long t, corr, state1, corr2, state2;
7900 lockdep_assert_held(&mchdev_lock);
7902 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7903 pxvid = (pxvid >> 24) & 0x7f;
7904 ext_v = pvid_to_extvid(dev_priv, pxvid);
7908 t = i915_mch_val(dev_priv);
7910 /* Revel in the empirically derived constants */
7912 /* Correction factor in 1/100000 units */
7914 corr = ((t * 2349) + 135940);
7916 corr = ((t * 964) + 29317);
7918 corr = ((t * 301) + 1004);
7920 corr = corr * ((150142 * state1) / 10000 - 78642);
7922 corr2 = (corr * dev_priv->ips.corr);
7924 state2 = (corr2 * state1) / 10000;
7925 state2 /= 100; /* convert to mW */
7927 __i915_update_gfx_val(dev_priv);
7929 return dev_priv->ips.gfx_power + state2;
7932 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7936 if (!IS_GEN5(dev_priv))
7939 spin_lock_irq(&mchdev_lock);
7941 val = __i915_gfx_val(dev_priv);
7943 spin_unlock_irq(&mchdev_lock);
7949 * i915_read_mch_val - return value for IPS use
7951 * Calculate and return a value for the IPS driver to use when deciding whether
7952 * we have thermal and power headroom to increase CPU or GPU power budget.
7954 unsigned long i915_read_mch_val(void)
7956 struct drm_i915_private *dev_priv;
7957 unsigned long chipset_val, graphics_val, ret = 0;
7959 spin_lock_irq(&mchdev_lock);
7962 dev_priv = i915_mch_dev;
7964 chipset_val = __i915_chipset_val(dev_priv);
7965 graphics_val = __i915_gfx_val(dev_priv);
7967 ret = chipset_val + graphics_val;
7970 spin_unlock_irq(&mchdev_lock);
7974 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7977 * i915_gpu_raise - raise GPU frequency limit
7979 * Raise the limit; IPS indicates we have thermal headroom.
7981 bool i915_gpu_raise(void)
7983 struct drm_i915_private *dev_priv;
7986 spin_lock_irq(&mchdev_lock);
7987 if (!i915_mch_dev) {
7991 dev_priv = i915_mch_dev;
7993 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7994 dev_priv->ips.max_delay--;
7997 spin_unlock_irq(&mchdev_lock);
8001 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8004 * i915_gpu_lower - lower GPU frequency limit
8006 * IPS indicates we're close to a thermal limit, so throttle back the GPU
8007 * frequency maximum.
8009 bool i915_gpu_lower(void)
8011 struct drm_i915_private *dev_priv;
8014 spin_lock_irq(&mchdev_lock);
8015 if (!i915_mch_dev) {
8019 dev_priv = i915_mch_dev;
8021 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
8022 dev_priv->ips.max_delay++;
8025 spin_unlock_irq(&mchdev_lock);
8029 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8032 * i915_gpu_busy - indicate GPU business to IPS
8034 * Tell the IPS driver whether or not the GPU is busy.
8036 bool i915_gpu_busy(void)
8040 spin_lock_irq(&mchdev_lock);
8042 ret = i915_mch_dev->gt.awake;
8043 spin_unlock_irq(&mchdev_lock);
8047 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8050 * i915_gpu_turbo_disable - disable graphics turbo
8052 * Disable graphics turbo by resetting the max frequency and setting the
8053 * current frequency to the default.
8055 bool i915_gpu_turbo_disable(void)
8057 struct drm_i915_private *dev_priv;
8060 spin_lock_irq(&mchdev_lock);
8061 if (!i915_mch_dev) {
8065 dev_priv = i915_mch_dev;
8067 dev_priv->ips.max_delay = dev_priv->ips.fstart;
8069 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8073 spin_unlock_irq(&mchdev_lock);
8077 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8080 * Tells the intel_ips driver that the i915 driver is now loaded, if
8081 * IPS got loaded first.
8083 * This awkward dance is so that neither module has to depend on the
8084 * other in order for IPS to do the appropriate communication of
8085 * GPU turbo limits to i915.
8088 ips_ping_for_i915_load(void)
8092 link = symbol_get(ips_link_to_i915_driver);
8095 symbol_put(ips_link_to_i915_driver);
8099 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8101 /* We only register the i915 ips part with intel-ips once everything is
8102 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8103 spin_lock_irq(&mchdev_lock);
8104 i915_mch_dev = dev_priv;
8105 spin_unlock_irq(&mchdev_lock);
8107 ips_ping_for_i915_load();
8110 void intel_gpu_ips_teardown(void)
8112 spin_lock_irq(&mchdev_lock);
8113 i915_mch_dev = NULL;
8114 spin_unlock_irq(&mchdev_lock);
8117 static void intel_init_emon(struct drm_i915_private *dev_priv)
8123 /* Disable to program */
8127 /* Program energy weights for various events */
8128 I915_WRITE(SDEW, 0x15040d00);
8129 I915_WRITE(CSIEW0, 0x007f0000);
8130 I915_WRITE(CSIEW1, 0x1e220004);
8131 I915_WRITE(CSIEW2, 0x04000004);
8133 for (i = 0; i < 5; i++)
8134 I915_WRITE(PEW(i), 0);
8135 for (i = 0; i < 3; i++)
8136 I915_WRITE(DEW(i), 0);
8138 /* Program P-state weights to account for frequency power adjustment */
8139 for (i = 0; i < 16; i++) {
8140 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8141 unsigned long freq = intel_pxfreq(pxvidfreq);
8142 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8147 val *= (freq / 1000);
8149 val /= (127*127*900);
8151 DRM_ERROR("bad pxval: %ld\n", val);
8154 /* Render standby states get 0 weight */
8158 for (i = 0; i < 4; i++) {
8159 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8160 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8161 I915_WRITE(PXW(i), val);
8164 /* Adjust magic regs to magic values (more experimental results) */
8165 I915_WRITE(OGW0, 0);
8166 I915_WRITE(OGW1, 0);
8167 I915_WRITE(EG0, 0x00007f00);
8168 I915_WRITE(EG1, 0x0000000e);
8169 I915_WRITE(EG2, 0x000e0000);
8170 I915_WRITE(EG3, 0x68000300);
8171 I915_WRITE(EG4, 0x42000000);
8172 I915_WRITE(EG5, 0x00140031);
8176 for (i = 0; i < 8; i++)
8177 I915_WRITE(PXWL(i), 0);
8179 /* Enable PMON + select events */
8180 I915_WRITE(ECR, 0x80000019);
8182 lcfuse = I915_READ(LCFUSE02);
8184 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8187 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8189 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8192 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8195 if (!sanitize_rc6(dev_priv)) {
8196 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8197 pm_runtime_get(&dev_priv->drm.pdev->dev);
8200 mutex_lock(&dev_priv->pcu_lock);
8202 /* Initialize RPS limits (for userspace) */
8203 if (IS_CHERRYVIEW(dev_priv))
8204 cherryview_init_gt_powersave(dev_priv);
8205 else if (IS_VALLEYVIEW(dev_priv))
8206 valleyview_init_gt_powersave(dev_priv);
8207 else if (INTEL_GEN(dev_priv) >= 6)
8208 gen6_init_rps_frequencies(dev_priv);
8210 /* Derive initial user preferences/limits from the hardware limits */
8211 rps->idle_freq = rps->min_freq;
8212 rps->cur_freq = rps->idle_freq;
8214 rps->max_freq_softlimit = rps->max_freq;
8215 rps->min_freq_softlimit = rps->min_freq;
8217 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8218 rps->min_freq_softlimit =
8220 rps->efficient_freq,
8221 intel_freq_opcode(dev_priv, 450));
8223 /* After setting max-softlimit, find the overclock max freq */
8224 if (IS_GEN6(dev_priv) ||
8225 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8228 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms);
8229 if (params & BIT(31)) { /* OC supported */
8230 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8231 (rps->max_freq & 0xff) * 50,
8232 (params & 0xff) * 50);
8233 rps->max_freq = params & 0xff;
8237 /* Finally allow us to boost to max by default */
8238 rps->boost_freq = rps->max_freq;
8240 mutex_unlock(&dev_priv->pcu_lock);
8243 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8245 if (IS_VALLEYVIEW(dev_priv))
8246 valleyview_cleanup_gt_powersave(dev_priv);
8248 if (!HAS_RC6(dev_priv))
8249 pm_runtime_put(&dev_priv->drm.pdev->dev);
8253 * intel_suspend_gt_powersave - suspend PM work and helper threads
8254 * @dev_priv: i915 device
8256 * We don't want to disable RC6 or other features here, we just want
8257 * to make sure any work we've queued has finished and won't bother
8258 * us while we're suspended.
8260 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8262 if (INTEL_GEN(dev_priv) < 6)
8265 /* gen6_rps_idle() will be called later to disable interrupts */
8268 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8270 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8271 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8272 intel_disable_gt_powersave(dev_priv);
8274 if (INTEL_GEN(dev_priv) >= 11)
8275 gen11_reset_rps_interrupts(dev_priv);
8276 else if (INTEL_GEN(dev_priv) >= 6)
8277 gen6_reset_rps_interrupts(dev_priv);
8280 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8282 lockdep_assert_held(&i915->pcu_lock);
8284 if (!i915->gt_pm.llc_pstate.enabled)
8287 /* Currently there is no HW configuration to be done to disable. */
8289 i915->gt_pm.llc_pstate.enabled = false;
8292 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8294 lockdep_assert_held(&dev_priv->pcu_lock);
8296 if (!dev_priv->gt_pm.rc6.enabled)
8299 if (INTEL_GEN(dev_priv) >= 9)
8300 gen9_disable_rc6(dev_priv);
8301 else if (IS_CHERRYVIEW(dev_priv))
8302 cherryview_disable_rc6(dev_priv);
8303 else if (IS_VALLEYVIEW(dev_priv))
8304 valleyview_disable_rc6(dev_priv);
8305 else if (INTEL_GEN(dev_priv) >= 6)
8306 gen6_disable_rc6(dev_priv);
8308 dev_priv->gt_pm.rc6.enabled = false;
8311 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8313 lockdep_assert_held(&dev_priv->pcu_lock);
8315 if (!dev_priv->gt_pm.rps.enabled)
8318 if (INTEL_GEN(dev_priv) >= 9)
8319 gen9_disable_rps(dev_priv);
8320 else if (IS_CHERRYVIEW(dev_priv))
8321 cherryview_disable_rps(dev_priv);
8322 else if (IS_VALLEYVIEW(dev_priv))
8323 valleyview_disable_rps(dev_priv);
8324 else if (INTEL_GEN(dev_priv) >= 6)
8325 gen6_disable_rps(dev_priv);
8326 else if (IS_IRONLAKE_M(dev_priv))
8327 ironlake_disable_drps(dev_priv);
8329 dev_priv->gt_pm.rps.enabled = false;
8332 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8334 mutex_lock(&dev_priv->pcu_lock);
8336 intel_disable_rc6(dev_priv);
8337 intel_disable_rps(dev_priv);
8338 if (HAS_LLC(dev_priv))
8339 intel_disable_llc_pstate(dev_priv);
8341 mutex_unlock(&dev_priv->pcu_lock);
8344 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8346 lockdep_assert_held(&i915->pcu_lock);
8348 if (i915->gt_pm.llc_pstate.enabled)
8351 gen6_update_ring_freq(i915);
8353 i915->gt_pm.llc_pstate.enabled = true;
8356 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8358 lockdep_assert_held(&dev_priv->pcu_lock);
8360 if (dev_priv->gt_pm.rc6.enabled)
8363 if (IS_CHERRYVIEW(dev_priv))
8364 cherryview_enable_rc6(dev_priv);
8365 else if (IS_VALLEYVIEW(dev_priv))
8366 valleyview_enable_rc6(dev_priv);
8367 else if (INTEL_GEN(dev_priv) >= 9)
8368 gen9_enable_rc6(dev_priv);
8369 else if (IS_BROADWELL(dev_priv))
8370 gen8_enable_rc6(dev_priv);
8371 else if (INTEL_GEN(dev_priv) >= 6)
8372 gen6_enable_rc6(dev_priv);
8374 dev_priv->gt_pm.rc6.enabled = true;
8377 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8379 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8381 lockdep_assert_held(&dev_priv->pcu_lock);
8386 if (IS_CHERRYVIEW(dev_priv)) {
8387 cherryview_enable_rps(dev_priv);
8388 } else if (IS_VALLEYVIEW(dev_priv)) {
8389 valleyview_enable_rps(dev_priv);
8390 } else if (INTEL_GEN(dev_priv) >= 9) {
8391 gen9_enable_rps(dev_priv);
8392 } else if (IS_BROADWELL(dev_priv)) {
8393 gen8_enable_rps(dev_priv);
8394 } else if (INTEL_GEN(dev_priv) >= 6) {
8395 gen6_enable_rps(dev_priv);
8396 } else if (IS_IRONLAKE_M(dev_priv)) {
8397 ironlake_enable_drps(dev_priv);
8398 intel_init_emon(dev_priv);
8401 WARN_ON(rps->max_freq < rps->min_freq);
8402 WARN_ON(rps->idle_freq > rps->max_freq);
8404 WARN_ON(rps->efficient_freq < rps->min_freq);
8405 WARN_ON(rps->efficient_freq > rps->max_freq);
8407 rps->enabled = true;
8410 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8412 /* Powersaving is controlled by the host when inside a VM */
8413 if (intel_vgpu_active(dev_priv))
8416 mutex_lock(&dev_priv->pcu_lock);
8418 if (HAS_RC6(dev_priv))
8419 intel_enable_rc6(dev_priv);
8420 intel_enable_rps(dev_priv);
8421 if (HAS_LLC(dev_priv))
8422 intel_enable_llc_pstate(dev_priv);
8424 mutex_unlock(&dev_priv->pcu_lock);
8427 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8430 * On Ibex Peak and Cougar Point, we need to disable clock
8431 * gating for the panel power sequencer or it will fail to
8432 * start up when no ports are active.
8434 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8437 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8441 for_each_pipe(dev_priv, pipe) {
8442 I915_WRITE(DSPCNTR(pipe),
8443 I915_READ(DSPCNTR(pipe)) |
8444 DISPPLANE_TRICKLE_FEED_DISABLE);
8446 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8447 POSTING_READ(DSPSURF(pipe));
8451 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8453 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8457 * WaFbcDisableDpfcClockGating:ilk
8459 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8460 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8461 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8463 I915_WRITE(PCH_3DCGDIS0,
8464 MARIUNIT_CLOCK_GATE_DISABLE |
8465 SVSMUNIT_CLOCK_GATE_DISABLE);
8466 I915_WRITE(PCH_3DCGDIS1,
8467 VFMUNIT_CLOCK_GATE_DISABLE);
8470 * According to the spec the following bits should be set in
8471 * order to enable memory self-refresh
8472 * The bit 22/21 of 0x42004
8473 * The bit 5 of 0x42020
8474 * The bit 15 of 0x45000
8476 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8477 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8478 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8479 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8480 I915_WRITE(DISP_ARB_CTL,
8481 (I915_READ(DISP_ARB_CTL) |
8485 * Based on the document from hardware guys the following bits
8486 * should be set unconditionally in order to enable FBC.
8487 * The bit 22 of 0x42000
8488 * The bit 22 of 0x42004
8489 * The bit 7,8,9 of 0x42020.
8491 if (IS_IRONLAKE_M(dev_priv)) {
8492 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8493 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8494 I915_READ(ILK_DISPLAY_CHICKEN1) |
8496 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8497 I915_READ(ILK_DISPLAY_CHICKEN2) |
8501 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8503 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8504 I915_READ(ILK_DISPLAY_CHICKEN2) |
8505 ILK_ELPIN_409_SELECT);
8506 I915_WRITE(_3D_CHICKEN2,
8507 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8508 _3D_CHICKEN2_WM_READ_PIPELINED);
8510 /* WaDisableRenderCachePipelinedFlush:ilk */
8511 I915_WRITE(CACHE_MODE_0,
8512 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8514 /* WaDisable_RenderCache_OperationalFlush:ilk */
8515 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8517 g4x_disable_trickle_feed(dev_priv);
8519 ibx_init_clock_gating(dev_priv);
8522 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8528 * On Ibex Peak and Cougar Point, we need to disable clock
8529 * gating for the panel power sequencer or it will fail to
8530 * start up when no ports are active.
8532 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8533 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8534 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8535 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8536 DPLS_EDP_PPS_FIX_DIS);
8537 /* The below fixes the weird display corruption, a few pixels shifted
8538 * downward, on (only) LVDS of some HP laptops with IVY.
8540 for_each_pipe(dev_priv, pipe) {
8541 val = I915_READ(TRANS_CHICKEN2(pipe));
8542 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8543 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8544 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8545 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8546 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8547 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8548 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8549 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8551 /* WADP0ClockGatingDisable */
8552 for_each_pipe(dev_priv, pipe) {
8553 I915_WRITE(TRANS_CHICKEN1(pipe),
8554 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8558 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8562 tmp = I915_READ(MCH_SSKPD);
8563 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8564 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8568 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8570 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8572 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8574 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8575 I915_READ(ILK_DISPLAY_CHICKEN2) |
8576 ILK_ELPIN_409_SELECT);
8578 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8579 I915_WRITE(_3D_CHICKEN,
8580 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8582 /* WaDisable_RenderCache_OperationalFlush:snb */
8583 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8586 * BSpec recoomends 8x4 when MSAA is used,
8587 * however in practice 16x4 seems fastest.
8589 * Note that PS/WM thread counts depend on the WIZ hashing
8590 * disable bit, which we don't touch here, but it's good
8591 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8593 I915_WRITE(GEN6_GT_MODE,
8594 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8596 I915_WRITE(CACHE_MODE_0,
8597 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8599 I915_WRITE(GEN6_UCGCTL1,
8600 I915_READ(GEN6_UCGCTL1) |
8601 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8602 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8604 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8605 * gating disable must be set. Failure to set it results in
8606 * flickering pixels due to Z write ordering failures after
8607 * some amount of runtime in the Mesa "fire" demo, and Unigine
8608 * Sanctuary and Tropics, and apparently anything else with
8609 * alpha test or pixel discard.
8611 * According to the spec, bit 11 (RCCUNIT) must also be set,
8612 * but we didn't debug actual testcases to find it out.
8614 * WaDisableRCCUnitClockGating:snb
8615 * WaDisableRCPBUnitClockGating:snb
8617 I915_WRITE(GEN6_UCGCTL2,
8618 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8619 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8621 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8622 I915_WRITE(_3D_CHICKEN3,
8623 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8627 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8628 * 3DSTATE_SF number of SF output attributes is more than 16."
8630 I915_WRITE(_3D_CHICKEN3,
8631 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8634 * According to the spec the following bits should be
8635 * set in order to enable memory self-refresh and fbc:
8636 * The bit21 and bit22 of 0x42000
8637 * The bit21 and bit22 of 0x42004
8638 * The bit5 and bit7 of 0x42020
8639 * The bit14 of 0x70180
8640 * The bit14 of 0x71180
8642 * WaFbcAsynchFlipDisableFbcQueue:snb
8644 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8645 I915_READ(ILK_DISPLAY_CHICKEN1) |
8646 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8647 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8648 I915_READ(ILK_DISPLAY_CHICKEN2) |
8649 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8650 I915_WRITE(ILK_DSPCLK_GATE_D,
8651 I915_READ(ILK_DSPCLK_GATE_D) |
8652 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8653 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8655 g4x_disable_trickle_feed(dev_priv);
8657 cpt_init_clock_gating(dev_priv);
8659 gen6_check_mch_setup(dev_priv);
8662 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8664 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8667 * WaVSThreadDispatchOverride:ivb,vlv
8669 * This actually overrides the dispatch
8670 * mode for all thread types.
8672 reg &= ~GEN7_FF_SCHED_MASK;
8673 reg |= GEN7_FF_TS_SCHED_HW;
8674 reg |= GEN7_FF_VS_SCHED_HW;
8675 reg |= GEN7_FF_DS_SCHED_HW;
8677 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8680 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8683 * TODO: this bit should only be enabled when really needed, then
8684 * disabled when not needed anymore in order to save power.
8686 if (HAS_PCH_LPT_LP(dev_priv))
8687 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8688 I915_READ(SOUTH_DSPCLK_GATE_D) |
8689 PCH_LP_PARTITION_LEVEL_DISABLE);
8691 /* WADPOClockGatingDisable:hsw */
8692 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8693 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8694 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8697 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8699 if (HAS_PCH_LPT_LP(dev_priv)) {
8700 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8702 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8703 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8707 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8708 int general_prio_credits,
8709 int high_prio_credits)
8714 /* WaTempDisableDOPClkGating:bdw */
8715 misccpctl = I915_READ(GEN7_MISCCPCTL);
8716 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8718 val = I915_READ(GEN8_L3SQCREG1);
8719 val &= ~L3_PRIO_CREDITS_MASK;
8720 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8721 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8722 I915_WRITE(GEN8_L3SQCREG1, val);
8725 * Wait at least 100 clocks before re-enabling clock gating.
8726 * See the definition of L3SQCREG1 in BSpec.
8728 POSTING_READ(GEN8_L3SQCREG1);
8730 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8733 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8735 /* This is not an Wa. Enable to reduce Sampler power */
8736 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8737 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8740 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8742 if (!HAS_PCH_CNP(dev_priv))
8745 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8746 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8747 CNP_PWM_CGE_GATING_DISABLE);
8750 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8753 cnp_init_clock_gating(dev_priv);
8755 /* This is not an Wa. Enable for better image quality */
8756 I915_WRITE(_3D_CHICKEN3,
8757 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8759 /* WaEnableChickenDCPR:cnl */
8760 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8761 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8763 /* WaFbcWakeMemOn:cnl */
8764 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8765 DISP_FBC_MEMORY_WAKE);
8767 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8768 /* ReadHitWriteOnlyDisable:cnl */
8769 val |= RCCUNIT_CLKGATE_DIS;
8770 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8771 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8772 val |= SARBUNIT_CLKGATE_DIS;
8773 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8775 /* Wa_2201832410:cnl */
8776 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8777 val |= GWUNIT_CLKGATE_DIS;
8778 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8780 /* WaDisableVFclkgate:cnl */
8781 /* WaVFUnitClockGatingDisable:cnl */
8782 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8783 val |= VFUNIT_CLKGATE_DIS;
8784 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8787 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8789 cnp_init_clock_gating(dev_priv);
8790 gen9_init_clock_gating(dev_priv);
8792 /* WaFbcNukeOnHostModify:cfl */
8793 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8794 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8797 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8799 gen9_init_clock_gating(dev_priv);
8801 /* WaDisableSDEUnitClockGating:kbl */
8802 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8803 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8804 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8806 /* WaDisableGamClockGating:kbl */
8807 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8808 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8809 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8811 /* WaFbcNukeOnHostModify:kbl */
8812 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8813 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8816 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8818 gen9_init_clock_gating(dev_priv);
8820 /* WAC6entrylatency:skl */
8821 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8822 FBC_LLC_FULLY_OPEN);
8824 /* WaFbcNukeOnHostModify:skl */
8825 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8826 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8829 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8831 /* The GTT cache must be disabled if the system is using 2M pages. */
8832 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8833 I915_GTT_PAGE_SIZE_2M);
8836 /* WaSwitchSolVfFArbitrationPriority:bdw */
8837 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8839 /* WaPsrDPAMaskVBlankInSRD:bdw */
8840 I915_WRITE(CHICKEN_PAR1_1,
8841 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8843 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8844 for_each_pipe(dev_priv, pipe) {
8845 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8846 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8847 BDW_DPRS_MASK_VBLANK_SRD);
8850 /* WaVSRefCountFullforceMissDisable:bdw */
8851 /* WaDSRefCountFullforceMissDisable:bdw */
8852 I915_WRITE(GEN7_FF_THREAD_MODE,
8853 I915_READ(GEN7_FF_THREAD_MODE) &
8854 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8856 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8857 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8859 /* WaDisableSDEUnitClockGating:bdw */
8860 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8861 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8863 /* WaProgramL3SqcReg1Default:bdw */
8864 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8866 /* WaGttCachingOffByDefault:bdw */
8867 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8869 /* WaKVMNotificationOnConfigChange:bdw */
8870 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8871 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8873 lpt_init_clock_gating(dev_priv);
8875 /* WaDisableDopClockGating:bdw
8877 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8880 I915_WRITE(GEN6_UCGCTL1,
8881 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8884 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8886 /* L3 caching of data atomics doesn't work -- disable it. */
8887 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8888 I915_WRITE(HSW_ROW_CHICKEN3,
8889 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8891 /* This is required by WaCatErrorRejectionIssue:hsw */
8892 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8893 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8894 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8896 /* WaVSRefCountFullforceMissDisable:hsw */
8897 I915_WRITE(GEN7_FF_THREAD_MODE,
8898 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8900 /* WaDisable_RenderCache_OperationalFlush:hsw */
8901 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8903 /* enable HiZ Raw Stall Optimization */
8904 I915_WRITE(CACHE_MODE_0_GEN7,
8905 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8907 /* WaDisable4x2SubspanOptimization:hsw */
8908 I915_WRITE(CACHE_MODE_1,
8909 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8912 * BSpec recommends 8x4 when MSAA is used,
8913 * however in practice 16x4 seems fastest.
8915 * Note that PS/WM thread counts depend on the WIZ hashing
8916 * disable bit, which we don't touch here, but it's good
8917 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8919 I915_WRITE(GEN7_GT_MODE,
8920 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8922 /* WaSampleCChickenBitEnable:hsw */
8923 I915_WRITE(HALF_SLICE_CHICKEN3,
8924 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8926 /* WaSwitchSolVfFArbitrationPriority:hsw */
8927 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8929 lpt_init_clock_gating(dev_priv);
8932 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8936 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8938 /* WaDisableEarlyCull:ivb */
8939 I915_WRITE(_3D_CHICKEN3,
8940 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8942 /* WaDisableBackToBackFlipFix:ivb */
8943 I915_WRITE(IVB_CHICKEN3,
8944 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8945 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8947 /* WaDisablePSDDualDispatchEnable:ivb */
8948 if (IS_IVB_GT1(dev_priv))
8949 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8950 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8952 /* WaDisable_RenderCache_OperationalFlush:ivb */
8953 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8955 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8956 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8957 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8959 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8960 I915_WRITE(GEN7_L3CNTLREG1,
8961 GEN7_WA_FOR_GEN7_L3_CONTROL);
8962 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8963 GEN7_WA_L3_CHICKEN_MODE);
8964 if (IS_IVB_GT1(dev_priv))
8965 I915_WRITE(GEN7_ROW_CHICKEN2,
8966 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8968 /* must write both registers */
8969 I915_WRITE(GEN7_ROW_CHICKEN2,
8970 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8971 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8972 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8975 /* WaForceL3Serialization:ivb */
8976 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8977 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8980 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8981 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8983 I915_WRITE(GEN6_UCGCTL2,
8984 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8986 /* This is required by WaCatErrorRejectionIssue:ivb */
8987 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8988 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8989 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8991 g4x_disable_trickle_feed(dev_priv);
8993 gen7_setup_fixed_func_scheduler(dev_priv);
8995 if (0) { /* causes HiZ corruption on ivb:gt1 */
8996 /* enable HiZ Raw Stall Optimization */
8997 I915_WRITE(CACHE_MODE_0_GEN7,
8998 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9001 /* WaDisable4x2SubspanOptimization:ivb */
9002 I915_WRITE(CACHE_MODE_1,
9003 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9006 * BSpec recommends 8x4 when MSAA is used,
9007 * however in practice 16x4 seems fastest.
9009 * Note that PS/WM thread counts depend on the WIZ hashing
9010 * disable bit, which we don't touch here, but it's good
9011 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9013 I915_WRITE(GEN7_GT_MODE,
9014 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9016 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9017 snpcr &= ~GEN6_MBC_SNPCR_MASK;
9018 snpcr |= GEN6_MBC_SNPCR_MED;
9019 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9021 if (!HAS_PCH_NOP(dev_priv))
9022 cpt_init_clock_gating(dev_priv);
9024 gen6_check_mch_setup(dev_priv);
9027 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9029 /* WaDisableEarlyCull:vlv */
9030 I915_WRITE(_3D_CHICKEN3,
9031 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9033 /* WaDisableBackToBackFlipFix:vlv */
9034 I915_WRITE(IVB_CHICKEN3,
9035 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9036 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9038 /* WaPsdDispatchEnable:vlv */
9039 /* WaDisablePSDDualDispatchEnable:vlv */
9040 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9041 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9042 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9044 /* WaDisable_RenderCache_OperationalFlush:vlv */
9045 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9047 /* WaForceL3Serialization:vlv */
9048 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9049 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9051 /* WaDisableDopClockGating:vlv */
9052 I915_WRITE(GEN7_ROW_CHICKEN2,
9053 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9055 /* This is required by WaCatErrorRejectionIssue:vlv */
9056 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9057 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9058 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9060 gen7_setup_fixed_func_scheduler(dev_priv);
9063 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9064 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9066 I915_WRITE(GEN6_UCGCTL2,
9067 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9069 /* WaDisableL3Bank2xClockGate:vlv
9070 * Disabling L3 clock gating- MMIO 940c[25] = 1
9071 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9072 I915_WRITE(GEN7_UCGCTL4,
9073 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9076 * BSpec says this must be set, even though
9077 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9079 I915_WRITE(CACHE_MODE_1,
9080 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9083 * BSpec recommends 8x4 when MSAA is used,
9084 * however in practice 16x4 seems fastest.
9086 * Note that PS/WM thread counts depend on the WIZ hashing
9087 * disable bit, which we don't touch here, but it's good
9088 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9090 I915_WRITE(GEN7_GT_MODE,
9091 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9094 * WaIncreaseL3CreditsForVLVB0:vlv
9095 * This is the hardware default actually.
9097 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9100 * WaDisableVLVClockGating_VBIIssue:vlv
9101 * Disable clock gating on th GCFG unit to prevent a delay
9102 * in the reporting of vblank events.
9104 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9107 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9109 /* WaVSRefCountFullforceMissDisable:chv */
9110 /* WaDSRefCountFullforceMissDisable:chv */
9111 I915_WRITE(GEN7_FF_THREAD_MODE,
9112 I915_READ(GEN7_FF_THREAD_MODE) &
9113 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9115 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9116 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9117 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9119 /* WaDisableCSUnitClockGating:chv */
9120 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9121 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9123 /* WaDisableSDEUnitClockGating:chv */
9124 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9125 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9128 * WaProgramL3SqcReg1Default:chv
9129 * See gfxspecs/Related Documents/Performance Guide/
9130 * LSQC Setting Recommendations.
9132 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9135 * GTT cache may not work with big pages, so if those
9136 * are ever enabled GTT cache may need to be disabled.
9138 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9141 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9143 uint32_t dspclk_gate;
9145 I915_WRITE(RENCLK_GATE_D1, 0);
9146 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9147 GS_UNIT_CLOCK_GATE_DISABLE |
9148 CL_UNIT_CLOCK_GATE_DISABLE);
9149 I915_WRITE(RAMCLK_GATE_D, 0);
9150 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9151 OVRUNIT_CLOCK_GATE_DISABLE |
9152 OVCUNIT_CLOCK_GATE_DISABLE;
9153 if (IS_GM45(dev_priv))
9154 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9155 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9157 /* WaDisableRenderCachePipelinedFlush */
9158 I915_WRITE(CACHE_MODE_0,
9159 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9161 /* WaDisable_RenderCache_OperationalFlush:g4x */
9162 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9164 g4x_disable_trickle_feed(dev_priv);
9167 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9169 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9170 I915_WRITE(RENCLK_GATE_D2, 0);
9171 I915_WRITE(DSPCLK_GATE_D, 0);
9172 I915_WRITE(RAMCLK_GATE_D, 0);
9173 I915_WRITE16(DEUC, 0);
9174 I915_WRITE(MI_ARB_STATE,
9175 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9177 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9178 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9181 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9183 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9184 I965_RCC_CLOCK_GATE_DISABLE |
9185 I965_RCPB_CLOCK_GATE_DISABLE |
9186 I965_ISC_CLOCK_GATE_DISABLE |
9187 I965_FBC_CLOCK_GATE_DISABLE);
9188 I915_WRITE(RENCLK_GATE_D2, 0);
9189 I915_WRITE(MI_ARB_STATE,
9190 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9192 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9193 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9196 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9198 u32 dstate = I915_READ(D_STATE);
9200 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9201 DSTATE_DOT_CLOCK_GATING;
9202 I915_WRITE(D_STATE, dstate);
9204 if (IS_PINEVIEW(dev_priv))
9205 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9207 /* IIR "flip pending" means done if this bit is set */
9208 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9210 /* interrupts should cause a wake up from C3 */
9211 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9213 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9214 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9216 I915_WRITE(MI_ARB_STATE,
9217 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9220 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9222 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9224 /* interrupts should cause a wake up from C3 */
9225 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9226 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9228 I915_WRITE(MEM_MODE,
9229 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9232 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9234 I915_WRITE(MEM_MODE,
9235 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9236 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9239 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9241 dev_priv->display.init_clock_gating(dev_priv);
9244 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9246 if (HAS_PCH_LPT(dev_priv))
9247 lpt_suspend_hw(dev_priv);
9250 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9252 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9256 * intel_init_clock_gating_hooks - setup the clock gating hooks
9257 * @dev_priv: device private
9259 * Setup the hooks that configure which clocks of a given platform can be
9260 * gated and also apply various GT and display specific workarounds for these
9261 * platforms. Note that some GT specific workarounds are applied separately
9262 * when GPU contexts or batchbuffers start their execution.
9264 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9266 if (IS_ICELAKE(dev_priv))
9267 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9268 else if (IS_CANNONLAKE(dev_priv))
9269 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9270 else if (IS_COFFEELAKE(dev_priv))
9271 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9272 else if (IS_SKYLAKE(dev_priv))
9273 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9274 else if (IS_KABYLAKE(dev_priv))
9275 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9276 else if (IS_BROXTON(dev_priv))
9277 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9278 else if (IS_GEMINILAKE(dev_priv))
9279 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9280 else if (IS_BROADWELL(dev_priv))
9281 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9282 else if (IS_CHERRYVIEW(dev_priv))
9283 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9284 else if (IS_HASWELL(dev_priv))
9285 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9286 else if (IS_IVYBRIDGE(dev_priv))
9287 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9288 else if (IS_VALLEYVIEW(dev_priv))
9289 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9290 else if (IS_GEN6(dev_priv))
9291 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9292 else if (IS_GEN5(dev_priv))
9293 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9294 else if (IS_G4X(dev_priv))
9295 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9296 else if (IS_I965GM(dev_priv))
9297 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9298 else if (IS_I965G(dev_priv))
9299 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9300 else if (IS_GEN3(dev_priv))
9301 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9302 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9303 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9304 else if (IS_GEN2(dev_priv))
9305 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9307 MISSING_CASE(INTEL_DEVID(dev_priv));
9308 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9312 /* Set up chip specific power management-related functions */
9313 void intel_init_pm(struct drm_i915_private *dev_priv)
9315 intel_fbc_init(dev_priv);
9318 if (IS_PINEVIEW(dev_priv))
9319 i915_pineview_get_mem_freq(dev_priv);
9320 else if (IS_GEN5(dev_priv))
9321 i915_ironlake_get_mem_freq(dev_priv);
9323 /* For FIFO watermark updates */
9324 if (INTEL_GEN(dev_priv) >= 9) {
9325 skl_setup_wm_latency(dev_priv);
9326 dev_priv->display.initial_watermarks = skl_initial_wm;
9327 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9328 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9329 } else if (HAS_PCH_SPLIT(dev_priv)) {
9330 ilk_setup_wm_latency(dev_priv);
9332 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9333 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9334 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9335 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9336 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9337 dev_priv->display.compute_intermediate_wm =
9338 ilk_compute_intermediate_wm;
9339 dev_priv->display.initial_watermarks =
9340 ilk_initial_watermarks;
9341 dev_priv->display.optimize_watermarks =
9342 ilk_optimize_watermarks;
9344 DRM_DEBUG_KMS("Failed to read display plane latency. "
9347 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9348 vlv_setup_wm_latency(dev_priv);
9349 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9350 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9351 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9352 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9353 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9354 } else if (IS_G4X(dev_priv)) {
9355 g4x_setup_wm_latency(dev_priv);
9356 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9357 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9358 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9359 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9360 } else if (IS_PINEVIEW(dev_priv)) {
9361 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9364 dev_priv->mem_freq)) {
9365 DRM_INFO("failed to find known CxSR latency "
9366 "(found ddr%s fsb freq %d, mem freq %d), "
9368 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9369 dev_priv->fsb_freq, dev_priv->mem_freq);
9370 /* Disable CxSR and never update its watermark again */
9371 intel_set_memory_cxsr(dev_priv, false);
9372 dev_priv->display.update_wm = NULL;
9374 dev_priv->display.update_wm = pineview_update_wm;
9375 } else if (IS_GEN4(dev_priv)) {
9376 dev_priv->display.update_wm = i965_update_wm;
9377 } else if (IS_GEN3(dev_priv)) {
9378 dev_priv->display.update_wm = i9xx_update_wm;
9379 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9380 } else if (IS_GEN2(dev_priv)) {
9381 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9382 dev_priv->display.update_wm = i845_update_wm;
9383 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9385 dev_priv->display.update_wm = i9xx_update_wm;
9386 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9389 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9393 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9396 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9399 case GEN6_PCODE_SUCCESS:
9401 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9403 case GEN6_PCODE_ILLEGAL_CMD:
9405 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9406 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9408 case GEN6_PCODE_TIMEOUT:
9411 MISSING_CASE(flags);
9416 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9419 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9422 case GEN6_PCODE_SUCCESS:
9424 case GEN6_PCODE_ILLEGAL_CMD:
9426 case GEN7_PCODE_TIMEOUT:
9428 case GEN7_PCODE_ILLEGAL_DATA:
9430 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9433 MISSING_CASE(flags);
9438 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9442 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9444 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9445 * use te fw I915_READ variants to reduce the amount of work
9446 * required when reading/writing.
9449 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9450 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9451 mbox, __builtin_return_address(0));
9455 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9456 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9457 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9459 if (__intel_wait_for_register_fw(dev_priv,
9460 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9462 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9463 mbox, __builtin_return_address(0));
9467 *val = I915_READ_FW(GEN6_PCODE_DATA);
9468 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9470 if (INTEL_GEN(dev_priv) > 6)
9471 status = gen7_check_mailbox_status(dev_priv);
9473 status = gen6_check_mailbox_status(dev_priv);
9476 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9477 mbox, __builtin_return_address(0), status);
9484 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9486 int fast_timeout_us, int slow_timeout_ms)
9490 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9492 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9493 * use te fw I915_READ variants to reduce the amount of work
9494 * required when reading/writing.
9497 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9498 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9499 val, mbox, __builtin_return_address(0));
9503 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9504 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9505 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9507 if (__intel_wait_for_register_fw(dev_priv,
9508 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9509 fast_timeout_us, slow_timeout_ms,
9511 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9512 val, mbox, __builtin_return_address(0));
9516 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9518 if (INTEL_GEN(dev_priv) > 6)
9519 status = gen7_check_mailbox_status(dev_priv);
9521 status = gen6_check_mailbox_status(dev_priv);
9524 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9525 val, mbox, __builtin_return_address(0), status);
9532 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9533 u32 request, u32 reply_mask, u32 reply,
9538 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9540 return *status || ((val & reply_mask) == reply);
9544 * skl_pcode_request - send PCODE request until acknowledgment
9545 * @dev_priv: device private
9546 * @mbox: PCODE mailbox ID the request is targeted for
9547 * @request: request ID
9548 * @reply_mask: mask used to check for request acknowledgment
9549 * @reply: value used to check for request acknowledgment
9550 * @timeout_base_ms: timeout for polling with preemption enabled
9552 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9553 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9554 * The request is acknowledged once the PCODE reply dword equals @reply after
9555 * applying @reply_mask. Polling is first attempted with preemption enabled
9556 * for @timeout_base_ms and if this times out for another 50 ms with
9557 * preemption disabled.
9559 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9560 * other error as reported by PCODE.
9562 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9563 u32 reply_mask, u32 reply, int timeout_base_ms)
9568 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9570 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9574 * Prime the PCODE by doing a request first. Normally it guarantees
9575 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9576 * _wait_for() doesn't guarantee when its passed condition is evaluated
9577 * first, so send the first request explicitly.
9583 ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9588 * The above can time out if the number of requests was low (2 in the
9589 * worst case) _and_ PCODE was busy for some reason even after a
9590 * (queued) request and @timeout_base_ms delay. As a workaround retry
9591 * the poll with preemption disabled to maximize the number of
9592 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9593 * account for interrupts that could reduce the number of these
9594 * requests, and for any quirks of the PCODE firmware that delays
9595 * the request completion.
9597 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9598 WARN_ON_ONCE(timeout_base_ms > 3);
9600 ret = wait_for_atomic(COND, 50);
9604 return ret ? ret : status;
9608 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9610 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9614 * Slow = Fast = GPLL ref * N
9616 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9619 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9621 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9623 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9626 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9628 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9632 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9634 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9637 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9639 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9641 /* CHV needs even values */
9642 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9645 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9647 if (INTEL_GEN(dev_priv) >= 9)
9648 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9650 else if (IS_CHERRYVIEW(dev_priv))
9651 return chv_gpu_freq(dev_priv, val);
9652 else if (IS_VALLEYVIEW(dev_priv))
9653 return byt_gpu_freq(dev_priv, val);
9655 return val * GT_FREQUENCY_MULTIPLIER;
9658 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9660 if (INTEL_GEN(dev_priv) >= 9)
9661 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9662 GT_FREQUENCY_MULTIPLIER);
9663 else if (IS_CHERRYVIEW(dev_priv))
9664 return chv_freq_opcode(dev_priv, val);
9665 else if (IS_VALLEYVIEW(dev_priv))
9666 return byt_freq_opcode(dev_priv, val);
9668 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9671 void intel_pm_setup(struct drm_i915_private *dev_priv)
9673 mutex_init(&dev_priv->pcu_lock);
9674 mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9676 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9678 dev_priv->runtime_pm.suspended = false;
9679 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9682 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9683 const i915_reg_t reg)
9685 u32 lower, upper, tmp;
9689 * The register accessed do not need forcewake. We borrow
9690 * uncore lock to prevent concurrent access to range reg.
9692 lockdep_assert_held(&dev_priv->uncore.lock);
9695 * vlv and chv residency counters are 40 bits in width.
9696 * With a control bit, we can choose between upper or lower
9697 * 32bit window into this counter.
9699 * Although we always use the counter in high-range mode elsewhere,
9700 * userspace may attempt to read the value before rc6 is initialised,
9701 * before we have set the default VLV_COUNTER_CONTROL value. So always
9702 * set the high bit to be safe.
9704 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9705 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9706 upper = I915_READ_FW(reg);
9710 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9711 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9712 lower = I915_READ_FW(reg);
9714 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9715 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9716 upper = I915_READ_FW(reg);
9717 } while (upper != tmp && --loop);
9720 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9721 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9725 return lower | (u64)upper << 8;
9728 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9729 const i915_reg_t reg)
9731 u64 time_hw, prev_hw, overflow_hw;
9732 unsigned int fw_domains;
9733 unsigned long flags;
9737 if (!HAS_RC6(dev_priv))
9741 * Store previous hw counter values for counter wrap-around handling.
9743 * There are only four interesting registers and they live next to each
9744 * other so we can use the relative address, compared to the smallest
9745 * one as the index into driver storage.
9747 i = (i915_mmio_reg_offset(reg) -
9748 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9749 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9752 fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9754 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9755 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9757 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9758 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9760 div = dev_priv->czclk_freq;
9761 overflow_hw = BIT_ULL(40);
9762 time_hw = vlv_residency_raw(dev_priv, reg);
9764 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9765 if (IS_GEN9_LP(dev_priv)) {
9773 overflow_hw = BIT_ULL(32);
9774 time_hw = I915_READ_FW(reg);
9778 * Counter wrap handling.
9780 * But relying on a sufficient frequency of queries otherwise counters
9783 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9784 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9786 /* RC6 delta from last sample. */
9787 if (time_hw >= prev_hw)
9790 time_hw += overflow_hw - prev_hw;
9792 /* Add delta to RC6 extended raw driver copy. */
9793 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9794 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9796 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9797 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9799 return mul_u64_u32_div(time_hw, mul, div);
9802 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9806 if (INTEL_GEN(dev_priv) >= 9)
9807 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9808 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9809 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9811 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;