2 * efi.c - EFI subsystem
8 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
9 * allowing the efivarfs to be mounted or the efivars module to be loaded.
10 * The existance of /sys/firmware/efi may also be used by userspace to
11 * determine that the system supports EFI.
13 * This file is released under the GPLv2.
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
24 #include <linux/of_fdt.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
35 #include <asm/early_ioremap.h>
37 struct efi __read_mostly efi = {
38 .mps = EFI_INVALID_TABLE_ADDR,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .sal_systab = EFI_INVALID_TABLE_ADDR,
44 .boot_info = EFI_INVALID_TABLE_ADDR,
45 .hcdp = EFI_INVALID_TABLE_ADDR,
46 .uga = EFI_INVALID_TABLE_ADDR,
47 .uv_systab = EFI_INVALID_TABLE_ADDR,
48 .fw_vendor = EFI_INVALID_TABLE_ADDR,
49 .runtime = EFI_INVALID_TABLE_ADDR,
50 .config_table = EFI_INVALID_TABLE_ADDR,
51 .esrt = EFI_INVALID_TABLE_ADDR,
52 .properties_table = EFI_INVALID_TABLE_ADDR,
53 .mem_attr_table = EFI_INVALID_TABLE_ADDR,
54 .rng_seed = EFI_INVALID_TABLE_ADDR,
55 .tpm_log = EFI_INVALID_TABLE_ADDR,
56 .mem_reserve = EFI_INVALID_TABLE_ADDR,
60 static unsigned long *efi_tables[] = {
75 &efi.properties_table,
79 struct mm_struct efi_mm = {
81 .mm_users = ATOMIC_INIT(2),
82 .mm_count = ATOMIC_INIT(1),
83 .mmap_sem = __RWSEM_INITIALIZER(efi_mm.mmap_sem),
84 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
85 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
86 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
89 struct workqueue_struct *efi_rts_wq;
91 static bool disable_runtime;
92 static int __init setup_noefi(char *arg)
94 disable_runtime = true;
97 early_param("noefi", setup_noefi);
99 bool efi_runtime_disabled(void)
101 return disable_runtime;
104 static int __init parse_efi_cmdline(char *str)
107 pr_warn("need at least one option\n");
111 if (parse_option_str(str, "debug"))
112 set_bit(EFI_DBG, &efi.flags);
114 if (parse_option_str(str, "noruntime"))
115 disable_runtime = true;
119 early_param("efi", parse_efi_cmdline);
121 struct kobject *efi_kobj;
124 * Let's not leave out systab information that snuck into
126 * Note, do not add more fields in systab sysfs file as it breaks sysfs
127 * one value per file rule!
129 static ssize_t systab_show(struct kobject *kobj,
130 struct kobj_attribute *attr, char *buf)
137 if (efi.mps != EFI_INVALID_TABLE_ADDR)
138 str += sprintf(str, "MPS=0x%lx\n", efi.mps);
139 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
140 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
141 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
142 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
144 * If both SMBIOS and SMBIOS3 entry points are implemented, the
145 * SMBIOS3 entry point shall be preferred, so we list it first to
146 * let applications stop parsing after the first match.
148 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
149 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
150 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
151 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
152 if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
153 str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
154 if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
155 str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
156 if (efi.uga != EFI_INVALID_TABLE_ADDR)
157 str += sprintf(str, "UGA=0x%lx\n", efi.uga);
162 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
164 #define EFI_FIELD(var) efi.var
166 #define EFI_ATTR_SHOW(name) \
167 static ssize_t name##_show(struct kobject *kobj, \
168 struct kobj_attribute *attr, char *buf) \
170 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
173 EFI_ATTR_SHOW(fw_vendor);
174 EFI_ATTR_SHOW(runtime);
175 EFI_ATTR_SHOW(config_table);
177 static ssize_t fw_platform_size_show(struct kobject *kobj,
178 struct kobj_attribute *attr, char *buf)
180 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
183 static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
184 static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
185 static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
186 static struct kobj_attribute efi_attr_fw_platform_size =
187 __ATTR_RO(fw_platform_size);
189 static struct attribute *efi_subsys_attrs[] = {
190 &efi_attr_systab.attr,
191 &efi_attr_fw_vendor.attr,
192 &efi_attr_runtime.attr,
193 &efi_attr_config_table.attr,
194 &efi_attr_fw_platform_size.attr,
198 static umode_t efi_attr_is_visible(struct kobject *kobj,
199 struct attribute *attr, int n)
201 if (attr == &efi_attr_fw_vendor.attr) {
202 if (efi_enabled(EFI_PARAVIRT) ||
203 efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
205 } else if (attr == &efi_attr_runtime.attr) {
206 if (efi.runtime == EFI_INVALID_TABLE_ADDR)
208 } else if (attr == &efi_attr_config_table.attr) {
209 if (efi.config_table == EFI_INVALID_TABLE_ADDR)
216 static const struct attribute_group efi_subsys_attr_group = {
217 .attrs = efi_subsys_attrs,
218 .is_visible = efi_attr_is_visible,
221 static struct efivars generic_efivars;
222 static struct efivar_operations generic_ops;
224 static int generic_ops_register(void)
226 generic_ops.get_variable = efi.get_variable;
227 generic_ops.set_variable = efi.set_variable;
228 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
229 generic_ops.get_next_variable = efi.get_next_variable;
230 generic_ops.query_variable_store = efi_query_variable_store;
232 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
235 static void generic_ops_unregister(void)
237 efivars_unregister(&generic_efivars);
240 #if IS_ENABLED(CONFIG_ACPI)
241 #define EFIVAR_SSDT_NAME_MAX 16
242 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
243 static int __init efivar_ssdt_setup(char *str)
245 if (strlen(str) < sizeof(efivar_ssdt))
246 memcpy(efivar_ssdt, str, strlen(str));
248 pr_warn("efivar_ssdt: name too long: %s\n", str);
251 __setup("efivar_ssdt=", efivar_ssdt_setup);
253 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
254 unsigned long name_size, void *data)
256 struct efivar_entry *entry;
257 struct list_head *list = data;
258 char utf8_name[EFIVAR_SSDT_NAME_MAX];
259 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
261 ucs2_as_utf8(utf8_name, name, limit - 1);
262 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
265 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
269 memcpy(entry->var.VariableName, name, name_size);
270 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
272 efivar_entry_add(entry, list);
277 static __init int efivar_ssdt_load(void)
280 struct efivar_entry *entry, *aux;
285 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
287 list_for_each_entry_safe(entry, aux, &entries, list) {
288 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
289 &entry->var.VendorGuid);
291 list_del(&entry->list);
293 ret = efivar_entry_size(entry, &size);
295 pr_err("failed to get var size\n");
299 data = kmalloc(size, GFP_KERNEL);
305 ret = efivar_entry_get(entry, NULL, &size, data);
307 pr_err("failed to get var data\n");
311 ret = acpi_load_table(data);
313 pr_err("failed to load table: %d\n", ret);
329 static inline int efivar_ssdt_load(void) { return 0; }
333 * We register the efi subsystem with the firmware subsystem and the
334 * efivars subsystem with the efi subsystem, if the system was booted with
337 static int __init efisubsys_init(void)
341 if (!efi_enabled(EFI_BOOT))
345 * Since we process only one efi_runtime_service() at a time, an
346 * ordered workqueue (which creates only one execution context)
347 * should suffice all our needs.
349 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
351 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
352 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
356 /* We register the efi directory at /sys/firmware/efi */
357 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
359 pr_err("efi: Firmware registration failed.\n");
363 error = generic_ops_register();
367 if (efi_enabled(EFI_RUNTIME_SERVICES))
370 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
372 pr_err("efi: Sysfs attribute export failed with error %d.\n",
377 error = efi_runtime_map_init(efi_kobj);
379 goto err_remove_group;
381 /* and the standard mountpoint for efivarfs */
382 error = sysfs_create_mount_point(efi_kobj, "efivars");
384 pr_err("efivars: Subsystem registration failed.\n");
385 goto err_remove_group;
391 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
393 generic_ops_unregister();
395 kobject_put(efi_kobj);
399 subsys_initcall(efisubsys_init);
402 * Find the efi memory descriptor for a given physical address. Given a
403 * physical address, determine if it exists within an EFI Memory Map entry,
404 * and if so, populate the supplied memory descriptor with the appropriate
407 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
409 efi_memory_desc_t *md;
411 if (!efi_enabled(EFI_MEMMAP)) {
412 pr_err_once("EFI_MEMMAP is not enabled.\n");
417 pr_err_once("out_md is null.\n");
421 for_each_efi_memory_desc(md) {
425 size = md->num_pages << EFI_PAGE_SHIFT;
426 end = md->phys_addr + size;
427 if (phys_addr >= md->phys_addr && phys_addr < end) {
428 memcpy(out_md, md, sizeof(*out_md));
436 * Calculate the highest address of an efi memory descriptor.
438 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
440 u64 size = md->num_pages << EFI_PAGE_SHIFT;
441 u64 end = md->phys_addr + size;
445 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
448 * efi_mem_reserve - Reserve an EFI memory region
449 * @addr: Physical address to reserve
450 * @size: Size of reservation
452 * Mark a region as reserved from general kernel allocation and
453 * prevent it being released by efi_free_boot_services().
455 * This function should be called drivers once they've parsed EFI
456 * configuration tables to figure out where their data lives, e.g.
459 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
461 if (!memblock_is_region_reserved(addr, size))
462 memblock_reserve(addr, size);
465 * Some architectures (x86) reserve all boot services ranges
466 * until efi_free_boot_services() because of buggy firmware
467 * implementations. This means the above memblock_reserve() is
468 * superfluous on x86 and instead what it needs to do is
469 * ensure the @start, @size is not freed.
471 efi_arch_mem_reserve(addr, size);
474 static __initdata efi_config_table_type_t common_tables[] = {
475 {ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
476 {ACPI_TABLE_GUID, "ACPI", &efi.acpi},
477 {HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
478 {MPS_TABLE_GUID, "MPS", &efi.mps},
479 {SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
480 {SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
481 {SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
482 {UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
483 {EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
484 {EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
485 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
486 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
487 {LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log},
488 {LINUX_EFI_MEMRESERVE_TABLE_GUID, "MEMRESERVE", &efi.mem_reserve},
489 {NULL_GUID, NULL, NULL},
492 static __init int match_config_table(efi_guid_t *guid,
494 efi_config_table_type_t *table_types)
499 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
500 if (!efi_guidcmp(*guid, table_types[i].guid)) {
501 *(table_types[i].ptr) = table;
502 if (table_types[i].name)
503 pr_cont(" %s=0x%lx ",
504 table_types[i].name, table);
513 int __init efi_config_parse_tables(void *config_tables, int count, int sz,
514 efi_config_table_type_t *arch_tables)
519 tablep = config_tables;
521 for (i = 0; i < count; i++) {
525 if (efi_enabled(EFI_64BIT)) {
527 guid = ((efi_config_table_64_t *)tablep)->guid;
528 table64 = ((efi_config_table_64_t *)tablep)->table;
533 pr_err("Table located above 4GB, disabling EFI.\n");
538 guid = ((efi_config_table_32_t *)tablep)->guid;
539 table = ((efi_config_table_32_t *)tablep)->table;
542 if (!match_config_table(&guid, table, common_tables))
543 match_config_table(&guid, table, arch_tables);
548 set_bit(EFI_CONFIG_TABLES, &efi.flags);
550 if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
551 struct linux_efi_random_seed *seed;
554 seed = early_memremap(efi.rng_seed, sizeof(*seed));
557 early_memunmap(seed, sizeof(*seed));
559 pr_err("Could not map UEFI random seed!\n");
562 seed = early_memremap(efi.rng_seed,
563 sizeof(*seed) + size);
565 pr_notice("seeding entropy pool\n");
566 add_device_randomness(seed->bits, seed->size);
567 early_memunmap(seed, sizeof(*seed) + size);
569 pr_err("Could not map UEFI random seed!\n");
574 if (efi_enabled(EFI_MEMMAP))
577 efi_tpm_eventlog_init();
579 /* Parse the EFI Properties table if it exists */
580 if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
581 efi_properties_table_t *tbl;
583 tbl = early_memremap(efi.properties_table, sizeof(*tbl));
585 pr_err("Could not map Properties table!\n");
589 if (tbl->memory_protection_attribute &
590 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
591 set_bit(EFI_NX_PE_DATA, &efi.flags);
593 early_memunmap(tbl, sizeof(*tbl));
596 if (efi.mem_reserve != EFI_INVALID_TABLE_ADDR) {
597 unsigned long prsv = efi.mem_reserve;
600 struct linux_efi_memreserve *rsv;
602 /* reserve the entry itself */
603 memblock_reserve(prsv, sizeof(*rsv));
605 rsv = early_memremap(prsv, sizeof(*rsv));
607 pr_err("Could not map UEFI memreserve entry!\n");
612 memblock_reserve(rsv->base, rsv->size);
615 early_memunmap(rsv, sizeof(*rsv));
622 int __init efi_config_init(efi_config_table_type_t *arch_tables)
627 if (efi_enabled(EFI_64BIT))
628 sz = sizeof(efi_config_table_64_t);
630 sz = sizeof(efi_config_table_32_t);
633 * Let's see what config tables the firmware passed to us.
635 config_tables = early_memremap(efi.systab->tables,
636 efi.systab->nr_tables * sz);
637 if (config_tables == NULL) {
638 pr_err("Could not map Configuration table!\n");
642 ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
645 early_memunmap(config_tables, efi.systab->nr_tables * sz);
649 #ifdef CONFIG_EFI_VARS_MODULE
650 static int __init efi_load_efivars(void)
652 struct platform_device *pdev;
654 if (!efi_enabled(EFI_RUNTIME_SERVICES))
657 pdev = platform_device_register_simple("efivars", 0, NULL, 0);
658 return PTR_ERR_OR_ZERO(pdev);
660 device_initcall(efi_load_efivars);
663 #ifdef CONFIG_EFI_PARAMS_FROM_FDT
665 #define UEFI_PARAM(name, prop, field) \
669 offsetof(struct efi_fdt_params, field), \
670 FIELD_SIZEOF(struct efi_fdt_params, field) \
675 const char propname[32];
680 static __initdata struct params fdt_params[] = {
681 UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
682 UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
683 UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
684 UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
685 UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
688 static __initdata struct params xen_fdt_params[] = {
689 UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
690 UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
691 UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
692 UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
693 UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
696 #define EFI_FDT_PARAMS_SIZE ARRAY_SIZE(fdt_params)
698 static __initdata struct {
701 struct params *params;
703 { "hypervisor", "uefi", xen_fdt_params },
704 { "chosen", NULL, fdt_params },
713 static int __init __find_uefi_params(unsigned long node,
714 struct param_info *info,
715 struct params *params)
722 for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
723 prop = of_get_flat_dt_prop(node, params[i].propname, &len);
725 info->missing = params[i].name;
729 dest = info->params + params[i].offset;
732 val = of_read_number(prop, len / sizeof(u32));
734 if (params[i].size == sizeof(u32))
739 if (efi_enabled(EFI_DBG))
740 pr_info(" %s: 0x%0*llx\n", params[i].name,
741 params[i].size * 2, val);
747 static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
748 int depth, void *data)
750 struct param_info *info = data;
753 for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
754 const char *subnode = dt_params[i].subnode;
756 if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
757 info->missing = dt_params[i].params[0].name;
762 int err = of_get_flat_dt_subnode_by_name(node, subnode);
770 return __find_uefi_params(node, info, dt_params[i].params);
776 int __init efi_get_fdt_params(struct efi_fdt_params *params)
778 struct param_info info;
781 pr_info("Getting EFI parameters from FDT:\n");
784 info.params = params;
786 ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
788 pr_info("UEFI not found.\n");
790 pr_err("Can't find '%s' in device tree!\n",
795 #endif /* CONFIG_EFI_PARAMS_FROM_FDT */
797 static __initdata char memory_type_name[][20] = {
805 "Conventional Memory",
807 "ACPI Reclaim Memory",
815 char * __init efi_md_typeattr_format(char *buf, size_t size,
816 const efi_memory_desc_t *md)
823 if (md->type >= ARRAY_SIZE(memory_type_name))
824 type_len = snprintf(pos, size, "[type=%u", md->type);
826 type_len = snprintf(pos, size, "[%-*s",
827 (int)(sizeof(memory_type_name[0]) - 1),
828 memory_type_name[md->type]);
829 if (type_len >= size)
835 attr = md->attribute;
836 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
837 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
838 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
840 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
841 snprintf(pos, size, "|attr=0x%016llx]",
842 (unsigned long long)attr);
845 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
846 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
847 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
848 attr & EFI_MEMORY_NV ? "NV" : "",
849 attr & EFI_MEMORY_XP ? "XP" : "",
850 attr & EFI_MEMORY_RP ? "RP" : "",
851 attr & EFI_MEMORY_WP ? "WP" : "",
852 attr & EFI_MEMORY_RO ? "RO" : "",
853 attr & EFI_MEMORY_UCE ? "UCE" : "",
854 attr & EFI_MEMORY_WB ? "WB" : "",
855 attr & EFI_MEMORY_WT ? "WT" : "",
856 attr & EFI_MEMORY_WC ? "WC" : "",
857 attr & EFI_MEMORY_UC ? "UC" : "");
862 * IA64 has a funky EFI memory map that doesn't work the same way as
863 * other architectures.
867 * efi_mem_attributes - lookup memmap attributes for physical address
868 * @phys_addr: the physical address to lookup
870 * Search in the EFI memory map for the region covering
871 * @phys_addr. Returns the EFI memory attributes if the region
872 * was found in the memory map, 0 otherwise.
874 u64 efi_mem_attributes(unsigned long phys_addr)
876 efi_memory_desc_t *md;
878 if (!efi_enabled(EFI_MEMMAP))
881 for_each_efi_memory_desc(md) {
882 if ((md->phys_addr <= phys_addr) &&
883 (phys_addr < (md->phys_addr +
884 (md->num_pages << EFI_PAGE_SHIFT))))
885 return md->attribute;
891 * efi_mem_type - lookup memmap type for physical address
892 * @phys_addr: the physical address to lookup
894 * Search in the EFI memory map for the region covering @phys_addr.
895 * Returns the EFI memory type if the region was found in the memory
896 * map, EFI_RESERVED_TYPE (zero) otherwise.
898 int efi_mem_type(unsigned long phys_addr)
900 const efi_memory_desc_t *md;
902 if (!efi_enabled(EFI_MEMMAP))
905 for_each_efi_memory_desc(md) {
906 if ((md->phys_addr <= phys_addr) &&
907 (phys_addr < (md->phys_addr +
908 (md->num_pages << EFI_PAGE_SHIFT))))
915 int efi_status_to_err(efi_status_t status)
923 case EFI_INVALID_PARAMETER:
926 case EFI_OUT_OF_RESOURCES:
929 case EFI_DEVICE_ERROR:
932 case EFI_WRITE_PROTECTED:
935 case EFI_SECURITY_VIOLATION:
951 bool efi_is_table_address(unsigned long phys_addr)
955 if (phys_addr == EFI_INVALID_TABLE_ADDR)
958 for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
959 if (*(efi_tables[i]) == phys_addr)
965 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
967 int efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
969 struct linux_efi_memreserve *rsv, *parent;
971 if (efi.mem_reserve == EFI_INVALID_TABLE_ADDR)
974 rsv = kmalloc(sizeof(*rsv), GFP_KERNEL);
978 parent = memremap(efi.mem_reserve, sizeof(*rsv), MEMREMAP_WB);
987 spin_lock(&efi_mem_reserve_persistent_lock);
988 rsv->next = parent->next;
989 parent->next = __pa(rsv);
990 spin_unlock(&efi_mem_reserve_persistent_lock);
998 static int update_efi_random_seed(struct notifier_block *nb,
999 unsigned long code, void *unused)
1001 struct linux_efi_random_seed *seed;
1004 if (!kexec_in_progress)
1007 seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
1009 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1012 pr_err("Could not map UEFI random seed!\n");
1015 seed = memremap(efi.rng_seed, sizeof(*seed) + size,
1019 get_random_bytes(seed->bits, seed->size);
1022 pr_err("Could not map UEFI random seed!\n");
1028 static struct notifier_block efi_random_seed_nb = {
1029 .notifier_call = update_efi_random_seed,
1032 static int register_update_efi_random_seed(void)
1034 if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
1036 return register_reboot_notifier(&efi_random_seed_nb);
1038 late_initcall(register_update_efi_random_seed);