2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32 __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
153 #define KVM_NR_SHARED_MSRS 16
155 struct kvm_shared_msrs_global {
157 u32 msrs[KVM_NR_SHARED_MSRS];
160 struct kvm_shared_msrs {
161 struct user_return_notifier urn;
163 struct kvm_shared_msr_values {
166 } values[KVM_NR_SHARED_MSRS];
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed) },
174 { "pf_guest", VCPU_STAT(pf_guest) },
175 { "tlb_flush", VCPU_STAT(tlb_flush) },
176 { "invlpg", VCPU_STAT(invlpg) },
177 { "exits", VCPU_STAT(exits) },
178 { "io_exits", VCPU_STAT(io_exits) },
179 { "mmio_exits", VCPU_STAT(mmio_exits) },
180 { "signal_exits", VCPU_STAT(signal_exits) },
181 { "irq_window", VCPU_STAT(irq_window_exits) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits) },
183 { "halt_exits", VCPU_STAT(halt_exits) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 { "hypercalls", VCPU_STAT(hypercalls) },
189 { "request_irq", VCPU_STAT(request_irq_exits) },
190 { "irq_exits", VCPU_STAT(irq_exits) },
191 { "host_state_reload", VCPU_STAT(host_state_reload) },
192 { "fpu_reload", VCPU_STAT(fpu_reload) },
193 { "insn_emulation", VCPU_STAT(insn_emulation) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 { "irq_injections", VCPU_STAT(irq_injections) },
196 { "nmi_injections", VCPU_STAT(nmi_injections) },
197 { "req_event", VCPU_STAT(req_event) },
198 { "l1d_flush", VCPU_STAT(l1d_flush) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 { "mmu_flooded", VM_STAT(mmu_flooded) },
204 { "mmu_recycled", VM_STAT(mmu_recycled) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 { "mmu_unsync", VM_STAT(mmu_unsync) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 { "largepages", VM_STAT(lpages) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions) },
214 u64 __read_mostly host_xcr0;
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 vcpu->arch.apf.gfns[i] = ~0;
225 static void kvm_on_user_return(struct user_return_notifier *urn)
228 struct kvm_shared_msrs *locals
229 = container_of(urn, struct kvm_shared_msrs, urn);
230 struct kvm_shared_msr_values *values;
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
237 local_irq_save(flags);
238 if (locals->registered) {
239 locals->registered = false;
240 user_return_notifier_unregister(urn);
242 local_irq_restore(flags);
243 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 values = &locals->values[slot];
245 if (values->host != values->curr) {
246 wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 values->curr = values->host;
252 static void shared_msr_update(unsigned slot, u32 msr)
255 unsigned int cpu = smp_processor_id();
256 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot >= shared_msrs_global.nr) {
261 printk(KERN_ERR "kvm: invalid MSR slot!");
264 rdmsrl_safe(msr, &value);
265 smsr->values[slot].host = value;
266 smsr->values[slot].curr = value;
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
271 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 shared_msrs_global.msrs[slot] = msr;
273 if (slot >= shared_msrs_global.nr)
274 shared_msrs_global.nr = slot + 1;
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
278 static void kvm_shared_msr_cpu_online(void)
282 for (i = 0; i < shared_msrs_global.nr; ++i)
283 shared_msr_update(i, shared_msrs_global.msrs[i]);
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
288 unsigned int cpu = smp_processor_id();
289 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
292 if (((value ^ smsr->values[slot].curr) & mask) == 0)
294 smsr->values[slot].curr = value;
295 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
299 if (!smsr->registered) {
300 smsr->urn.on_user_return = kvm_on_user_return;
301 user_return_notifier_register(&smsr->urn);
302 smsr->registered = true;
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
308 static void drop_user_return_notifiers(void)
310 unsigned int cpu = smp_processor_id();
311 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
313 if (smsr->registered)
314 kvm_on_user_return(&smsr->urn);
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
319 return vcpu->arch.apic_base;
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
325 return kvm_apic_mode(kvm_get_apic_base(vcpu));
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
331 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
336 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
338 if (!msr_info->host_initiated) {
339 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
341 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
345 kvm_lapic_set_base(vcpu, msr_info->data);
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
350 asmlinkage __visible void kvm_spurious_fault(void)
352 /* Fault while not rebooting. We want the trace. */
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
361 static int exception_class(int vector)
371 return EXCPT_CONTRIBUTORY;
378 #define EXCPT_FAULT 0
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
383 static int exception_type(int vector)
387 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 return EXCPT_INTERRUPT;
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
396 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
399 /* Reserved exceptions will result in fault */
403 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
405 unsigned nr = vcpu->arch.exception.nr;
406 bool has_payload = vcpu->arch.exception.has_payload;
407 unsigned long payload = vcpu->arch.exception.payload;
415 * "Certain debug exceptions may clear bit 0-3. The
416 * remaining contents of the DR6 register are never
417 * cleared by the processor".
419 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
421 * DR6.RTM is set by all #DB exceptions that don't clear it.
423 vcpu->arch.dr6 |= DR6_RTM;
424 vcpu->arch.dr6 |= payload;
426 * Bit 16 should be set in the payload whenever the #DB
427 * exception should clear DR6.RTM. This makes the payload
428 * compatible with the pending debug exceptions under VMX.
429 * Though not currently documented in the SDM, this also
430 * makes the payload compatible with the exit qualification
431 * for #DB exceptions under VMX.
433 vcpu->arch.dr6 ^= payload & DR6_RTM;
436 vcpu->arch.cr2 = payload;
440 vcpu->arch.exception.has_payload = false;
441 vcpu->arch.exception.payload = 0;
443 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
445 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
446 unsigned nr, bool has_error, u32 error_code,
447 bool has_payload, unsigned long payload, bool reinject)
452 kvm_make_request(KVM_REQ_EVENT, vcpu);
454 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
456 if (has_error && !is_protmode(vcpu))
460 * On vmentry, vcpu->arch.exception.pending is only
461 * true if an event injection was blocked by
462 * nested_run_pending. In that case, however,
463 * vcpu_enter_guest requests an immediate exit,
464 * and the guest shouldn't proceed far enough to
467 WARN_ON_ONCE(vcpu->arch.exception.pending);
468 vcpu->arch.exception.injected = true;
469 if (WARN_ON_ONCE(has_payload)) {
471 * A reinjected event has already
472 * delivered its payload.
478 vcpu->arch.exception.pending = true;
479 vcpu->arch.exception.injected = false;
481 vcpu->arch.exception.has_error_code = has_error;
482 vcpu->arch.exception.nr = nr;
483 vcpu->arch.exception.error_code = error_code;
484 vcpu->arch.exception.has_payload = has_payload;
485 vcpu->arch.exception.payload = payload;
487 * In guest mode, payload delivery should be deferred,
488 * so that the L1 hypervisor can intercept #PF before
489 * CR2 is modified (or intercept #DB before DR6 is
490 * modified under nVMX). However, for ABI
491 * compatibility with KVM_GET_VCPU_EVENTS and
492 * KVM_SET_VCPU_EVENTS, we can't delay payload
493 * delivery unless userspace has enabled this
494 * functionality via the per-VM capability,
495 * KVM_CAP_EXCEPTION_PAYLOAD.
497 if (!vcpu->kvm->arch.exception_payload_enabled ||
498 !is_guest_mode(vcpu))
499 kvm_deliver_exception_payload(vcpu);
503 /* to check exception */
504 prev_nr = vcpu->arch.exception.nr;
505 if (prev_nr == DF_VECTOR) {
506 /* triple fault -> shutdown */
507 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
510 class1 = exception_class(prev_nr);
511 class2 = exception_class(nr);
512 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
513 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
515 * Generate double fault per SDM Table 5-5. Set
516 * exception.pending = true so that the double fault
517 * can trigger a nested vmexit.
519 vcpu->arch.exception.pending = true;
520 vcpu->arch.exception.injected = false;
521 vcpu->arch.exception.has_error_code = true;
522 vcpu->arch.exception.nr = DF_VECTOR;
523 vcpu->arch.exception.error_code = 0;
524 vcpu->arch.exception.has_payload = false;
525 vcpu->arch.exception.payload = 0;
527 /* replace previous exception with a new one in a hope
528 that instruction re-execution will regenerate lost
533 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
535 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
537 EXPORT_SYMBOL_GPL(kvm_queue_exception);
539 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
541 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
543 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
545 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
546 unsigned long payload)
548 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
551 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
552 u32 error_code, unsigned long payload)
554 kvm_multiple_exception(vcpu, nr, true, error_code,
555 true, payload, false);
558 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
561 kvm_inject_gp(vcpu, 0);
563 return kvm_skip_emulated_instruction(vcpu);
567 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
569 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
571 ++vcpu->stat.pf_guest;
572 vcpu->arch.exception.nested_apf =
573 is_guest_mode(vcpu) && fault->async_page_fault;
574 if (vcpu->arch.exception.nested_apf) {
575 vcpu->arch.apf.nested_apf_token = fault->address;
576 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
578 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
582 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
584 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
586 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
587 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
589 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
591 return fault->nested_page_fault;
594 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
596 atomic_inc(&vcpu->arch.nmi_queued);
597 kvm_make_request(KVM_REQ_NMI, vcpu);
599 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
601 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
603 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
607 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
609 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
611 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
614 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
615 * a #GP and return false.
617 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
619 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
621 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
624 EXPORT_SYMBOL_GPL(kvm_require_cpl);
626 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
628 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
631 kvm_queue_exception(vcpu, UD_VECTOR);
634 EXPORT_SYMBOL_GPL(kvm_require_dr);
637 * This function will be used to read from the physical memory of the currently
638 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
639 * can read from guest physical or from the guest's guest physical memory.
641 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
642 gfn_t ngfn, void *data, int offset, int len,
645 struct x86_exception exception;
649 ngpa = gfn_to_gpa(ngfn);
650 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
651 if (real_gfn == UNMAPPED_GVA)
654 real_gfn = gpa_to_gfn(real_gfn);
656 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
658 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
660 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
661 void *data, int offset, int len, u32 access)
663 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
664 data, offset, len, access);
668 * Load the pae pdptrs. Return true is they are all valid.
670 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
672 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
673 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
676 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
678 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
679 offset * sizeof(u64), sizeof(pdpte),
680 PFERR_USER_MASK|PFERR_WRITE_MASK);
685 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
686 if ((pdpte[i] & PT_PRESENT_MASK) &&
688 vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
695 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
696 __set_bit(VCPU_EXREG_PDPTR,
697 (unsigned long *)&vcpu->arch.regs_avail);
698 __set_bit(VCPU_EXREG_PDPTR,
699 (unsigned long *)&vcpu->arch.regs_dirty);
704 EXPORT_SYMBOL_GPL(load_pdptrs);
706 bool pdptrs_changed(struct kvm_vcpu *vcpu)
708 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
714 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
717 if (!test_bit(VCPU_EXREG_PDPTR,
718 (unsigned long *)&vcpu->arch.regs_avail))
721 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
722 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
723 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
724 PFERR_USER_MASK | PFERR_WRITE_MASK);
727 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
732 EXPORT_SYMBOL_GPL(pdptrs_changed);
734 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
736 unsigned long old_cr0 = kvm_read_cr0(vcpu);
737 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
742 if (cr0 & 0xffffffff00000000UL)
746 cr0 &= ~CR0_RESERVED_BITS;
748 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
751 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
754 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
756 if ((vcpu->arch.efer & EFER_LME)) {
761 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
766 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
774 kvm_x86_ops->set_cr0(vcpu, cr0);
776 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
777 kvm_clear_async_pf_completion_queue(vcpu);
778 kvm_async_pf_hash_reset(vcpu);
781 if ((cr0 ^ old_cr0) & update_bits)
782 kvm_mmu_reset_context(vcpu);
784 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
785 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
786 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
787 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
791 EXPORT_SYMBOL_GPL(kvm_set_cr0);
793 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
795 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
797 EXPORT_SYMBOL_GPL(kvm_lmsw);
799 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
801 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
802 !vcpu->guest_xcr0_loaded) {
803 /* kvm_set_xcr() also depends on this */
804 if (vcpu->arch.xcr0 != host_xcr0)
805 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
806 vcpu->guest_xcr0_loaded = 1;
810 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
812 if (vcpu->guest_xcr0_loaded) {
813 if (vcpu->arch.xcr0 != host_xcr0)
814 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
815 vcpu->guest_xcr0_loaded = 0;
819 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
822 u64 old_xcr0 = vcpu->arch.xcr0;
825 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
826 if (index != XCR_XFEATURE_ENABLED_MASK)
828 if (!(xcr0 & XFEATURE_MASK_FP))
830 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
834 * Do not allow the guest to set bits that we do not support
835 * saving. However, xcr0 bit 0 is always set, even if the
836 * emulated CPU does not support XSAVE (see fx_init).
838 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
839 if (xcr0 & ~valid_bits)
842 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
843 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
846 if (xcr0 & XFEATURE_MASK_AVX512) {
847 if (!(xcr0 & XFEATURE_MASK_YMM))
849 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
852 vcpu->arch.xcr0 = xcr0;
854 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
855 kvm_update_cpuid(vcpu);
859 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
861 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
862 __kvm_set_xcr(vcpu, index, xcr)) {
863 kvm_inject_gp(vcpu, 0);
868 EXPORT_SYMBOL_GPL(kvm_set_xcr);
870 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
872 unsigned long old_cr4 = kvm_read_cr4(vcpu);
873 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
874 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
876 if (cr4 & CR4_RESERVED_BITS)
879 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
882 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
885 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
888 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
891 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
894 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
897 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
900 if (is_long_mode(vcpu)) {
901 if (!(cr4 & X86_CR4_PAE))
903 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
904 && ((cr4 ^ old_cr4) & pdptr_bits)
905 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
909 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
910 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
913 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
914 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
918 if (kvm_x86_ops->set_cr4(vcpu, cr4))
921 if (((cr4 ^ old_cr4) & pdptr_bits) ||
922 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
923 kvm_mmu_reset_context(vcpu);
925 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
926 kvm_update_cpuid(vcpu);
930 EXPORT_SYMBOL_GPL(kvm_set_cr4);
932 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
934 bool skip_tlb_flush = false;
936 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
939 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
940 cr3 &= ~X86_CR3_PCID_NOFLUSH;
944 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
945 if (!skip_tlb_flush) {
946 kvm_mmu_sync_roots(vcpu);
947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
952 if (is_long_mode(vcpu) &&
953 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
955 else if (is_pae(vcpu) && is_paging(vcpu) &&
956 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
959 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
960 vcpu->arch.cr3 = cr3;
961 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
965 EXPORT_SYMBOL_GPL(kvm_set_cr3);
967 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
969 if (cr8 & CR8_RESERVED_BITS)
971 if (lapic_in_kernel(vcpu))
972 kvm_lapic_set_tpr(vcpu, cr8);
974 vcpu->arch.cr8 = cr8;
977 EXPORT_SYMBOL_GPL(kvm_set_cr8);
979 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
981 if (lapic_in_kernel(vcpu))
982 return kvm_lapic_get_cr8(vcpu);
984 return vcpu->arch.cr8;
986 EXPORT_SYMBOL_GPL(kvm_get_cr8);
988 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
992 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
993 for (i = 0; i < KVM_NR_DB_REGS; i++)
994 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
995 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
999 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1001 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1002 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1005 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1009 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1010 dr7 = vcpu->arch.guest_debug_dr7;
1012 dr7 = vcpu->arch.dr7;
1013 kvm_x86_ops->set_dr7(vcpu, dr7);
1014 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1015 if (dr7 & DR7_BP_EN_MASK)
1016 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1019 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1021 u64 fixed = DR6_FIXED_1;
1023 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1028 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1032 vcpu->arch.db[dr] = val;
1033 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1034 vcpu->arch.eff_db[dr] = val;
1039 if (val & 0xffffffff00000000ULL)
1040 return -1; /* #GP */
1041 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1042 kvm_update_dr6(vcpu);
1047 if (val & 0xffffffff00000000ULL)
1048 return -1; /* #GP */
1049 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1050 kvm_update_dr7(vcpu);
1057 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1059 if (__kvm_set_dr(vcpu, dr, val)) {
1060 kvm_inject_gp(vcpu, 0);
1065 EXPORT_SYMBOL_GPL(kvm_set_dr);
1067 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1071 *val = vcpu->arch.db[dr];
1076 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1077 *val = vcpu->arch.dr6;
1079 *val = kvm_x86_ops->get_dr6(vcpu);
1084 *val = vcpu->arch.dr7;
1089 EXPORT_SYMBOL_GPL(kvm_get_dr);
1091 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1093 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1097 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1100 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1101 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1104 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1107 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1108 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1110 * This list is modified at module load time to reflect the
1111 * capabilities of the host cpu. This capabilities test skips MSRs that are
1112 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1113 * may depend on host virtualization features rather than host cpu features.
1116 static u32 msrs_to_save[] = {
1117 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1119 #ifdef CONFIG_X86_64
1120 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1122 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1123 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1124 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1127 static unsigned num_msrs_to_save;
1129 static u32 emulated_msrs[] = {
1130 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1131 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1132 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1133 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1134 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1135 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1136 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1138 HV_X64_MSR_VP_INDEX,
1139 HV_X64_MSR_VP_RUNTIME,
1140 HV_X64_MSR_SCONTROL,
1141 HV_X64_MSR_STIMER0_CONFIG,
1142 HV_X64_MSR_VP_ASSIST_PAGE,
1143 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1144 HV_X64_MSR_TSC_EMULATION_STATUS,
1146 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1149 MSR_IA32_TSC_ADJUST,
1150 MSR_IA32_TSCDEADLINE,
1151 MSR_IA32_MISC_ENABLE,
1152 MSR_IA32_MCG_STATUS,
1154 MSR_IA32_MCG_EXT_CTL,
1158 MSR_MISC_FEATURES_ENABLES,
1159 MSR_AMD64_VIRT_SPEC_CTRL,
1162 static unsigned num_emulated_msrs;
1165 * List of msr numbers which are used to expose MSR-based features that
1166 * can be used by a hypervisor to validate requested CPU features.
1168 static u32 msr_based_features[] = {
1170 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1171 MSR_IA32_VMX_PINBASED_CTLS,
1172 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1173 MSR_IA32_VMX_PROCBASED_CTLS,
1174 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1175 MSR_IA32_VMX_EXIT_CTLS,
1176 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1177 MSR_IA32_VMX_ENTRY_CTLS,
1179 MSR_IA32_VMX_CR0_FIXED0,
1180 MSR_IA32_VMX_CR0_FIXED1,
1181 MSR_IA32_VMX_CR4_FIXED0,
1182 MSR_IA32_VMX_CR4_FIXED1,
1183 MSR_IA32_VMX_VMCS_ENUM,
1184 MSR_IA32_VMX_PROCBASED_CTLS2,
1185 MSR_IA32_VMX_EPT_VPID_CAP,
1186 MSR_IA32_VMX_VMFUNC,
1190 MSR_IA32_ARCH_CAPABILITIES,
1193 static unsigned int num_msr_based_features;
1195 u64 kvm_get_arch_capabilities(void)
1199 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1202 * If we're doing cache flushes (either "always" or "cond")
1203 * we will do one whenever the guest does a vmlaunch/vmresume.
1204 * If an outer hypervisor is doing the cache flush for us
1205 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1206 * capability to the guest too, and if EPT is disabled we're not
1207 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1208 * require a nested hypervisor to do a flush of its own.
1210 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1211 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1215 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1217 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1219 switch (msr->index) {
1220 case MSR_IA32_ARCH_CAPABILITIES:
1221 msr->data = kvm_get_arch_capabilities();
1223 case MSR_IA32_UCODE_REV:
1224 rdmsrl_safe(msr->index, &msr->data);
1227 if (kvm_x86_ops->get_msr_feature(msr))
1233 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1235 struct kvm_msr_entry msr;
1239 r = kvm_get_msr_feature(&msr);
1248 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1250 if (efer & efer_reserved_bits)
1253 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1256 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1261 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1263 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1265 u64 old_efer = vcpu->arch.efer;
1267 if (!kvm_valid_efer(vcpu, efer))
1271 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1275 efer |= vcpu->arch.efer & EFER_LMA;
1277 kvm_x86_ops->set_efer(vcpu, efer);
1279 /* Update reserved bits */
1280 if ((efer ^ old_efer) & EFER_NX)
1281 kvm_mmu_reset_context(vcpu);
1286 void kvm_enable_efer_bits(u64 mask)
1288 efer_reserved_bits &= ~mask;
1290 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1293 * Writes msr value into into the appropriate "register".
1294 * Returns 0 on success, non-0 otherwise.
1295 * Assumes vcpu_load() was already called.
1297 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1299 switch (msr->index) {
1302 case MSR_KERNEL_GS_BASE:
1305 if (is_noncanonical_address(msr->data, vcpu))
1308 case MSR_IA32_SYSENTER_EIP:
1309 case MSR_IA32_SYSENTER_ESP:
1311 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1312 * non-canonical address is written on Intel but not on
1313 * AMD (which ignores the top 32-bits, because it does
1314 * not implement 64-bit SYSENTER).
1316 * 64-bit code should hence be able to write a non-canonical
1317 * value on AMD. Making the address canonical ensures that
1318 * vmentry does not fail on Intel after writing a non-canonical
1319 * value, and that something deterministic happens if the guest
1320 * invokes 64-bit SYSENTER.
1322 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1324 return kvm_x86_ops->set_msr(vcpu, msr);
1326 EXPORT_SYMBOL_GPL(kvm_set_msr);
1329 * Adapt set_msr() to msr_io()'s calling convention
1331 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1333 struct msr_data msr;
1337 msr.host_initiated = true;
1338 r = kvm_get_msr(vcpu, &msr);
1346 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1348 struct msr_data msr;
1352 msr.host_initiated = true;
1353 return kvm_set_msr(vcpu, &msr);
1356 #ifdef CONFIG_X86_64
1357 struct pvclock_gtod_data {
1360 struct { /* extract of a clocksource struct */
1373 static struct pvclock_gtod_data pvclock_gtod_data;
1375 static void update_pvclock_gtod(struct timekeeper *tk)
1377 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1380 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1382 write_seqcount_begin(&vdata->seq);
1384 /* copy pvclock gtod data */
1385 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1386 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1387 vdata->clock.mask = tk->tkr_mono.mask;
1388 vdata->clock.mult = tk->tkr_mono.mult;
1389 vdata->clock.shift = tk->tkr_mono.shift;
1391 vdata->boot_ns = boot_ns;
1392 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1394 vdata->wall_time_sec = tk->xtime_sec;
1396 write_seqcount_end(&vdata->seq);
1400 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1403 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1404 * vcpu_enter_guest. This function is only called from
1405 * the physical CPU that is running vcpu.
1407 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1410 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1414 struct pvclock_wall_clock wc;
1415 struct timespec64 boot;
1420 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1425 ++version; /* first time write, random junk */
1429 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1433 * The guest calculates current wall clock time by adding
1434 * system time (updated by kvm_guest_time_update below) to the
1435 * wall clock specified here. guest system time equals host
1436 * system time for us, thus we must fill in host boot time here.
1438 getboottime64(&boot);
1440 if (kvm->arch.kvmclock_offset) {
1441 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1442 boot = timespec64_sub(boot, ts);
1444 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1445 wc.nsec = boot.tv_nsec;
1446 wc.version = version;
1448 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1451 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1454 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1456 do_shl32_div32(dividend, divisor);
1460 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1461 s8 *pshift, u32 *pmultiplier)
1469 scaled64 = scaled_hz;
1470 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1475 tps32 = (uint32_t)tps64;
1476 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1477 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1485 *pmultiplier = div_frac(scaled64, tps32);
1487 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1488 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1491 #ifdef CONFIG_X86_64
1492 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1495 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1496 static unsigned long max_tsc_khz;
1498 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1500 u64 v = (u64)khz * (1000000 + ppm);
1505 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1509 /* Guest TSC same frequency as host TSC? */
1511 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1515 /* TSC scaling supported? */
1516 if (!kvm_has_tsc_control) {
1517 if (user_tsc_khz > tsc_khz) {
1518 vcpu->arch.tsc_catchup = 1;
1519 vcpu->arch.tsc_always_catchup = 1;
1522 WARN(1, "user requested TSC rate below hardware speed\n");
1527 /* TSC scaling required - calculate ratio */
1528 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1529 user_tsc_khz, tsc_khz);
1531 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1532 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1537 vcpu->arch.tsc_scaling_ratio = ratio;
1541 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1543 u32 thresh_lo, thresh_hi;
1544 int use_scaling = 0;
1546 /* tsc_khz can be zero if TSC calibration fails */
1547 if (user_tsc_khz == 0) {
1548 /* set tsc_scaling_ratio to a safe value */
1549 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1553 /* Compute a scale to convert nanoseconds in TSC cycles */
1554 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1555 &vcpu->arch.virtual_tsc_shift,
1556 &vcpu->arch.virtual_tsc_mult);
1557 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1560 * Compute the variation in TSC rate which is acceptable
1561 * within the range of tolerance and decide if the
1562 * rate being applied is within that bounds of the hardware
1563 * rate. If so, no scaling or compensation need be done.
1565 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1566 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1567 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1568 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1571 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1574 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1576 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1577 vcpu->arch.virtual_tsc_mult,
1578 vcpu->arch.virtual_tsc_shift);
1579 tsc += vcpu->arch.this_tsc_write;
1583 static inline int gtod_is_based_on_tsc(int mode)
1585 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1588 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1590 #ifdef CONFIG_X86_64
1592 struct kvm_arch *ka = &vcpu->kvm->arch;
1593 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1595 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1596 atomic_read(&vcpu->kvm->online_vcpus));
1599 * Once the masterclock is enabled, always perform request in
1600 * order to update it.
1602 * In order to enable masterclock, the host clocksource must be TSC
1603 * and the vcpus need to have matched TSCs. When that happens,
1604 * perform request to enable masterclock.
1606 if (ka->use_master_clock ||
1607 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1608 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1610 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1611 atomic_read(&vcpu->kvm->online_vcpus),
1612 ka->use_master_clock, gtod->clock.vclock_mode);
1616 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1618 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1619 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1623 * Multiply tsc by a fixed point number represented by ratio.
1625 * The most significant 64-N bits (mult) of ratio represent the
1626 * integral part of the fixed point number; the remaining N bits
1627 * (frac) represent the fractional part, ie. ratio represents a fixed
1628 * point number (mult + frac * 2^(-N)).
1630 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1632 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1634 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1637 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1640 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1642 if (ratio != kvm_default_tsc_scaling_ratio)
1643 _tsc = __scale_tsc(ratio, tsc);
1647 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1649 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1653 tsc = kvm_scale_tsc(vcpu, rdtsc());
1655 return target_tsc - tsc;
1658 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1660 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1662 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1664 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1666 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1668 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1669 vcpu->arch.tsc_offset = offset;
1672 static inline bool kvm_check_tsc_unstable(void)
1674 #ifdef CONFIG_X86_64
1676 * TSC is marked unstable when we're running on Hyper-V,
1677 * 'TSC page' clocksource is good.
1679 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1682 return check_tsc_unstable();
1685 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1687 struct kvm *kvm = vcpu->kvm;
1688 u64 offset, ns, elapsed;
1689 unsigned long flags;
1691 bool already_matched;
1692 u64 data = msr->data;
1693 bool synchronizing = false;
1695 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1696 offset = kvm_compute_tsc_offset(vcpu, data);
1697 ns = ktime_get_boot_ns();
1698 elapsed = ns - kvm->arch.last_tsc_nsec;
1700 if (vcpu->arch.virtual_tsc_khz) {
1701 if (data == 0 && msr->host_initiated) {
1703 * detection of vcpu initialization -- need to sync
1704 * with other vCPUs. This particularly helps to keep
1705 * kvm_clock stable after CPU hotplug
1707 synchronizing = true;
1709 u64 tsc_exp = kvm->arch.last_tsc_write +
1710 nsec_to_cycles(vcpu, elapsed);
1711 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1713 * Special case: TSC write with a small delta (1 second)
1714 * of virtual cycle time against real time is
1715 * interpreted as an attempt to synchronize the CPU.
1717 synchronizing = data < tsc_exp + tsc_hz &&
1718 data + tsc_hz > tsc_exp;
1723 * For a reliable TSC, we can match TSC offsets, and for an unstable
1724 * TSC, we add elapsed time in this computation. We could let the
1725 * compensation code attempt to catch up if we fall behind, but
1726 * it's better to try to match offsets from the beginning.
1728 if (synchronizing &&
1729 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1730 if (!kvm_check_tsc_unstable()) {
1731 offset = kvm->arch.cur_tsc_offset;
1732 pr_debug("kvm: matched tsc offset for %llu\n", data);
1734 u64 delta = nsec_to_cycles(vcpu, elapsed);
1736 offset = kvm_compute_tsc_offset(vcpu, data);
1737 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1740 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1743 * We split periods of matched TSC writes into generations.
1744 * For each generation, we track the original measured
1745 * nanosecond time, offset, and write, so if TSCs are in
1746 * sync, we can match exact offset, and if not, we can match
1747 * exact software computation in compute_guest_tsc()
1749 * These values are tracked in kvm->arch.cur_xxx variables.
1751 kvm->arch.cur_tsc_generation++;
1752 kvm->arch.cur_tsc_nsec = ns;
1753 kvm->arch.cur_tsc_write = data;
1754 kvm->arch.cur_tsc_offset = offset;
1756 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1757 kvm->arch.cur_tsc_generation, data);
1761 * We also track th most recent recorded KHZ, write and time to
1762 * allow the matching interval to be extended at each write.
1764 kvm->arch.last_tsc_nsec = ns;
1765 kvm->arch.last_tsc_write = data;
1766 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1768 vcpu->arch.last_guest_tsc = data;
1770 /* Keep track of which generation this VCPU has synchronized to */
1771 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1772 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1773 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1775 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1776 update_ia32_tsc_adjust_msr(vcpu, offset);
1778 kvm_vcpu_write_tsc_offset(vcpu, offset);
1779 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1781 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1783 kvm->arch.nr_vcpus_matched_tsc = 0;
1784 } else if (!already_matched) {
1785 kvm->arch.nr_vcpus_matched_tsc++;
1788 kvm_track_tsc_matching(vcpu);
1789 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1792 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1794 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1797 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1800 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1802 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1803 WARN_ON(adjustment < 0);
1804 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1805 adjust_tsc_offset_guest(vcpu, adjustment);
1808 #ifdef CONFIG_X86_64
1810 static u64 read_tsc(void)
1812 u64 ret = (u64)rdtsc_ordered();
1813 u64 last = pvclock_gtod_data.clock.cycle_last;
1815 if (likely(ret >= last))
1819 * GCC likes to generate cmov here, but this branch is extremely
1820 * predictable (it's just a function of time and the likely is
1821 * very likely) and there's a data dependence, so force GCC
1822 * to generate a branch instead. I don't barrier() because
1823 * we don't actually need a barrier, and if this function
1824 * ever gets inlined it will generate worse code.
1830 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1833 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1836 switch (gtod->clock.vclock_mode) {
1837 case VCLOCK_HVCLOCK:
1838 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1840 if (tsc_pg_val != U64_MAX) {
1841 /* TSC page valid */
1842 *mode = VCLOCK_HVCLOCK;
1843 v = (tsc_pg_val - gtod->clock.cycle_last) &
1846 /* TSC page invalid */
1847 *mode = VCLOCK_NONE;
1852 *tsc_timestamp = read_tsc();
1853 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1857 *mode = VCLOCK_NONE;
1860 if (*mode == VCLOCK_NONE)
1861 *tsc_timestamp = v = 0;
1863 return v * gtod->clock.mult;
1866 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1868 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1874 seq = read_seqcount_begin(>od->seq);
1875 ns = gtod->nsec_base;
1876 ns += vgettsc(tsc_timestamp, &mode);
1877 ns >>= gtod->clock.shift;
1878 ns += gtod->boot_ns;
1879 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1885 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1887 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1893 seq = read_seqcount_begin(>od->seq);
1894 ts->tv_sec = gtod->wall_time_sec;
1895 ns = gtod->nsec_base;
1896 ns += vgettsc(tsc_timestamp, &mode);
1897 ns >>= gtod->clock.shift;
1898 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1900 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1906 /* returns true if host is using TSC based clocksource */
1907 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1909 /* checked again under seqlock below */
1910 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1913 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1921 /* checked again under seqlock below */
1922 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1925 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1931 * Assuming a stable TSC across physical CPUS, and a stable TSC
1932 * across virtual CPUs, the following condition is possible.
1933 * Each numbered line represents an event visible to both
1934 * CPUs at the next numbered event.
1936 * "timespecX" represents host monotonic time. "tscX" represents
1939 * VCPU0 on CPU0 | VCPU1 on CPU1
1941 * 1. read timespec0,tsc0
1942 * 2. | timespec1 = timespec0 + N
1944 * 3. transition to guest | transition to guest
1945 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1946 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1947 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1949 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1952 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1954 * - 0 < N - M => M < N
1956 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1957 * always the case (the difference between two distinct xtime instances
1958 * might be smaller then the difference between corresponding TSC reads,
1959 * when updating guest vcpus pvclock areas).
1961 * To avoid that problem, do not allow visibility of distinct
1962 * system_timestamp/tsc_timestamp values simultaneously: use a master
1963 * copy of host monotonic time values. Update that master copy
1966 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1970 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1972 #ifdef CONFIG_X86_64
1973 struct kvm_arch *ka = &kvm->arch;
1975 bool host_tsc_clocksource, vcpus_matched;
1977 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1978 atomic_read(&kvm->online_vcpus));
1981 * If the host uses TSC clock, then passthrough TSC as stable
1984 host_tsc_clocksource = kvm_get_time_and_clockread(
1985 &ka->master_kernel_ns,
1986 &ka->master_cycle_now);
1988 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1989 && !ka->backwards_tsc_observed
1990 && !ka->boot_vcpu_runs_old_kvmclock;
1992 if (ka->use_master_clock)
1993 atomic_set(&kvm_guest_has_master_clock, 1);
1995 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1996 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2001 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2003 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2006 static void kvm_gen_update_masterclock(struct kvm *kvm)
2008 #ifdef CONFIG_X86_64
2010 struct kvm_vcpu *vcpu;
2011 struct kvm_arch *ka = &kvm->arch;
2013 spin_lock(&ka->pvclock_gtod_sync_lock);
2014 kvm_make_mclock_inprogress_request(kvm);
2015 /* no guest entries from this point */
2016 pvclock_update_vm_gtod_copy(kvm);
2018 kvm_for_each_vcpu(i, vcpu, kvm)
2019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2021 /* guest entries allowed */
2022 kvm_for_each_vcpu(i, vcpu, kvm)
2023 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2025 spin_unlock(&ka->pvclock_gtod_sync_lock);
2029 u64 get_kvmclock_ns(struct kvm *kvm)
2031 struct kvm_arch *ka = &kvm->arch;
2032 struct pvclock_vcpu_time_info hv_clock;
2035 spin_lock(&ka->pvclock_gtod_sync_lock);
2036 if (!ka->use_master_clock) {
2037 spin_unlock(&ka->pvclock_gtod_sync_lock);
2038 return ktime_get_boot_ns() + ka->kvmclock_offset;
2041 hv_clock.tsc_timestamp = ka->master_cycle_now;
2042 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2043 spin_unlock(&ka->pvclock_gtod_sync_lock);
2045 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2048 if (__this_cpu_read(cpu_tsc_khz)) {
2049 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2050 &hv_clock.tsc_shift,
2051 &hv_clock.tsc_to_system_mul);
2052 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2054 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2061 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2063 struct kvm_vcpu_arch *vcpu = &v->arch;
2064 struct pvclock_vcpu_time_info guest_hv_clock;
2066 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2067 &guest_hv_clock, sizeof(guest_hv_clock))))
2070 /* This VCPU is paused, but it's legal for a guest to read another
2071 * VCPU's kvmclock, so we really have to follow the specification where
2072 * it says that version is odd if data is being modified, and even after
2075 * Version field updates must be kept separate. This is because
2076 * kvm_write_guest_cached might use a "rep movs" instruction, and
2077 * writes within a string instruction are weakly ordered. So there
2078 * are three writes overall.
2080 * As a small optimization, only write the version field in the first
2081 * and third write. The vcpu->pv_time cache is still valid, because the
2082 * version field is the first in the struct.
2084 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2086 if (guest_hv_clock.version & 1)
2087 ++guest_hv_clock.version; /* first time write, random junk */
2089 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2090 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2092 sizeof(vcpu->hv_clock.version));
2096 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2097 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2099 if (vcpu->pvclock_set_guest_stopped_request) {
2100 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2101 vcpu->pvclock_set_guest_stopped_request = false;
2104 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2106 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2108 sizeof(vcpu->hv_clock));
2112 vcpu->hv_clock.version++;
2113 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2115 sizeof(vcpu->hv_clock.version));
2118 static int kvm_guest_time_update(struct kvm_vcpu *v)
2120 unsigned long flags, tgt_tsc_khz;
2121 struct kvm_vcpu_arch *vcpu = &v->arch;
2122 struct kvm_arch *ka = &v->kvm->arch;
2124 u64 tsc_timestamp, host_tsc;
2126 bool use_master_clock;
2132 * If the host uses TSC clock, then passthrough TSC as stable
2135 spin_lock(&ka->pvclock_gtod_sync_lock);
2136 use_master_clock = ka->use_master_clock;
2137 if (use_master_clock) {
2138 host_tsc = ka->master_cycle_now;
2139 kernel_ns = ka->master_kernel_ns;
2141 spin_unlock(&ka->pvclock_gtod_sync_lock);
2143 /* Keep irq disabled to prevent changes to the clock */
2144 local_irq_save(flags);
2145 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2146 if (unlikely(tgt_tsc_khz == 0)) {
2147 local_irq_restore(flags);
2148 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2151 if (!use_master_clock) {
2153 kernel_ns = ktime_get_boot_ns();
2156 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2159 * We may have to catch up the TSC to match elapsed wall clock
2160 * time for two reasons, even if kvmclock is used.
2161 * 1) CPU could have been running below the maximum TSC rate
2162 * 2) Broken TSC compensation resets the base at each VCPU
2163 * entry to avoid unknown leaps of TSC even when running
2164 * again on the same CPU. This may cause apparent elapsed
2165 * time to disappear, and the guest to stand still or run
2168 if (vcpu->tsc_catchup) {
2169 u64 tsc = compute_guest_tsc(v, kernel_ns);
2170 if (tsc > tsc_timestamp) {
2171 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2172 tsc_timestamp = tsc;
2176 local_irq_restore(flags);
2178 /* With all the info we got, fill in the values */
2180 if (kvm_has_tsc_control)
2181 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2183 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2184 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2185 &vcpu->hv_clock.tsc_shift,
2186 &vcpu->hv_clock.tsc_to_system_mul);
2187 vcpu->hw_tsc_khz = tgt_tsc_khz;
2190 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2191 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2192 vcpu->last_guest_tsc = tsc_timestamp;
2194 /* If the host uses TSC clocksource, then it is stable */
2196 if (use_master_clock)
2197 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2199 vcpu->hv_clock.flags = pvclock_flags;
2201 if (vcpu->pv_time_enabled)
2202 kvm_setup_pvclock_page(v);
2203 if (v == kvm_get_vcpu(v->kvm, 0))
2204 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2209 * kvmclock updates which are isolated to a given vcpu, such as
2210 * vcpu->cpu migration, should not allow system_timestamp from
2211 * the rest of the vcpus to remain static. Otherwise ntp frequency
2212 * correction applies to one vcpu's system_timestamp but not
2215 * So in those cases, request a kvmclock update for all vcpus.
2216 * We need to rate-limit these requests though, as they can
2217 * considerably slow guests that have a large number of vcpus.
2218 * The time for a remote vcpu to update its kvmclock is bound
2219 * by the delay we use to rate-limit the updates.
2222 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2224 static void kvmclock_update_fn(struct work_struct *work)
2227 struct delayed_work *dwork = to_delayed_work(work);
2228 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2229 kvmclock_update_work);
2230 struct kvm *kvm = container_of(ka, struct kvm, arch);
2231 struct kvm_vcpu *vcpu;
2233 kvm_for_each_vcpu(i, vcpu, kvm) {
2234 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2235 kvm_vcpu_kick(vcpu);
2239 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2241 struct kvm *kvm = v->kvm;
2243 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2244 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2245 KVMCLOCK_UPDATE_DELAY);
2248 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2250 static void kvmclock_sync_fn(struct work_struct *work)
2252 struct delayed_work *dwork = to_delayed_work(work);
2253 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2254 kvmclock_sync_work);
2255 struct kvm *kvm = container_of(ka, struct kvm, arch);
2257 if (!kvmclock_periodic_sync)
2260 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2261 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2262 KVMCLOCK_SYNC_PERIOD);
2265 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2267 u64 mcg_cap = vcpu->arch.mcg_cap;
2268 unsigned bank_num = mcg_cap & 0xff;
2269 u32 msr = msr_info->index;
2270 u64 data = msr_info->data;
2273 case MSR_IA32_MCG_STATUS:
2274 vcpu->arch.mcg_status = data;
2276 case MSR_IA32_MCG_CTL:
2277 if (!(mcg_cap & MCG_CTL_P) &&
2278 (data || !msr_info->host_initiated))
2280 if (data != 0 && data != ~(u64)0)
2282 vcpu->arch.mcg_ctl = data;
2285 if (msr >= MSR_IA32_MC0_CTL &&
2286 msr < MSR_IA32_MCx_CTL(bank_num)) {
2287 u32 offset = msr - MSR_IA32_MC0_CTL;
2288 /* only 0 or all 1s can be written to IA32_MCi_CTL
2289 * some Linux kernels though clear bit 10 in bank 4 to
2290 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2291 * this to avoid an uncatched #GP in the guest
2293 if ((offset & 0x3) == 0 &&
2294 data != 0 && (data | (1 << 10)) != ~(u64)0)
2296 if (!msr_info->host_initiated &&
2297 (offset & 0x3) == 1 && data != 0)
2299 vcpu->arch.mce_banks[offset] = data;
2307 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2309 struct kvm *kvm = vcpu->kvm;
2310 int lm = is_long_mode(vcpu);
2311 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2312 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2313 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2314 : kvm->arch.xen_hvm_config.blob_size_32;
2315 u32 page_num = data & ~PAGE_MASK;
2316 u64 page_addr = data & PAGE_MASK;
2321 if (page_num >= blob_size)
2324 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2329 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2338 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2340 gpa_t gpa = data & ~0x3f;
2342 /* Bits 3:5 are reserved, Should be zero */
2346 vcpu->arch.apf.msr_val = data;
2348 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2349 kvm_clear_async_pf_completion_queue(vcpu);
2350 kvm_async_pf_hash_reset(vcpu);
2354 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2358 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2359 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2360 kvm_async_pf_wakeup_all(vcpu);
2364 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2366 vcpu->arch.pv_time_enabled = false;
2369 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2371 ++vcpu->stat.tlb_flush;
2372 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2375 static void record_steal_time(struct kvm_vcpu *vcpu)
2377 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2380 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2381 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2385 * Doing a TLB flush here, on the guest's behalf, can avoid
2388 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2389 kvm_vcpu_flush_tlb(vcpu, false);
2391 if (vcpu->arch.st.steal.version & 1)
2392 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2394 vcpu->arch.st.steal.version += 1;
2396 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2397 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2401 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2402 vcpu->arch.st.last_steal;
2403 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2405 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2406 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2410 vcpu->arch.st.steal.version += 1;
2412 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2413 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2416 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2419 u32 msr = msr_info->index;
2420 u64 data = msr_info->data;
2423 case MSR_AMD64_NB_CFG:
2424 case MSR_IA32_UCODE_WRITE:
2425 case MSR_VM_HSAVE_PA:
2426 case MSR_AMD64_PATCH_LOADER:
2427 case MSR_AMD64_BU_CFG2:
2428 case MSR_AMD64_DC_CFG:
2431 case MSR_IA32_UCODE_REV:
2432 if (msr_info->host_initiated)
2433 vcpu->arch.microcode_version = data;
2436 return set_efer(vcpu, data);
2438 data &= ~(u64)0x40; /* ignore flush filter disable */
2439 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2440 data &= ~(u64)0x8; /* ignore TLB cache disable */
2441 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2443 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2448 case MSR_FAM10H_MMIO_CONF_BASE:
2450 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2455 case MSR_IA32_DEBUGCTLMSR:
2457 /* We support the non-activated case already */
2459 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2460 /* Values other than LBR and BTF are vendor-specific,
2461 thus reserved and should throw a #GP */
2464 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2467 case 0x200 ... 0x2ff:
2468 return kvm_mtrr_set_msr(vcpu, msr, data);
2469 case MSR_IA32_APICBASE:
2470 return kvm_set_apic_base(vcpu, msr_info);
2471 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2472 return kvm_x2apic_msr_write(vcpu, msr, data);
2473 case MSR_IA32_TSCDEADLINE:
2474 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2476 case MSR_IA32_TSC_ADJUST:
2477 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2478 if (!msr_info->host_initiated) {
2479 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2480 adjust_tsc_offset_guest(vcpu, adj);
2482 vcpu->arch.ia32_tsc_adjust_msr = data;
2485 case MSR_IA32_MISC_ENABLE:
2486 vcpu->arch.ia32_misc_enable_msr = data;
2488 case MSR_IA32_SMBASE:
2489 if (!msr_info->host_initiated)
2491 vcpu->arch.smbase = data;
2494 kvm_write_tsc(vcpu, msr_info);
2497 if (!msr_info->host_initiated)
2499 vcpu->arch.smi_count = data;
2501 case MSR_KVM_WALL_CLOCK_NEW:
2502 case MSR_KVM_WALL_CLOCK:
2503 vcpu->kvm->arch.wall_clock = data;
2504 kvm_write_wall_clock(vcpu->kvm, data);
2506 case MSR_KVM_SYSTEM_TIME_NEW:
2507 case MSR_KVM_SYSTEM_TIME: {
2508 struct kvm_arch *ka = &vcpu->kvm->arch;
2510 kvmclock_reset(vcpu);
2512 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2513 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2515 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2516 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2518 ka->boot_vcpu_runs_old_kvmclock = tmp;
2521 vcpu->arch.time = data;
2522 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2524 /* we verify if the enable bit is set... */
2528 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2529 &vcpu->arch.pv_time, data & ~1ULL,
2530 sizeof(struct pvclock_vcpu_time_info)))
2531 vcpu->arch.pv_time_enabled = false;
2533 vcpu->arch.pv_time_enabled = true;
2537 case MSR_KVM_ASYNC_PF_EN:
2538 if (kvm_pv_enable_async_pf(vcpu, data))
2541 case MSR_KVM_STEAL_TIME:
2543 if (unlikely(!sched_info_on()))
2546 if (data & KVM_STEAL_RESERVED_MASK)
2549 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2550 data & KVM_STEAL_VALID_BITS,
2551 sizeof(struct kvm_steal_time)))
2554 vcpu->arch.st.msr_val = data;
2556 if (!(data & KVM_MSR_ENABLED))
2559 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2562 case MSR_KVM_PV_EOI_EN:
2563 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2567 case MSR_IA32_MCG_CTL:
2568 case MSR_IA32_MCG_STATUS:
2569 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570 return set_msr_mce(vcpu, msr_info);
2572 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2573 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2574 pr = true; /* fall through */
2575 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2576 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2577 if (kvm_pmu_is_valid_msr(vcpu, msr))
2578 return kvm_pmu_set_msr(vcpu, msr_info);
2580 if (pr || data != 0)
2581 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2582 "0x%x data 0x%llx\n", msr, data);
2584 case MSR_K7_CLK_CTL:
2586 * Ignore all writes to this no longer documented MSR.
2587 * Writes are only relevant for old K7 processors,
2588 * all pre-dating SVM, but a recommended workaround from
2589 * AMD for these chips. It is possible to specify the
2590 * affected processor models on the command line, hence
2591 * the need to ignore the workaround.
2594 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2595 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2596 case HV_X64_MSR_CRASH_CTL:
2597 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2598 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2599 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2600 case HV_X64_MSR_TSC_EMULATION_STATUS:
2601 return kvm_hv_set_msr_common(vcpu, msr, data,
2602 msr_info->host_initiated);
2603 case MSR_IA32_BBL_CR_CTL3:
2604 /* Drop writes to this legacy MSR -- see rdmsr
2605 * counterpart for further detail.
2607 if (report_ignored_msrs)
2608 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2611 case MSR_AMD64_OSVW_ID_LENGTH:
2612 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2614 vcpu->arch.osvw.length = data;
2616 case MSR_AMD64_OSVW_STATUS:
2617 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2619 vcpu->arch.osvw.status = data;
2621 case MSR_PLATFORM_INFO:
2622 if (!msr_info->host_initiated ||
2623 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2624 cpuid_fault_enabled(vcpu)))
2626 vcpu->arch.msr_platform_info = data;
2628 case MSR_MISC_FEATURES_ENABLES:
2629 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2630 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2631 !supports_cpuid_fault(vcpu)))
2633 vcpu->arch.msr_misc_features_enables = data;
2636 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2637 return xen_hvm_config(vcpu, data);
2638 if (kvm_pmu_is_valid_msr(vcpu, msr))
2639 return kvm_pmu_set_msr(vcpu, msr_info);
2641 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2645 if (report_ignored_msrs)
2647 "ignored wrmsr: 0x%x data 0x%llx\n",
2654 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2658 * Reads an msr value (of 'msr_index') into 'pdata'.
2659 * Returns 0 on success, non-0 otherwise.
2660 * Assumes vcpu_load() was already called.
2662 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2664 return kvm_x86_ops->get_msr(vcpu, msr);
2666 EXPORT_SYMBOL_GPL(kvm_get_msr);
2668 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2671 u64 mcg_cap = vcpu->arch.mcg_cap;
2672 unsigned bank_num = mcg_cap & 0xff;
2675 case MSR_IA32_P5_MC_ADDR:
2676 case MSR_IA32_P5_MC_TYPE:
2679 case MSR_IA32_MCG_CAP:
2680 data = vcpu->arch.mcg_cap;
2682 case MSR_IA32_MCG_CTL:
2683 if (!(mcg_cap & MCG_CTL_P) && !host)
2685 data = vcpu->arch.mcg_ctl;
2687 case MSR_IA32_MCG_STATUS:
2688 data = vcpu->arch.mcg_status;
2691 if (msr >= MSR_IA32_MC0_CTL &&
2692 msr < MSR_IA32_MCx_CTL(bank_num)) {
2693 u32 offset = msr - MSR_IA32_MC0_CTL;
2694 data = vcpu->arch.mce_banks[offset];
2703 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2705 switch (msr_info->index) {
2706 case MSR_IA32_PLATFORM_ID:
2707 case MSR_IA32_EBL_CR_POWERON:
2708 case MSR_IA32_DEBUGCTLMSR:
2709 case MSR_IA32_LASTBRANCHFROMIP:
2710 case MSR_IA32_LASTBRANCHTOIP:
2711 case MSR_IA32_LASTINTFROMIP:
2712 case MSR_IA32_LASTINTTOIP:
2714 case MSR_K8_TSEG_ADDR:
2715 case MSR_K8_TSEG_MASK:
2717 case MSR_VM_HSAVE_PA:
2718 case MSR_K8_INT_PENDING_MSG:
2719 case MSR_AMD64_NB_CFG:
2720 case MSR_FAM10H_MMIO_CONF_BASE:
2721 case MSR_AMD64_BU_CFG2:
2722 case MSR_IA32_PERF_CTL:
2723 case MSR_AMD64_DC_CFG:
2726 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2727 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2728 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2729 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2730 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2731 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2732 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2735 case MSR_IA32_UCODE_REV:
2736 msr_info->data = vcpu->arch.microcode_version;
2739 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2742 case 0x200 ... 0x2ff:
2743 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2744 case 0xcd: /* fsb frequency */
2748 * MSR_EBC_FREQUENCY_ID
2749 * Conservative value valid for even the basic CPU models.
2750 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2751 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2752 * and 266MHz for model 3, or 4. Set Core Clock
2753 * Frequency to System Bus Frequency Ratio to 1 (bits
2754 * 31:24) even though these are only valid for CPU
2755 * models > 2, however guests may end up dividing or
2756 * multiplying by zero otherwise.
2758 case MSR_EBC_FREQUENCY_ID:
2759 msr_info->data = 1 << 24;
2761 case MSR_IA32_APICBASE:
2762 msr_info->data = kvm_get_apic_base(vcpu);
2764 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2767 case MSR_IA32_TSCDEADLINE:
2768 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2770 case MSR_IA32_TSC_ADJUST:
2771 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2773 case MSR_IA32_MISC_ENABLE:
2774 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2776 case MSR_IA32_SMBASE:
2777 if (!msr_info->host_initiated)
2779 msr_info->data = vcpu->arch.smbase;
2782 msr_info->data = vcpu->arch.smi_count;
2784 case MSR_IA32_PERF_STATUS:
2785 /* TSC increment by tick */
2786 msr_info->data = 1000ULL;
2787 /* CPU multiplier */
2788 msr_info->data |= (((uint64_t)4ULL) << 40);
2791 msr_info->data = vcpu->arch.efer;
2793 case MSR_KVM_WALL_CLOCK:
2794 case MSR_KVM_WALL_CLOCK_NEW:
2795 msr_info->data = vcpu->kvm->arch.wall_clock;
2797 case MSR_KVM_SYSTEM_TIME:
2798 case MSR_KVM_SYSTEM_TIME_NEW:
2799 msr_info->data = vcpu->arch.time;
2801 case MSR_KVM_ASYNC_PF_EN:
2802 msr_info->data = vcpu->arch.apf.msr_val;
2804 case MSR_KVM_STEAL_TIME:
2805 msr_info->data = vcpu->arch.st.msr_val;
2807 case MSR_KVM_PV_EOI_EN:
2808 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2810 case MSR_IA32_P5_MC_ADDR:
2811 case MSR_IA32_P5_MC_TYPE:
2812 case MSR_IA32_MCG_CAP:
2813 case MSR_IA32_MCG_CTL:
2814 case MSR_IA32_MCG_STATUS:
2815 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2816 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2817 msr_info->host_initiated);
2818 case MSR_K7_CLK_CTL:
2820 * Provide expected ramp-up count for K7. All other
2821 * are set to zero, indicating minimum divisors for
2824 * This prevents guest kernels on AMD host with CPU
2825 * type 6, model 8 and higher from exploding due to
2826 * the rdmsr failing.
2828 msr_info->data = 0x20000000;
2830 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2831 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2832 case HV_X64_MSR_CRASH_CTL:
2833 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2834 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2835 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2836 case HV_X64_MSR_TSC_EMULATION_STATUS:
2837 return kvm_hv_get_msr_common(vcpu,
2838 msr_info->index, &msr_info->data,
2839 msr_info->host_initiated);
2841 case MSR_IA32_BBL_CR_CTL3:
2842 /* This legacy MSR exists but isn't fully documented in current
2843 * silicon. It is however accessed by winxp in very narrow
2844 * scenarios where it sets bit #19, itself documented as
2845 * a "reserved" bit. Best effort attempt to source coherent
2846 * read data here should the balance of the register be
2847 * interpreted by the guest:
2849 * L2 cache control register 3: 64GB range, 256KB size,
2850 * enabled, latency 0x1, configured
2852 msr_info->data = 0xbe702111;
2854 case MSR_AMD64_OSVW_ID_LENGTH:
2855 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2857 msr_info->data = vcpu->arch.osvw.length;
2859 case MSR_AMD64_OSVW_STATUS:
2860 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2862 msr_info->data = vcpu->arch.osvw.status;
2864 case MSR_PLATFORM_INFO:
2865 if (!msr_info->host_initiated &&
2866 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2868 msr_info->data = vcpu->arch.msr_platform_info;
2870 case MSR_MISC_FEATURES_ENABLES:
2871 msr_info->data = vcpu->arch.msr_misc_features_enables;
2874 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2875 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2877 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2881 if (report_ignored_msrs)
2882 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2890 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2893 * Read or write a bunch of msrs. All parameters are kernel addresses.
2895 * @return number of msrs set successfully.
2897 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2898 struct kvm_msr_entry *entries,
2899 int (*do_msr)(struct kvm_vcpu *vcpu,
2900 unsigned index, u64 *data))
2904 for (i = 0; i < msrs->nmsrs; ++i)
2905 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2912 * Read or write a bunch of msrs. Parameters are user addresses.
2914 * @return number of msrs set successfully.
2916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2917 int (*do_msr)(struct kvm_vcpu *vcpu,
2918 unsigned index, u64 *data),
2921 struct kvm_msrs msrs;
2922 struct kvm_msr_entry *entries;
2927 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2931 if (msrs.nmsrs >= MAX_IO_MSRS)
2934 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2935 entries = memdup_user(user_msrs->entries, size);
2936 if (IS_ERR(entries)) {
2937 r = PTR_ERR(entries);
2941 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2946 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2957 static inline bool kvm_can_mwait_in_guest(void)
2959 return boot_cpu_has(X86_FEATURE_MWAIT) &&
2960 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2961 boot_cpu_has(X86_FEATURE_ARAT);
2964 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2969 case KVM_CAP_IRQCHIP:
2971 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2972 case KVM_CAP_SET_TSS_ADDR:
2973 case KVM_CAP_EXT_CPUID:
2974 case KVM_CAP_EXT_EMUL_CPUID:
2975 case KVM_CAP_CLOCKSOURCE:
2977 case KVM_CAP_NOP_IO_DELAY:
2978 case KVM_CAP_MP_STATE:
2979 case KVM_CAP_SYNC_MMU:
2980 case KVM_CAP_USER_NMI:
2981 case KVM_CAP_REINJECT_CONTROL:
2982 case KVM_CAP_IRQ_INJECT_STATUS:
2983 case KVM_CAP_IOEVENTFD:
2984 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2986 case KVM_CAP_PIT_STATE2:
2987 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2988 case KVM_CAP_XEN_HVM:
2989 case KVM_CAP_VCPU_EVENTS:
2990 case KVM_CAP_HYPERV:
2991 case KVM_CAP_HYPERV_VAPIC:
2992 case KVM_CAP_HYPERV_SPIN:
2993 case KVM_CAP_HYPERV_SYNIC:
2994 case KVM_CAP_HYPERV_SYNIC2:
2995 case KVM_CAP_HYPERV_VP_INDEX:
2996 case KVM_CAP_HYPERV_EVENTFD:
2997 case KVM_CAP_HYPERV_TLBFLUSH:
2998 case KVM_CAP_HYPERV_SEND_IPI:
2999 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3000 case KVM_CAP_PCI_SEGMENT:
3001 case KVM_CAP_DEBUGREGS:
3002 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3004 case KVM_CAP_ASYNC_PF:
3005 case KVM_CAP_GET_TSC_KHZ:
3006 case KVM_CAP_KVMCLOCK_CTRL:
3007 case KVM_CAP_READONLY_MEM:
3008 case KVM_CAP_HYPERV_TIME:
3009 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3010 case KVM_CAP_TSC_DEADLINE_TIMER:
3011 case KVM_CAP_ENABLE_CAP_VM:
3012 case KVM_CAP_DISABLE_QUIRKS:
3013 case KVM_CAP_SET_BOOT_CPU_ID:
3014 case KVM_CAP_SPLIT_IRQCHIP:
3015 case KVM_CAP_IMMEDIATE_EXIT:
3016 case KVM_CAP_GET_MSR_FEATURES:
3017 case KVM_CAP_MSR_PLATFORM_INFO:
3018 case KVM_CAP_EXCEPTION_PAYLOAD:
3021 case KVM_CAP_SYNC_REGS:
3022 r = KVM_SYNC_X86_VALID_FIELDS;
3024 case KVM_CAP_ADJUST_CLOCK:
3025 r = KVM_CLOCK_TSC_STABLE;
3027 case KVM_CAP_X86_DISABLE_EXITS:
3028 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3029 if(kvm_can_mwait_in_guest())
3030 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3032 case KVM_CAP_X86_SMM:
3033 /* SMBASE is usually relocated above 1M on modern chipsets,
3034 * and SMM handlers might indeed rely on 4G segment limits,
3035 * so do not report SMM to be available if real mode is
3036 * emulated via vm86 mode. Still, do not go to great lengths
3037 * to avoid userspace's usage of the feature, because it is a
3038 * fringe case that is not enabled except via specific settings
3039 * of the module parameters.
3041 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3044 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3046 case KVM_CAP_NR_VCPUS:
3047 r = KVM_SOFT_MAX_VCPUS;
3049 case KVM_CAP_MAX_VCPUS:
3052 case KVM_CAP_NR_MEMSLOTS:
3053 r = KVM_USER_MEM_SLOTS;
3055 case KVM_CAP_PV_MMU: /* obsolete */
3059 r = KVM_MAX_MCE_BANKS;
3062 r = boot_cpu_has(X86_FEATURE_XSAVE);
3064 case KVM_CAP_TSC_CONTROL:
3065 r = kvm_has_tsc_control;
3067 case KVM_CAP_X2APIC_API:
3068 r = KVM_X2APIC_API_VALID_FLAGS;
3070 case KVM_CAP_NESTED_STATE:
3071 r = kvm_x86_ops->get_nested_state ?
3072 kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3081 long kvm_arch_dev_ioctl(struct file *filp,
3082 unsigned int ioctl, unsigned long arg)
3084 void __user *argp = (void __user *)arg;
3088 case KVM_GET_MSR_INDEX_LIST: {
3089 struct kvm_msr_list __user *user_msr_list = argp;
3090 struct kvm_msr_list msr_list;
3094 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3097 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3098 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3101 if (n < msr_list.nmsrs)
3104 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3105 num_msrs_to_save * sizeof(u32)))
3107 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3109 num_emulated_msrs * sizeof(u32)))
3114 case KVM_GET_SUPPORTED_CPUID:
3115 case KVM_GET_EMULATED_CPUID: {
3116 struct kvm_cpuid2 __user *cpuid_arg = argp;
3117 struct kvm_cpuid2 cpuid;
3120 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3123 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3129 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3134 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3136 if (copy_to_user(argp, &kvm_mce_cap_supported,
3137 sizeof(kvm_mce_cap_supported)))
3141 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3142 struct kvm_msr_list __user *user_msr_list = argp;
3143 struct kvm_msr_list msr_list;
3147 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3150 msr_list.nmsrs = num_msr_based_features;
3151 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3154 if (n < msr_list.nmsrs)
3157 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3158 num_msr_based_features * sizeof(u32)))
3164 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3174 static void wbinvd_ipi(void *garbage)
3179 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3181 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3184 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3186 /* Address WBINVD may be executed by guest */
3187 if (need_emulate_wbinvd(vcpu)) {
3188 if (kvm_x86_ops->has_wbinvd_exit())
3189 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3190 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3191 smp_call_function_single(vcpu->cpu,
3192 wbinvd_ipi, NULL, 1);
3195 kvm_x86_ops->vcpu_load(vcpu, cpu);
3197 /* Apply any externally detected TSC adjustments (due to suspend) */
3198 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3199 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3200 vcpu->arch.tsc_offset_adjustment = 0;
3201 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3204 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3205 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3206 rdtsc() - vcpu->arch.last_host_tsc;
3208 mark_tsc_unstable("KVM discovered backwards TSC");
3210 if (kvm_check_tsc_unstable()) {
3211 u64 offset = kvm_compute_tsc_offset(vcpu,
3212 vcpu->arch.last_guest_tsc);
3213 kvm_vcpu_write_tsc_offset(vcpu, offset);
3214 vcpu->arch.tsc_catchup = 1;
3217 if (kvm_lapic_hv_timer_in_use(vcpu))
3218 kvm_lapic_restart_hv_timer(vcpu);
3221 * On a host with synchronized TSC, there is no need to update
3222 * kvmclock on vcpu->cpu migration
3224 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3225 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3226 if (vcpu->cpu != cpu)
3227 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3231 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3234 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3236 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3239 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3241 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3242 &vcpu->arch.st.steal.preempted,
3243 offsetof(struct kvm_steal_time, preempted),
3244 sizeof(vcpu->arch.st.steal.preempted));
3247 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3251 if (vcpu->preempted)
3252 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3255 * Disable page faults because we're in atomic context here.
3256 * kvm_write_guest_offset_cached() would call might_fault()
3257 * that relies on pagefault_disable() to tell if there's a
3258 * bug. NOTE: the write to guest memory may not go through if
3259 * during postcopy live migration or if there's heavy guest
3262 pagefault_disable();
3264 * kvm_memslots() will be called by
3265 * kvm_write_guest_offset_cached() so take the srcu lock.
3267 idx = srcu_read_lock(&vcpu->kvm->srcu);
3268 kvm_steal_time_set_preempted(vcpu);
3269 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3271 kvm_x86_ops->vcpu_put(vcpu);
3272 vcpu->arch.last_host_tsc = rdtsc();
3274 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3275 * on every vmexit, but if not, we might have a stale dr6 from the
3276 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3281 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3282 struct kvm_lapic_state *s)
3284 if (vcpu->arch.apicv_active)
3285 kvm_x86_ops->sync_pir_to_irr(vcpu);
3287 return kvm_apic_get_state(vcpu, s);
3290 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3291 struct kvm_lapic_state *s)
3295 r = kvm_apic_set_state(vcpu, s);
3298 update_cr8_intercept(vcpu);
3303 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3305 return (!lapic_in_kernel(vcpu) ||
3306 kvm_apic_accept_pic_intr(vcpu));
3310 * if userspace requested an interrupt window, check that the
3311 * interrupt window is open.
3313 * No need to exit to userspace if we already have an interrupt queued.
3315 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3317 return kvm_arch_interrupt_allowed(vcpu) &&
3318 !kvm_cpu_has_interrupt(vcpu) &&
3319 !kvm_event_needs_reinjection(vcpu) &&
3320 kvm_cpu_accept_dm_intr(vcpu);
3323 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3324 struct kvm_interrupt *irq)
3326 if (irq->irq >= KVM_NR_INTERRUPTS)
3329 if (!irqchip_in_kernel(vcpu->kvm)) {
3330 kvm_queue_interrupt(vcpu, irq->irq, false);
3331 kvm_make_request(KVM_REQ_EVENT, vcpu);
3336 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3337 * fail for in-kernel 8259.
3339 if (pic_in_kernel(vcpu->kvm))
3342 if (vcpu->arch.pending_external_vector != -1)
3345 vcpu->arch.pending_external_vector = irq->irq;
3346 kvm_make_request(KVM_REQ_EVENT, vcpu);
3350 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3352 kvm_inject_nmi(vcpu);
3357 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3359 kvm_make_request(KVM_REQ_SMI, vcpu);
3364 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3365 struct kvm_tpr_access_ctl *tac)
3369 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3373 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3377 unsigned bank_num = mcg_cap & 0xff, bank;
3380 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3382 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3385 vcpu->arch.mcg_cap = mcg_cap;
3386 /* Init IA32_MCG_CTL to all 1s */
3387 if (mcg_cap & MCG_CTL_P)
3388 vcpu->arch.mcg_ctl = ~(u64)0;
3389 /* Init IA32_MCi_CTL to all 1s */
3390 for (bank = 0; bank < bank_num; bank++)
3391 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3393 if (kvm_x86_ops->setup_mce)
3394 kvm_x86_ops->setup_mce(vcpu);
3399 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3400 struct kvm_x86_mce *mce)
3402 u64 mcg_cap = vcpu->arch.mcg_cap;
3403 unsigned bank_num = mcg_cap & 0xff;
3404 u64 *banks = vcpu->arch.mce_banks;
3406 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3409 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3410 * reporting is disabled
3412 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3413 vcpu->arch.mcg_ctl != ~(u64)0)
3415 banks += 4 * mce->bank;
3417 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3418 * reporting is disabled for the bank
3420 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3422 if (mce->status & MCI_STATUS_UC) {
3423 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3424 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3425 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3428 if (banks[1] & MCI_STATUS_VAL)
3429 mce->status |= MCI_STATUS_OVER;
3430 banks[2] = mce->addr;
3431 banks[3] = mce->misc;
3432 vcpu->arch.mcg_status = mce->mcg_status;
3433 banks[1] = mce->status;
3434 kvm_queue_exception(vcpu, MC_VECTOR);
3435 } else if (!(banks[1] & MCI_STATUS_VAL)
3436 || !(banks[1] & MCI_STATUS_UC)) {
3437 if (banks[1] & MCI_STATUS_VAL)
3438 mce->status |= MCI_STATUS_OVER;
3439 banks[2] = mce->addr;
3440 banks[3] = mce->misc;
3441 banks[1] = mce->status;
3443 banks[1] |= MCI_STATUS_OVER;
3447 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3448 struct kvm_vcpu_events *events)
3453 * The API doesn't provide the instruction length for software
3454 * exceptions, so don't report them. As long as the guest RIP
3455 * isn't advanced, we should expect to encounter the exception
3458 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3459 events->exception.injected = 0;
3460 events->exception.pending = 0;
3462 events->exception.injected = vcpu->arch.exception.injected;
3463 events->exception.pending = vcpu->arch.exception.pending;
3465 * For ABI compatibility, deliberately conflate
3466 * pending and injected exceptions when
3467 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3469 if (!vcpu->kvm->arch.exception_payload_enabled)
3470 events->exception.injected |=
3471 vcpu->arch.exception.pending;
3473 events->exception.nr = vcpu->arch.exception.nr;
3474 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3475 events->exception.error_code = vcpu->arch.exception.error_code;
3476 events->exception_has_payload = vcpu->arch.exception.has_payload;
3477 events->exception_payload = vcpu->arch.exception.payload;
3479 events->interrupt.injected =
3480 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3481 events->interrupt.nr = vcpu->arch.interrupt.nr;
3482 events->interrupt.soft = 0;
3483 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3485 events->nmi.injected = vcpu->arch.nmi_injected;
3486 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3487 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3488 events->nmi.pad = 0;
3490 events->sipi_vector = 0; /* never valid when reporting to user space */
3492 events->smi.smm = is_smm(vcpu);
3493 events->smi.pending = vcpu->arch.smi_pending;
3494 events->smi.smm_inside_nmi =
3495 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3496 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3498 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3499 | KVM_VCPUEVENT_VALID_SHADOW
3500 | KVM_VCPUEVENT_VALID_SMM);
3501 if (vcpu->kvm->arch.exception_payload_enabled)
3502 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3504 memset(&events->reserved, 0, sizeof(events->reserved));
3507 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3509 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3510 struct kvm_vcpu_events *events)
3512 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3513 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3514 | KVM_VCPUEVENT_VALID_SHADOW
3515 | KVM_VCPUEVENT_VALID_SMM
3516 | KVM_VCPUEVENT_VALID_PAYLOAD))
3519 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3520 if (!vcpu->kvm->arch.exception_payload_enabled)
3522 if (events->exception.pending)
3523 events->exception.injected = 0;
3525 events->exception_has_payload = 0;
3527 events->exception.pending = 0;
3528 events->exception_has_payload = 0;
3531 if ((events->exception.injected || events->exception.pending) &&
3532 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3535 /* INITs are latched while in SMM */
3536 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3537 (events->smi.smm || events->smi.pending) &&
3538 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3542 vcpu->arch.exception.injected = events->exception.injected;
3543 vcpu->arch.exception.pending = events->exception.pending;
3544 vcpu->arch.exception.nr = events->exception.nr;
3545 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3546 vcpu->arch.exception.error_code = events->exception.error_code;
3547 vcpu->arch.exception.has_payload = events->exception_has_payload;
3548 vcpu->arch.exception.payload = events->exception_payload;
3550 vcpu->arch.interrupt.injected = events->interrupt.injected;
3551 vcpu->arch.interrupt.nr = events->interrupt.nr;
3552 vcpu->arch.interrupt.soft = events->interrupt.soft;
3553 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3554 kvm_x86_ops->set_interrupt_shadow(vcpu,
3555 events->interrupt.shadow);
3557 vcpu->arch.nmi_injected = events->nmi.injected;
3558 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3559 vcpu->arch.nmi_pending = events->nmi.pending;
3560 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3562 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3563 lapic_in_kernel(vcpu))
3564 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3566 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3567 u32 hflags = vcpu->arch.hflags;
3568 if (events->smi.smm)
3569 hflags |= HF_SMM_MASK;
3571 hflags &= ~HF_SMM_MASK;
3572 kvm_set_hflags(vcpu, hflags);
3574 vcpu->arch.smi_pending = events->smi.pending;
3576 if (events->smi.smm) {
3577 if (events->smi.smm_inside_nmi)
3578 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3580 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3581 if (lapic_in_kernel(vcpu)) {
3582 if (events->smi.latched_init)
3583 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3585 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3590 kvm_make_request(KVM_REQ_EVENT, vcpu);
3595 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3596 struct kvm_debugregs *dbgregs)
3600 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3601 kvm_get_dr(vcpu, 6, &val);
3603 dbgregs->dr7 = vcpu->arch.dr7;
3605 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3608 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3609 struct kvm_debugregs *dbgregs)
3614 if (dbgregs->dr6 & ~0xffffffffull)
3616 if (dbgregs->dr7 & ~0xffffffffull)
3619 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3620 kvm_update_dr0123(vcpu);
3621 vcpu->arch.dr6 = dbgregs->dr6;
3622 kvm_update_dr6(vcpu);
3623 vcpu->arch.dr7 = dbgregs->dr7;
3624 kvm_update_dr7(vcpu);
3629 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3631 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3633 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3634 u64 xstate_bv = xsave->header.xfeatures;
3638 * Copy legacy XSAVE area, to avoid complications with CPUID
3639 * leaves 0 and 1 in the loop below.
3641 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3644 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3645 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3648 * Copy each region from the possibly compacted offset to the
3649 * non-compacted offset.
3651 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3653 u64 feature = valid & -valid;
3654 int index = fls64(feature) - 1;
3655 void *src = get_xsave_addr(xsave, feature);
3658 u32 size, offset, ecx, edx;
3659 cpuid_count(XSTATE_CPUID, index,
3660 &size, &offset, &ecx, &edx);
3661 if (feature == XFEATURE_MASK_PKRU)
3662 memcpy(dest + offset, &vcpu->arch.pkru,
3663 sizeof(vcpu->arch.pkru));
3665 memcpy(dest + offset, src, size);
3673 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3675 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3676 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3680 * Copy legacy XSAVE area, to avoid complications with CPUID
3681 * leaves 0 and 1 in the loop below.
3683 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3685 /* Set XSTATE_BV and possibly XCOMP_BV. */
3686 xsave->header.xfeatures = xstate_bv;
3687 if (boot_cpu_has(X86_FEATURE_XSAVES))
3688 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3691 * Copy each region from the non-compacted offset to the
3692 * possibly compacted offset.
3694 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3696 u64 feature = valid & -valid;
3697 int index = fls64(feature) - 1;
3698 void *dest = get_xsave_addr(xsave, feature);
3701 u32 size, offset, ecx, edx;
3702 cpuid_count(XSTATE_CPUID, index,
3703 &size, &offset, &ecx, &edx);
3704 if (feature == XFEATURE_MASK_PKRU)
3705 memcpy(&vcpu->arch.pkru, src + offset,
3706 sizeof(vcpu->arch.pkru));
3708 memcpy(dest, src + offset, size);
3715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3716 struct kvm_xsave *guest_xsave)
3718 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3719 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3720 fill_xsave((u8 *) guest_xsave->region, vcpu);
3722 memcpy(guest_xsave->region,
3723 &vcpu->arch.guest_fpu.state.fxsave,
3724 sizeof(struct fxregs_state));
3725 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3726 XFEATURE_MASK_FPSSE;
3730 #define XSAVE_MXCSR_OFFSET 24
3732 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3733 struct kvm_xsave *guest_xsave)
3736 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3737 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3739 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3741 * Here we allow setting states that are not present in
3742 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3743 * with old userspace.
3745 if (xstate_bv & ~kvm_supported_xcr0() ||
3746 mxcsr & ~mxcsr_feature_mask)
3748 load_xsave(vcpu, (u8 *)guest_xsave->region);
3750 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3751 mxcsr & ~mxcsr_feature_mask)
3753 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3754 guest_xsave->region, sizeof(struct fxregs_state));
3759 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3760 struct kvm_xcrs *guest_xcrs)
3762 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3763 guest_xcrs->nr_xcrs = 0;
3767 guest_xcrs->nr_xcrs = 1;
3768 guest_xcrs->flags = 0;
3769 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3770 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3773 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3774 struct kvm_xcrs *guest_xcrs)
3778 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3781 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3784 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3785 /* Only support XCR0 currently */
3786 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3787 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3788 guest_xcrs->xcrs[i].value);
3797 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3798 * stopped by the hypervisor. This function will be called from the host only.
3799 * EINVAL is returned when the host attempts to set the flag for a guest that
3800 * does not support pv clocks.
3802 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3804 if (!vcpu->arch.pv_time_enabled)
3806 vcpu->arch.pvclock_set_guest_stopped_request = true;
3807 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3811 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3812 struct kvm_enable_cap *cap)
3815 uint16_t vmcs_version;
3816 void __user *user_ptr;
3822 case KVM_CAP_HYPERV_SYNIC2:
3825 case KVM_CAP_HYPERV_SYNIC:
3826 if (!irqchip_in_kernel(vcpu->kvm))
3828 return kvm_hv_activate_synic(vcpu, cap->cap ==
3829 KVM_CAP_HYPERV_SYNIC2);
3830 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3831 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3833 user_ptr = (void __user *)(uintptr_t)cap->args[0];
3834 if (copy_to_user(user_ptr, &vmcs_version,
3835 sizeof(vmcs_version)))
3845 long kvm_arch_vcpu_ioctl(struct file *filp,
3846 unsigned int ioctl, unsigned long arg)
3848 struct kvm_vcpu *vcpu = filp->private_data;
3849 void __user *argp = (void __user *)arg;
3852 struct kvm_lapic_state *lapic;
3853 struct kvm_xsave *xsave;
3854 struct kvm_xcrs *xcrs;
3862 case KVM_GET_LAPIC: {
3864 if (!lapic_in_kernel(vcpu))
3866 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3871 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3875 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3880 case KVM_SET_LAPIC: {
3882 if (!lapic_in_kernel(vcpu))
3884 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3885 if (IS_ERR(u.lapic)) {
3886 r = PTR_ERR(u.lapic);
3890 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3893 case KVM_INTERRUPT: {
3894 struct kvm_interrupt irq;
3897 if (copy_from_user(&irq, argp, sizeof(irq)))
3899 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3903 r = kvm_vcpu_ioctl_nmi(vcpu);
3907 r = kvm_vcpu_ioctl_smi(vcpu);
3910 case KVM_SET_CPUID: {
3911 struct kvm_cpuid __user *cpuid_arg = argp;
3912 struct kvm_cpuid cpuid;
3915 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3917 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3920 case KVM_SET_CPUID2: {
3921 struct kvm_cpuid2 __user *cpuid_arg = argp;
3922 struct kvm_cpuid2 cpuid;
3925 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3927 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3928 cpuid_arg->entries);
3931 case KVM_GET_CPUID2: {
3932 struct kvm_cpuid2 __user *cpuid_arg = argp;
3933 struct kvm_cpuid2 cpuid;
3936 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3938 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3939 cpuid_arg->entries);
3943 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3948 case KVM_GET_MSRS: {
3949 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3950 r = msr_io(vcpu, argp, do_get_msr, 1);
3951 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3954 case KVM_SET_MSRS: {
3955 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3956 r = msr_io(vcpu, argp, do_set_msr, 0);
3957 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3960 case KVM_TPR_ACCESS_REPORTING: {
3961 struct kvm_tpr_access_ctl tac;
3964 if (copy_from_user(&tac, argp, sizeof(tac)))
3966 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3970 if (copy_to_user(argp, &tac, sizeof(tac)))
3975 case KVM_SET_VAPIC_ADDR: {
3976 struct kvm_vapic_addr va;
3980 if (!lapic_in_kernel(vcpu))
3983 if (copy_from_user(&va, argp, sizeof(va)))
3985 idx = srcu_read_lock(&vcpu->kvm->srcu);
3986 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3987 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3990 case KVM_X86_SETUP_MCE: {
3994 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
3996 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3999 case KVM_X86_SET_MCE: {
4000 struct kvm_x86_mce mce;
4003 if (copy_from_user(&mce, argp, sizeof(mce)))
4005 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4008 case KVM_GET_VCPU_EVENTS: {
4009 struct kvm_vcpu_events events;
4011 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4014 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4019 case KVM_SET_VCPU_EVENTS: {
4020 struct kvm_vcpu_events events;
4023 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4026 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4029 case KVM_GET_DEBUGREGS: {
4030 struct kvm_debugregs dbgregs;
4032 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4035 if (copy_to_user(argp, &dbgregs,
4036 sizeof(struct kvm_debugregs)))
4041 case KVM_SET_DEBUGREGS: {
4042 struct kvm_debugregs dbgregs;
4045 if (copy_from_user(&dbgregs, argp,
4046 sizeof(struct kvm_debugregs)))
4049 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4052 case KVM_GET_XSAVE: {
4053 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4058 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4061 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4066 case KVM_SET_XSAVE: {
4067 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4068 if (IS_ERR(u.xsave)) {
4069 r = PTR_ERR(u.xsave);
4073 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4076 case KVM_GET_XCRS: {
4077 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4082 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4085 if (copy_to_user(argp, u.xcrs,
4086 sizeof(struct kvm_xcrs)))
4091 case KVM_SET_XCRS: {
4092 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4093 if (IS_ERR(u.xcrs)) {
4094 r = PTR_ERR(u.xcrs);
4098 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4101 case KVM_SET_TSC_KHZ: {
4105 user_tsc_khz = (u32)arg;
4107 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4110 if (user_tsc_khz == 0)
4111 user_tsc_khz = tsc_khz;
4113 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4118 case KVM_GET_TSC_KHZ: {
4119 r = vcpu->arch.virtual_tsc_khz;
4122 case KVM_KVMCLOCK_CTRL: {
4123 r = kvm_set_guest_paused(vcpu);
4126 case KVM_ENABLE_CAP: {
4127 struct kvm_enable_cap cap;
4130 if (copy_from_user(&cap, argp, sizeof(cap)))
4132 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4135 case KVM_GET_NESTED_STATE: {
4136 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4140 if (!kvm_x86_ops->get_nested_state)
4143 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4145 if (get_user(user_data_size, &user_kvm_nested_state->size))
4148 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4153 if (r > user_data_size) {
4154 if (put_user(r, &user_kvm_nested_state->size))
4164 case KVM_SET_NESTED_STATE: {
4165 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4166 struct kvm_nested_state kvm_state;
4169 if (!kvm_x86_ops->set_nested_state)
4173 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4177 if (kvm_state.size < sizeof(kvm_state))
4180 if (kvm_state.flags &
4181 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4182 | KVM_STATE_NESTED_EVMCS))
4185 /* nested_run_pending implies guest_mode. */
4186 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4187 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4190 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4203 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4205 return VM_FAULT_SIGBUS;
4208 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4212 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4214 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4218 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4221 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4224 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4225 u32 kvm_nr_mmu_pages)
4227 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4230 mutex_lock(&kvm->slots_lock);
4232 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4233 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4235 mutex_unlock(&kvm->slots_lock);
4239 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4241 return kvm->arch.n_max_mmu_pages;
4244 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4246 struct kvm_pic *pic = kvm->arch.vpic;
4250 switch (chip->chip_id) {
4251 case KVM_IRQCHIP_PIC_MASTER:
4252 memcpy(&chip->chip.pic, &pic->pics[0],
4253 sizeof(struct kvm_pic_state));
4255 case KVM_IRQCHIP_PIC_SLAVE:
4256 memcpy(&chip->chip.pic, &pic->pics[1],
4257 sizeof(struct kvm_pic_state));
4259 case KVM_IRQCHIP_IOAPIC:
4260 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4269 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4271 struct kvm_pic *pic = kvm->arch.vpic;
4275 switch (chip->chip_id) {
4276 case KVM_IRQCHIP_PIC_MASTER:
4277 spin_lock(&pic->lock);
4278 memcpy(&pic->pics[0], &chip->chip.pic,
4279 sizeof(struct kvm_pic_state));
4280 spin_unlock(&pic->lock);
4282 case KVM_IRQCHIP_PIC_SLAVE:
4283 spin_lock(&pic->lock);
4284 memcpy(&pic->pics[1], &chip->chip.pic,
4285 sizeof(struct kvm_pic_state));
4286 spin_unlock(&pic->lock);
4288 case KVM_IRQCHIP_IOAPIC:
4289 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4295 kvm_pic_update_irq(pic);
4299 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4301 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4303 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4305 mutex_lock(&kps->lock);
4306 memcpy(ps, &kps->channels, sizeof(*ps));
4307 mutex_unlock(&kps->lock);
4311 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4314 struct kvm_pit *pit = kvm->arch.vpit;
4316 mutex_lock(&pit->pit_state.lock);
4317 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4318 for (i = 0; i < 3; i++)
4319 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4320 mutex_unlock(&pit->pit_state.lock);
4324 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4326 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4327 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4328 sizeof(ps->channels));
4329 ps->flags = kvm->arch.vpit->pit_state.flags;
4330 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4331 memset(&ps->reserved, 0, sizeof(ps->reserved));
4335 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4339 u32 prev_legacy, cur_legacy;
4340 struct kvm_pit *pit = kvm->arch.vpit;
4342 mutex_lock(&pit->pit_state.lock);
4343 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4344 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4345 if (!prev_legacy && cur_legacy)
4347 memcpy(&pit->pit_state.channels, &ps->channels,
4348 sizeof(pit->pit_state.channels));
4349 pit->pit_state.flags = ps->flags;
4350 for (i = 0; i < 3; i++)
4351 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4353 mutex_unlock(&pit->pit_state.lock);
4357 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4358 struct kvm_reinject_control *control)
4360 struct kvm_pit *pit = kvm->arch.vpit;
4365 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4366 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4367 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4369 mutex_lock(&pit->pit_state.lock);
4370 kvm_pit_set_reinject(pit, control->pit_reinject);
4371 mutex_unlock(&pit->pit_state.lock);
4377 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4378 * @kvm: kvm instance
4379 * @log: slot id and address to which we copy the log
4381 * Steps 1-4 below provide general overview of dirty page logging. See
4382 * kvm_get_dirty_log_protect() function description for additional details.
4384 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4385 * always flush the TLB (step 4) even if previous step failed and the dirty
4386 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4387 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4388 * writes will be marked dirty for next log read.
4390 * 1. Take a snapshot of the bit and clear it if needed.
4391 * 2. Write protect the corresponding page.
4392 * 3. Copy the snapshot to the userspace.
4393 * 4. Flush TLB's if needed.
4395 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4397 bool is_dirty = false;
4400 mutex_lock(&kvm->slots_lock);
4403 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4405 if (kvm_x86_ops->flush_log_dirty)
4406 kvm_x86_ops->flush_log_dirty(kvm);
4408 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4411 * All the TLBs can be flushed out of mmu lock, see the comments in
4412 * kvm_mmu_slot_remove_write_access().
4414 lockdep_assert_held(&kvm->slots_lock);
4416 kvm_flush_remote_tlbs(kvm);
4418 mutex_unlock(&kvm->slots_lock);
4422 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4425 if (!irqchip_in_kernel(kvm))
4428 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4429 irq_event->irq, irq_event->level,
4434 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4435 struct kvm_enable_cap *cap)
4443 case KVM_CAP_DISABLE_QUIRKS:
4444 kvm->arch.disabled_quirks = cap->args[0];
4447 case KVM_CAP_SPLIT_IRQCHIP: {
4448 mutex_lock(&kvm->lock);
4450 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4451 goto split_irqchip_unlock;
4453 if (irqchip_in_kernel(kvm))
4454 goto split_irqchip_unlock;
4455 if (kvm->created_vcpus)
4456 goto split_irqchip_unlock;
4457 r = kvm_setup_empty_irq_routing(kvm);
4459 goto split_irqchip_unlock;
4460 /* Pairs with irqchip_in_kernel. */
4462 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4463 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4465 split_irqchip_unlock:
4466 mutex_unlock(&kvm->lock);
4469 case KVM_CAP_X2APIC_API:
4471 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4474 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4475 kvm->arch.x2apic_format = true;
4476 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4477 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4481 case KVM_CAP_X86_DISABLE_EXITS:
4483 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4486 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4487 kvm_can_mwait_in_guest())
4488 kvm->arch.mwait_in_guest = true;
4489 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4490 kvm->arch.hlt_in_guest = true;
4491 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4492 kvm->arch.pause_in_guest = true;
4495 case KVM_CAP_MSR_PLATFORM_INFO:
4496 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4499 case KVM_CAP_EXCEPTION_PAYLOAD:
4500 kvm->arch.exception_payload_enabled = cap->args[0];
4510 long kvm_arch_vm_ioctl(struct file *filp,
4511 unsigned int ioctl, unsigned long arg)
4513 struct kvm *kvm = filp->private_data;
4514 void __user *argp = (void __user *)arg;
4517 * This union makes it completely explicit to gcc-3.x
4518 * that these two variables' stack usage should be
4519 * combined, not added together.
4522 struct kvm_pit_state ps;
4523 struct kvm_pit_state2 ps2;
4524 struct kvm_pit_config pit_config;
4528 case KVM_SET_TSS_ADDR:
4529 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4531 case KVM_SET_IDENTITY_MAP_ADDR: {
4534 mutex_lock(&kvm->lock);
4536 if (kvm->created_vcpus)
4537 goto set_identity_unlock;
4539 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4540 goto set_identity_unlock;
4541 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4542 set_identity_unlock:
4543 mutex_unlock(&kvm->lock);
4546 case KVM_SET_NR_MMU_PAGES:
4547 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4549 case KVM_GET_NR_MMU_PAGES:
4550 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4552 case KVM_CREATE_IRQCHIP: {
4553 mutex_lock(&kvm->lock);
4556 if (irqchip_in_kernel(kvm))
4557 goto create_irqchip_unlock;
4560 if (kvm->created_vcpus)
4561 goto create_irqchip_unlock;
4563 r = kvm_pic_init(kvm);
4565 goto create_irqchip_unlock;
4567 r = kvm_ioapic_init(kvm);
4569 kvm_pic_destroy(kvm);
4570 goto create_irqchip_unlock;
4573 r = kvm_setup_default_irq_routing(kvm);
4575 kvm_ioapic_destroy(kvm);
4576 kvm_pic_destroy(kvm);
4577 goto create_irqchip_unlock;
4579 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4581 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4582 create_irqchip_unlock:
4583 mutex_unlock(&kvm->lock);
4586 case KVM_CREATE_PIT:
4587 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4589 case KVM_CREATE_PIT2:
4591 if (copy_from_user(&u.pit_config, argp,
4592 sizeof(struct kvm_pit_config)))
4595 mutex_lock(&kvm->lock);
4598 goto create_pit_unlock;
4600 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4604 mutex_unlock(&kvm->lock);
4606 case KVM_GET_IRQCHIP: {
4607 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4608 struct kvm_irqchip *chip;
4610 chip = memdup_user(argp, sizeof(*chip));
4617 if (!irqchip_kernel(kvm))
4618 goto get_irqchip_out;
4619 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4621 goto get_irqchip_out;
4623 if (copy_to_user(argp, chip, sizeof(*chip)))
4624 goto get_irqchip_out;
4630 case KVM_SET_IRQCHIP: {
4631 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4632 struct kvm_irqchip *chip;
4634 chip = memdup_user(argp, sizeof(*chip));
4641 if (!irqchip_kernel(kvm))
4642 goto set_irqchip_out;
4643 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4645 goto set_irqchip_out;
4653 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4656 if (!kvm->arch.vpit)
4658 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4662 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4669 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4672 if (!kvm->arch.vpit)
4674 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4677 case KVM_GET_PIT2: {
4679 if (!kvm->arch.vpit)
4681 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4685 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4690 case KVM_SET_PIT2: {
4692 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4695 if (!kvm->arch.vpit)
4697 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4700 case KVM_REINJECT_CONTROL: {
4701 struct kvm_reinject_control control;
4703 if (copy_from_user(&control, argp, sizeof(control)))
4705 r = kvm_vm_ioctl_reinject(kvm, &control);
4708 case KVM_SET_BOOT_CPU_ID:
4710 mutex_lock(&kvm->lock);
4711 if (kvm->created_vcpus)
4714 kvm->arch.bsp_vcpu_id = arg;
4715 mutex_unlock(&kvm->lock);
4717 case KVM_XEN_HVM_CONFIG: {
4718 struct kvm_xen_hvm_config xhc;
4720 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4725 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4729 case KVM_SET_CLOCK: {
4730 struct kvm_clock_data user_ns;
4734 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4743 * TODO: userspace has to take care of races with VCPU_RUN, so
4744 * kvm_gen_update_masterclock() can be cut down to locked
4745 * pvclock_update_vm_gtod_copy().
4747 kvm_gen_update_masterclock(kvm);
4748 now_ns = get_kvmclock_ns(kvm);
4749 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4750 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4753 case KVM_GET_CLOCK: {
4754 struct kvm_clock_data user_ns;
4757 now_ns = get_kvmclock_ns(kvm);
4758 user_ns.clock = now_ns;
4759 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4760 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4763 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4768 case KVM_ENABLE_CAP: {
4769 struct kvm_enable_cap cap;
4772 if (copy_from_user(&cap, argp, sizeof(cap)))
4774 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4777 case KVM_MEMORY_ENCRYPT_OP: {
4779 if (kvm_x86_ops->mem_enc_op)
4780 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4783 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4784 struct kvm_enc_region region;
4787 if (copy_from_user(®ion, argp, sizeof(region)))
4791 if (kvm_x86_ops->mem_enc_reg_region)
4792 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
4795 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4796 struct kvm_enc_region region;
4799 if (copy_from_user(®ion, argp, sizeof(region)))
4803 if (kvm_x86_ops->mem_enc_unreg_region)
4804 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
4807 case KVM_HYPERV_EVENTFD: {
4808 struct kvm_hyperv_eventfd hvevfd;
4811 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4813 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4823 static void kvm_init_msr_list(void)
4828 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4829 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4833 * Even MSRs that are valid in the host may not be exposed
4834 * to the guests in some cases.
4836 switch (msrs_to_save[i]) {
4837 case MSR_IA32_BNDCFGS:
4838 if (!kvm_mpx_supported())
4842 if (!kvm_x86_ops->rdtscp_supported())
4850 msrs_to_save[j] = msrs_to_save[i];
4853 num_msrs_to_save = j;
4855 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4856 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4860 emulated_msrs[j] = emulated_msrs[i];
4863 num_emulated_msrs = j;
4865 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4866 struct kvm_msr_entry msr;
4868 msr.index = msr_based_features[i];
4869 if (kvm_get_msr_feature(&msr))
4873 msr_based_features[j] = msr_based_features[i];
4876 num_msr_based_features = j;
4879 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4887 if (!(lapic_in_kernel(vcpu) &&
4888 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4889 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4900 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4907 if (!(lapic_in_kernel(vcpu) &&
4908 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4910 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4912 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4922 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4923 struct kvm_segment *var, int seg)
4925 kvm_x86_ops->set_segment(vcpu, var, seg);
4928 void kvm_get_segment(struct kvm_vcpu *vcpu,
4929 struct kvm_segment *var, int seg)
4931 kvm_x86_ops->get_segment(vcpu, var, seg);
4934 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4935 struct x86_exception *exception)
4939 BUG_ON(!mmu_is_nested(vcpu));
4941 /* NPT walks are always user-walks */
4942 access |= PFERR_USER_MASK;
4943 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4948 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4949 struct x86_exception *exception)
4951 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4952 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4955 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4956 struct x86_exception *exception)
4958 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4959 access |= PFERR_FETCH_MASK;
4960 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4963 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4964 struct x86_exception *exception)
4966 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4967 access |= PFERR_WRITE_MASK;
4968 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4971 /* uses this to access any guest's mapped memory without checking CPL */
4972 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4973 struct x86_exception *exception)
4975 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4978 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4979 struct kvm_vcpu *vcpu, u32 access,
4980 struct x86_exception *exception)
4983 int r = X86EMUL_CONTINUE;
4986 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4988 unsigned offset = addr & (PAGE_SIZE-1);
4989 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4992 if (gpa == UNMAPPED_GVA)
4993 return X86EMUL_PROPAGATE_FAULT;
4994 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4997 r = X86EMUL_IO_NEEDED;
5009 /* used for instruction fetching */
5010 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5011 gva_t addr, void *val, unsigned int bytes,
5012 struct x86_exception *exception)
5014 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5015 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5019 /* Inline kvm_read_guest_virt_helper for speed. */
5020 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5022 if (unlikely(gpa == UNMAPPED_GVA))
5023 return X86EMUL_PROPAGATE_FAULT;
5025 offset = addr & (PAGE_SIZE-1);
5026 if (WARN_ON(offset + bytes > PAGE_SIZE))
5027 bytes = (unsigned)PAGE_SIZE - offset;
5028 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5030 if (unlikely(ret < 0))
5031 return X86EMUL_IO_NEEDED;
5033 return X86EMUL_CONTINUE;
5036 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5037 gva_t addr, void *val, unsigned int bytes,
5038 struct x86_exception *exception)
5040 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5042 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5045 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5047 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5048 gva_t addr, void *val, unsigned int bytes,
5049 struct x86_exception *exception, bool system)
5051 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5054 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5055 access |= PFERR_USER_MASK;
5057 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5060 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5061 unsigned long addr, void *val, unsigned int bytes)
5063 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5064 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5066 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5069 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5070 struct kvm_vcpu *vcpu, u32 access,
5071 struct x86_exception *exception)
5074 int r = X86EMUL_CONTINUE;
5077 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5080 unsigned offset = addr & (PAGE_SIZE-1);
5081 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5084 if (gpa == UNMAPPED_GVA)
5085 return X86EMUL_PROPAGATE_FAULT;
5086 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5088 r = X86EMUL_IO_NEEDED;
5100 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5101 unsigned int bytes, struct x86_exception *exception,
5104 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5105 u32 access = PFERR_WRITE_MASK;
5107 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5108 access |= PFERR_USER_MASK;
5110 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5114 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5115 unsigned int bytes, struct x86_exception *exception)
5117 /* kvm_write_guest_virt_system can pull in tons of pages. */
5118 vcpu->arch.l1tf_flush_l1d = true;
5120 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5121 PFERR_WRITE_MASK, exception);
5123 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5125 int handle_ud(struct kvm_vcpu *vcpu)
5127 int emul_type = EMULTYPE_TRAP_UD;
5128 enum emulation_result er;
5129 char sig[5]; /* ud2; .ascii "kvm" */
5130 struct x86_exception e;
5132 if (force_emulation_prefix &&
5133 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5134 sig, sizeof(sig), &e) == 0 &&
5135 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5136 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5140 er = kvm_emulate_instruction(vcpu, emul_type);
5141 if (er == EMULATE_USER_EXIT)
5143 if (er != EMULATE_DONE)
5144 kvm_queue_exception(vcpu, UD_VECTOR);
5147 EXPORT_SYMBOL_GPL(handle_ud);
5149 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5150 gpa_t gpa, bool write)
5152 /* For APIC access vmexit */
5153 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5156 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5157 trace_vcpu_match_mmio(gva, gpa, write, true);
5164 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5165 gpa_t *gpa, struct x86_exception *exception,
5168 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5169 | (write ? PFERR_WRITE_MASK : 0);
5172 * currently PKRU is only applied to ept enabled guest so
5173 * there is no pkey in EPT page table for L1 guest or EPT
5174 * shadow page table for L2 guest.
5176 if (vcpu_match_mmio_gva(vcpu, gva)
5177 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5178 vcpu->arch.access, 0, access)) {
5179 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5180 (gva & (PAGE_SIZE - 1));
5181 trace_vcpu_match_mmio(gva, *gpa, write, false);
5185 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5187 if (*gpa == UNMAPPED_GVA)
5190 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5193 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5194 const void *val, int bytes)
5198 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5201 kvm_page_track_write(vcpu, gpa, val, bytes);
5205 struct read_write_emulator_ops {
5206 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5208 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5209 void *val, int bytes);
5210 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5211 int bytes, void *val);
5212 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5213 void *val, int bytes);
5217 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5219 if (vcpu->mmio_read_completed) {
5220 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5221 vcpu->mmio_fragments[0].gpa, val);
5222 vcpu->mmio_read_completed = 0;
5229 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5230 void *val, int bytes)
5232 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5235 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5236 void *val, int bytes)
5238 return emulator_write_phys(vcpu, gpa, val, bytes);
5241 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5243 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5244 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5247 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5248 void *val, int bytes)
5250 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5251 return X86EMUL_IO_NEEDED;
5254 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5255 void *val, int bytes)
5257 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5259 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5260 return X86EMUL_CONTINUE;
5263 static const struct read_write_emulator_ops read_emultor = {
5264 .read_write_prepare = read_prepare,
5265 .read_write_emulate = read_emulate,
5266 .read_write_mmio = vcpu_mmio_read,
5267 .read_write_exit_mmio = read_exit_mmio,
5270 static const struct read_write_emulator_ops write_emultor = {
5271 .read_write_emulate = write_emulate,
5272 .read_write_mmio = write_mmio,
5273 .read_write_exit_mmio = write_exit_mmio,
5277 static int emulator_read_write_onepage(unsigned long addr, void *val,
5279 struct x86_exception *exception,
5280 struct kvm_vcpu *vcpu,
5281 const struct read_write_emulator_ops *ops)
5285 bool write = ops->write;
5286 struct kvm_mmio_fragment *frag;
5287 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5290 * If the exit was due to a NPF we may already have a GPA.
5291 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5292 * Note, this cannot be used on string operations since string
5293 * operation using rep will only have the initial GPA from the NPF
5296 if (vcpu->arch.gpa_available &&
5297 emulator_can_use_gpa(ctxt) &&
5298 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5299 gpa = vcpu->arch.gpa_val;
5300 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5302 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5304 return X86EMUL_PROPAGATE_FAULT;
5307 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5308 return X86EMUL_CONTINUE;
5311 * Is this MMIO handled locally?
5313 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5314 if (handled == bytes)
5315 return X86EMUL_CONTINUE;
5321 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5322 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5326 return X86EMUL_CONTINUE;
5329 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5331 void *val, unsigned int bytes,
5332 struct x86_exception *exception,
5333 const struct read_write_emulator_ops *ops)
5335 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5339 if (ops->read_write_prepare &&
5340 ops->read_write_prepare(vcpu, val, bytes))
5341 return X86EMUL_CONTINUE;
5343 vcpu->mmio_nr_fragments = 0;
5345 /* Crossing a page boundary? */
5346 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5349 now = -addr & ~PAGE_MASK;
5350 rc = emulator_read_write_onepage(addr, val, now, exception,
5353 if (rc != X86EMUL_CONTINUE)
5356 if (ctxt->mode != X86EMUL_MODE_PROT64)
5362 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5364 if (rc != X86EMUL_CONTINUE)
5367 if (!vcpu->mmio_nr_fragments)
5370 gpa = vcpu->mmio_fragments[0].gpa;
5372 vcpu->mmio_needed = 1;
5373 vcpu->mmio_cur_fragment = 0;
5375 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5376 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5377 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5378 vcpu->run->mmio.phys_addr = gpa;
5380 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5383 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5387 struct x86_exception *exception)
5389 return emulator_read_write(ctxt, addr, val, bytes,
5390 exception, &read_emultor);
5393 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5397 struct x86_exception *exception)
5399 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5400 exception, &write_emultor);
5403 #define CMPXCHG_TYPE(t, ptr, old, new) \
5404 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5406 #ifdef CONFIG_X86_64
5407 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5409 # define CMPXCHG64(ptr, old, new) \
5410 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5413 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5418 struct x86_exception *exception)
5420 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426 /* guests cmpxchg8b have to be emulated atomically */
5427 if (bytes > 8 || (bytes & (bytes - 1)))
5430 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5432 if (gpa == UNMAPPED_GVA ||
5433 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5436 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5439 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5440 if (is_error_page(page))
5443 kaddr = kmap_atomic(page);
5444 kaddr += offset_in_page(gpa);
5447 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5450 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5453 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5456 exchanged = CMPXCHG64(kaddr, old, new);
5461 kunmap_atomic(kaddr);
5462 kvm_release_page_dirty(page);
5465 return X86EMUL_CMPXCHG_FAILED;
5467 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5468 kvm_page_track_write(vcpu, gpa, new, bytes);
5470 return X86EMUL_CONTINUE;
5473 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5475 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5478 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5482 for (i = 0; i < vcpu->arch.pio.count; i++) {
5483 if (vcpu->arch.pio.in)
5484 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5485 vcpu->arch.pio.size, pd);
5487 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5488 vcpu->arch.pio.port, vcpu->arch.pio.size,
5492 pd += vcpu->arch.pio.size;
5497 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5498 unsigned short port, void *val,
5499 unsigned int count, bool in)
5501 vcpu->arch.pio.port = port;
5502 vcpu->arch.pio.in = in;
5503 vcpu->arch.pio.count = count;
5504 vcpu->arch.pio.size = size;
5506 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5507 vcpu->arch.pio.count = 0;
5511 vcpu->run->exit_reason = KVM_EXIT_IO;
5512 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5513 vcpu->run->io.size = size;
5514 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5515 vcpu->run->io.count = count;
5516 vcpu->run->io.port = port;
5521 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5522 int size, unsigned short port, void *val,
5525 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5528 if (vcpu->arch.pio.count)
5531 memset(vcpu->arch.pio_data, 0, size * count);
5533 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5536 memcpy(val, vcpu->arch.pio_data, size * count);
5537 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5538 vcpu->arch.pio.count = 0;
5545 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5546 int size, unsigned short port,
5547 const void *val, unsigned int count)
5549 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5551 memcpy(vcpu->arch.pio_data, val, size * count);
5552 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5553 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5556 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5558 return kvm_x86_ops->get_segment_base(vcpu, seg);
5561 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5563 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5566 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5568 if (!need_emulate_wbinvd(vcpu))
5569 return X86EMUL_CONTINUE;
5571 if (kvm_x86_ops->has_wbinvd_exit()) {
5572 int cpu = get_cpu();
5574 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5575 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5576 wbinvd_ipi, NULL, 1);
5578 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5581 return X86EMUL_CONTINUE;
5584 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5586 kvm_emulate_wbinvd_noskip(vcpu);
5587 return kvm_skip_emulated_instruction(vcpu);
5589 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5593 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5595 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5598 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5599 unsigned long *dest)
5601 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5604 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5605 unsigned long value)
5608 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5611 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5613 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5616 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5618 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5619 unsigned long value;
5623 value = kvm_read_cr0(vcpu);
5626 value = vcpu->arch.cr2;
5629 value = kvm_read_cr3(vcpu);
5632 value = kvm_read_cr4(vcpu);
5635 value = kvm_get_cr8(vcpu);
5638 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5645 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5647 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5652 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5655 vcpu->arch.cr2 = val;
5658 res = kvm_set_cr3(vcpu, val);
5661 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5664 res = kvm_set_cr8(vcpu, val);
5667 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5674 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5676 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5679 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5681 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5684 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5686 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5689 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5691 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5694 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5696 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5699 static unsigned long emulator_get_cached_segment_base(
5700 struct x86_emulate_ctxt *ctxt, int seg)
5702 return get_segment_base(emul_to_vcpu(ctxt), seg);
5705 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5706 struct desc_struct *desc, u32 *base3,
5709 struct kvm_segment var;
5711 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5712 *selector = var.selector;
5715 memset(desc, 0, sizeof(*desc));
5723 set_desc_limit(desc, var.limit);
5724 set_desc_base(desc, (unsigned long)var.base);
5725 #ifdef CONFIG_X86_64
5727 *base3 = var.base >> 32;
5729 desc->type = var.type;
5731 desc->dpl = var.dpl;
5732 desc->p = var.present;
5733 desc->avl = var.avl;
5741 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5742 struct desc_struct *desc, u32 base3,
5745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5746 struct kvm_segment var;
5748 var.selector = selector;
5749 var.base = get_desc_base(desc);
5750 #ifdef CONFIG_X86_64
5751 var.base |= ((u64)base3) << 32;
5753 var.limit = get_desc_limit(desc);
5755 var.limit = (var.limit << 12) | 0xfff;
5756 var.type = desc->type;
5757 var.dpl = desc->dpl;
5762 var.avl = desc->avl;
5763 var.present = desc->p;
5764 var.unusable = !var.present;
5767 kvm_set_segment(vcpu, &var, seg);
5771 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5772 u32 msr_index, u64 *pdata)
5774 struct msr_data msr;
5777 msr.index = msr_index;
5778 msr.host_initiated = false;
5779 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5787 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5788 u32 msr_index, u64 data)
5790 struct msr_data msr;
5793 msr.index = msr_index;
5794 msr.host_initiated = false;
5795 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5798 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5800 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5802 return vcpu->arch.smbase;
5805 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5807 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5809 vcpu->arch.smbase = smbase;
5812 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5815 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5818 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5819 u32 pmc, u64 *pdata)
5821 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5824 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5826 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5829 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5830 struct x86_instruction_info *info,
5831 enum x86_intercept_stage stage)
5833 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5836 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5837 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5839 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5842 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5844 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5847 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5849 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5852 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5854 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5857 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5859 return emul_to_vcpu(ctxt)->arch.hflags;
5862 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5864 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5867 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5869 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5872 static const struct x86_emulate_ops emulate_ops = {
5873 .read_gpr = emulator_read_gpr,
5874 .write_gpr = emulator_write_gpr,
5875 .read_std = emulator_read_std,
5876 .write_std = emulator_write_std,
5877 .read_phys = kvm_read_guest_phys_system,
5878 .fetch = kvm_fetch_guest_virt,
5879 .read_emulated = emulator_read_emulated,
5880 .write_emulated = emulator_write_emulated,
5881 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5882 .invlpg = emulator_invlpg,
5883 .pio_in_emulated = emulator_pio_in_emulated,
5884 .pio_out_emulated = emulator_pio_out_emulated,
5885 .get_segment = emulator_get_segment,
5886 .set_segment = emulator_set_segment,
5887 .get_cached_segment_base = emulator_get_cached_segment_base,
5888 .get_gdt = emulator_get_gdt,
5889 .get_idt = emulator_get_idt,
5890 .set_gdt = emulator_set_gdt,
5891 .set_idt = emulator_set_idt,
5892 .get_cr = emulator_get_cr,
5893 .set_cr = emulator_set_cr,
5894 .cpl = emulator_get_cpl,
5895 .get_dr = emulator_get_dr,
5896 .set_dr = emulator_set_dr,
5897 .get_smbase = emulator_get_smbase,
5898 .set_smbase = emulator_set_smbase,
5899 .set_msr = emulator_set_msr,
5900 .get_msr = emulator_get_msr,
5901 .check_pmc = emulator_check_pmc,
5902 .read_pmc = emulator_read_pmc,
5903 .halt = emulator_halt,
5904 .wbinvd = emulator_wbinvd,
5905 .fix_hypercall = emulator_fix_hypercall,
5906 .intercept = emulator_intercept,
5907 .get_cpuid = emulator_get_cpuid,
5908 .set_nmi_mask = emulator_set_nmi_mask,
5909 .get_hflags = emulator_get_hflags,
5910 .set_hflags = emulator_set_hflags,
5911 .pre_leave_smm = emulator_pre_leave_smm,
5914 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5916 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5918 * an sti; sti; sequence only disable interrupts for the first
5919 * instruction. So, if the last instruction, be it emulated or
5920 * not, left the system with the INT_STI flag enabled, it
5921 * means that the last instruction is an sti. We should not
5922 * leave the flag on in this case. The same goes for mov ss
5924 if (int_shadow & mask)
5926 if (unlikely(int_shadow || mask)) {
5927 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5929 kvm_make_request(KVM_REQ_EVENT, vcpu);
5933 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5935 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5936 if (ctxt->exception.vector == PF_VECTOR)
5937 return kvm_propagate_fault(vcpu, &ctxt->exception);
5939 if (ctxt->exception.error_code_valid)
5940 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5941 ctxt->exception.error_code);
5943 kvm_queue_exception(vcpu, ctxt->exception.vector);
5947 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5949 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5952 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5954 ctxt->eflags = kvm_get_rflags(vcpu);
5955 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5957 ctxt->eip = kvm_rip_read(vcpu);
5958 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5959 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5960 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5961 cs_db ? X86EMUL_MODE_PROT32 :
5962 X86EMUL_MODE_PROT16;
5963 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5964 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5965 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5967 init_decode_cache(ctxt);
5968 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5971 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5973 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5976 init_emulate_ctxt(vcpu);
5980 ctxt->_eip = ctxt->eip + inc_eip;
5981 ret = emulate_int_real(ctxt, irq);
5983 if (ret != X86EMUL_CONTINUE)
5984 return EMULATE_FAIL;
5986 ctxt->eip = ctxt->_eip;
5987 kvm_rip_write(vcpu, ctxt->eip);
5988 kvm_set_rflags(vcpu, ctxt->eflags);
5990 return EMULATE_DONE;
5992 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5994 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5996 int r = EMULATE_DONE;
5998 ++vcpu->stat.insn_emulation_fail;
5999 trace_kvm_emulate_insn_failed(vcpu);
6001 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6002 return EMULATE_FAIL;
6004 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6005 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6006 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6007 vcpu->run->internal.ndata = 0;
6008 r = EMULATE_USER_EXIT;
6011 kvm_queue_exception(vcpu, UD_VECTOR);
6016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6017 bool write_fault_to_shadow_pgtable,
6023 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6026 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6029 if (!vcpu->arch.mmu->direct_map) {
6031 * Write permission should be allowed since only
6032 * write access need to be emulated.
6034 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6037 * If the mapping is invalid in guest, let cpu retry
6038 * it to generate fault.
6040 if (gpa == UNMAPPED_GVA)
6045 * Do not retry the unhandleable instruction if it faults on the
6046 * readonly host memory, otherwise it will goto a infinite loop:
6047 * retry instruction -> write #PF -> emulation fail -> retry
6048 * instruction -> ...
6050 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6053 * If the instruction failed on the error pfn, it can not be fixed,
6054 * report the error to userspace.
6056 if (is_error_noslot_pfn(pfn))
6059 kvm_release_pfn_clean(pfn);
6061 /* The instructions are well-emulated on direct mmu. */
6062 if (vcpu->arch.mmu->direct_map) {
6063 unsigned int indirect_shadow_pages;
6065 spin_lock(&vcpu->kvm->mmu_lock);
6066 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6067 spin_unlock(&vcpu->kvm->mmu_lock);
6069 if (indirect_shadow_pages)
6070 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6076 * if emulation was due to access to shadowed page table
6077 * and it failed try to unshadow page and re-enter the
6078 * guest to let CPU execute the instruction.
6080 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6083 * If the access faults on its page table, it can not
6084 * be fixed by unprotecting shadow page and it should
6085 * be reported to userspace.
6087 return !write_fault_to_shadow_pgtable;
6090 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6091 unsigned long cr2, int emulation_type)
6093 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6094 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6096 last_retry_eip = vcpu->arch.last_retry_eip;
6097 last_retry_addr = vcpu->arch.last_retry_addr;
6100 * If the emulation is caused by #PF and it is non-page_table
6101 * writing instruction, it means the VM-EXIT is caused by shadow
6102 * page protected, we can zap the shadow page and retry this
6103 * instruction directly.
6105 * Note: if the guest uses a non-page-table modifying instruction
6106 * on the PDE that points to the instruction, then we will unmap
6107 * the instruction and go to an infinite loop. So, we cache the
6108 * last retried eip and the last fault address, if we meet the eip
6109 * and the address again, we can break out of the potential infinite
6112 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6114 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6117 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6120 if (x86_page_table_writing_insn(ctxt))
6123 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6126 vcpu->arch.last_retry_eip = ctxt->eip;
6127 vcpu->arch.last_retry_addr = cr2;
6129 if (!vcpu->arch.mmu->direct_map)
6130 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6132 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6137 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6138 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6140 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6142 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6143 /* This is a good place to trace that we are exiting SMM. */
6144 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6146 /* Process a latched INIT or SMI, if any. */
6147 kvm_make_request(KVM_REQ_EVENT, vcpu);
6150 kvm_mmu_reset_context(vcpu);
6153 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6155 unsigned changed = vcpu->arch.hflags ^ emul_flags;
6157 vcpu->arch.hflags = emul_flags;
6159 if (changed & HF_SMM_MASK)
6160 kvm_smm_changed(vcpu);
6163 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6172 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6173 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6178 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6180 struct kvm_run *kvm_run = vcpu->run;
6182 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6183 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6184 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6185 kvm_run->debug.arch.exception = DB_VECTOR;
6186 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6187 *r = EMULATE_USER_EXIT;
6189 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6193 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6195 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6196 int r = EMULATE_DONE;
6198 kvm_x86_ops->skip_emulated_instruction(vcpu);
6201 * rflags is the old, "raw" value of the flags. The new value has
6202 * not been saved yet.
6204 * This is correct even for TF set by the guest, because "the
6205 * processor will not generate this exception after the instruction
6206 * that sets the TF flag".
6208 if (unlikely(rflags & X86_EFLAGS_TF))
6209 kvm_vcpu_do_singlestep(vcpu, &r);
6210 return r == EMULATE_DONE;
6212 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6214 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6216 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6217 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6218 struct kvm_run *kvm_run = vcpu->run;
6219 unsigned long eip = kvm_get_linear_rip(vcpu);
6220 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6221 vcpu->arch.guest_debug_dr7,
6225 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6226 kvm_run->debug.arch.pc = eip;
6227 kvm_run->debug.arch.exception = DB_VECTOR;
6228 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6229 *r = EMULATE_USER_EXIT;
6234 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6235 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6236 unsigned long eip = kvm_get_linear_rip(vcpu);
6237 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6242 vcpu->arch.dr6 &= ~15;
6243 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6244 kvm_queue_exception(vcpu, DB_VECTOR);
6253 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6255 switch (ctxt->opcode_len) {
6262 case 0xe6: /* OUT */
6266 case 0x6c: /* INS */
6268 case 0x6e: /* OUTS */
6275 case 0x33: /* RDPMC */
6284 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6291 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6292 bool writeback = true;
6293 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6295 vcpu->arch.l1tf_flush_l1d = true;
6298 * Clear write_fault_to_shadow_pgtable here to ensure it is
6301 vcpu->arch.write_fault_to_shadow_pgtable = false;
6302 kvm_clear_exception_queue(vcpu);
6304 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6305 init_emulate_ctxt(vcpu);
6308 * We will reenter on the same instruction since
6309 * we do not set complete_userspace_io. This does not
6310 * handle watchpoints yet, those would be handled in
6313 if (!(emulation_type & EMULTYPE_SKIP) &&
6314 kvm_vcpu_check_breakpoint(vcpu, &r))
6317 ctxt->interruptibility = 0;
6318 ctxt->have_exception = false;
6319 ctxt->exception.vector = -1;
6320 ctxt->perm_ok = false;
6322 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6324 r = x86_decode_insn(ctxt, insn, insn_len);
6326 trace_kvm_emulate_insn_start(vcpu);
6327 ++vcpu->stat.insn_emulation;
6328 if (r != EMULATION_OK) {
6329 if (emulation_type & EMULTYPE_TRAP_UD)
6330 return EMULATE_FAIL;
6331 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6333 return EMULATE_DONE;
6334 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6335 return EMULATE_DONE;
6336 if (emulation_type & EMULTYPE_SKIP)
6337 return EMULATE_FAIL;
6338 return handle_emulation_failure(vcpu, emulation_type);
6342 if ((emulation_type & EMULTYPE_VMWARE) &&
6343 !is_vmware_backdoor_opcode(ctxt))
6344 return EMULATE_FAIL;
6346 if (emulation_type & EMULTYPE_SKIP) {
6347 kvm_rip_write(vcpu, ctxt->_eip);
6348 if (ctxt->eflags & X86_EFLAGS_RF)
6349 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6350 return EMULATE_DONE;
6353 if (retry_instruction(ctxt, cr2, emulation_type))
6354 return EMULATE_DONE;
6356 /* this is needed for vmware backdoor interface to work since it
6357 changes registers values during IO operation */
6358 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6359 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6360 emulator_invalidate_register_cache(ctxt);
6364 /* Save the faulting GPA (cr2) in the address field */
6365 ctxt->exception.address = cr2;
6367 r = x86_emulate_insn(ctxt);
6369 if (r == EMULATION_INTERCEPTED)
6370 return EMULATE_DONE;
6372 if (r == EMULATION_FAILED) {
6373 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6375 return EMULATE_DONE;
6377 return handle_emulation_failure(vcpu, emulation_type);
6380 if (ctxt->have_exception) {
6382 if (inject_emulated_exception(vcpu))
6384 } else if (vcpu->arch.pio.count) {
6385 if (!vcpu->arch.pio.in) {
6386 /* FIXME: return into emulator if single-stepping. */
6387 vcpu->arch.pio.count = 0;
6390 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6392 r = EMULATE_USER_EXIT;
6393 } else if (vcpu->mmio_needed) {
6394 if (!vcpu->mmio_is_write)
6396 r = EMULATE_USER_EXIT;
6397 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6398 } else if (r == EMULATION_RESTART)
6404 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6405 toggle_interruptibility(vcpu, ctxt->interruptibility);
6406 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6407 kvm_rip_write(vcpu, ctxt->eip);
6408 if (r == EMULATE_DONE &&
6409 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6410 kvm_vcpu_do_singlestep(vcpu, &r);
6411 if (!ctxt->have_exception ||
6412 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6413 __kvm_set_rflags(vcpu, ctxt->eflags);
6416 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6417 * do nothing, and it will be requested again as soon as
6418 * the shadow expires. But we still need to check here,
6419 * because POPF has no interrupt shadow.
6421 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6422 kvm_make_request(KVM_REQ_EVENT, vcpu);
6424 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6429 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6431 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6433 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6435 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6436 void *insn, int insn_len)
6438 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6440 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6442 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6443 unsigned short port)
6445 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6446 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6447 size, port, &val, 1);
6448 /* do not return to emulator after return from userspace */
6449 vcpu->arch.pio.count = 0;
6453 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6457 /* We should only ever be called with arch.pio.count equal to 1 */
6458 BUG_ON(vcpu->arch.pio.count != 1);
6460 /* For size less than 4 we merge, else we zero extend */
6461 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6465 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6466 * the copy and tracing
6468 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6469 vcpu->arch.pio.port, &val, 1);
6470 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6475 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6476 unsigned short port)
6481 /* For size less than 4 we merge, else we zero extend */
6482 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6484 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6487 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6491 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6496 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6498 int ret = kvm_skip_emulated_instruction(vcpu);
6501 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6502 * KVM_EXIT_DEBUG here.
6505 return kvm_fast_pio_in(vcpu, size, port) && ret;
6507 return kvm_fast_pio_out(vcpu, size, port) && ret;
6509 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6511 static int kvmclock_cpu_down_prep(unsigned int cpu)
6513 __this_cpu_write(cpu_tsc_khz, 0);
6517 static void tsc_khz_changed(void *data)
6519 struct cpufreq_freqs *freq = data;
6520 unsigned long khz = 0;
6524 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6525 khz = cpufreq_quick_get(raw_smp_processor_id());
6528 __this_cpu_write(cpu_tsc_khz, khz);
6531 #ifdef CONFIG_X86_64
6532 static void kvm_hyperv_tsc_notifier(void)
6535 struct kvm_vcpu *vcpu;
6538 spin_lock(&kvm_lock);
6539 list_for_each_entry(kvm, &vm_list, vm_list)
6540 kvm_make_mclock_inprogress_request(kvm);
6542 hyperv_stop_tsc_emulation();
6544 /* TSC frequency always matches when on Hyper-V */
6545 for_each_present_cpu(cpu)
6546 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6547 kvm_max_guest_tsc_khz = tsc_khz;
6549 list_for_each_entry(kvm, &vm_list, vm_list) {
6550 struct kvm_arch *ka = &kvm->arch;
6552 spin_lock(&ka->pvclock_gtod_sync_lock);
6554 pvclock_update_vm_gtod_copy(kvm);
6556 kvm_for_each_vcpu(cpu, vcpu, kvm)
6557 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6559 kvm_for_each_vcpu(cpu, vcpu, kvm)
6560 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6562 spin_unlock(&ka->pvclock_gtod_sync_lock);
6564 spin_unlock(&kvm_lock);
6568 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6571 struct cpufreq_freqs *freq = data;
6573 struct kvm_vcpu *vcpu;
6574 int i, send_ipi = 0;
6577 * We allow guests to temporarily run on slowing clocks,
6578 * provided we notify them after, or to run on accelerating
6579 * clocks, provided we notify them before. Thus time never
6582 * However, we have a problem. We can't atomically update
6583 * the frequency of a given CPU from this function; it is
6584 * merely a notifier, which can be called from any CPU.
6585 * Changing the TSC frequency at arbitrary points in time
6586 * requires a recomputation of local variables related to
6587 * the TSC for each VCPU. We must flag these local variables
6588 * to be updated and be sure the update takes place with the
6589 * new frequency before any guests proceed.
6591 * Unfortunately, the combination of hotplug CPU and frequency
6592 * change creates an intractable locking scenario; the order
6593 * of when these callouts happen is undefined with respect to
6594 * CPU hotplug, and they can race with each other. As such,
6595 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6596 * undefined; you can actually have a CPU frequency change take
6597 * place in between the computation of X and the setting of the
6598 * variable. To protect against this problem, all updates of
6599 * the per_cpu tsc_khz variable are done in an interrupt
6600 * protected IPI, and all callers wishing to update the value
6601 * must wait for a synchronous IPI to complete (which is trivial
6602 * if the caller is on the CPU already). This establishes the
6603 * necessary total order on variable updates.
6605 * Note that because a guest time update may take place
6606 * anytime after the setting of the VCPU's request bit, the
6607 * correct TSC value must be set before the request. However,
6608 * to ensure the update actually makes it to any guest which
6609 * starts running in hardware virtualization between the set
6610 * and the acquisition of the spinlock, we must also ping the
6611 * CPU after setting the request bit.
6615 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6617 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6620 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6622 spin_lock(&kvm_lock);
6623 list_for_each_entry(kvm, &vm_list, vm_list) {
6624 kvm_for_each_vcpu(i, vcpu, kvm) {
6625 if (vcpu->cpu != freq->cpu)
6627 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6628 if (vcpu->cpu != smp_processor_id())
6632 spin_unlock(&kvm_lock);
6634 if (freq->old < freq->new && send_ipi) {
6636 * We upscale the frequency. Must make the guest
6637 * doesn't see old kvmclock values while running with
6638 * the new frequency, otherwise we risk the guest sees
6639 * time go backwards.
6641 * In case we update the frequency for another cpu
6642 * (which might be in guest context) send an interrupt
6643 * to kick the cpu out of guest context. Next time
6644 * guest context is entered kvmclock will be updated,
6645 * so the guest will not see stale values.
6647 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6652 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6653 .notifier_call = kvmclock_cpufreq_notifier
6656 static int kvmclock_cpu_online(unsigned int cpu)
6658 tsc_khz_changed(NULL);
6662 static void kvm_timer_init(void)
6664 max_tsc_khz = tsc_khz;
6666 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6667 #ifdef CONFIG_CPU_FREQ
6668 struct cpufreq_policy policy;
6671 memset(&policy, 0, sizeof(policy));
6673 cpufreq_get_policy(&policy, cpu);
6674 if (policy.cpuinfo.max_freq)
6675 max_tsc_khz = policy.cpuinfo.max_freq;
6678 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6679 CPUFREQ_TRANSITION_NOTIFIER);
6681 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6683 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6684 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6687 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6688 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6690 int kvm_is_in_guest(void)
6692 return __this_cpu_read(current_vcpu) != NULL;
6695 static int kvm_is_user_mode(void)
6699 if (__this_cpu_read(current_vcpu))
6700 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6702 return user_mode != 0;
6705 static unsigned long kvm_get_guest_ip(void)
6707 unsigned long ip = 0;
6709 if (__this_cpu_read(current_vcpu))
6710 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6715 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6716 .is_in_guest = kvm_is_in_guest,
6717 .is_user_mode = kvm_is_user_mode,
6718 .get_guest_ip = kvm_get_guest_ip,
6721 static void kvm_set_mmio_spte_mask(void)
6724 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6727 * Set the reserved bits and the present bit of an paging-structure
6728 * entry to generate page fault with PFER.RSV = 1.
6732 * Mask the uppermost physical address bit, which would be reserved as
6733 * long as the supported physical address width is less than 52.
6737 /* Set the present bit. */
6741 * If reserved bit is not supported, clear the present bit to disable
6744 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6747 kvm_mmu_set_mmio_spte_mask(mask, mask);
6750 #ifdef CONFIG_X86_64
6751 static void pvclock_gtod_update_fn(struct work_struct *work)
6755 struct kvm_vcpu *vcpu;
6758 spin_lock(&kvm_lock);
6759 list_for_each_entry(kvm, &vm_list, vm_list)
6760 kvm_for_each_vcpu(i, vcpu, kvm)
6761 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6762 atomic_set(&kvm_guest_has_master_clock, 0);
6763 spin_unlock(&kvm_lock);
6766 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6769 * Notification about pvclock gtod data update.
6771 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6774 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6775 struct timekeeper *tk = priv;
6777 update_pvclock_gtod(tk);
6779 /* disable master clock if host does not trust, or does not
6780 * use, TSC based clocksource.
6782 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6783 atomic_read(&kvm_guest_has_master_clock) != 0)
6784 queue_work(system_long_wq, &pvclock_gtod_work);
6789 static struct notifier_block pvclock_gtod_notifier = {
6790 .notifier_call = pvclock_gtod_notify,
6794 int kvm_arch_init(void *opaque)
6797 struct kvm_x86_ops *ops = opaque;
6800 printk(KERN_ERR "kvm: already loaded the other module\n");
6805 if (!ops->cpu_has_kvm_support()) {
6806 printk(KERN_ERR "kvm: no hardware support\n");
6810 if (ops->disabled_by_bios()) {
6811 printk(KERN_ERR "kvm: disabled by bios\n");
6817 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6819 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6823 r = kvm_mmu_module_init();
6825 goto out_free_percpu;
6827 kvm_set_mmio_spte_mask();
6831 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6832 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6833 PT_PRESENT_MASK, 0, sme_me_mask);
6836 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6838 if (boot_cpu_has(X86_FEATURE_XSAVE))
6839 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6842 #ifdef CONFIG_X86_64
6843 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6845 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6846 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6852 free_percpu(shared_msrs);
6857 void kvm_arch_exit(void)
6859 #ifdef CONFIG_X86_64
6860 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6861 clear_hv_tscchange_cb();
6864 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6866 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6867 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6868 CPUFREQ_TRANSITION_NOTIFIER);
6869 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6870 #ifdef CONFIG_X86_64
6871 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6874 kvm_mmu_module_exit();
6875 free_percpu(shared_msrs);
6878 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6880 ++vcpu->stat.halt_exits;
6881 if (lapic_in_kernel(vcpu)) {
6882 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6885 vcpu->run->exit_reason = KVM_EXIT_HLT;
6889 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6891 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6893 int ret = kvm_skip_emulated_instruction(vcpu);
6895 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6896 * KVM_EXIT_DEBUG here.
6898 return kvm_vcpu_halt(vcpu) && ret;
6900 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6902 #ifdef CONFIG_X86_64
6903 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6904 unsigned long clock_type)
6906 struct kvm_clock_pairing clock_pairing;
6907 struct timespec64 ts;
6911 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6912 return -KVM_EOPNOTSUPP;
6914 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6915 return -KVM_EOPNOTSUPP;
6917 clock_pairing.sec = ts.tv_sec;
6918 clock_pairing.nsec = ts.tv_nsec;
6919 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6920 clock_pairing.flags = 0;
6923 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6924 sizeof(struct kvm_clock_pairing)))
6932 * kvm_pv_kick_cpu_op: Kick a vcpu.
6934 * @apicid - apicid of vcpu to be kicked.
6936 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6938 struct kvm_lapic_irq lapic_irq;
6940 lapic_irq.shorthand = 0;
6941 lapic_irq.dest_mode = 0;
6942 lapic_irq.level = 0;
6943 lapic_irq.dest_id = apicid;
6944 lapic_irq.msi_redir_hint = false;
6946 lapic_irq.delivery_mode = APIC_DM_REMRD;
6947 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6950 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6952 vcpu->arch.apicv_active = false;
6953 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6956 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6958 unsigned long nr, a0, a1, a2, a3, ret;
6961 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6962 return kvm_hv_hypercall(vcpu);
6964 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6965 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6966 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6967 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6968 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6970 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6972 op_64_bit = is_64_bit_mode(vcpu);
6981 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6987 case KVM_HC_VAPIC_POLL_IRQ:
6990 case KVM_HC_KICK_CPU:
6991 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6994 #ifdef CONFIG_X86_64
6995 case KVM_HC_CLOCK_PAIRING:
6996 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6998 case KVM_HC_SEND_IPI:
6999 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7009 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7011 ++vcpu->stat.hypercalls;
7012 return kvm_skip_emulated_instruction(vcpu);
7014 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7016 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7018 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7019 char instruction[3];
7020 unsigned long rip = kvm_rip_read(vcpu);
7022 kvm_x86_ops->patch_hypercall(vcpu, instruction);
7024 return emulator_write_emulated(ctxt, rip, instruction, 3,
7028 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7030 return vcpu->run->request_interrupt_window &&
7031 likely(!pic_in_kernel(vcpu->kvm));
7034 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7036 struct kvm_run *kvm_run = vcpu->run;
7038 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7039 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7040 kvm_run->cr8 = kvm_get_cr8(vcpu);
7041 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7042 kvm_run->ready_for_interrupt_injection =
7043 pic_in_kernel(vcpu->kvm) ||
7044 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7047 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7051 if (!kvm_x86_ops->update_cr8_intercept)
7054 if (!lapic_in_kernel(vcpu))
7057 if (vcpu->arch.apicv_active)
7060 if (!vcpu->arch.apic->vapic_addr)
7061 max_irr = kvm_lapic_find_highest_irr(vcpu);
7068 tpr = kvm_lapic_get_cr8(vcpu);
7070 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7073 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7077 /* try to reinject previous events if any */
7079 if (vcpu->arch.exception.injected)
7080 kvm_x86_ops->queue_exception(vcpu);
7082 * Do not inject an NMI or interrupt if there is a pending
7083 * exception. Exceptions and interrupts are recognized at
7084 * instruction boundaries, i.e. the start of an instruction.
7085 * Trap-like exceptions, e.g. #DB, have higher priority than
7086 * NMIs and interrupts, i.e. traps are recognized before an
7087 * NMI/interrupt that's pending on the same instruction.
7088 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7089 * priority, but are only generated (pended) during instruction
7090 * execution, i.e. a pending fault-like exception means the
7091 * fault occurred on the *previous* instruction and must be
7092 * serviced prior to recognizing any new events in order to
7093 * fully complete the previous instruction.
7095 else if (!vcpu->arch.exception.pending) {
7096 if (vcpu->arch.nmi_injected)
7097 kvm_x86_ops->set_nmi(vcpu);
7098 else if (vcpu->arch.interrupt.injected)
7099 kvm_x86_ops->set_irq(vcpu);
7103 * Call check_nested_events() even if we reinjected a previous event
7104 * in order for caller to determine if it should require immediate-exit
7105 * from L2 to L1 due to pending L1 events which require exit
7108 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7109 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7114 /* try to inject new event if pending */
7115 if (vcpu->arch.exception.pending) {
7116 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7117 vcpu->arch.exception.has_error_code,
7118 vcpu->arch.exception.error_code);
7120 WARN_ON_ONCE(vcpu->arch.exception.injected);
7121 vcpu->arch.exception.pending = false;
7122 vcpu->arch.exception.injected = true;
7124 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7125 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7128 if (vcpu->arch.exception.nr == DB_VECTOR) {
7130 * This code assumes that nSVM doesn't use
7131 * check_nested_events(). If it does, the
7132 * DR6/DR7 changes should happen before L1
7133 * gets a #VMEXIT for an intercepted #DB in
7134 * L2. (Under VMX, on the other hand, the
7135 * DR6/DR7 changes should not happen in the
7136 * event of a VM-exit to L1 for an intercepted
7139 kvm_deliver_exception_payload(vcpu);
7140 if (vcpu->arch.dr7 & DR7_GD) {
7141 vcpu->arch.dr7 &= ~DR7_GD;
7142 kvm_update_dr7(vcpu);
7146 kvm_x86_ops->queue_exception(vcpu);
7149 /* Don't consider new event if we re-injected an event */
7150 if (kvm_event_needs_reinjection(vcpu))
7153 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7154 kvm_x86_ops->smi_allowed(vcpu)) {
7155 vcpu->arch.smi_pending = false;
7156 ++vcpu->arch.smi_count;
7158 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7159 --vcpu->arch.nmi_pending;
7160 vcpu->arch.nmi_injected = true;
7161 kvm_x86_ops->set_nmi(vcpu);
7162 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7164 * Because interrupts can be injected asynchronously, we are
7165 * calling check_nested_events again here to avoid a race condition.
7166 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7167 * proposal and current concerns. Perhaps we should be setting
7168 * KVM_REQ_EVENT only on certain events and not unconditionally?
7170 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7171 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7175 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7176 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7178 kvm_x86_ops->set_irq(vcpu);
7185 static void process_nmi(struct kvm_vcpu *vcpu)
7190 * x86 is limited to one NMI running, and one NMI pending after it.
7191 * If an NMI is already in progress, limit further NMIs to just one.
7192 * Otherwise, allow two (and we'll inject the first one immediately).
7194 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7197 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7198 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7199 kvm_make_request(KVM_REQ_EVENT, vcpu);
7202 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7205 flags |= seg->g << 23;
7206 flags |= seg->db << 22;
7207 flags |= seg->l << 21;
7208 flags |= seg->avl << 20;
7209 flags |= seg->present << 15;
7210 flags |= seg->dpl << 13;
7211 flags |= seg->s << 12;
7212 flags |= seg->type << 8;
7216 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7218 struct kvm_segment seg;
7221 kvm_get_segment(vcpu, &seg, n);
7222 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7225 offset = 0x7f84 + n * 12;
7227 offset = 0x7f2c + (n - 3) * 12;
7229 put_smstate(u32, buf, offset + 8, seg.base);
7230 put_smstate(u32, buf, offset + 4, seg.limit);
7231 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7234 #ifdef CONFIG_X86_64
7235 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7237 struct kvm_segment seg;
7241 kvm_get_segment(vcpu, &seg, n);
7242 offset = 0x7e00 + n * 16;
7244 flags = enter_smm_get_segment_flags(&seg) >> 8;
7245 put_smstate(u16, buf, offset, seg.selector);
7246 put_smstate(u16, buf, offset + 2, flags);
7247 put_smstate(u32, buf, offset + 4, seg.limit);
7248 put_smstate(u64, buf, offset + 8, seg.base);
7252 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7255 struct kvm_segment seg;
7259 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7260 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7261 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7262 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7264 for (i = 0; i < 8; i++)
7265 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7267 kvm_get_dr(vcpu, 6, &val);
7268 put_smstate(u32, buf, 0x7fcc, (u32)val);
7269 kvm_get_dr(vcpu, 7, &val);
7270 put_smstate(u32, buf, 0x7fc8, (u32)val);
7272 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7273 put_smstate(u32, buf, 0x7fc4, seg.selector);
7274 put_smstate(u32, buf, 0x7f64, seg.base);
7275 put_smstate(u32, buf, 0x7f60, seg.limit);
7276 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7278 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7279 put_smstate(u32, buf, 0x7fc0, seg.selector);
7280 put_smstate(u32, buf, 0x7f80, seg.base);
7281 put_smstate(u32, buf, 0x7f7c, seg.limit);
7282 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7284 kvm_x86_ops->get_gdt(vcpu, &dt);
7285 put_smstate(u32, buf, 0x7f74, dt.address);
7286 put_smstate(u32, buf, 0x7f70, dt.size);
7288 kvm_x86_ops->get_idt(vcpu, &dt);
7289 put_smstate(u32, buf, 0x7f58, dt.address);
7290 put_smstate(u32, buf, 0x7f54, dt.size);
7292 for (i = 0; i < 6; i++)
7293 enter_smm_save_seg_32(vcpu, buf, i);
7295 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7298 put_smstate(u32, buf, 0x7efc, 0x00020000);
7299 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7302 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7304 #ifdef CONFIG_X86_64
7306 struct kvm_segment seg;
7310 for (i = 0; i < 16; i++)
7311 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7313 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7314 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7316 kvm_get_dr(vcpu, 6, &val);
7317 put_smstate(u64, buf, 0x7f68, val);
7318 kvm_get_dr(vcpu, 7, &val);
7319 put_smstate(u64, buf, 0x7f60, val);
7321 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7322 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7323 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7325 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7328 put_smstate(u32, buf, 0x7efc, 0x00020064);
7330 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7332 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7333 put_smstate(u16, buf, 0x7e90, seg.selector);
7334 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7335 put_smstate(u32, buf, 0x7e94, seg.limit);
7336 put_smstate(u64, buf, 0x7e98, seg.base);
7338 kvm_x86_ops->get_idt(vcpu, &dt);
7339 put_smstate(u32, buf, 0x7e84, dt.size);
7340 put_smstate(u64, buf, 0x7e88, dt.address);
7342 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7343 put_smstate(u16, buf, 0x7e70, seg.selector);
7344 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7345 put_smstate(u32, buf, 0x7e74, seg.limit);
7346 put_smstate(u64, buf, 0x7e78, seg.base);
7348 kvm_x86_ops->get_gdt(vcpu, &dt);
7349 put_smstate(u32, buf, 0x7e64, dt.size);
7350 put_smstate(u64, buf, 0x7e68, dt.address);
7352 for (i = 0; i < 6; i++)
7353 enter_smm_save_seg_64(vcpu, buf, i);
7359 static void enter_smm(struct kvm_vcpu *vcpu)
7361 struct kvm_segment cs, ds;
7366 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7367 memset(buf, 0, 512);
7368 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7369 enter_smm_save_state_64(vcpu, buf);
7371 enter_smm_save_state_32(vcpu, buf);
7374 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7375 * vCPU state (e.g. leave guest mode) after we've saved the state into
7376 * the SMM state-save area.
7378 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7380 vcpu->arch.hflags |= HF_SMM_MASK;
7381 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7383 if (kvm_x86_ops->get_nmi_mask(vcpu))
7384 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7386 kvm_x86_ops->set_nmi_mask(vcpu, true);
7388 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7389 kvm_rip_write(vcpu, 0x8000);
7391 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7392 kvm_x86_ops->set_cr0(vcpu, cr0);
7393 vcpu->arch.cr0 = cr0;
7395 kvm_x86_ops->set_cr4(vcpu, 0);
7397 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7398 dt.address = dt.size = 0;
7399 kvm_x86_ops->set_idt(vcpu, &dt);
7401 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7403 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7404 cs.base = vcpu->arch.smbase;
7409 cs.limit = ds.limit = 0xffffffff;
7410 cs.type = ds.type = 0x3;
7411 cs.dpl = ds.dpl = 0;
7416 cs.avl = ds.avl = 0;
7417 cs.present = ds.present = 1;
7418 cs.unusable = ds.unusable = 0;
7419 cs.padding = ds.padding = 0;
7421 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7422 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7423 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7424 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7425 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7426 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7428 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7429 kvm_x86_ops->set_efer(vcpu, 0);
7431 kvm_update_cpuid(vcpu);
7432 kvm_mmu_reset_context(vcpu);
7435 static void process_smi(struct kvm_vcpu *vcpu)
7437 vcpu->arch.smi_pending = true;
7438 kvm_make_request(KVM_REQ_EVENT, vcpu);
7441 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7443 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7446 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7448 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7451 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7453 if (irqchip_split(vcpu->kvm))
7454 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7456 if (vcpu->arch.apicv_active)
7457 kvm_x86_ops->sync_pir_to_irr(vcpu);
7458 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7461 if (is_guest_mode(vcpu))
7462 vcpu->arch.load_eoi_exitmap_pending = true;
7464 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7467 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7469 u64 eoi_exit_bitmap[4];
7471 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7474 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7475 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7476 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7479 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7480 unsigned long start, unsigned long end,
7483 unsigned long apic_address;
7486 * The physical address of apic access page is stored in the VMCS.
7487 * Update it when it becomes invalid.
7489 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7490 if (start <= apic_address && apic_address < end)
7491 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7496 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7498 struct page *page = NULL;
7500 if (!lapic_in_kernel(vcpu))
7503 if (!kvm_x86_ops->set_apic_access_page_addr)
7506 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7507 if (is_error_page(page))
7509 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7512 * Do not pin apic access page in memory, the MMU notifier
7513 * will call us again if it is migrated or swapped out.
7517 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7519 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7521 smp_send_reschedule(vcpu->cpu);
7523 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7526 * Returns 1 to let vcpu_run() continue the guest execution loop without
7527 * exiting to the userspace. Otherwise, the value will be returned to the
7530 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7534 dm_request_for_irq_injection(vcpu) &&
7535 kvm_cpu_accept_dm_intr(vcpu);
7537 bool req_immediate_exit = false;
7539 if (kvm_request_pending(vcpu)) {
7540 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7541 kvm_x86_ops->get_vmcs12_pages(vcpu);
7542 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7543 kvm_mmu_unload(vcpu);
7544 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7545 __kvm_migrate_timers(vcpu);
7546 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7547 kvm_gen_update_masterclock(vcpu->kvm);
7548 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7549 kvm_gen_kvmclock_update(vcpu);
7550 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7551 r = kvm_guest_time_update(vcpu);
7555 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7556 kvm_mmu_sync_roots(vcpu);
7557 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7558 kvm_mmu_load_cr3(vcpu);
7559 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7560 kvm_vcpu_flush_tlb(vcpu, true);
7561 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7562 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7566 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7567 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7568 vcpu->mmio_needed = 0;
7572 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7573 /* Page is swapped out. Do synthetic halt */
7574 vcpu->arch.apf.halted = true;
7578 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7579 record_steal_time(vcpu);
7580 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7582 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7584 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7585 kvm_pmu_handle_event(vcpu);
7586 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7587 kvm_pmu_deliver_pmi(vcpu);
7588 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7589 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7590 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7591 vcpu->arch.ioapic_handled_vectors)) {
7592 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7593 vcpu->run->eoi.vector =
7594 vcpu->arch.pending_ioapic_eoi;
7599 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7600 vcpu_scan_ioapic(vcpu);
7601 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7602 vcpu_load_eoi_exitmap(vcpu);
7603 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7604 kvm_vcpu_reload_apic_access_page(vcpu);
7605 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7606 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7607 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7611 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7612 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7613 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7617 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7618 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7619 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7625 * KVM_REQ_HV_STIMER has to be processed after
7626 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7627 * depend on the guest clock being up-to-date
7629 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7630 kvm_hv_process_stimers(vcpu);
7633 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7634 ++vcpu->stat.req_event;
7635 kvm_apic_accept_events(vcpu);
7636 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7641 if (inject_pending_event(vcpu, req_int_win) != 0)
7642 req_immediate_exit = true;
7644 /* Enable SMI/NMI/IRQ window open exits if needed.
7646 * SMIs have three cases:
7647 * 1) They can be nested, and then there is nothing to
7648 * do here because RSM will cause a vmexit anyway.
7649 * 2) There is an ISA-specific reason why SMI cannot be
7650 * injected, and the moment when this changes can be
7652 * 3) Or the SMI can be pending because
7653 * inject_pending_event has completed the injection
7654 * of an IRQ or NMI from the previous vmexit, and
7655 * then we request an immediate exit to inject the
7658 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7659 if (!kvm_x86_ops->enable_smi_window(vcpu))
7660 req_immediate_exit = true;
7661 if (vcpu->arch.nmi_pending)
7662 kvm_x86_ops->enable_nmi_window(vcpu);
7663 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7664 kvm_x86_ops->enable_irq_window(vcpu);
7665 WARN_ON(vcpu->arch.exception.pending);
7668 if (kvm_lapic_enabled(vcpu)) {
7669 update_cr8_intercept(vcpu);
7670 kvm_lapic_sync_to_vapic(vcpu);
7674 r = kvm_mmu_reload(vcpu);
7676 goto cancel_injection;
7681 kvm_x86_ops->prepare_guest_switch(vcpu);
7684 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7685 * IPI are then delayed after guest entry, which ensures that they
7686 * result in virtual interrupt delivery.
7688 local_irq_disable();
7689 vcpu->mode = IN_GUEST_MODE;
7691 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7694 * 1) We should set ->mode before checking ->requests. Please see
7695 * the comment in kvm_vcpu_exiting_guest_mode().
7697 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7698 * pairs with the memory barrier implicit in pi_test_and_set_on
7699 * (see vmx_deliver_posted_interrupt).
7701 * 3) This also orders the write to mode from any reads to the page
7702 * tables done while the VCPU is running. Please see the comment
7703 * in kvm_flush_remote_tlbs.
7705 smp_mb__after_srcu_read_unlock();
7708 * This handles the case where a posted interrupt was
7709 * notified with kvm_vcpu_kick.
7711 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7712 kvm_x86_ops->sync_pir_to_irr(vcpu);
7714 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7715 || need_resched() || signal_pending(current)) {
7716 vcpu->mode = OUTSIDE_GUEST_MODE;
7720 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7722 goto cancel_injection;
7725 kvm_load_guest_xcr0(vcpu);
7727 if (req_immediate_exit) {
7728 kvm_make_request(KVM_REQ_EVENT, vcpu);
7729 kvm_x86_ops->request_immediate_exit(vcpu);
7732 trace_kvm_entry(vcpu->vcpu_id);
7733 if (lapic_timer_advance_ns)
7734 wait_lapic_expire(vcpu);
7735 guest_enter_irqoff();
7737 if (unlikely(vcpu->arch.switch_db_regs)) {
7739 set_debugreg(vcpu->arch.eff_db[0], 0);
7740 set_debugreg(vcpu->arch.eff_db[1], 1);
7741 set_debugreg(vcpu->arch.eff_db[2], 2);
7742 set_debugreg(vcpu->arch.eff_db[3], 3);
7743 set_debugreg(vcpu->arch.dr6, 6);
7744 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7747 kvm_x86_ops->run(vcpu);
7750 * Do this here before restoring debug registers on the host. And
7751 * since we do this before handling the vmexit, a DR access vmexit
7752 * can (a) read the correct value of the debug registers, (b) set
7753 * KVM_DEBUGREG_WONT_EXIT again.
7755 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7756 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7757 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7758 kvm_update_dr0123(vcpu);
7759 kvm_update_dr6(vcpu);
7760 kvm_update_dr7(vcpu);
7761 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7765 * If the guest has used debug registers, at least dr7
7766 * will be disabled while returning to the host.
7767 * If we don't have active breakpoints in the host, we don't
7768 * care about the messed up debug address registers. But if
7769 * we have some of them active, restore the old state.
7771 if (hw_breakpoint_active())
7772 hw_breakpoint_restore();
7774 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7776 vcpu->mode = OUTSIDE_GUEST_MODE;
7779 kvm_put_guest_xcr0(vcpu);
7781 kvm_before_interrupt(vcpu);
7782 kvm_x86_ops->handle_external_intr(vcpu);
7783 kvm_after_interrupt(vcpu);
7787 guest_exit_irqoff();
7792 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7795 * Profile KVM exit RIPs:
7797 if (unlikely(prof_on == KVM_PROFILING)) {
7798 unsigned long rip = kvm_rip_read(vcpu);
7799 profile_hit(KVM_PROFILING, (void *)rip);
7802 if (unlikely(vcpu->arch.tsc_always_catchup))
7803 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7805 if (vcpu->arch.apic_attention)
7806 kvm_lapic_sync_from_vapic(vcpu);
7808 vcpu->arch.gpa_available = false;
7809 r = kvm_x86_ops->handle_exit(vcpu);
7813 kvm_x86_ops->cancel_injection(vcpu);
7814 if (unlikely(vcpu->arch.apic_attention))
7815 kvm_lapic_sync_from_vapic(vcpu);
7820 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7822 if (!kvm_arch_vcpu_runnable(vcpu) &&
7823 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7824 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7825 kvm_vcpu_block(vcpu);
7826 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7828 if (kvm_x86_ops->post_block)
7829 kvm_x86_ops->post_block(vcpu);
7831 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7835 kvm_apic_accept_events(vcpu);
7836 switch(vcpu->arch.mp_state) {
7837 case KVM_MP_STATE_HALTED:
7838 vcpu->arch.pv.pv_unhalted = false;
7839 vcpu->arch.mp_state =
7840 KVM_MP_STATE_RUNNABLE;
7841 case KVM_MP_STATE_RUNNABLE:
7842 vcpu->arch.apf.halted = false;
7844 case KVM_MP_STATE_INIT_RECEIVED:
7853 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7855 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7856 kvm_x86_ops->check_nested_events(vcpu, false);
7858 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7859 !vcpu->arch.apf.halted);
7862 static int vcpu_run(struct kvm_vcpu *vcpu)
7865 struct kvm *kvm = vcpu->kvm;
7867 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7868 vcpu->arch.l1tf_flush_l1d = true;
7871 if (kvm_vcpu_running(vcpu)) {
7872 r = vcpu_enter_guest(vcpu);
7874 r = vcpu_block(kvm, vcpu);
7880 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7881 if (kvm_cpu_has_pending_timer(vcpu))
7882 kvm_inject_pending_timer_irqs(vcpu);
7884 if (dm_request_for_irq_injection(vcpu) &&
7885 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7887 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7888 ++vcpu->stat.request_irq_exits;
7892 kvm_check_async_pf_completion(vcpu);
7894 if (signal_pending(current)) {
7896 vcpu->run->exit_reason = KVM_EXIT_INTR;
7897 ++vcpu->stat.signal_exits;
7900 if (need_resched()) {
7901 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7903 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7907 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7912 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7915 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7916 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7917 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7918 if (r != EMULATE_DONE)
7923 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7925 BUG_ON(!vcpu->arch.pio.count);
7927 return complete_emulated_io(vcpu);
7931 * Implements the following, as a state machine:
7935 * for each mmio piece in the fragment
7943 * for each mmio piece in the fragment
7948 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7950 struct kvm_run *run = vcpu->run;
7951 struct kvm_mmio_fragment *frag;
7954 BUG_ON(!vcpu->mmio_needed);
7956 /* Complete previous fragment */
7957 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7958 len = min(8u, frag->len);
7959 if (!vcpu->mmio_is_write)
7960 memcpy(frag->data, run->mmio.data, len);
7962 if (frag->len <= 8) {
7963 /* Switch to the next fragment. */
7965 vcpu->mmio_cur_fragment++;
7967 /* Go forward to the next mmio piece. */
7973 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7974 vcpu->mmio_needed = 0;
7976 /* FIXME: return into emulator if single-stepping. */
7977 if (vcpu->mmio_is_write)
7979 vcpu->mmio_read_completed = 1;
7980 return complete_emulated_io(vcpu);
7983 run->exit_reason = KVM_EXIT_MMIO;
7984 run->mmio.phys_addr = frag->gpa;
7985 if (vcpu->mmio_is_write)
7986 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7987 run->mmio.len = min(8u, frag->len);
7988 run->mmio.is_write = vcpu->mmio_is_write;
7989 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7993 /* Swap (qemu) user FPU context for the guest FPU context. */
7994 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7997 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7998 /* PKRU is separately restored in kvm_x86_ops->run. */
7999 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8000 ~XFEATURE_MASK_PKRU);
8005 /* When vcpu_run ends, restore user space FPU context. */
8006 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8009 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8010 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8012 ++vcpu->stat.fpu_reload;
8016 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8021 kvm_sigset_activate(vcpu);
8022 kvm_load_guest_fpu(vcpu);
8024 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8025 if (kvm_run->immediate_exit) {
8029 kvm_vcpu_block(vcpu);
8030 kvm_apic_accept_events(vcpu);
8031 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8033 if (signal_pending(current)) {
8035 vcpu->run->exit_reason = KVM_EXIT_INTR;
8036 ++vcpu->stat.signal_exits;
8041 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8046 if (vcpu->run->kvm_dirty_regs) {
8047 r = sync_regs(vcpu);
8052 /* re-sync apic's tpr */
8053 if (!lapic_in_kernel(vcpu)) {
8054 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8060 if (unlikely(vcpu->arch.complete_userspace_io)) {
8061 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8062 vcpu->arch.complete_userspace_io = NULL;
8067 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8069 if (kvm_run->immediate_exit)
8075 kvm_put_guest_fpu(vcpu);
8076 if (vcpu->run->kvm_valid_regs)
8078 post_kvm_run_save(vcpu);
8079 kvm_sigset_deactivate(vcpu);
8085 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8087 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8089 * We are here if userspace calls get_regs() in the middle of
8090 * instruction emulation. Registers state needs to be copied
8091 * back from emulation context to vcpu. Userspace shouldn't do
8092 * that usually, but some bad designed PV devices (vmware
8093 * backdoor interface) need this to work
8095 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8096 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8098 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8099 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8100 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8101 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8102 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8103 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8104 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8105 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8106 #ifdef CONFIG_X86_64
8107 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8108 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8109 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8110 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8111 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8112 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8113 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8114 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8117 regs->rip = kvm_rip_read(vcpu);
8118 regs->rflags = kvm_get_rflags(vcpu);
8121 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8124 __get_regs(vcpu, regs);
8129 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8131 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8132 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8134 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8135 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8136 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8137 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8138 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8139 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8140 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8141 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8142 #ifdef CONFIG_X86_64
8143 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8144 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8145 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8146 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8147 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8148 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8149 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8150 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8153 kvm_rip_write(vcpu, regs->rip);
8154 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8156 vcpu->arch.exception.pending = false;
8158 kvm_make_request(KVM_REQ_EVENT, vcpu);
8161 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8164 __set_regs(vcpu, regs);
8169 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8171 struct kvm_segment cs;
8173 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8177 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8179 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8183 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8184 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8185 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8186 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8187 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8188 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8190 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8191 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8193 kvm_x86_ops->get_idt(vcpu, &dt);
8194 sregs->idt.limit = dt.size;
8195 sregs->idt.base = dt.address;
8196 kvm_x86_ops->get_gdt(vcpu, &dt);
8197 sregs->gdt.limit = dt.size;
8198 sregs->gdt.base = dt.address;
8200 sregs->cr0 = kvm_read_cr0(vcpu);
8201 sregs->cr2 = vcpu->arch.cr2;
8202 sregs->cr3 = kvm_read_cr3(vcpu);
8203 sregs->cr4 = kvm_read_cr4(vcpu);
8204 sregs->cr8 = kvm_get_cr8(vcpu);
8205 sregs->efer = vcpu->arch.efer;
8206 sregs->apic_base = kvm_get_apic_base(vcpu);
8208 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8210 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8211 set_bit(vcpu->arch.interrupt.nr,
8212 (unsigned long *)sregs->interrupt_bitmap);
8215 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8216 struct kvm_sregs *sregs)
8219 __get_sregs(vcpu, sregs);
8224 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8225 struct kvm_mp_state *mp_state)
8229 kvm_apic_accept_events(vcpu);
8230 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8231 vcpu->arch.pv.pv_unhalted)
8232 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8234 mp_state->mp_state = vcpu->arch.mp_state;
8240 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8241 struct kvm_mp_state *mp_state)
8247 if (!lapic_in_kernel(vcpu) &&
8248 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8251 /* INITs are latched while in SMM */
8252 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8253 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8254 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8257 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8258 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8259 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8261 vcpu->arch.mp_state = mp_state->mp_state;
8262 kvm_make_request(KVM_REQ_EVENT, vcpu);
8270 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8271 int reason, bool has_error_code, u32 error_code)
8273 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8276 init_emulate_ctxt(vcpu);
8278 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8279 has_error_code, error_code);
8282 return EMULATE_FAIL;
8284 kvm_rip_write(vcpu, ctxt->eip);
8285 kvm_set_rflags(vcpu, ctxt->eflags);
8286 kvm_make_request(KVM_REQ_EVENT, vcpu);
8287 return EMULATE_DONE;
8289 EXPORT_SYMBOL_GPL(kvm_task_switch);
8291 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8293 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8294 (sregs->cr4 & X86_CR4_OSXSAVE))
8297 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8299 * When EFER.LME and CR0.PG are set, the processor is in
8300 * 64-bit mode (though maybe in a 32-bit code segment).
8301 * CR4.PAE and EFER.LMA must be set.
8303 if (!(sregs->cr4 & X86_CR4_PAE)
8304 || !(sregs->efer & EFER_LMA))
8308 * Not in 64-bit mode: EFER.LMA is clear and the code
8309 * segment cannot be 64-bit.
8311 if (sregs->efer & EFER_LMA || sregs->cs.l)
8318 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8320 struct msr_data apic_base_msr;
8321 int mmu_reset_needed = 0;
8322 int cpuid_update_needed = 0;
8323 int pending_vec, max_bits, idx;
8327 if (kvm_valid_sregs(vcpu, sregs))
8330 apic_base_msr.data = sregs->apic_base;
8331 apic_base_msr.host_initiated = true;
8332 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8335 dt.size = sregs->idt.limit;
8336 dt.address = sregs->idt.base;
8337 kvm_x86_ops->set_idt(vcpu, &dt);
8338 dt.size = sregs->gdt.limit;
8339 dt.address = sregs->gdt.base;
8340 kvm_x86_ops->set_gdt(vcpu, &dt);
8342 vcpu->arch.cr2 = sregs->cr2;
8343 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8344 vcpu->arch.cr3 = sregs->cr3;
8345 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8347 kvm_set_cr8(vcpu, sregs->cr8);
8349 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8350 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8352 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8353 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8354 vcpu->arch.cr0 = sregs->cr0;
8356 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8357 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8358 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8359 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8360 if (cpuid_update_needed)
8361 kvm_update_cpuid(vcpu);
8363 idx = srcu_read_lock(&vcpu->kvm->srcu);
8364 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8365 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8366 mmu_reset_needed = 1;
8368 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8370 if (mmu_reset_needed)
8371 kvm_mmu_reset_context(vcpu);
8373 max_bits = KVM_NR_INTERRUPTS;
8374 pending_vec = find_first_bit(
8375 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8376 if (pending_vec < max_bits) {
8377 kvm_queue_interrupt(vcpu, pending_vec, false);
8378 pr_debug("Set back pending irq %d\n", pending_vec);
8381 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8382 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8383 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8384 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8385 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8386 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8388 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8389 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8391 update_cr8_intercept(vcpu);
8393 /* Older userspace won't unhalt the vcpu on reset. */
8394 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8395 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8397 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8399 kvm_make_request(KVM_REQ_EVENT, vcpu);
8406 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8407 struct kvm_sregs *sregs)
8412 ret = __set_sregs(vcpu, sregs);
8417 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8418 struct kvm_guest_debug *dbg)
8420 unsigned long rflags;
8425 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8427 if (vcpu->arch.exception.pending)
8429 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8430 kvm_queue_exception(vcpu, DB_VECTOR);
8432 kvm_queue_exception(vcpu, BP_VECTOR);
8436 * Read rflags as long as potentially injected trace flags are still
8439 rflags = kvm_get_rflags(vcpu);
8441 vcpu->guest_debug = dbg->control;
8442 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8443 vcpu->guest_debug = 0;
8445 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8446 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8447 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8448 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8450 for (i = 0; i < KVM_NR_DB_REGS; i++)
8451 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8453 kvm_update_dr7(vcpu);
8455 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8456 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8457 get_segment_base(vcpu, VCPU_SREG_CS);
8460 * Trigger an rflags update that will inject or remove the trace
8463 kvm_set_rflags(vcpu, rflags);
8465 kvm_x86_ops->update_bp_intercept(vcpu);
8475 * Translate a guest virtual address to a guest physical address.
8477 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8478 struct kvm_translation *tr)
8480 unsigned long vaddr = tr->linear_address;
8486 idx = srcu_read_lock(&vcpu->kvm->srcu);
8487 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8488 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8489 tr->physical_address = gpa;
8490 tr->valid = gpa != UNMAPPED_GVA;
8498 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8500 struct fxregs_state *fxsave;
8504 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8505 memcpy(fpu->fpr, fxsave->st_space, 128);
8506 fpu->fcw = fxsave->cwd;
8507 fpu->fsw = fxsave->swd;
8508 fpu->ftwx = fxsave->twd;
8509 fpu->last_opcode = fxsave->fop;
8510 fpu->last_ip = fxsave->rip;
8511 fpu->last_dp = fxsave->rdp;
8512 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8518 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8520 struct fxregs_state *fxsave;
8524 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8526 memcpy(fxsave->st_space, fpu->fpr, 128);
8527 fxsave->cwd = fpu->fcw;
8528 fxsave->swd = fpu->fsw;
8529 fxsave->twd = fpu->ftwx;
8530 fxsave->fop = fpu->last_opcode;
8531 fxsave->rip = fpu->last_ip;
8532 fxsave->rdp = fpu->last_dp;
8533 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8539 static void store_regs(struct kvm_vcpu *vcpu)
8541 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8543 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8544 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8546 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8547 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8549 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8550 kvm_vcpu_ioctl_x86_get_vcpu_events(
8551 vcpu, &vcpu->run->s.regs.events);
8554 static int sync_regs(struct kvm_vcpu *vcpu)
8556 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8559 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8560 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8561 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8563 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8564 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8566 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8568 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8569 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8570 vcpu, &vcpu->run->s.regs.events))
8572 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8578 static void fx_init(struct kvm_vcpu *vcpu)
8580 fpstate_init(&vcpu->arch.guest_fpu.state);
8581 if (boot_cpu_has(X86_FEATURE_XSAVES))
8582 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8583 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8586 * Ensure guest xcr0 is valid for loading
8588 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8590 vcpu->arch.cr0 |= X86_CR0_ET;
8593 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8595 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8597 kvmclock_reset(vcpu);
8599 kvm_x86_ops->vcpu_free(vcpu);
8600 free_cpumask_var(wbinvd_dirty_mask);
8603 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8606 struct kvm_vcpu *vcpu;
8608 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8609 printk_once(KERN_WARNING
8610 "kvm: SMP vm created on host with unstable TSC; "
8611 "guest TSC will not be reliable\n");
8613 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8618 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8620 kvm_vcpu_mtrr_init(vcpu);
8622 kvm_vcpu_reset(vcpu, false);
8623 kvm_init_mmu(vcpu, false);
8628 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8630 struct msr_data msr;
8631 struct kvm *kvm = vcpu->kvm;
8633 kvm_hv_vcpu_postcreate(vcpu);
8635 if (mutex_lock_killable(&vcpu->mutex))
8639 msr.index = MSR_IA32_TSC;
8640 msr.host_initiated = true;
8641 kvm_write_tsc(vcpu, &msr);
8643 mutex_unlock(&vcpu->mutex);
8645 if (!kvmclock_periodic_sync)
8648 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8649 KVMCLOCK_SYNC_PERIOD);
8652 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8654 vcpu->arch.apf.msr_val = 0;
8657 kvm_mmu_unload(vcpu);
8660 kvm_x86_ops->vcpu_free(vcpu);
8663 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8665 kvm_lapic_reset(vcpu, init_event);
8667 vcpu->arch.hflags = 0;
8669 vcpu->arch.smi_pending = 0;
8670 vcpu->arch.smi_count = 0;
8671 atomic_set(&vcpu->arch.nmi_queued, 0);
8672 vcpu->arch.nmi_pending = 0;
8673 vcpu->arch.nmi_injected = false;
8674 kvm_clear_interrupt_queue(vcpu);
8675 kvm_clear_exception_queue(vcpu);
8676 vcpu->arch.exception.pending = false;
8678 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8679 kvm_update_dr0123(vcpu);
8680 vcpu->arch.dr6 = DR6_INIT;
8681 kvm_update_dr6(vcpu);
8682 vcpu->arch.dr7 = DR7_FIXED_1;
8683 kvm_update_dr7(vcpu);
8687 kvm_make_request(KVM_REQ_EVENT, vcpu);
8688 vcpu->arch.apf.msr_val = 0;
8689 vcpu->arch.st.msr_val = 0;
8691 kvmclock_reset(vcpu);
8693 kvm_clear_async_pf_completion_queue(vcpu);
8694 kvm_async_pf_hash_reset(vcpu);
8695 vcpu->arch.apf.halted = false;
8697 if (kvm_mpx_supported()) {
8698 void *mpx_state_buffer;
8701 * To avoid have the INIT path from kvm_apic_has_events() that be
8702 * called with loaded FPU and does not let userspace fix the state.
8705 kvm_put_guest_fpu(vcpu);
8706 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8707 XFEATURE_MASK_BNDREGS);
8708 if (mpx_state_buffer)
8709 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8710 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8711 XFEATURE_MASK_BNDCSR);
8712 if (mpx_state_buffer)
8713 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8715 kvm_load_guest_fpu(vcpu);
8719 kvm_pmu_reset(vcpu);
8720 vcpu->arch.smbase = 0x30000;
8722 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8723 vcpu->arch.msr_misc_features_enables = 0;
8725 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8728 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8729 vcpu->arch.regs_avail = ~0;
8730 vcpu->arch.regs_dirty = ~0;
8732 vcpu->arch.ia32_xss = 0;
8734 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8737 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8739 struct kvm_segment cs;
8741 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8742 cs.selector = vector << 8;
8743 cs.base = vector << 12;
8744 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8745 kvm_rip_write(vcpu, 0);
8748 int kvm_arch_hardware_enable(void)
8751 struct kvm_vcpu *vcpu;
8756 bool stable, backwards_tsc = false;
8758 kvm_shared_msr_cpu_online();
8759 ret = kvm_x86_ops->hardware_enable();
8763 local_tsc = rdtsc();
8764 stable = !kvm_check_tsc_unstable();
8765 list_for_each_entry(kvm, &vm_list, vm_list) {
8766 kvm_for_each_vcpu(i, vcpu, kvm) {
8767 if (!stable && vcpu->cpu == smp_processor_id())
8768 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8769 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8770 backwards_tsc = true;
8771 if (vcpu->arch.last_host_tsc > max_tsc)
8772 max_tsc = vcpu->arch.last_host_tsc;
8778 * Sometimes, even reliable TSCs go backwards. This happens on
8779 * platforms that reset TSC during suspend or hibernate actions, but
8780 * maintain synchronization. We must compensate. Fortunately, we can
8781 * detect that condition here, which happens early in CPU bringup,
8782 * before any KVM threads can be running. Unfortunately, we can't
8783 * bring the TSCs fully up to date with real time, as we aren't yet far
8784 * enough into CPU bringup that we know how much real time has actually
8785 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8786 * variables that haven't been updated yet.
8788 * So we simply find the maximum observed TSC above, then record the
8789 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8790 * the adjustment will be applied. Note that we accumulate
8791 * adjustments, in case multiple suspend cycles happen before some VCPU
8792 * gets a chance to run again. In the event that no KVM threads get a
8793 * chance to run, we will miss the entire elapsed period, as we'll have
8794 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8795 * loose cycle time. This isn't too big a deal, since the loss will be
8796 * uniform across all VCPUs (not to mention the scenario is extremely
8797 * unlikely). It is possible that a second hibernate recovery happens
8798 * much faster than a first, causing the observed TSC here to be
8799 * smaller; this would require additional padding adjustment, which is
8800 * why we set last_host_tsc to the local tsc observed here.
8802 * N.B. - this code below runs only on platforms with reliable TSC,
8803 * as that is the only way backwards_tsc is set above. Also note
8804 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8805 * have the same delta_cyc adjustment applied if backwards_tsc
8806 * is detected. Note further, this adjustment is only done once,
8807 * as we reset last_host_tsc on all VCPUs to stop this from being
8808 * called multiple times (one for each physical CPU bringup).
8810 * Platforms with unreliable TSCs don't have to deal with this, they
8811 * will be compensated by the logic in vcpu_load, which sets the TSC to
8812 * catchup mode. This will catchup all VCPUs to real time, but cannot
8813 * guarantee that they stay in perfect synchronization.
8815 if (backwards_tsc) {
8816 u64 delta_cyc = max_tsc - local_tsc;
8817 list_for_each_entry(kvm, &vm_list, vm_list) {
8818 kvm->arch.backwards_tsc_observed = true;
8819 kvm_for_each_vcpu(i, vcpu, kvm) {
8820 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8821 vcpu->arch.last_host_tsc = local_tsc;
8822 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8826 * We have to disable TSC offset matching.. if you were
8827 * booting a VM while issuing an S4 host suspend....
8828 * you may have some problem. Solving this issue is
8829 * left as an exercise to the reader.
8831 kvm->arch.last_tsc_nsec = 0;
8832 kvm->arch.last_tsc_write = 0;
8839 void kvm_arch_hardware_disable(void)
8841 kvm_x86_ops->hardware_disable();
8842 drop_user_return_notifiers();
8845 int kvm_arch_hardware_setup(void)
8849 r = kvm_x86_ops->hardware_setup();
8853 if (kvm_has_tsc_control) {
8855 * Make sure the user can only configure tsc_khz values that
8856 * fit into a signed integer.
8857 * A min value is not calculated because it will always
8858 * be 1 on all machines.
8860 u64 max = min(0x7fffffffULL,
8861 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8862 kvm_max_guest_tsc_khz = max;
8864 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8867 kvm_init_msr_list();
8871 void kvm_arch_hardware_unsetup(void)
8873 kvm_x86_ops->hardware_unsetup();
8876 void kvm_arch_check_processor_compat(void *rtn)
8878 kvm_x86_ops->check_processor_compatibility(rtn);
8881 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8883 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8885 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8887 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8889 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8892 struct static_key kvm_no_apic_vcpu __read_mostly;
8893 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8895 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8900 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8901 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8902 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8903 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8905 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8907 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8912 vcpu->arch.pio_data = page_address(page);
8914 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8916 r = kvm_mmu_create(vcpu);
8918 goto fail_free_pio_data;
8920 if (irqchip_in_kernel(vcpu->kvm)) {
8921 r = kvm_create_lapic(vcpu);
8923 goto fail_mmu_destroy;
8925 static_key_slow_inc(&kvm_no_apic_vcpu);
8927 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8929 if (!vcpu->arch.mce_banks) {
8931 goto fail_free_lapic;
8933 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8935 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8937 goto fail_free_mce_banks;
8942 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8944 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8946 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8948 kvm_async_pf_hash_reset(vcpu);
8951 vcpu->arch.pending_external_vector = -1;
8952 vcpu->arch.preempted_in_kernel = false;
8954 kvm_hv_vcpu_init(vcpu);
8958 fail_free_mce_banks:
8959 kfree(vcpu->arch.mce_banks);
8961 kvm_free_lapic(vcpu);
8963 kvm_mmu_destroy(vcpu);
8965 free_page((unsigned long)vcpu->arch.pio_data);
8970 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8974 kvm_hv_vcpu_uninit(vcpu);
8975 kvm_pmu_destroy(vcpu);
8976 kfree(vcpu->arch.mce_banks);
8977 kvm_free_lapic(vcpu);
8978 idx = srcu_read_lock(&vcpu->kvm->srcu);
8979 kvm_mmu_destroy(vcpu);
8980 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8981 free_page((unsigned long)vcpu->arch.pio_data);
8982 if (!lapic_in_kernel(vcpu))
8983 static_key_slow_dec(&kvm_no_apic_vcpu);
8986 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8988 vcpu->arch.l1tf_flush_l1d = true;
8989 kvm_x86_ops->sched_in(vcpu, cpu);
8992 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8997 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8998 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8999 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9000 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9001 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9003 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9004 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9005 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9006 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9007 &kvm->arch.irq_sources_bitmap);
9009 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9010 mutex_init(&kvm->arch.apic_map_lock);
9011 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9013 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9014 pvclock_update_vm_gtod_copy(kvm);
9016 kvm->arch.guest_can_read_msr_platform_info = true;
9018 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9019 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9021 kvm_hv_init_vm(kvm);
9022 kvm_page_track_init(kvm);
9023 kvm_mmu_init_vm(kvm);
9025 if (kvm_x86_ops->vm_init)
9026 return kvm_x86_ops->vm_init(kvm);
9031 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9034 kvm_mmu_unload(vcpu);
9038 static void kvm_free_vcpus(struct kvm *kvm)
9041 struct kvm_vcpu *vcpu;
9044 * Unpin any mmu pages first.
9046 kvm_for_each_vcpu(i, vcpu, kvm) {
9047 kvm_clear_async_pf_completion_queue(vcpu);
9048 kvm_unload_vcpu_mmu(vcpu);
9050 kvm_for_each_vcpu(i, vcpu, kvm)
9051 kvm_arch_vcpu_free(vcpu);
9053 mutex_lock(&kvm->lock);
9054 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9055 kvm->vcpus[i] = NULL;
9057 atomic_set(&kvm->online_vcpus, 0);
9058 mutex_unlock(&kvm->lock);
9061 void kvm_arch_sync_events(struct kvm *kvm)
9063 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9064 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9068 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9072 struct kvm_memslots *slots = kvm_memslots(kvm);
9073 struct kvm_memory_slot *slot, old;
9075 /* Called with kvm->slots_lock held. */
9076 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9079 slot = id_to_memslot(slots, id);
9085 * MAP_SHARED to prevent internal slot pages from being moved
9088 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9089 MAP_SHARED | MAP_ANONYMOUS, 0);
9090 if (IS_ERR((void *)hva))
9091 return PTR_ERR((void *)hva);
9100 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9101 struct kvm_userspace_memory_region m;
9103 m.slot = id | (i << 16);
9105 m.guest_phys_addr = gpa;
9106 m.userspace_addr = hva;
9107 m.memory_size = size;
9108 r = __kvm_set_memory_region(kvm, &m);
9114 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9118 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9120 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9124 mutex_lock(&kvm->slots_lock);
9125 r = __x86_set_memory_region(kvm, id, gpa, size);
9126 mutex_unlock(&kvm->slots_lock);
9130 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9132 void kvm_arch_destroy_vm(struct kvm *kvm)
9134 if (current->mm == kvm->mm) {
9136 * Free memory regions allocated on behalf of userspace,
9137 * unless the the memory map has changed due to process exit
9140 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9141 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9142 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9144 if (kvm_x86_ops->vm_destroy)
9145 kvm_x86_ops->vm_destroy(kvm);
9146 kvm_pic_destroy(kvm);
9147 kvm_ioapic_destroy(kvm);
9148 kvm_free_vcpus(kvm);
9149 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9150 kvm_mmu_uninit_vm(kvm);
9151 kvm_page_track_cleanup(kvm);
9152 kvm_hv_destroy_vm(kvm);
9155 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9156 struct kvm_memory_slot *dont)
9160 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9161 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9162 kvfree(free->arch.rmap[i]);
9163 free->arch.rmap[i] = NULL;
9168 if (!dont || free->arch.lpage_info[i - 1] !=
9169 dont->arch.lpage_info[i - 1]) {
9170 kvfree(free->arch.lpage_info[i - 1]);
9171 free->arch.lpage_info[i - 1] = NULL;
9175 kvm_page_track_free_memslot(free, dont);
9178 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9179 unsigned long npages)
9183 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9184 struct kvm_lpage_info *linfo;
9189 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9190 slot->base_gfn, level) + 1;
9192 slot->arch.rmap[i] =
9193 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9195 if (!slot->arch.rmap[i])
9200 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9204 slot->arch.lpage_info[i - 1] = linfo;
9206 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9207 linfo[0].disallow_lpage = 1;
9208 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9209 linfo[lpages - 1].disallow_lpage = 1;
9210 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9212 * If the gfn and userspace address are not aligned wrt each
9213 * other, or if explicitly asked to, disable large page
9214 * support for this slot
9216 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9217 !kvm_largepages_enabled()) {
9220 for (j = 0; j < lpages; ++j)
9221 linfo[j].disallow_lpage = 1;
9225 if (kvm_page_track_create_memslot(slot, npages))
9231 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9232 kvfree(slot->arch.rmap[i]);
9233 slot->arch.rmap[i] = NULL;
9237 kvfree(slot->arch.lpage_info[i - 1]);
9238 slot->arch.lpage_info[i - 1] = NULL;
9243 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9246 * memslots->generation has been incremented.
9247 * mmio generation may have reached its maximum value.
9249 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9252 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9253 struct kvm_memory_slot *memslot,
9254 const struct kvm_userspace_memory_region *mem,
9255 enum kvm_mr_change change)
9260 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9261 struct kvm_memory_slot *new)
9263 /* Still write protect RO slot */
9264 if (new->flags & KVM_MEM_READONLY) {
9265 kvm_mmu_slot_remove_write_access(kvm, new);
9270 * Call kvm_x86_ops dirty logging hooks when they are valid.
9272 * kvm_x86_ops->slot_disable_log_dirty is called when:
9274 * - KVM_MR_CREATE with dirty logging is disabled
9275 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9277 * The reason is, in case of PML, we need to set D-bit for any slots
9278 * with dirty logging disabled in order to eliminate unnecessary GPA
9279 * logging in PML buffer (and potential PML buffer full VMEXT). This
9280 * guarantees leaving PML enabled during guest's lifetime won't have
9281 * any additonal overhead from PML when guest is running with dirty
9282 * logging disabled for memory slots.
9284 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9285 * to dirty logging mode.
9287 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9289 * In case of write protect:
9291 * Write protect all pages for dirty logging.
9293 * All the sptes including the large sptes which point to this
9294 * slot are set to readonly. We can not create any new large
9295 * spte on this slot until the end of the logging.
9297 * See the comments in fast_page_fault().
9299 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9300 if (kvm_x86_ops->slot_enable_log_dirty)
9301 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9303 kvm_mmu_slot_remove_write_access(kvm, new);
9305 if (kvm_x86_ops->slot_disable_log_dirty)
9306 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9310 void kvm_arch_commit_memory_region(struct kvm *kvm,
9311 const struct kvm_userspace_memory_region *mem,
9312 const struct kvm_memory_slot *old,
9313 const struct kvm_memory_slot *new,
9314 enum kvm_mr_change change)
9316 int nr_mmu_pages = 0;
9318 if (!kvm->arch.n_requested_mmu_pages)
9319 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9322 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9325 * Dirty logging tracks sptes in 4k granularity, meaning that large
9326 * sptes have to be split. If live migration is successful, the guest
9327 * in the source machine will be destroyed and large sptes will be
9328 * created in the destination. However, if the guest continues to run
9329 * in the source machine (for example if live migration fails), small
9330 * sptes will remain around and cause bad performance.
9332 * Scan sptes if dirty logging has been stopped, dropping those
9333 * which can be collapsed into a single large-page spte. Later
9334 * page faults will create the large-page sptes.
9336 if ((change != KVM_MR_DELETE) &&
9337 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9338 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9339 kvm_mmu_zap_collapsible_sptes(kvm, new);
9342 * Set up write protection and/or dirty logging for the new slot.
9344 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9345 * been zapped so no dirty logging staff is needed for old slot. For
9346 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9347 * new and it's also covered when dealing with the new slot.
9349 * FIXME: const-ify all uses of struct kvm_memory_slot.
9351 if (change != KVM_MR_DELETE)
9352 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9355 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9357 kvm_mmu_invalidate_zap_all_pages(kvm);
9360 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9361 struct kvm_memory_slot *slot)
9363 kvm_page_track_flush_slot(kvm, slot);
9366 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9368 return (is_guest_mode(vcpu) &&
9369 kvm_x86_ops->guest_apic_has_interrupt &&
9370 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9373 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9375 if (!list_empty_careful(&vcpu->async_pf.done))
9378 if (kvm_apic_has_events(vcpu))
9381 if (vcpu->arch.pv.pv_unhalted)
9384 if (vcpu->arch.exception.pending)
9387 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9388 (vcpu->arch.nmi_pending &&
9389 kvm_x86_ops->nmi_allowed(vcpu)))
9392 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9393 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9396 if (kvm_arch_interrupt_allowed(vcpu) &&
9397 (kvm_cpu_has_interrupt(vcpu) ||
9398 kvm_guest_apic_has_interrupt(vcpu)))
9401 if (kvm_hv_has_stimer_pending(vcpu))
9407 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9409 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9412 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9414 return vcpu->arch.preempted_in_kernel;
9417 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9419 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9422 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9424 return kvm_x86_ops->interrupt_allowed(vcpu);
9427 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9429 if (is_64_bit_mode(vcpu))
9430 return kvm_rip_read(vcpu);
9431 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9432 kvm_rip_read(vcpu));
9434 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9436 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9438 return kvm_get_linear_rip(vcpu) == linear_rip;
9440 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9442 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9444 unsigned long rflags;
9446 rflags = kvm_x86_ops->get_rflags(vcpu);
9447 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9448 rflags &= ~X86_EFLAGS_TF;
9451 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9453 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9455 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9456 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9457 rflags |= X86_EFLAGS_TF;
9458 kvm_x86_ops->set_rflags(vcpu, rflags);
9461 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9463 __kvm_set_rflags(vcpu, rflags);
9464 kvm_make_request(KVM_REQ_EVENT, vcpu);
9466 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9468 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9472 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9476 r = kvm_mmu_reload(vcpu);
9480 if (!vcpu->arch.mmu->direct_map &&
9481 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9484 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9487 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9489 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9492 static inline u32 kvm_async_pf_next_probe(u32 key)
9494 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9497 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9499 u32 key = kvm_async_pf_hash_fn(gfn);
9501 while (vcpu->arch.apf.gfns[key] != ~0)
9502 key = kvm_async_pf_next_probe(key);
9504 vcpu->arch.apf.gfns[key] = gfn;
9507 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9510 u32 key = kvm_async_pf_hash_fn(gfn);
9512 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9513 (vcpu->arch.apf.gfns[key] != gfn &&
9514 vcpu->arch.apf.gfns[key] != ~0); i++)
9515 key = kvm_async_pf_next_probe(key);
9520 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9522 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9525 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9529 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9531 vcpu->arch.apf.gfns[i] = ~0;
9533 j = kvm_async_pf_next_probe(j);
9534 if (vcpu->arch.apf.gfns[j] == ~0)
9536 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9538 * k lies cyclically in ]i,j]
9540 * |....j i.k.| or |.k..j i...|
9542 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9543 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9548 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9551 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9555 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9558 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9562 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9563 struct kvm_async_pf *work)
9565 struct x86_exception fault;
9567 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9568 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9570 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9571 (vcpu->arch.apf.send_user_only &&
9572 kvm_x86_ops->get_cpl(vcpu) == 0))
9573 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9574 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9575 fault.vector = PF_VECTOR;
9576 fault.error_code_valid = true;
9577 fault.error_code = 0;
9578 fault.nested_page_fault = false;
9579 fault.address = work->arch.token;
9580 fault.async_page_fault = true;
9581 kvm_inject_page_fault(vcpu, &fault);
9585 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9586 struct kvm_async_pf *work)
9588 struct x86_exception fault;
9591 if (work->wakeup_all)
9592 work->arch.token = ~0; /* broadcast wakeup */
9594 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9595 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9597 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9598 !apf_get_user(vcpu, &val)) {
9599 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9600 vcpu->arch.exception.pending &&
9601 vcpu->arch.exception.nr == PF_VECTOR &&
9602 !apf_put_user(vcpu, 0)) {
9603 vcpu->arch.exception.injected = false;
9604 vcpu->arch.exception.pending = false;
9605 vcpu->arch.exception.nr = 0;
9606 vcpu->arch.exception.has_error_code = false;
9607 vcpu->arch.exception.error_code = 0;
9608 vcpu->arch.exception.has_payload = false;
9609 vcpu->arch.exception.payload = 0;
9610 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9611 fault.vector = PF_VECTOR;
9612 fault.error_code_valid = true;
9613 fault.error_code = 0;
9614 fault.nested_page_fault = false;
9615 fault.address = work->arch.token;
9616 fault.async_page_fault = true;
9617 kvm_inject_page_fault(vcpu, &fault);
9620 vcpu->arch.apf.halted = false;
9621 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9624 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9626 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9629 return kvm_can_do_async_pf(vcpu);
9632 void kvm_arch_start_assignment(struct kvm *kvm)
9634 atomic_inc(&kvm->arch.assigned_device_count);
9636 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9638 void kvm_arch_end_assignment(struct kvm *kvm)
9640 atomic_dec(&kvm->arch.assigned_device_count);
9642 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9644 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9646 return atomic_read(&kvm->arch.assigned_device_count);
9648 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9650 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9652 atomic_inc(&kvm->arch.noncoherent_dma_count);
9654 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9656 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9658 atomic_dec(&kvm->arch.noncoherent_dma_count);
9660 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9662 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9664 return atomic_read(&kvm->arch.noncoherent_dma_count);
9666 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9668 bool kvm_arch_has_irq_bypass(void)
9670 return kvm_x86_ops->update_pi_irte != NULL;
9673 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9674 struct irq_bypass_producer *prod)
9676 struct kvm_kernel_irqfd *irqfd =
9677 container_of(cons, struct kvm_kernel_irqfd, consumer);
9679 irqfd->producer = prod;
9681 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9682 prod->irq, irqfd->gsi, 1);
9685 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9686 struct irq_bypass_producer *prod)
9689 struct kvm_kernel_irqfd *irqfd =
9690 container_of(cons, struct kvm_kernel_irqfd, consumer);
9692 WARN_ON(irqfd->producer != prod);
9693 irqfd->producer = NULL;
9696 * When producer of consumer is unregistered, we change back to
9697 * remapped mode, so we can re-use the current implementation
9698 * when the irq is masked/disabled or the consumer side (KVM
9699 * int this case doesn't want to receive the interrupts.
9701 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9703 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9704 " fails: %d\n", irqfd->consumer.token, ret);
9707 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9708 uint32_t guest_irq, bool set)
9710 if (!kvm_x86_ops->update_pi_irte)
9713 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9716 bool kvm_vector_hashing_enabled(void)
9718 return vector_hashing;
9720 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);