1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
28 struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
33 static inline void sanity_check_pinned_pages(struct page **pages,
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
68 * Return the folio with ref appropriately incremented,
69 * or NULL if that failed.
71 static inline struct folio *try_get_folio(struct page *page, int refs)
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
87 * we were given anymore.
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
91 if (unlikely(page_folio(page) != folio)) {
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
101 * try_grab_folio() - Attempt to get or pin a folio.
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the folio's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
113 * FOLL_GET: folio's refcount will be incremented by @refs.
115 * FOLL_PIN on large folios: folio's refcount will be incremented by
116 * @refs, and its pincount will be incremented by @refs.
118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
119 * @refs * GUP_PIN_COUNTING_BIAS.
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
136 if (flags & FOLL_GET)
137 return try_get_folio(page, refs);
139 /* FOLL_PIN is set */
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
145 if (is_zero_page(page))
146 return page_folio(page);
148 folio = try_get_folio(page, refs);
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
165 * When pinning a large folio, use an exact count to track it.
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in folio_try_share_anon_rmap_*().
182 smp_mb__after_atomic();
184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
191 if (flags & FOLL_PIN) {
192 if (is_zero_folio(folio))
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
196 atomic_sub(refs, &folio->_pincount);
198 refs *= GUP_PIN_COUNTING_BIAS;
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
210 * This might not do anything at all, depending on the flags argument.
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216 * time. Cases: please see the try_grab_folio() documentation, with
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
227 struct folio *folio = page_folio(page);
229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
235 if (flags & FOLL_GET)
236 folio_ref_inc(folio);
237 else if (flags & FOLL_PIN) {
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
242 if (is_zero_page(page))
246 * Similar to try_grab_folio(): be sure to *also*
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
252 atomic_add(1, &folio->_pincount);
254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
272 void unpin_user_page(struct page *page)
274 sanity_check_pinned_pages(&page, 1);
275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
277 EXPORT_SYMBOL(unpin_user_page);
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
286 void folio_add_pin(struct folio *folio)
288 if (is_zero_folio(folio))
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 unsigned long npages, unsigned long i, unsigned int *ntails)
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
313 if (folio_test_large(folio))
314 nr = min_t(unsigned int, npages - i,
315 folio_nr_pages(folio) - folio_page_idx(folio, next));
321 static inline struct folio *gup_folio_next(struct page **list,
322 unsigned long npages, unsigned long i, unsigned int *ntails)
324 struct folio *folio = page_folio(list[i]);
327 for (nr = i + 1; nr < npages; nr++) {
328 if (page_folio(list[nr]) != folio)
337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338 * @pages: array of pages to be maybe marked dirty, and definitely released.
339 * @npages: number of pages in the @pages array.
340 * @make_dirty: whether to mark the pages dirty
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
345 * For each page in the @pages array, make that page (or its head page, if a
346 * compound page) dirty, if @make_dirty is true, and if the page was previously
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
350 * Please see the unpin_user_page() documentation for details.
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
355 * set_page_dirty_lock(), unpin_user_page().
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
366 unpin_user_pages(pages, npages);
370 sanity_check_pinned_pages(pages, npages);
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
393 if (!folio_test_dirty(folio)) {
395 folio_mark_dirty(folio);
398 gup_put_folio(folio, nr, FOLL_PIN);
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
435 folio_mark_dirty(folio);
438 gup_put_folio(folio, nr, FOLL_PIN);
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
461 * unpin_user_pages() - release an array of gup-pinned pages.
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
465 * For each page in the @pages array, release the page using unpin_user_page().
467 * Please see the unpin_user_page() documentation for details.
469 void unpin_user_pages(struct page **pages, unsigned long npages)
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
480 if (WARN_ON(IS_ERR_VALUE(npages)))
483 sanity_check_pinned_pages(pages, npages);
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
489 EXPORT_SYMBOL(unpin_user_pages);
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
504 #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_FAST_GUP)
505 static int record_subpages(struct page *page, unsigned long sz,
506 unsigned long addr, unsigned long end,
509 struct page *start_page;
512 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
514 pages[nr] = nth_page(start_page, nr);
518 #endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_FAST_GUP */
520 #ifdef CONFIG_ARCH_HAS_HUGEPD
521 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
524 unsigned long __boundary = (addr + sz) & ~(sz-1);
525 return (__boundary - 1 < end - 1) ? __boundary : end;
528 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
529 unsigned long end, unsigned int flags,
530 struct page **pages, int *nr)
532 unsigned long pte_end;
538 pte_end = (addr + sz) & ~(sz-1);
542 pte = huge_ptep_get(ptep);
544 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
547 /* hugepages are never "special" */
548 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
550 page = pte_page(pte);
551 refs = record_subpages(page, sz, addr, end, pages + *nr);
553 folio = try_grab_folio(page, refs, flags);
557 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
558 gup_put_folio(folio, refs, flags);
562 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
563 gup_put_folio(folio, refs, flags);
568 folio_set_referenced(folio);
573 * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file
574 * systems on Power, which does not have issue with folio writeback against
575 * GUP updates. When hugepd will be extended to support non-hugetlbfs or
576 * even anonymous memory, we need to do extra check as what we do with most
577 * of the other folios. See writable_file_mapping_allowed() and
578 * gup_fast_folio_allowed() for more information.
580 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
581 unsigned int pdshift, unsigned long end, unsigned int flags,
582 struct page **pages, int *nr)
585 unsigned long sz = 1UL << hugepd_shift(hugepd);
588 ptep = hugepte_offset(hugepd, addr, pdshift);
590 next = hugepte_addr_end(addr, end, sz);
591 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
593 } while (ptep++, addr = next, addr != end);
598 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
599 unsigned long addr, unsigned int pdshift,
601 struct follow_page_context *ctx)
609 /* Only hugetlb supports hugepd */
610 if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma)))
611 return ERR_PTR(-EFAULT);
614 ptep = hugepte_offset(hugepd, addr, pdshift);
615 ptl = huge_pte_lock(h, vma->vm_mm, ptep);
616 ret = gup_huge_pd(hugepd, addr, pdshift, addr + PAGE_SIZE,
621 WARN_ON_ONCE(nr != 1);
622 ctx->page_mask = (1U << huge_page_order(h)) - 1;
628 #else /* CONFIG_ARCH_HAS_HUGEPD */
629 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
630 unsigned int pdshift, unsigned long end, unsigned int flags,
631 struct page **pages, int *nr)
636 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
637 unsigned long addr, unsigned int pdshift,
639 struct follow_page_context *ctx)
643 #endif /* CONFIG_ARCH_HAS_HUGEPD */
646 static struct page *no_page_table(struct vm_area_struct *vma,
647 unsigned int flags, unsigned long address)
649 if (!(flags & FOLL_DUMP))
653 * When core dumping, we don't want to allocate unnecessary pages or
654 * page tables. Return error instead of NULL to skip handle_mm_fault,
655 * then get_dump_page() will return NULL to leave a hole in the dump.
656 * But we can only make this optimization where a hole would surely
657 * be zero-filled if handle_mm_fault() actually did handle it.
659 if (is_vm_hugetlb_page(vma)) {
660 struct hstate *h = hstate_vma(vma);
662 if (!hugetlbfs_pagecache_present(h, vma, address))
663 return ERR_PTR(-EFAULT);
664 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
665 return ERR_PTR(-EFAULT);
671 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
672 static struct page *follow_huge_pud(struct vm_area_struct *vma,
673 unsigned long addr, pud_t *pudp,
674 int flags, struct follow_page_context *ctx)
676 struct mm_struct *mm = vma->vm_mm;
679 unsigned long pfn = pud_pfn(pud);
682 assert_spin_locked(pud_lockptr(mm, pudp));
684 if ((flags & FOLL_WRITE) && !pud_write(pud))
687 if (!pud_present(pud))
690 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
692 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
695 * device mapped pages can only be returned if the caller
696 * will manage the page reference count.
698 * At least one of FOLL_GET | FOLL_PIN must be set, so
701 if (!(flags & (FOLL_GET | FOLL_PIN)))
702 return ERR_PTR(-EEXIST);
704 if (flags & FOLL_TOUCH)
705 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
707 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
709 return ERR_PTR(-EFAULT);
712 page = pfn_to_page(pfn);
714 if (!pud_devmap(pud) && !pud_write(pud) &&
715 gup_must_unshare(vma, flags, page))
716 return ERR_PTR(-EMLINK);
718 ret = try_grab_page(page, flags);
722 ctx->page_mask = HPAGE_PUD_NR - 1;
727 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
728 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
729 struct vm_area_struct *vma,
732 /* If the pmd is writable, we can write to the page. */
736 /* Maybe FOLL_FORCE is set to override it? */
737 if (!(flags & FOLL_FORCE))
740 /* But FOLL_FORCE has no effect on shared mappings */
741 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
744 /* ... or read-only private ones */
745 if (!(vma->vm_flags & VM_MAYWRITE))
748 /* ... or already writable ones that just need to take a write fault */
749 if (vma->vm_flags & VM_WRITE)
753 * See can_change_pte_writable(): we broke COW and could map the page
754 * writable if we have an exclusive anonymous page ...
756 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
759 /* ... and a write-fault isn't required for other reasons. */
760 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
762 return !userfaultfd_huge_pmd_wp(vma, pmd);
765 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
766 unsigned long addr, pmd_t *pmd,
768 struct follow_page_context *ctx)
770 struct mm_struct *mm = vma->vm_mm;
775 assert_spin_locked(pmd_lockptr(mm, pmd));
777 page = pmd_page(pmdval);
778 if ((flags & FOLL_WRITE) &&
779 !can_follow_write_pmd(pmdval, page, vma, flags))
782 /* Avoid dumping huge zero page */
783 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
784 return ERR_PTR(-EFAULT);
786 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
789 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
790 return ERR_PTR(-EMLINK);
792 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
793 !PageAnonExclusive(page), page);
795 ret = try_grab_page(page, flags);
799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
801 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
804 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
805 ctx->page_mask = HPAGE_PMD_NR - 1;
810 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
811 static struct page *follow_huge_pud(struct vm_area_struct *vma,
812 unsigned long addr, pud_t *pudp,
813 int flags, struct follow_page_context *ctx)
818 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
819 unsigned long addr, pmd_t *pmd,
821 struct follow_page_context *ctx)
825 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
827 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
828 pte_t *pte, unsigned int flags)
830 if (flags & FOLL_TOUCH) {
831 pte_t orig_entry = ptep_get(pte);
832 pte_t entry = orig_entry;
834 if (flags & FOLL_WRITE)
835 entry = pte_mkdirty(entry);
836 entry = pte_mkyoung(entry);
838 if (!pte_same(orig_entry, entry)) {
839 set_pte_at(vma->vm_mm, address, pte, entry);
840 update_mmu_cache(vma, address, pte);
844 /* Proper page table entry exists, but no corresponding struct page */
848 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
849 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
850 struct vm_area_struct *vma,
853 /* If the pte is writable, we can write to the page. */
857 /* Maybe FOLL_FORCE is set to override it? */
858 if (!(flags & FOLL_FORCE))
861 /* But FOLL_FORCE has no effect on shared mappings */
862 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
865 /* ... or read-only private ones */
866 if (!(vma->vm_flags & VM_MAYWRITE))
869 /* ... or already writable ones that just need to take a write fault */
870 if (vma->vm_flags & VM_WRITE)
874 * See can_change_pte_writable(): we broke COW and could map the page
875 * writable if we have an exclusive anonymous page ...
877 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
880 /* ... and a write-fault isn't required for other reasons. */
881 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
883 return !userfaultfd_pte_wp(vma, pte);
886 static struct page *follow_page_pte(struct vm_area_struct *vma,
887 unsigned long address, pmd_t *pmd, unsigned int flags,
888 struct dev_pagemap **pgmap)
890 struct mm_struct *mm = vma->vm_mm;
896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
897 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
898 (FOLL_PIN | FOLL_GET)))
899 return ERR_PTR(-EINVAL);
901 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
903 return no_page_table(vma, flags, address);
904 pte = ptep_get(ptep);
905 if (!pte_present(pte))
907 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
910 page = vm_normal_page(vma, address, pte);
913 * We only care about anon pages in can_follow_write_pte() and don't
914 * have to worry about pte_devmap() because they are never anon.
916 if ((flags & FOLL_WRITE) &&
917 !can_follow_write_pte(pte, page, vma, flags)) {
922 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
924 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
925 * case since they are only valid while holding the pgmap
928 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
930 page = pte_page(pte);
933 } else if (unlikely(!page)) {
934 if (flags & FOLL_DUMP) {
935 /* Avoid special (like zero) pages in core dumps */
936 page = ERR_PTR(-EFAULT);
940 if (is_zero_pfn(pte_pfn(pte))) {
941 page = pte_page(pte);
943 ret = follow_pfn_pte(vma, address, ptep, flags);
949 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
950 page = ERR_PTR(-EMLINK);
954 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
955 !PageAnonExclusive(page), page);
957 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
958 ret = try_grab_page(page, flags);
965 * We need to make the page accessible if and only if we are going
966 * to access its content (the FOLL_PIN case). Please see
967 * Documentation/core-api/pin_user_pages.rst for details.
969 if (flags & FOLL_PIN) {
970 ret = arch_make_page_accessible(page);
972 unpin_user_page(page);
977 if (flags & FOLL_TOUCH) {
978 if ((flags & FOLL_WRITE) &&
979 !pte_dirty(pte) && !PageDirty(page))
980 set_page_dirty(page);
982 * pte_mkyoung() would be more correct here, but atomic care
983 * is needed to avoid losing the dirty bit: it is easier to use
984 * mark_page_accessed().
986 mark_page_accessed(page);
989 pte_unmap_unlock(ptep, ptl);
992 pte_unmap_unlock(ptep, ptl);
995 return no_page_table(vma, flags, address);
998 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
999 unsigned long address, pud_t *pudp,
1001 struct follow_page_context *ctx)
1006 struct mm_struct *mm = vma->vm_mm;
1008 pmd = pmd_offset(pudp, address);
1009 pmdval = pmdp_get_lockless(pmd);
1010 if (pmd_none(pmdval))
1011 return no_page_table(vma, flags, address);
1012 if (!pmd_present(pmdval))
1013 return no_page_table(vma, flags, address);
1014 if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval)))))
1015 return follow_hugepd(vma, __hugepd(pmd_val(pmdval)),
1016 address, PMD_SHIFT, flags, ctx);
1017 if (pmd_devmap(pmdval)) {
1018 ptl = pmd_lock(mm, pmd);
1019 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
1023 return no_page_table(vma, flags, address);
1025 if (likely(!pmd_leaf(pmdval)))
1026 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1028 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
1029 return no_page_table(vma, flags, address);
1031 ptl = pmd_lock(mm, pmd);
1033 if (unlikely(!pmd_present(pmdval))) {
1035 return no_page_table(vma, flags, address);
1037 if (unlikely(!pmd_leaf(pmdval))) {
1039 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1041 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
1043 split_huge_pmd(vma, pmd, address);
1044 /* If pmd was left empty, stuff a page table in there quickly */
1045 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
1046 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1048 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
1053 static struct page *follow_pud_mask(struct vm_area_struct *vma,
1054 unsigned long address, p4d_t *p4dp,
1056 struct follow_page_context *ctx)
1061 struct mm_struct *mm = vma->vm_mm;
1063 pudp = pud_offset(p4dp, address);
1064 pud = READ_ONCE(*pudp);
1065 if (!pud_present(pud))
1066 return no_page_table(vma, flags, address);
1067 if (unlikely(is_hugepd(__hugepd(pud_val(pud)))))
1068 return follow_hugepd(vma, __hugepd(pud_val(pud)),
1069 address, PUD_SHIFT, flags, ctx);
1070 if (pud_leaf(pud)) {
1071 ptl = pud_lock(mm, pudp);
1072 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1076 return no_page_table(vma, flags, address);
1078 if (unlikely(pud_bad(pud)))
1079 return no_page_table(vma, flags, address);
1081 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1084 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1085 unsigned long address, pgd_t *pgdp,
1087 struct follow_page_context *ctx)
1091 p4dp = p4d_offset(pgdp, address);
1092 p4d = READ_ONCE(*p4dp);
1093 BUILD_BUG_ON(p4d_leaf(p4d));
1095 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d)))))
1096 return follow_hugepd(vma, __hugepd(p4d_val(p4d)),
1097 address, P4D_SHIFT, flags, ctx);
1099 if (!p4d_present(p4d) || p4d_bad(p4d))
1100 return no_page_table(vma, flags, address);
1102 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1106 * follow_page_mask - look up a page descriptor from a user-virtual address
1107 * @vma: vm_area_struct mapping @address
1108 * @address: virtual address to look up
1109 * @flags: flags modifying lookup behaviour
1110 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1111 * pointer to output page_mask
1113 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1115 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1116 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1118 * When getting an anonymous page and the caller has to trigger unsharing
1119 * of a shared anonymous page first, -EMLINK is returned. The caller should
1120 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1121 * relevant with FOLL_PIN and !FOLL_WRITE.
1123 * On output, the @ctx->page_mask is set according to the size of the page.
1125 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1126 * an error pointer if there is a mapping to something not represented
1127 * by a page descriptor (see also vm_normal_page()).
1129 static struct page *follow_page_mask(struct vm_area_struct *vma,
1130 unsigned long address, unsigned int flags,
1131 struct follow_page_context *ctx)
1134 struct mm_struct *mm = vma->vm_mm;
1137 vma_pgtable_walk_begin(vma);
1140 pgd = pgd_offset(mm, address);
1142 if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd)))))
1143 page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)),
1144 address, PGDIR_SHIFT, flags, ctx);
1145 else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1146 page = no_page_table(vma, flags, address);
1148 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1150 vma_pgtable_walk_end(vma);
1155 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1156 unsigned int foll_flags)
1158 struct follow_page_context ctx = { NULL };
1161 if (vma_is_secretmem(vma))
1164 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1168 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1169 * to fail on PROT_NONE-mapped pages.
1171 page = follow_page_mask(vma, address, foll_flags, &ctx);
1173 put_dev_pagemap(ctx.pgmap);
1177 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1178 unsigned int gup_flags, struct vm_area_struct **vma,
1189 /* user gate pages are read-only */
1190 if (gup_flags & FOLL_WRITE)
1192 if (address > TASK_SIZE)
1193 pgd = pgd_offset_k(address);
1195 pgd = pgd_offset_gate(mm, address);
1198 p4d = p4d_offset(pgd, address);
1201 pud = pud_offset(p4d, address);
1204 pmd = pmd_offset(pud, address);
1205 if (!pmd_present(*pmd))
1207 pte = pte_offset_map(pmd, address);
1210 entry = ptep_get(pte);
1211 if (pte_none(entry))
1213 *vma = get_gate_vma(mm);
1216 *page = vm_normal_page(*vma, address, entry);
1218 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1220 *page = pte_page(entry);
1222 ret = try_grab_page(*page, gup_flags);
1233 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1234 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1235 * to 0 and -EBUSY returned.
1237 static int faultin_page(struct vm_area_struct *vma,
1238 unsigned long address, unsigned int *flags, bool unshare,
1241 unsigned int fault_flags = 0;
1244 if (*flags & FOLL_NOFAULT)
1246 if (*flags & FOLL_WRITE)
1247 fault_flags |= FAULT_FLAG_WRITE;
1248 if (*flags & FOLL_REMOTE)
1249 fault_flags |= FAULT_FLAG_REMOTE;
1250 if (*flags & FOLL_UNLOCKABLE) {
1251 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1253 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1254 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1255 * That's because some callers may not be prepared to
1256 * handle early exits caused by non-fatal signals.
1258 if (*flags & FOLL_INTERRUPTIBLE)
1259 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1261 if (*flags & FOLL_NOWAIT)
1262 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1263 if (*flags & FOLL_TRIED) {
1265 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1268 fault_flags |= FAULT_FLAG_TRIED;
1271 fault_flags |= FAULT_FLAG_UNSHARE;
1272 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1273 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1276 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1278 if (ret & VM_FAULT_COMPLETED) {
1280 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1281 * mmap lock in the page fault handler. Sanity check this.
1283 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1287 * We should do the same as VM_FAULT_RETRY, but let's not
1288 * return -EBUSY since that's not reflecting the reality of
1289 * what has happened - we've just fully completed a page
1290 * fault, with the mmap lock released. Use -EAGAIN to show
1291 * that we want to take the mmap lock _again_.
1296 if (ret & VM_FAULT_ERROR) {
1297 int err = vm_fault_to_errno(ret, *flags);
1304 if (ret & VM_FAULT_RETRY) {
1305 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1314 * Writing to file-backed mappings which require folio dirty tracking using GUP
1315 * is a fundamentally broken operation, as kernel write access to GUP mappings
1316 * do not adhere to the semantics expected by a file system.
1318 * Consider the following scenario:-
1320 * 1. A folio is written to via GUP which write-faults the memory, notifying
1321 * the file system and dirtying the folio.
1322 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1323 * the PTE being marked read-only.
1324 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1326 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1327 * (though it does not have to).
1329 * This results in both data being written to a folio without writenotify, and
1330 * the folio being dirtied unexpectedly (if the caller decides to do so).
1332 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1333 unsigned long gup_flags)
1336 * If we aren't pinning then no problematic write can occur. A long term
1337 * pin is the most egregious case so this is the case we disallow.
1339 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1340 (FOLL_PIN | FOLL_LONGTERM))
1344 * If the VMA does not require dirty tracking then no problematic write
1347 return !vma_needs_dirty_tracking(vma);
1350 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1352 vm_flags_t vm_flags = vma->vm_flags;
1353 int write = (gup_flags & FOLL_WRITE);
1354 int foreign = (gup_flags & FOLL_REMOTE);
1355 bool vma_anon = vma_is_anonymous(vma);
1357 if (vm_flags & (VM_IO | VM_PFNMAP))
1360 if ((gup_flags & FOLL_ANON) && !vma_anon)
1363 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1366 if (vma_is_secretmem(vma))
1371 !writable_file_mapping_allowed(vma, gup_flags))
1374 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1375 if (!(gup_flags & FOLL_FORCE))
1377 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1378 if (is_vm_hugetlb_page(vma))
1381 * We used to let the write,force case do COW in a
1382 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1383 * set a breakpoint in a read-only mapping of an
1384 * executable, without corrupting the file (yet only
1385 * when that file had been opened for writing!).
1386 * Anon pages in shared mappings are surprising: now
1389 if (!is_cow_mapping(vm_flags))
1392 } else if (!(vm_flags & VM_READ)) {
1393 if (!(gup_flags & FOLL_FORCE))
1396 * Is there actually any vma we can reach here which does not
1397 * have VM_MAYREAD set?
1399 if (!(vm_flags & VM_MAYREAD))
1403 * gups are always data accesses, not instruction
1404 * fetches, so execute=false here
1406 if (!arch_vma_access_permitted(vma, write, false, foreign))
1412 * This is "vma_lookup()", but with a warning if we would have
1413 * historically expanded the stack in the GUP code.
1415 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1418 #ifdef CONFIG_STACK_GROWSUP
1419 return vma_lookup(mm, addr);
1421 static volatile unsigned long next_warn;
1422 struct vm_area_struct *vma;
1423 unsigned long now, next;
1425 vma = find_vma(mm, addr);
1426 if (!vma || (addr >= vma->vm_start))
1429 /* Only warn for half-way relevant accesses */
1430 if (!(vma->vm_flags & VM_GROWSDOWN))
1432 if (vma->vm_start - addr > 65536)
1435 /* Let's not warn more than once an hour.. */
1436 now = jiffies; next = next_warn;
1437 if (next && time_before(now, next))
1439 next_warn = now + 60*60*HZ;
1441 /* Let people know things may have changed. */
1442 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1443 current->comm, task_pid_nr(current),
1444 vma->vm_start, vma->vm_end, addr);
1451 * __get_user_pages() - pin user pages in memory
1452 * @mm: mm_struct of target mm
1453 * @start: starting user address
1454 * @nr_pages: number of pages from start to pin
1455 * @gup_flags: flags modifying pin behaviour
1456 * @pages: array that receives pointers to the pages pinned.
1457 * Should be at least nr_pages long. Or NULL, if caller
1458 * only intends to ensure the pages are faulted in.
1459 * @locked: whether we're still with the mmap_lock held
1461 * Returns either number of pages pinned (which may be less than the
1462 * number requested), or an error. Details about the return value:
1464 * -- If nr_pages is 0, returns 0.
1465 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1466 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1467 * pages pinned. Again, this may be less than nr_pages.
1468 * -- 0 return value is possible when the fault would need to be retried.
1470 * The caller is responsible for releasing returned @pages, via put_page().
1472 * Must be called with mmap_lock held. It may be released. See below.
1474 * __get_user_pages walks a process's page tables and takes a reference to
1475 * each struct page that each user address corresponds to at a given
1476 * instant. That is, it takes the page that would be accessed if a user
1477 * thread accesses the given user virtual address at that instant.
1479 * This does not guarantee that the page exists in the user mappings when
1480 * __get_user_pages returns, and there may even be a completely different
1481 * page there in some cases (eg. if mmapped pagecache has been invalidated
1482 * and subsequently re-faulted). However it does guarantee that the page
1483 * won't be freed completely. And mostly callers simply care that the page
1484 * contains data that was valid *at some point in time*. Typically, an IO
1485 * or similar operation cannot guarantee anything stronger anyway because
1486 * locks can't be held over the syscall boundary.
1488 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1489 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1490 * appropriate) must be called after the page is finished with, and
1491 * before put_page is called.
1493 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1494 * be released. If this happens *@locked will be set to 0 on return.
1496 * A caller using such a combination of @gup_flags must therefore hold the
1497 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1498 * it must be held for either reading or writing and will not be released.
1500 * In most cases, get_user_pages or get_user_pages_fast should be used
1501 * instead of __get_user_pages. __get_user_pages should be used only if
1502 * you need some special @gup_flags.
1504 static long __get_user_pages(struct mm_struct *mm,
1505 unsigned long start, unsigned long nr_pages,
1506 unsigned int gup_flags, struct page **pages,
1509 long ret = 0, i = 0;
1510 struct vm_area_struct *vma = NULL;
1511 struct follow_page_context ctx = { NULL };
1516 start = untagged_addr_remote(mm, start);
1518 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1522 unsigned int foll_flags = gup_flags;
1523 unsigned int page_increm;
1525 /* first iteration or cross vma bound */
1526 if (!vma || start >= vma->vm_end) {
1528 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1529 * lookups+error reporting differently.
1531 if (gup_flags & FOLL_MADV_POPULATE) {
1532 vma = vma_lookup(mm, start);
1537 if (check_vma_flags(vma, gup_flags)) {
1543 vma = gup_vma_lookup(mm, start);
1544 if (!vma && in_gate_area(mm, start)) {
1545 ret = get_gate_page(mm, start & PAGE_MASK,
1547 pages ? &page : NULL);
1558 ret = check_vma_flags(vma, gup_flags);
1564 * If we have a pending SIGKILL, don't keep faulting pages and
1565 * potentially allocating memory.
1567 if (fatal_signal_pending(current)) {
1573 page = follow_page_mask(vma, start, foll_flags, &ctx);
1574 if (!page || PTR_ERR(page) == -EMLINK) {
1575 ret = faultin_page(vma, start, &foll_flags,
1576 PTR_ERR(page) == -EMLINK, locked);
1590 } else if (PTR_ERR(page) == -EEXIST) {
1592 * Proper page table entry exists, but no corresponding
1593 * struct page. If the caller expects **pages to be
1594 * filled in, bail out now, because that can't be done
1598 ret = PTR_ERR(page);
1601 } else if (IS_ERR(page)) {
1602 ret = PTR_ERR(page);
1606 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1607 if (page_increm > nr_pages)
1608 page_increm = nr_pages;
1611 struct page *subpage;
1615 * This must be a large folio (and doesn't need to
1616 * be the whole folio; it can be part of it), do
1617 * the refcount work for all the subpages too.
1619 * NOTE: here the page may not be the head page
1620 * e.g. when start addr is not thp-size aligned.
1621 * try_grab_folio() should have taken care of tail
1624 if (page_increm > 1) {
1625 struct folio *folio;
1628 * Since we already hold refcount on the
1629 * large folio, this should never fail.
1631 folio = try_grab_folio(page, page_increm - 1,
1633 if (WARN_ON_ONCE(!folio)) {
1635 * Release the 1st page ref if the
1636 * folio is problematic, fail hard.
1638 gup_put_folio(page_folio(page), 1,
1645 for (j = 0; j < page_increm; j++) {
1646 subpage = nth_page(page, j);
1647 pages[i + j] = subpage;
1648 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1649 flush_dcache_page(subpage);
1654 start += page_increm * PAGE_SIZE;
1655 nr_pages -= page_increm;
1659 put_dev_pagemap(ctx.pgmap);
1663 static bool vma_permits_fault(struct vm_area_struct *vma,
1664 unsigned int fault_flags)
1666 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1667 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1668 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1670 if (!(vm_flags & vma->vm_flags))
1674 * The architecture might have a hardware protection
1675 * mechanism other than read/write that can deny access.
1677 * gup always represents data access, not instruction
1678 * fetches, so execute=false here:
1680 if (!arch_vma_access_permitted(vma, write, false, foreign))
1687 * fixup_user_fault() - manually resolve a user page fault
1688 * @mm: mm_struct of target mm
1689 * @address: user address
1690 * @fault_flags:flags to pass down to handle_mm_fault()
1691 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1692 * does not allow retry. If NULL, the caller must guarantee
1693 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1695 * This is meant to be called in the specific scenario where for locking reasons
1696 * we try to access user memory in atomic context (within a pagefault_disable()
1697 * section), this returns -EFAULT, and we want to resolve the user fault before
1700 * Typically this is meant to be used by the futex code.
1702 * The main difference with get_user_pages() is that this function will
1703 * unconditionally call handle_mm_fault() which will in turn perform all the
1704 * necessary SW fixup of the dirty and young bits in the PTE, while
1705 * get_user_pages() only guarantees to update these in the struct page.
1707 * This is important for some architectures where those bits also gate the
1708 * access permission to the page because they are maintained in software. On
1709 * such architectures, gup() will not be enough to make a subsequent access
1712 * This function will not return with an unlocked mmap_lock. So it has not the
1713 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1715 int fixup_user_fault(struct mm_struct *mm,
1716 unsigned long address, unsigned int fault_flags,
1719 struct vm_area_struct *vma;
1722 address = untagged_addr_remote(mm, address);
1725 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1728 vma = gup_vma_lookup(mm, address);
1732 if (!vma_permits_fault(vma, fault_flags))
1735 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1736 fatal_signal_pending(current))
1739 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1741 if (ret & VM_FAULT_COMPLETED) {
1743 * NOTE: it's a pity that we need to retake the lock here
1744 * to pair with the unlock() in the callers. Ideally we
1745 * could tell the callers so they do not need to unlock.
1752 if (ret & VM_FAULT_ERROR) {
1753 int err = vm_fault_to_errno(ret, 0);
1760 if (ret & VM_FAULT_RETRY) {
1763 fault_flags |= FAULT_FLAG_TRIED;
1769 EXPORT_SYMBOL_GPL(fixup_user_fault);
1772 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1773 * specified, it'll also respond to generic signals. The caller of GUP
1774 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1776 static bool gup_signal_pending(unsigned int flags)
1778 if (fatal_signal_pending(current))
1781 if (!(flags & FOLL_INTERRUPTIBLE))
1784 return signal_pending(current);
1788 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1789 * the caller. This function may drop the mmap_lock. If it does so, then it will
1790 * set (*locked = 0).
1792 * (*locked == 0) means that the caller expects this function to acquire and
1793 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1794 * the function returns, even though it may have changed temporarily during
1795 * function execution.
1797 * Please note that this function, unlike __get_user_pages(), will not return 0
1798 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1800 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1801 unsigned long start,
1802 unsigned long nr_pages,
1803 struct page **pages,
1807 long ret, pages_done;
1808 bool must_unlock = false;
1814 * The internal caller expects GUP to manage the lock internally and the
1815 * lock must be released when this returns.
1818 if (mmap_read_lock_killable(mm))
1824 mmap_assert_locked(mm);
1826 if (flags & FOLL_PIN)
1827 mm_set_has_pinned_flag(&mm->flags);
1830 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1831 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1832 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1833 * for FOLL_GET, not for the newer FOLL_PIN.
1835 * FOLL_PIN always expects pages to be non-null, but no need to assert
1836 * that here, as any failures will be obvious enough.
1838 if (pages && !(flags & FOLL_PIN))
1843 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1845 if (!(flags & FOLL_UNLOCKABLE)) {
1846 /* VM_FAULT_RETRY couldn't trigger, bypass */
1851 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1854 BUG_ON(ret >= nr_pages);
1865 * VM_FAULT_RETRY didn't trigger or it was a
1873 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1874 * For the prefault case (!pages) we only update counts.
1878 start += ret << PAGE_SHIFT;
1880 /* The lock was temporarily dropped, so we must unlock later */
1885 * Repeat on the address that fired VM_FAULT_RETRY
1886 * with both FAULT_FLAG_ALLOW_RETRY and
1887 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1888 * by fatal signals of even common signals, depending on
1889 * the caller's request. So we need to check it before we
1890 * start trying again otherwise it can loop forever.
1892 if (gup_signal_pending(flags)) {
1894 pages_done = -EINTR;
1898 ret = mmap_read_lock_killable(mm);
1907 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1910 /* Continue to retry until we succeeded */
1928 if (must_unlock && *locked) {
1930 * We either temporarily dropped the lock, or the caller
1931 * requested that we both acquire and drop the lock. Either way,
1932 * we must now unlock, and notify the caller of that state.
1934 mmap_read_unlock(mm);
1939 * Failing to pin anything implies something has gone wrong (except when
1940 * FOLL_NOWAIT is specified).
1942 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1949 * populate_vma_page_range() - populate a range of pages in the vma.
1951 * @start: start address
1953 * @locked: whether the mmap_lock is still held
1955 * This takes care of mlocking the pages too if VM_LOCKED is set.
1957 * Return either number of pages pinned in the vma, or a negative error
1960 * vma->vm_mm->mmap_lock must be held.
1962 * If @locked is NULL, it may be held for read or write and will
1965 * If @locked is non-NULL, it must held for read only and may be
1966 * released. If it's released, *@locked will be set to 0.
1968 long populate_vma_page_range(struct vm_area_struct *vma,
1969 unsigned long start, unsigned long end, int *locked)
1971 struct mm_struct *mm = vma->vm_mm;
1972 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1973 int local_locked = 1;
1977 VM_BUG_ON(!PAGE_ALIGNED(start));
1978 VM_BUG_ON(!PAGE_ALIGNED(end));
1979 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1980 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1981 mmap_assert_locked(mm);
1984 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1985 * faultin_page() to break COW, so it has no work to do here.
1987 if (vma->vm_flags & VM_LOCKONFAULT)
1990 /* ... similarly, we've never faulted in PROT_NONE pages */
1991 if (!vma_is_accessible(vma))
1994 gup_flags = FOLL_TOUCH;
1996 * We want to touch writable mappings with a write fault in order
1997 * to break COW, except for shared mappings because these don't COW
1998 * and we would not want to dirty them for nothing.
2000 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
2001 * readable (ie write-only or executable).
2003 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
2004 gup_flags |= FOLL_WRITE;
2006 gup_flags |= FOLL_FORCE;
2009 gup_flags |= FOLL_UNLOCKABLE;
2012 * We made sure addr is within a VMA, so the following will
2013 * not result in a stack expansion that recurses back here.
2015 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
2016 NULL, locked ? locked : &local_locked);
2022 * faultin_page_range() - populate (prefault) page tables inside the
2023 * given range readable/writable
2025 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
2027 * @mm: the mm to populate page tables in
2028 * @start: start address
2030 * @write: whether to prefault readable or writable
2031 * @locked: whether the mmap_lock is still held
2033 * Returns either number of processed pages in the MM, or a negative error
2034 * code on error (see __get_user_pages()). Note that this function reports
2035 * errors related to VMAs, such as incompatible mappings, as expected by
2036 * MADV_POPULATE_(READ|WRITE).
2038 * The range must be page-aligned.
2040 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
2042 long faultin_page_range(struct mm_struct *mm, unsigned long start,
2043 unsigned long end, bool write, int *locked)
2045 unsigned long nr_pages = (end - start) / PAGE_SIZE;
2049 VM_BUG_ON(!PAGE_ALIGNED(start));
2050 VM_BUG_ON(!PAGE_ALIGNED(end));
2051 mmap_assert_locked(mm);
2054 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
2055 * the page dirty with FOLL_WRITE -- which doesn't make a
2056 * difference with !FOLL_FORCE, because the page is writable
2057 * in the page table.
2058 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
2060 * !FOLL_FORCE: Require proper access permissions.
2062 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
2065 gup_flags |= FOLL_WRITE;
2067 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
2074 * __mm_populate - populate and/or mlock pages within a range of address space.
2076 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2077 * flags. VMAs must be already marked with the desired vm_flags, and
2078 * mmap_lock must not be held.
2080 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2082 struct mm_struct *mm = current->mm;
2083 unsigned long end, nstart, nend;
2084 struct vm_area_struct *vma = NULL;
2090 for (nstart = start; nstart < end; nstart = nend) {
2092 * We want to fault in pages for [nstart; end) address range.
2093 * Find first corresponding VMA.
2098 vma = find_vma_intersection(mm, nstart, end);
2099 } else if (nstart >= vma->vm_end)
2100 vma = find_vma_intersection(mm, vma->vm_end, end);
2105 * Set [nstart; nend) to intersection of desired address
2106 * range with the first VMA. Also, skip undesirable VMA types.
2108 nend = min(end, vma->vm_end);
2109 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2111 if (nstart < vma->vm_start)
2112 nstart = vma->vm_start;
2114 * Now fault in a range of pages. populate_vma_page_range()
2115 * double checks the vma flags, so that it won't mlock pages
2116 * if the vma was already munlocked.
2118 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2120 if (ignore_errors) {
2122 continue; /* continue at next VMA */
2126 nend = nstart + ret * PAGE_SIZE;
2130 mmap_read_unlock(mm);
2131 return ret; /* 0 or negative error code */
2133 #else /* CONFIG_MMU */
2134 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2135 unsigned long nr_pages, struct page **pages,
2136 int *locked, unsigned int foll_flags)
2138 struct vm_area_struct *vma;
2139 bool must_unlock = false;
2140 unsigned long vm_flags;
2147 * The internal caller expects GUP to manage the lock internally and the
2148 * lock must be released when this returns.
2151 if (mmap_read_lock_killable(mm))
2157 /* calculate required read or write permissions.
2158 * If FOLL_FORCE is set, we only require the "MAY" flags.
2160 vm_flags = (foll_flags & FOLL_WRITE) ?
2161 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2162 vm_flags &= (foll_flags & FOLL_FORCE) ?
2163 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2165 for (i = 0; i < nr_pages; i++) {
2166 vma = find_vma(mm, start);
2170 /* protect what we can, including chardevs */
2171 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2172 !(vm_flags & vma->vm_flags))
2176 pages[i] = virt_to_page((void *)start);
2181 start = (start + PAGE_SIZE) & PAGE_MASK;
2184 if (must_unlock && *locked) {
2185 mmap_read_unlock(mm);
2189 return i ? : -EFAULT;
2191 #endif /* !CONFIG_MMU */
2194 * fault_in_writeable - fault in userspace address range for writing
2195 * @uaddr: start of address range
2196 * @size: size of address range
2198 * Returns the number of bytes not faulted in (like copy_to_user() and
2199 * copy_from_user()).
2201 size_t fault_in_writeable(char __user *uaddr, size_t size)
2203 char __user *start = uaddr, *end;
2205 if (unlikely(size == 0))
2207 if (!user_write_access_begin(uaddr, size))
2209 if (!PAGE_ALIGNED(uaddr)) {
2210 unsafe_put_user(0, uaddr, out);
2211 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2213 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2214 if (unlikely(end < start))
2216 while (uaddr != end) {
2217 unsafe_put_user(0, uaddr, out);
2222 user_write_access_end();
2223 if (size > uaddr - start)
2224 return size - (uaddr - start);
2227 EXPORT_SYMBOL(fault_in_writeable);
2230 * fault_in_subpage_writeable - fault in an address range for writing
2231 * @uaddr: start of address range
2232 * @size: size of address range
2234 * Fault in a user address range for writing while checking for permissions at
2235 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2236 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2238 * Returns the number of bytes not faulted in (like copy_to_user() and
2239 * copy_from_user()).
2241 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2246 * Attempt faulting in at page granularity first for page table
2247 * permission checking. The arch-specific probe_subpage_writeable()
2248 * functions may not check for this.
2250 faulted_in = size - fault_in_writeable(uaddr, size);
2252 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2254 return size - faulted_in;
2256 EXPORT_SYMBOL(fault_in_subpage_writeable);
2259 * fault_in_safe_writeable - fault in an address range for writing
2260 * @uaddr: start of address range
2261 * @size: length of address range
2263 * Faults in an address range for writing. This is primarily useful when we
2264 * already know that some or all of the pages in the address range aren't in
2267 * Unlike fault_in_writeable(), this function is non-destructive.
2269 * Note that we don't pin or otherwise hold the pages referenced that we fault
2270 * in. There's no guarantee that they'll stay in memory for any duration of
2273 * Returns the number of bytes not faulted in, like copy_to_user() and
2276 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2278 unsigned long start = (unsigned long)uaddr, end;
2279 struct mm_struct *mm = current->mm;
2280 bool unlocked = false;
2282 if (unlikely(size == 0))
2284 end = PAGE_ALIGN(start + size);
2290 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2292 start = (start + PAGE_SIZE) & PAGE_MASK;
2293 } while (start != end);
2294 mmap_read_unlock(mm);
2296 if (size > (unsigned long)uaddr - start)
2297 return size - ((unsigned long)uaddr - start);
2300 EXPORT_SYMBOL(fault_in_safe_writeable);
2303 * fault_in_readable - fault in userspace address range for reading
2304 * @uaddr: start of user address range
2305 * @size: size of user address range
2307 * Returns the number of bytes not faulted in (like copy_to_user() and
2308 * copy_from_user()).
2310 size_t fault_in_readable(const char __user *uaddr, size_t size)
2312 const char __user *start = uaddr, *end;
2315 if (unlikely(size == 0))
2317 if (!user_read_access_begin(uaddr, size))
2319 if (!PAGE_ALIGNED(uaddr)) {
2320 unsafe_get_user(c, uaddr, out);
2321 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2323 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2324 if (unlikely(end < start))
2326 while (uaddr != end) {
2327 unsafe_get_user(c, uaddr, out);
2332 user_read_access_end();
2334 if (size > uaddr - start)
2335 return size - (uaddr - start);
2338 EXPORT_SYMBOL(fault_in_readable);
2341 * get_dump_page() - pin user page in memory while writing it to core dump
2342 * @addr: user address
2344 * Returns struct page pointer of user page pinned for dump,
2345 * to be freed afterwards by put_page().
2347 * Returns NULL on any kind of failure - a hole must then be inserted into
2348 * the corefile, to preserve alignment with its headers; and also returns
2349 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2350 * allowing a hole to be left in the corefile to save disk space.
2352 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2354 #ifdef CONFIG_ELF_CORE
2355 struct page *get_dump_page(unsigned long addr)
2361 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2362 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2363 return (ret == 1) ? page : NULL;
2365 #endif /* CONFIG_ELF_CORE */
2367 #ifdef CONFIG_MIGRATION
2369 * Returns the number of collected pages. Return value is always >= 0.
2371 static unsigned long collect_longterm_unpinnable_pages(
2372 struct list_head *movable_page_list,
2373 unsigned long nr_pages,
2374 struct page **pages)
2376 unsigned long i, collected = 0;
2377 struct folio *prev_folio = NULL;
2378 bool drain_allow = true;
2380 for (i = 0; i < nr_pages; i++) {
2381 struct folio *folio = page_folio(pages[i]);
2383 if (folio == prev_folio)
2387 if (folio_is_longterm_pinnable(folio))
2392 if (folio_is_device_coherent(folio))
2395 if (folio_test_hugetlb(folio)) {
2396 isolate_hugetlb(folio, movable_page_list);
2400 if (!folio_test_lru(folio) && drain_allow) {
2401 lru_add_drain_all();
2402 drain_allow = false;
2405 if (!folio_isolate_lru(folio))
2408 list_add_tail(&folio->lru, movable_page_list);
2409 node_stat_mod_folio(folio,
2410 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2411 folio_nr_pages(folio));
2418 * Unpins all pages and migrates device coherent pages and movable_page_list.
2419 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2420 * (or partial success).
2422 static int migrate_longterm_unpinnable_pages(
2423 struct list_head *movable_page_list,
2424 unsigned long nr_pages,
2425 struct page **pages)
2430 for (i = 0; i < nr_pages; i++) {
2431 struct folio *folio = page_folio(pages[i]);
2433 if (folio_is_device_coherent(folio)) {
2435 * Migration will fail if the page is pinned, so convert
2436 * the pin on the source page to a normal reference.
2440 gup_put_folio(folio, 1, FOLL_PIN);
2442 if (migrate_device_coherent_page(&folio->page)) {
2451 * We can't migrate pages with unexpected references, so drop
2452 * the reference obtained by __get_user_pages_locked().
2453 * Migrating pages have been added to movable_page_list after
2454 * calling folio_isolate_lru() which takes a reference so the
2455 * page won't be freed if it's migrating.
2457 unpin_user_page(pages[i]);
2461 if (!list_empty(movable_page_list)) {
2462 struct migration_target_control mtc = {
2463 .nid = NUMA_NO_NODE,
2464 .gfp_mask = GFP_USER | __GFP_NOWARN,
2465 .reason = MR_LONGTERM_PIN,
2468 if (migrate_pages(movable_page_list, alloc_migration_target,
2469 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2470 MR_LONGTERM_PIN, NULL)) {
2476 putback_movable_pages(movable_page_list);
2481 for (i = 0; i < nr_pages; i++)
2483 unpin_user_page(pages[i]);
2484 putback_movable_pages(movable_page_list);
2490 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2491 * pages in the range are required to be pinned via FOLL_PIN, before calling
2494 * If any pages in the range are not allowed to be pinned, then this routine
2495 * will migrate those pages away, unpin all the pages in the range and return
2496 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2497 * call this routine again.
2499 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2500 * The caller should give up, and propagate the error back up the call stack.
2502 * If everything is OK and all pages in the range are allowed to be pinned, then
2503 * this routine leaves all pages pinned and returns zero for success.
2505 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2506 struct page **pages)
2508 unsigned long collected;
2509 LIST_HEAD(movable_page_list);
2511 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2516 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2520 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2521 struct page **pages)
2525 #endif /* CONFIG_MIGRATION */
2528 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2529 * allows us to process the FOLL_LONGTERM flag.
2531 static long __gup_longterm_locked(struct mm_struct *mm,
2532 unsigned long start,
2533 unsigned long nr_pages,
2534 struct page **pages,
2536 unsigned int gup_flags)
2539 long rc, nr_pinned_pages;
2541 if (!(gup_flags & FOLL_LONGTERM))
2542 return __get_user_pages_locked(mm, start, nr_pages, pages,
2545 flags = memalloc_pin_save();
2547 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2550 if (nr_pinned_pages <= 0) {
2551 rc = nr_pinned_pages;
2555 /* FOLL_LONGTERM implies FOLL_PIN */
2556 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2557 } while (rc == -EAGAIN);
2558 memalloc_pin_restore(flags);
2559 return rc ? rc : nr_pinned_pages;
2563 * Check that the given flags are valid for the exported gup/pup interface, and
2564 * update them with the required flags that the caller must have set.
2566 static bool is_valid_gup_args(struct page **pages, int *locked,
2567 unsigned int *gup_flags_p, unsigned int to_set)
2569 unsigned int gup_flags = *gup_flags_p;
2572 * These flags not allowed to be specified externally to the gup
2574 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2575 * - FOLL_REMOTE is internal only and used on follow_page()
2576 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2578 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2581 gup_flags |= to_set;
2583 /* At the external interface locked must be set */
2584 if (WARN_ON_ONCE(*locked != 1))
2587 gup_flags |= FOLL_UNLOCKABLE;
2590 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2591 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2592 (FOLL_PIN | FOLL_GET)))
2595 /* LONGTERM can only be specified when pinning */
2596 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2599 /* Pages input must be given if using GET/PIN */
2600 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2603 /* We want to allow the pgmap to be hot-unplugged at all times */
2604 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2605 (gup_flags & FOLL_PCI_P2PDMA)))
2608 *gup_flags_p = gup_flags;
2614 * get_user_pages_remote() - pin user pages in memory
2615 * @mm: mm_struct of target mm
2616 * @start: starting user address
2617 * @nr_pages: number of pages from start to pin
2618 * @gup_flags: flags modifying lookup behaviour
2619 * @pages: array that receives pointers to the pages pinned.
2620 * Should be at least nr_pages long. Or NULL, if caller
2621 * only intends to ensure the pages are faulted in.
2622 * @locked: pointer to lock flag indicating whether lock is held and
2623 * subsequently whether VM_FAULT_RETRY functionality can be
2624 * utilised. Lock must initially be held.
2626 * Returns either number of pages pinned (which may be less than the
2627 * number requested), or an error. Details about the return value:
2629 * -- If nr_pages is 0, returns 0.
2630 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2631 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2632 * pages pinned. Again, this may be less than nr_pages.
2634 * The caller is responsible for releasing returned @pages, via put_page().
2636 * Must be called with mmap_lock held for read or write.
2638 * get_user_pages_remote walks a process's page tables and takes a reference
2639 * to each struct page that each user address corresponds to at a given
2640 * instant. That is, it takes the page that would be accessed if a user
2641 * thread accesses the given user virtual address at that instant.
2643 * This does not guarantee that the page exists in the user mappings when
2644 * get_user_pages_remote returns, and there may even be a completely different
2645 * page there in some cases (eg. if mmapped pagecache has been invalidated
2646 * and subsequently re-faulted). However it does guarantee that the page
2647 * won't be freed completely. And mostly callers simply care that the page
2648 * contains data that was valid *at some point in time*. Typically, an IO
2649 * or similar operation cannot guarantee anything stronger anyway because
2650 * locks can't be held over the syscall boundary.
2652 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2653 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2654 * be called after the page is finished with, and before put_page is called.
2656 * get_user_pages_remote is typically used for fewer-copy IO operations,
2657 * to get a handle on the memory by some means other than accesses
2658 * via the user virtual addresses. The pages may be submitted for
2659 * DMA to devices or accessed via their kernel linear mapping (via the
2660 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2662 * See also get_user_pages_fast, for performance critical applications.
2664 * get_user_pages_remote should be phased out in favor of
2665 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2666 * should use get_user_pages_remote because it cannot pass
2667 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2669 long get_user_pages_remote(struct mm_struct *mm,
2670 unsigned long start, unsigned long nr_pages,
2671 unsigned int gup_flags, struct page **pages,
2674 int local_locked = 1;
2676 if (!is_valid_gup_args(pages, locked, &gup_flags,
2677 FOLL_TOUCH | FOLL_REMOTE))
2680 return __get_user_pages_locked(mm, start, nr_pages, pages,
2681 locked ? locked : &local_locked,
2684 EXPORT_SYMBOL(get_user_pages_remote);
2686 #else /* CONFIG_MMU */
2687 long get_user_pages_remote(struct mm_struct *mm,
2688 unsigned long start, unsigned long nr_pages,
2689 unsigned int gup_flags, struct page **pages,
2694 #endif /* !CONFIG_MMU */
2697 * get_user_pages() - pin user pages in memory
2698 * @start: starting user address
2699 * @nr_pages: number of pages from start to pin
2700 * @gup_flags: flags modifying lookup behaviour
2701 * @pages: array that receives pointers to the pages pinned.
2702 * Should be at least nr_pages long. Or NULL, if caller
2703 * only intends to ensure the pages are faulted in.
2705 * This is the same as get_user_pages_remote(), just with a less-flexible
2706 * calling convention where we assume that the mm being operated on belongs to
2707 * the current task, and doesn't allow passing of a locked parameter. We also
2708 * obviously don't pass FOLL_REMOTE in here.
2710 long get_user_pages(unsigned long start, unsigned long nr_pages,
2711 unsigned int gup_flags, struct page **pages)
2715 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2718 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2719 &locked, gup_flags);
2721 EXPORT_SYMBOL(get_user_pages);
2724 * get_user_pages_unlocked() is suitable to replace the form:
2726 * mmap_read_lock(mm);
2727 * get_user_pages(mm, ..., pages, NULL);
2728 * mmap_read_unlock(mm);
2732 * get_user_pages_unlocked(mm, ..., pages);
2734 * It is functionally equivalent to get_user_pages_fast so
2735 * get_user_pages_fast should be used instead if specific gup_flags
2736 * (e.g. FOLL_FORCE) are not required.
2738 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2739 struct page **pages, unsigned int gup_flags)
2743 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2744 FOLL_TOUCH | FOLL_UNLOCKABLE))
2747 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2748 &locked, gup_flags);
2750 EXPORT_SYMBOL(get_user_pages_unlocked);
2755 * get_user_pages_fast attempts to pin user pages by walking the page
2756 * tables directly and avoids taking locks. Thus the walker needs to be
2757 * protected from page table pages being freed from under it, and should
2758 * block any THP splits.
2760 * One way to achieve this is to have the walker disable interrupts, and
2761 * rely on IPIs from the TLB flushing code blocking before the page table
2762 * pages are freed. This is unsuitable for architectures that do not need
2763 * to broadcast an IPI when invalidating TLBs.
2765 * Another way to achieve this is to batch up page table containing pages
2766 * belonging to more than one mm_user, then rcu_sched a callback to free those
2767 * pages. Disabling interrupts will allow the fast_gup walker to both block
2768 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2769 * (which is a relatively rare event). The code below adopts this strategy.
2771 * Before activating this code, please be aware that the following assumptions
2772 * are currently made:
2774 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2775 * free pages containing page tables or TLB flushing requires IPI broadcast.
2777 * *) ptes can be read atomically by the architecture.
2779 * *) access_ok is sufficient to validate userspace address ranges.
2781 * The last two assumptions can be relaxed by the addition of helper functions.
2783 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2785 #ifdef CONFIG_HAVE_FAST_GUP
2788 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2791 * This call assumes the caller has pinned the folio, that the lowest page table
2792 * level still points to this folio, and that interrupts have been disabled.
2794 * GUP-fast must reject all secretmem folios.
2796 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2797 * (see comment describing the writable_file_mapping_allowed() function). We
2798 * therefore try to avoid the most egregious case of a long-term mapping doing
2801 * This function cannot be as thorough as that one as the VMA is not available
2802 * in the fast path, so instead we whitelist known good cases and if in doubt,
2803 * fall back to the slow path.
2805 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2807 bool reject_file_backed = false;
2808 struct address_space *mapping;
2809 bool check_secretmem = false;
2810 unsigned long mapping_flags;
2813 * If we aren't pinning then no problematic write can occur. A long term
2814 * pin is the most egregious case so this is the one we disallow.
2816 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2817 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2818 reject_file_backed = true;
2820 /* We hold a folio reference, so we can safely access folio fields. */
2822 /* secretmem folios are always order-0 folios. */
2823 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2824 check_secretmem = true;
2826 if (!reject_file_backed && !check_secretmem)
2829 if (WARN_ON_ONCE(folio_test_slab(folio)))
2832 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2833 if (folio_test_hugetlb(folio))
2837 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2838 * cannot proceed, which means no actions performed under RCU can
2841 * inodes and thus their mappings are freed under RCU, which means the
2842 * mapping cannot be freed beneath us and thus we can safely dereference
2845 lockdep_assert_irqs_disabled();
2848 * However, there may be operations which _alter_ the mapping, so ensure
2849 * we read it once and only once.
2851 mapping = READ_ONCE(folio->mapping);
2854 * The mapping may have been truncated, in any case we cannot determine
2855 * if this mapping is safe - fall back to slow path to determine how to
2861 /* Anonymous folios pose no problem. */
2862 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2864 return mapping_flags & PAGE_MAPPING_ANON;
2867 * At this point, we know the mapping is non-null and points to an
2868 * address_space object.
2870 if (check_secretmem && secretmem_mapping(mapping))
2872 /* The only remaining allowed file system is shmem. */
2873 return !reject_file_backed || shmem_mapping(mapping);
2876 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2878 struct page **pages)
2880 while ((*nr) - nr_start) {
2881 struct page *page = pages[--(*nr)];
2883 ClearPageReferenced(page);
2884 if (flags & FOLL_PIN)
2885 unpin_user_page(page);
2891 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2893 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2896 * To pin the page, fast-gup needs to do below in order:
2897 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2899 * For the rest of pgtable operations where pgtable updates can be racy
2900 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2903 * Above will work for all pte-level operations, including THP split.
2905 * For THP collapse, it's a bit more complicated because fast-gup may be
2906 * walking a pgtable page that is being freed (pte is still valid but pmd
2907 * can be cleared already). To avoid race in such condition, we need to
2908 * also check pmd here to make sure pmd doesn't change (corresponds to
2909 * pmdp_collapse_flush() in the THP collapse code path).
2911 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2912 unsigned long end, unsigned int flags,
2913 struct page **pages, int *nr)
2915 struct dev_pagemap *pgmap = NULL;
2916 int nr_start = *nr, ret = 0;
2919 ptem = ptep = pte_offset_map(&pmd, addr);
2923 pte_t pte = ptep_get_lockless(ptep);
2925 struct folio *folio;
2928 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2929 * pte_access_permitted() better should reject these pages
2930 * either way: otherwise, GUP-fast might succeed in
2931 * cases where ordinary GUP would fail due to VMA access
2934 if (pte_protnone(pte))
2937 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2940 if (pte_devmap(pte)) {
2941 if (unlikely(flags & FOLL_LONGTERM))
2944 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2945 if (unlikely(!pgmap)) {
2946 undo_dev_pagemap(nr, nr_start, flags, pages);
2949 } else if (pte_special(pte))
2952 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2953 page = pte_page(pte);
2955 folio = try_grab_folio(page, 1, flags);
2959 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2960 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2961 gup_put_folio(folio, 1, flags);
2965 if (!gup_fast_folio_allowed(folio, flags)) {
2966 gup_put_folio(folio, 1, flags);
2970 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2971 gup_put_folio(folio, 1, flags);
2976 * We need to make the page accessible if and only if we are
2977 * going to access its content (the FOLL_PIN case). Please
2978 * see Documentation/core-api/pin_user_pages.rst for
2981 if (flags & FOLL_PIN) {
2982 ret = arch_make_page_accessible(page);
2984 gup_put_folio(folio, 1, flags);
2988 folio_set_referenced(folio);
2991 } while (ptep++, addr += PAGE_SIZE, addr != end);
2997 put_dev_pagemap(pgmap);
3004 * If we can't determine whether or not a pte is special, then fail immediately
3005 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
3008 * For a futex to be placed on a THP tail page, get_futex_key requires a
3009 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
3010 * useful to have gup_huge_pmd even if we can't operate on ptes.
3012 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
3013 unsigned long end, unsigned int flags,
3014 struct page **pages, int *nr)
3018 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3020 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3021 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
3022 unsigned long end, unsigned int flags,
3023 struct page **pages, int *nr)
3026 struct dev_pagemap *pgmap = NULL;
3029 struct page *page = pfn_to_page(pfn);
3031 pgmap = get_dev_pagemap(pfn, pgmap);
3032 if (unlikely(!pgmap)) {
3033 undo_dev_pagemap(nr, nr_start, flags, pages);
3037 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3038 undo_dev_pagemap(nr, nr_start, flags, pages);
3042 SetPageReferenced(page);
3044 if (unlikely(try_grab_page(page, flags))) {
3045 undo_dev_pagemap(nr, nr_start, flags, pages);
3050 } while (addr += PAGE_SIZE, addr != end);
3052 put_dev_pagemap(pgmap);
3056 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3057 unsigned long end, unsigned int flags,
3058 struct page **pages, int *nr)
3060 unsigned long fault_pfn;
3063 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3064 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
3067 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3068 undo_dev_pagemap(nr, nr_start, flags, pages);
3074 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
3075 unsigned long end, unsigned int flags,
3076 struct page **pages, int *nr)
3078 unsigned long fault_pfn;
3081 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3082 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
3085 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3086 undo_dev_pagemap(nr, nr_start, flags, pages);
3092 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3093 unsigned long end, unsigned int flags,
3094 struct page **pages, int *nr)
3100 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
3101 unsigned long end, unsigned int flags,
3102 struct page **pages, int *nr)
3109 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3110 unsigned long end, unsigned int flags,
3111 struct page **pages, int *nr)
3114 struct folio *folio;
3117 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3120 if (pmd_devmap(orig)) {
3121 if (unlikely(flags & FOLL_LONGTERM))
3123 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
3127 page = pmd_page(orig);
3128 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3130 folio = try_grab_folio(page, refs, flags);
3134 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3135 gup_put_folio(folio, refs, flags);
3139 if (!gup_fast_folio_allowed(folio, flags)) {
3140 gup_put_folio(folio, refs, flags);
3143 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3144 gup_put_folio(folio, refs, flags);
3149 folio_set_referenced(folio);
3153 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
3154 unsigned long end, unsigned int flags,
3155 struct page **pages, int *nr)
3158 struct folio *folio;
3161 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3164 if (pud_devmap(orig)) {
3165 if (unlikely(flags & FOLL_LONGTERM))
3167 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
3171 page = pud_page(orig);
3172 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3174 folio = try_grab_folio(page, refs, flags);
3178 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3179 gup_put_folio(folio, refs, flags);
3183 if (!gup_fast_folio_allowed(folio, flags)) {
3184 gup_put_folio(folio, refs, flags);
3188 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3189 gup_put_folio(folio, refs, flags);
3194 folio_set_referenced(folio);
3198 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3199 unsigned long end, unsigned int flags,
3200 struct page **pages, int *nr)
3204 struct folio *folio;
3206 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3209 BUILD_BUG_ON(pgd_devmap(orig));
3211 page = pgd_page(orig);
3212 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3214 folio = try_grab_folio(page, refs, flags);
3218 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3219 gup_put_folio(folio, refs, flags);
3223 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3224 gup_put_folio(folio, refs, flags);
3228 if (!gup_fast_folio_allowed(folio, flags)) {
3229 gup_put_folio(folio, refs, flags);
3234 folio_set_referenced(folio);
3238 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
3239 unsigned int flags, struct page **pages, int *nr)
3244 pmdp = pmd_offset_lockless(pudp, pud, addr);
3246 pmd_t pmd = pmdp_get_lockless(pmdp);
3248 next = pmd_addr_end(addr, end);
3249 if (!pmd_present(pmd))
3252 if (unlikely(pmd_leaf(pmd))) {
3253 /* See gup_pte_range() */
3254 if (pmd_protnone(pmd))
3257 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3261 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3263 * architecture have different format for hugetlbfs
3264 * pmd format and THP pmd format
3266 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3267 PMD_SHIFT, next, flags, pages, nr))
3269 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3271 } while (pmdp++, addr = next, addr != end);
3276 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3277 unsigned int flags, struct page **pages, int *nr)
3282 pudp = pud_offset_lockless(p4dp, p4d, addr);
3284 pud_t pud = READ_ONCE(*pudp);
3286 next = pud_addr_end(addr, end);
3287 if (unlikely(!pud_present(pud)))
3289 if (unlikely(pud_leaf(pud))) {
3290 if (!gup_huge_pud(pud, pudp, addr, next, flags,
3293 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3294 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3295 PUD_SHIFT, next, flags, pages, nr))
3297 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3299 } while (pudp++, addr = next, addr != end);
3304 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3305 unsigned int flags, struct page **pages, int *nr)
3310 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3312 p4d_t p4d = READ_ONCE(*p4dp);
3314 next = p4d_addr_end(addr, end);
3315 if (!p4d_present(p4d))
3317 BUILD_BUG_ON(p4d_leaf(p4d));
3318 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3319 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3320 P4D_SHIFT, next, flags, pages, nr))
3322 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3324 } while (p4dp++, addr = next, addr != end);
3329 static void gup_pgd_range(unsigned long addr, unsigned long end,
3330 unsigned int flags, struct page **pages, int *nr)
3335 pgdp = pgd_offset(current->mm, addr);
3337 pgd_t pgd = READ_ONCE(*pgdp);
3339 next = pgd_addr_end(addr, end);
3342 if (unlikely(pgd_leaf(pgd))) {
3343 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3346 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3347 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3348 PGDIR_SHIFT, next, flags, pages, nr))
3350 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3352 } while (pgdp++, addr = next, addr != end);
3355 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3356 unsigned int flags, struct page **pages, int *nr)
3359 #endif /* CONFIG_HAVE_FAST_GUP */
3361 #ifndef gup_fast_permitted
3363 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3364 * we need to fall back to the slow version:
3366 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3372 static unsigned long lockless_pages_from_mm(unsigned long start,
3374 unsigned int gup_flags,
3375 struct page **pages)
3377 unsigned long flags;
3381 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3382 !gup_fast_permitted(start, end))
3385 if (gup_flags & FOLL_PIN) {
3386 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3392 * Disable interrupts. The nested form is used, in order to allow full,
3393 * general purpose use of this routine.
3395 * With interrupts disabled, we block page table pages from being freed
3396 * from under us. See struct mmu_table_batch comments in
3397 * include/asm-generic/tlb.h for more details.
3399 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3400 * that come from THPs splitting.
3402 local_irq_save(flags);
3403 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3404 local_irq_restore(flags);
3407 * When pinning pages for DMA there could be a concurrent write protect
3408 * from fork() via copy_page_range(), in this case always fail fast GUP.
3410 if (gup_flags & FOLL_PIN) {
3411 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3412 unpin_user_pages_lockless(pages, nr_pinned);
3415 sanity_check_pinned_pages(pages, nr_pinned);
3421 static int internal_get_user_pages_fast(unsigned long start,
3422 unsigned long nr_pages,
3423 unsigned int gup_flags,
3424 struct page **pages)
3426 unsigned long len, end;
3427 unsigned long nr_pinned;
3431 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3432 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3433 FOLL_FAST_ONLY | FOLL_NOFAULT |
3434 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3437 if (gup_flags & FOLL_PIN)
3438 mm_set_has_pinned_flag(¤t->mm->flags);
3440 if (!(gup_flags & FOLL_FAST_ONLY))
3441 might_lock_read(¤t->mm->mmap_lock);
3443 start = untagged_addr(start) & PAGE_MASK;
3444 len = nr_pages << PAGE_SHIFT;
3445 if (check_add_overflow(start, len, &end))
3447 if (end > TASK_SIZE_MAX)
3449 if (unlikely(!access_ok((void __user *)start, len)))
3452 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3453 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3456 /* Slow path: try to get the remaining pages with get_user_pages */
3457 start += nr_pinned << PAGE_SHIFT;
3459 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3461 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3464 * The caller has to unpin the pages we already pinned so
3465 * returning -errno is not an option
3471 return ret + nr_pinned;
3475 * get_user_pages_fast_only() - pin user pages in memory
3476 * @start: starting user address
3477 * @nr_pages: number of pages from start to pin
3478 * @gup_flags: flags modifying pin behaviour
3479 * @pages: array that receives pointers to the pages pinned.
3480 * Should be at least nr_pages long.
3482 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3485 * If the architecture does not support this function, simply return with no
3488 * Careful, careful! COW breaking can go either way, so a non-write
3489 * access can get ambiguous page results. If you call this function without
3490 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3492 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3493 unsigned int gup_flags, struct page **pages)
3496 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3497 * because gup fast is always a "pin with a +1 page refcount" request.
3499 * FOLL_FAST_ONLY is required in order to match the API description of
3500 * this routine: no fall back to regular ("slow") GUP.
3502 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3503 FOLL_GET | FOLL_FAST_ONLY))
3506 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3508 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3511 * get_user_pages_fast() - pin user pages in memory
3512 * @start: starting user address
3513 * @nr_pages: number of pages from start to pin
3514 * @gup_flags: flags modifying pin behaviour
3515 * @pages: array that receives pointers to the pages pinned.
3516 * Should be at least nr_pages long.
3518 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3519 * If not successful, it will fall back to taking the lock and
3520 * calling get_user_pages().
3522 * Returns number of pages pinned. This may be fewer than the number requested.
3523 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3526 int get_user_pages_fast(unsigned long start, int nr_pages,
3527 unsigned int gup_flags, struct page **pages)
3530 * The caller may or may not have explicitly set FOLL_GET; either way is
3531 * OK. However, internally (within mm/gup.c), gup fast variants must set
3532 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3535 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3537 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3539 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3542 * pin_user_pages_fast() - pin user pages in memory without taking locks
3544 * @start: starting user address
3545 * @nr_pages: number of pages from start to pin
3546 * @gup_flags: flags modifying pin behaviour
3547 * @pages: array that receives pointers to the pages pinned.
3548 * Should be at least nr_pages long.
3550 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3551 * get_user_pages_fast() for documentation on the function arguments, because
3552 * the arguments here are identical.
3554 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3555 * see Documentation/core-api/pin_user_pages.rst for further details.
3557 * Note that if a zero_page is amongst the returned pages, it will not have
3558 * pins in it and unpin_user_page() will not remove pins from it.
3560 int pin_user_pages_fast(unsigned long start, int nr_pages,
3561 unsigned int gup_flags, struct page **pages)
3563 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3565 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3567 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3570 * pin_user_pages_remote() - pin pages of a remote process
3572 * @mm: mm_struct of target mm
3573 * @start: starting user address
3574 * @nr_pages: number of pages from start to pin
3575 * @gup_flags: flags modifying lookup behaviour
3576 * @pages: array that receives pointers to the pages pinned.
3577 * Should be at least nr_pages long.
3578 * @locked: pointer to lock flag indicating whether lock is held and
3579 * subsequently whether VM_FAULT_RETRY functionality can be
3580 * utilised. Lock must initially be held.
3582 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3583 * get_user_pages_remote() for documentation on the function arguments, because
3584 * the arguments here are identical.
3586 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3587 * see Documentation/core-api/pin_user_pages.rst for details.
3589 * Note that if a zero_page is amongst the returned pages, it will not have
3590 * pins in it and unpin_user_page*() will not remove pins from it.
3592 long pin_user_pages_remote(struct mm_struct *mm,
3593 unsigned long start, unsigned long nr_pages,
3594 unsigned int gup_flags, struct page **pages,
3597 int local_locked = 1;
3599 if (!is_valid_gup_args(pages, locked, &gup_flags,
3600 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3602 return __gup_longterm_locked(mm, start, nr_pages, pages,
3603 locked ? locked : &local_locked,
3606 EXPORT_SYMBOL(pin_user_pages_remote);
3609 * pin_user_pages() - pin user pages in memory for use by other devices
3611 * @start: starting user address
3612 * @nr_pages: number of pages from start to pin
3613 * @gup_flags: flags modifying lookup behaviour
3614 * @pages: array that receives pointers to the pages pinned.
3615 * Should be at least nr_pages long.
3617 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3620 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3621 * see Documentation/core-api/pin_user_pages.rst for details.
3623 * Note that if a zero_page is amongst the returned pages, it will not have
3624 * pins in it and unpin_user_page*() will not remove pins from it.
3626 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3627 unsigned int gup_flags, struct page **pages)
3631 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3633 return __gup_longterm_locked(current->mm, start, nr_pages,
3634 pages, &locked, gup_flags);
3636 EXPORT_SYMBOL(pin_user_pages);
3639 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3640 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3641 * FOLL_PIN and rejects FOLL_GET.
3643 * Note that if a zero_page is amongst the returned pages, it will not have
3644 * pins in it and unpin_user_page*() will not remove pins from it.
3646 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3647 struct page **pages, unsigned int gup_flags)
3651 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3652 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3655 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3656 &locked, gup_flags);
3658 EXPORT_SYMBOL(pin_user_pages_unlocked);