1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
65 #include <linux/iov_iter.h>
67 #include <net/protocol.h>
70 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
75 #include <net/mptcp.h>
77 #include <net/page_pool/helpers.h>
78 #include <net/dropreason.h>
80 #include <linux/uaccess.h>
81 #include <trace/events/skb.h>
82 #include <linux/highmem.h>
83 #include <linux/capability.h>
84 #include <linux/user_namespace.h>
85 #include <linux/indirect_call_wrapper.h>
86 #include <linux/textsearch.h>
89 #include "sock_destructor.h"
91 struct kmem_cache *skbuff_cache __ro_after_init;
92 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93 #ifdef CONFIG_SKB_EXTENSIONS
94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
98 static struct kmem_cache *skb_small_head_cache __ro_after_init;
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
102 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104 * size, and we can differentiate heads from skb_small_head_cache
105 * vs system slabs by looking at their size (skb_end_offset()).
107 #define SKB_SMALL_HEAD_CACHE_SIZE \
108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
112 #define SKB_SMALL_HEAD_HEADROOM \
113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
115 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116 EXPORT_SYMBOL(sysctl_max_skb_frags);
119 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120 static const char * const drop_reasons[] = {
121 [SKB_CONSUMED] = "CONSUMED",
122 DEFINE_DROP_REASON(FN, FN)
125 static const struct drop_reason_list drop_reasons_core = {
126 .reasons = drop_reasons,
127 .n_reasons = ARRAY_SIZE(drop_reasons),
130 const struct drop_reason_list __rcu *
131 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
134 EXPORT_SYMBOL(drop_reasons_by_subsys);
137 * drop_reasons_register_subsys - register another drop reason subsystem
138 * @subsys: the subsystem to register, must not be the core
139 * @list: the list of drop reasons within the subsystem, must point to
140 * a statically initialized list
142 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 const struct drop_reason_list *list)
145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 "invalid subsystem %d\n", subsys))
150 /* must point to statically allocated memory, so INIT is OK */
151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
153 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157 * @subsys: the subsystem to remove, must not be the core
159 * Note: This will synchronize_rcu() to ensure no users when it returns.
161 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
172 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
175 * skb_panic - private function for out-of-line support
179 * @msg: skb_over_panic or skb_under_panic
181 * Out-of-line support for skb_put() and skb_push().
182 * Called via the wrapper skb_over_panic() or skb_under_panic().
183 * Keep out of line to prevent kernel bloat.
184 * __builtin_return_address is not used because it is not always reliable.
186 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 msg, addr, skb->len, sz, skb->head, skb->data,
191 (unsigned long)skb->tail, (unsigned long)skb->end,
192 skb->dev ? skb->dev->name : "<NULL>");
196 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
198 skb_panic(skb, sz, addr, __func__);
201 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
203 skb_panic(skb, sz, addr, __func__);
206 #define NAPI_SKB_CACHE_SIZE 64
207 #define NAPI_SKB_CACHE_BULK 16
208 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
210 #if PAGE_SIZE == SZ_4K
212 #define NAPI_HAS_SMALL_PAGE_FRAG 1
213 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
215 /* specialized page frag allocator using a single order 0 page
216 * and slicing it into 1K sized fragment. Constrained to systems
217 * with a very limited amount of 1K fragments fitting a single
218 * page - to avoid excessive truesize underestimation
221 struct page_frag_1k {
227 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
232 offset = nc->offset - SZ_1K;
233 if (likely(offset >= 0))
236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
240 nc->va = page_address(page);
241 nc->pfmemalloc = page_is_pfmemalloc(page);
242 offset = PAGE_SIZE - SZ_1K;
243 page_ref_add(page, offset / SZ_1K);
247 return nc->va + offset;
251 /* the small page is actually unused in this build; add dummy helpers
252 * to please the compiler and avoid later preprocessor's conditionals
254 #define NAPI_HAS_SMALL_PAGE_FRAG 0
255 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
257 struct page_frag_1k {
260 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
267 struct napi_alloc_cache {
268 struct page_frag_cache page;
269 struct page_frag_1k page_small;
270 unsigned int skb_count;
271 void *skb_cache[NAPI_SKB_CACHE_SIZE];
274 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
277 /* Double check that napi_get_frags() allocates skbs with
278 * skb->head being backed by slab, not a page fragment.
279 * This is to make sure bug fixed in 3226b158e67c
280 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281 * does not accidentally come back.
283 void napi_get_frags_check(struct napi_struct *napi)
288 skb = napi_get_frags(napi);
289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 napi_free_frags(napi);
294 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
298 fragsz = SKB_DATA_ALIGN(fragsz);
300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
302 EXPORT_SYMBOL(__napi_alloc_frag_align);
304 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
308 fragsz = SKB_DATA_ALIGN(fragsz);
309 if (in_hardirq() || irqs_disabled()) {
310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
314 struct napi_alloc_cache *nc;
317 nc = this_cpu_ptr(&napi_alloc_cache);
318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
323 EXPORT_SYMBOL(__netdev_alloc_frag_align);
325 static struct sk_buff *napi_skb_cache_get(void)
327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
330 if (unlikely(!nc->skb_count)) {
331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
335 if (unlikely(!nc->skb_count))
339 skb = nc->skb_cache[--nc->skb_count];
340 kasan_unpoison_object_data(skbuff_cache, skb);
345 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
348 struct skb_shared_info *shinfo;
350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
352 /* Assumes caller memset cleared SKB */
353 skb->truesize = SKB_TRUESIZE(size);
354 refcount_set(&skb->users, 1);
357 skb_reset_tail_pointer(skb);
358 skb_set_end_offset(skb, size);
359 skb->mac_header = (typeof(skb->mac_header))~0U;
360 skb->transport_header = (typeof(skb->transport_header))~0U;
361 skb->alloc_cpu = raw_smp_processor_id();
362 /* make sure we initialize shinfo sequentially */
363 shinfo = skb_shinfo(skb);
364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 atomic_set(&shinfo->dataref, 1);
367 skb_set_kcov_handle(skb, kcov_common_handle());
370 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
375 /* Must find the allocation size (and grow it to match). */
377 /* krealloc() will immediately return "data" when
378 * "ksize(data)" is requested: it is the existing upper
379 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 * that this "new" pointer needs to be passed back to the
381 * caller for use so the __alloc_size hinting will be
384 resized = krealloc(data, *size, GFP_ATOMIC);
385 WARN_ON_ONCE(resized != data);
389 /* build_skb() variant which can operate on slab buffers.
390 * Note that this should be used sparingly as slab buffers
391 * cannot be combined efficiently by GRO!
393 struct sk_buff *slab_build_skb(void *data)
398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
402 memset(skb, 0, offsetof(struct sk_buff, tail));
403 data = __slab_build_skb(skb, data, &size);
404 __finalize_skb_around(skb, data, size);
408 EXPORT_SYMBOL(slab_build_skb);
410 /* Caller must provide SKB that is memset cleared */
411 static void __build_skb_around(struct sk_buff *skb, void *data,
412 unsigned int frag_size)
414 unsigned int size = frag_size;
416 /* frag_size == 0 is considered deprecated now. Callers
417 * using slab buffer should use slab_build_skb() instead.
419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 data = __slab_build_skb(skb, data, &size);
422 __finalize_skb_around(skb, data, size);
426 * __build_skb - build a network buffer
427 * @data: data buffer provided by caller
428 * @frag_size: size of data (must not be 0)
430 * Allocate a new &sk_buff. Caller provides space holding head and
431 * skb_shared_info. @data must have been allocated from the page
432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433 * allocation is deprecated, and callers should use slab_build_skb()
435 * The return is the new skb buffer.
436 * On a failure the return is %NULL, and @data is not freed.
438 * Before IO, driver allocates only data buffer where NIC put incoming frame
439 * Driver should add room at head (NET_SKB_PAD) and
440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
442 * before giving packet to stack.
443 * RX rings only contains data buffers, not full skbs.
445 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
453 memset(skb, 0, offsetof(struct sk_buff, tail));
454 __build_skb_around(skb, data, frag_size);
459 /* build_skb() is wrapper over __build_skb(), that specifically
460 * takes care of skb->head and skb->pfmemalloc
462 struct sk_buff *build_skb(void *data, unsigned int frag_size)
464 struct sk_buff *skb = __build_skb(data, frag_size);
466 if (likely(skb && frag_size)) {
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
472 EXPORT_SYMBOL(build_skb);
475 * build_skb_around - build a network buffer around provided skb
476 * @skb: sk_buff provide by caller, must be memset cleared
477 * @data: data buffer provided by caller
478 * @frag_size: size of data
480 struct sk_buff *build_skb_around(struct sk_buff *skb,
481 void *data, unsigned int frag_size)
486 __build_skb_around(skb, data, frag_size);
490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
494 EXPORT_SYMBOL(build_skb_around);
497 * __napi_build_skb - build a network buffer
498 * @data: data buffer provided by caller
499 * @frag_size: size of data
501 * Version of __build_skb() that uses NAPI percpu caches to obtain
502 * skbuff_head instead of inplace allocation.
504 * Returns a new &sk_buff on success, %NULL on allocation failure.
506 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
510 skb = napi_skb_cache_get();
514 memset(skb, 0, offsetof(struct sk_buff, tail));
515 __build_skb_around(skb, data, frag_size);
521 * napi_build_skb - build a network buffer
522 * @data: data buffer provided by caller
523 * @frag_size: size of data
525 * Version of __napi_build_skb() that takes care of skb->head_frag
526 * and skb->pfmemalloc when the data is a page or page fragment.
528 * Returns a new &sk_buff on success, %NULL on allocation failure.
530 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
532 struct sk_buff *skb = __napi_build_skb(data, frag_size);
534 if (likely(skb) && frag_size) {
536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
541 EXPORT_SYMBOL(napi_build_skb);
544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545 * the caller if emergency pfmemalloc reserves are being used. If it is and
546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547 * may be used. Otherwise, the packet data may be discarded until enough
550 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
553 bool ret_pfmemalloc = false;
557 obj_size = SKB_HEAD_ALIGN(*size);
558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 obj = kmem_cache_alloc_node(skb_small_head_cache,
561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
563 *size = SKB_SMALL_HEAD_CACHE_SIZE;
564 if (obj || !(gfp_pfmemalloc_allowed(flags)))
566 /* Try again but now we are using pfmemalloc reserves */
567 ret_pfmemalloc = true;
568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
572 obj_size = kmalloc_size_roundup(obj_size);
573 /* The following cast might truncate high-order bits of obj_size, this
574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
576 *size = (unsigned int)obj_size;
579 * Try a regular allocation, when that fails and we're not entitled
580 * to the reserves, fail.
582 obj = kmalloc_node_track_caller(obj_size,
583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
585 if (obj || !(gfp_pfmemalloc_allowed(flags)))
588 /* Try again but now we are using pfmemalloc reserves */
589 ret_pfmemalloc = true;
590 obj = kmalloc_node_track_caller(obj_size, flags, node);
594 *pfmemalloc = ret_pfmemalloc;
599 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
600 * 'private' fields and also do memory statistics to find all the
606 * __alloc_skb - allocate a network buffer
607 * @size: size to allocate
608 * @gfp_mask: allocation mask
609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610 * instead of head cache and allocate a cloned (child) skb.
611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612 * allocations in case the data is required for writeback
613 * @node: numa node to allocate memory on
615 * Allocate a new &sk_buff. The returned buffer has no headroom and a
616 * tail room of at least size bytes. The object has a reference count
617 * of one. The return is the buffer. On a failure the return is %NULL.
619 * Buffers may only be allocated from interrupts using a @gfp_mask of
622 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
625 struct kmem_cache *cache;
630 cache = (flags & SKB_ALLOC_FCLONE)
631 ? skbuff_fclone_cache : skbuff_cache;
633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 gfp_mask |= __GFP_MEMALLOC;
637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 skb = napi_skb_cache_get();
641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
646 /* We do our best to align skb_shared_info on a separate cache
647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 * Both skb->head and skb_shared_info are cache line aligned.
651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
654 /* kmalloc_size_roundup() might give us more room than requested.
655 * Put skb_shared_info exactly at the end of allocated zone,
656 * to allow max possible filling before reallocation.
658 prefetchw(data + SKB_WITH_OVERHEAD(size));
661 * Only clear those fields we need to clear, not those that we will
662 * actually initialise below. Hence, don't put any more fields after
663 * the tail pointer in struct sk_buff!
665 memset(skb, 0, offsetof(struct sk_buff, tail));
666 __build_skb_around(skb, data, size);
667 skb->pfmemalloc = pfmemalloc;
669 if (flags & SKB_ALLOC_FCLONE) {
670 struct sk_buff_fclones *fclones;
672 fclones = container_of(skb, struct sk_buff_fclones, skb1);
674 skb->fclone = SKB_FCLONE_ORIG;
675 refcount_set(&fclones->fclone_ref, 1);
681 kmem_cache_free(cache, skb);
684 EXPORT_SYMBOL(__alloc_skb);
687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
688 * @dev: network device to receive on
689 * @len: length to allocate
690 * @gfp_mask: get_free_pages mask, passed to alloc_skb
692 * Allocate a new &sk_buff and assign it a usage count of one. The
693 * buffer has NET_SKB_PAD headroom built in. Users should allocate
694 * the headroom they think they need without accounting for the
695 * built in space. The built in space is used for optimisations.
697 * %NULL is returned if there is no free memory.
699 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
702 struct page_frag_cache *nc;
709 /* If requested length is either too small or too big,
710 * we use kmalloc() for skb->head allocation.
712 if (len <= SKB_WITH_OVERHEAD(1024) ||
713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
721 len = SKB_HEAD_ALIGN(len);
723 if (sk_memalloc_socks())
724 gfp_mask |= __GFP_MEMALLOC;
726 if (in_hardirq() || irqs_disabled()) {
727 nc = this_cpu_ptr(&netdev_alloc_cache);
728 data = page_frag_alloc(nc, len, gfp_mask);
729 pfmemalloc = nc->pfmemalloc;
732 nc = this_cpu_ptr(&napi_alloc_cache.page);
733 data = page_frag_alloc(nc, len, gfp_mask);
734 pfmemalloc = nc->pfmemalloc;
741 skb = __build_skb(data, len);
742 if (unlikely(!skb)) {
752 skb_reserve(skb, NET_SKB_PAD);
758 EXPORT_SYMBOL(__netdev_alloc_skb);
761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762 * @napi: napi instance this buffer was allocated for
763 * @len: length to allocate
764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
766 * Allocate a new sk_buff for use in NAPI receive. This buffer will
767 * attempt to allocate the head from a special reserved region used
768 * only for NAPI Rx allocation. By doing this we can save several
769 * CPU cycles by avoiding having to disable and re-enable IRQs.
771 * %NULL is returned if there is no free memory.
773 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
776 struct napi_alloc_cache *nc;
781 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 len += NET_SKB_PAD + NET_IP_ALIGN;
784 /* If requested length is either too small or too big,
785 * we use kmalloc() for skb->head allocation.
786 * When the small frag allocator is available, prefer it over kmalloc
787 * for small fragments
789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
799 nc = this_cpu_ptr(&napi_alloc_cache);
801 if (sk_memalloc_socks())
802 gfp_mask |= __GFP_MEMALLOC;
804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 /* we are artificially inflating the allocation size, but
806 * that is not as bad as it may look like, as:
807 * - 'len' less than GRO_MAX_HEAD makes little sense
808 * - On most systems, larger 'len' values lead to fragment
809 * size above 512 bytes
810 * - kmalloc would use the kmalloc-1k slab for such values
811 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 * little networking, as that implies no WiFi and no
813 * tunnels support, and 32 bits arches.
817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
820 len = SKB_HEAD_ALIGN(len);
822 data = page_frag_alloc(&nc->page, len, gfp_mask);
823 pfmemalloc = nc->page.pfmemalloc;
829 skb = __napi_build_skb(data, len);
830 if (unlikely(!skb)) {
840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 skb->dev = napi->dev;
846 EXPORT_SYMBOL(__napi_alloc_skb);
848 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 int size, unsigned int truesize)
851 DEBUG_NET_WARN_ON_ONCE(size > truesize);
853 skb_fill_page_desc(skb, i, page, off, size);
855 skb->data_len += size;
856 skb->truesize += truesize;
858 EXPORT_SYMBOL(skb_add_rx_frag);
860 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 unsigned int truesize)
863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
865 DEBUG_NET_WARN_ON_ONCE(size > truesize);
867 skb_frag_size_add(frag, size);
869 skb->data_len += size;
870 skb->truesize += truesize;
872 EXPORT_SYMBOL(skb_coalesce_rx_frag);
874 static void skb_drop_list(struct sk_buff **listp)
876 kfree_skb_list(*listp);
880 static inline void skb_drop_fraglist(struct sk_buff *skb)
882 skb_drop_list(&skb_shinfo(skb)->frag_list);
885 static void skb_clone_fraglist(struct sk_buff *skb)
887 struct sk_buff *list;
889 skb_walk_frags(skb, list)
893 #if IS_ENABLED(CONFIG_PAGE_POOL)
894 bool napi_pp_put_page(struct page *page, bool napi_safe)
896 bool allow_direct = false;
897 struct page_pool *pp;
899 page = compound_head(page);
901 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
902 * in order to preserve any existing bits, such as bit 0 for the
903 * head page of compound page and bit 1 for pfmemalloc page, so
904 * mask those bits for freeing side when doing below checking,
905 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
906 * to avoid recycling the pfmemalloc page.
908 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
913 /* Allow direct recycle if we have reasons to believe that we are
914 * in the same context as the consumer would run, so there's
916 * __page_pool_put_page() makes sure we're not in hardirq context
917 * and interrupts are enabled prior to accessing the cache.
919 if (napi_safe || in_softirq()) {
920 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
922 allow_direct = napi &&
923 READ_ONCE(napi->list_owner) == smp_processor_id();
926 /* Driver set this to memory recycling info. Reset it on recycle.
927 * This will *not* work for NIC using a split-page memory model.
928 * The page will be returned to the pool here regardless of the
929 * 'flipped' fragment being in use or not.
931 page_pool_put_full_page(pp, page, allow_direct);
935 EXPORT_SYMBOL(napi_pp_put_page);
938 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
940 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
942 return napi_pp_put_page(virt_to_page(data), napi_safe);
945 static void skb_kfree_head(void *head, unsigned int end_offset)
947 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
948 kmem_cache_free(skb_small_head_cache, head);
953 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
955 unsigned char *head = skb->head;
957 if (skb->head_frag) {
958 if (skb_pp_recycle(skb, head, napi_safe))
962 skb_kfree_head(head, skb_end_offset(skb));
966 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
969 struct skb_shared_info *shinfo = skb_shinfo(skb);
973 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
977 if (skb_zcopy(skb)) {
978 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
980 skb_zcopy_clear(skb, true);
985 for (i = 0; i < shinfo->nr_frags; i++)
986 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
989 if (shinfo->frag_list)
990 kfree_skb_list_reason(shinfo->frag_list, reason);
992 skb_free_head(skb, napi_safe);
994 /* When we clone an SKB we copy the reycling bit. The pp_recycle
995 * bit is only set on the head though, so in order to avoid races
996 * while trying to recycle fragments on __skb_frag_unref() we need
997 * to make one SKB responsible for triggering the recycle path.
998 * So disable the recycling bit if an SKB is cloned and we have
999 * additional references to the fragmented part of the SKB.
1000 * Eventually the last SKB will have the recycling bit set and it's
1001 * dataref set to 0, which will trigger the recycling
1003 skb->pp_recycle = 0;
1007 * Free an skbuff by memory without cleaning the state.
1009 static void kfree_skbmem(struct sk_buff *skb)
1011 struct sk_buff_fclones *fclones;
1013 switch (skb->fclone) {
1014 case SKB_FCLONE_UNAVAILABLE:
1015 kmem_cache_free(skbuff_cache, skb);
1018 case SKB_FCLONE_ORIG:
1019 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021 /* We usually free the clone (TX completion) before original skb
1022 * This test would have no chance to be true for the clone,
1023 * while here, branch prediction will be good.
1025 if (refcount_read(&fclones->fclone_ref) == 1)
1029 default: /* SKB_FCLONE_CLONE */
1030 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1033 if (!refcount_dec_and_test(&fclones->fclone_ref))
1036 kmem_cache_free(skbuff_fclone_cache, fclones);
1039 void skb_release_head_state(struct sk_buff *skb)
1042 if (skb->destructor) {
1043 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1044 skb->destructor(skb);
1046 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1047 nf_conntrack_put(skb_nfct(skb));
1052 /* Free everything but the sk_buff shell. */
1053 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1056 skb_release_head_state(skb);
1057 if (likely(skb->head))
1058 skb_release_data(skb, reason, napi_safe);
1062 * __kfree_skb - private function
1065 * Free an sk_buff. Release anything attached to the buffer.
1066 * Clean the state. This is an internal helper function. Users should
1067 * always call kfree_skb
1070 void __kfree_skb(struct sk_buff *skb)
1072 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1075 EXPORT_SYMBOL(__kfree_skb);
1077 static __always_inline
1078 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1080 if (unlikely(!skb_unref(skb)))
1083 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1084 u32_get_bits(reason,
1085 SKB_DROP_REASON_SUBSYS_MASK) >=
1086 SKB_DROP_REASON_SUBSYS_NUM);
1088 if (reason == SKB_CONSUMED)
1089 trace_consume_skb(skb, __builtin_return_address(0));
1091 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1096 * kfree_skb_reason - free an sk_buff with special reason
1097 * @skb: buffer to free
1098 * @reason: reason why this skb is dropped
1100 * Drop a reference to the buffer and free it if the usage count has
1101 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1105 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1107 if (__kfree_skb_reason(skb, reason))
1110 EXPORT_SYMBOL(kfree_skb_reason);
1112 #define KFREE_SKB_BULK_SIZE 16
1114 struct skb_free_array {
1115 unsigned int skb_count;
1116 void *skb_array[KFREE_SKB_BULK_SIZE];
1119 static void kfree_skb_add_bulk(struct sk_buff *skb,
1120 struct skb_free_array *sa,
1121 enum skb_drop_reason reason)
1123 /* if SKB is a clone, don't handle this case */
1124 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1129 skb_release_all(skb, reason, false);
1130 sa->skb_array[sa->skb_count++] = skb;
1132 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1133 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1140 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1142 struct skb_free_array sa;
1147 struct sk_buff *next = segs->next;
1149 if (__kfree_skb_reason(segs, reason)) {
1150 skb_poison_list(segs);
1151 kfree_skb_add_bulk(segs, &sa, reason);
1158 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1160 EXPORT_SYMBOL(kfree_skb_list_reason);
1162 /* Dump skb information and contents.
1164 * Must only be called from net_ratelimit()-ed paths.
1166 * Dumps whole packets if full_pkt, only headers otherwise.
1168 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1170 struct skb_shared_info *sh = skb_shinfo(skb);
1171 struct net_device *dev = skb->dev;
1172 struct sock *sk = skb->sk;
1173 struct sk_buff *list_skb;
1174 bool has_mac, has_trans;
1175 int headroom, tailroom;
1176 int i, len, seg_len;
1181 len = min_t(int, skb->len, MAX_HEADER + 128);
1183 headroom = skb_headroom(skb);
1184 tailroom = skb_tailroom(skb);
1186 has_mac = skb_mac_header_was_set(skb);
1187 has_trans = skb_transport_header_was_set(skb);
1189 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1190 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1191 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1192 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1193 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1194 level, skb->len, headroom, skb_headlen(skb), tailroom,
1195 has_mac ? skb->mac_header : -1,
1196 has_mac ? skb_mac_header_len(skb) : -1,
1197 skb->network_header,
1198 has_trans ? skb_network_header_len(skb) : -1,
1199 has_trans ? skb->transport_header : -1,
1200 sh->tx_flags, sh->nr_frags,
1201 sh->gso_size, sh->gso_type, sh->gso_segs,
1202 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1203 skb->csum_valid, skb->csum_level,
1204 skb->hash, skb->sw_hash, skb->l4_hash,
1205 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1208 printk("%sdev name=%s feat=%pNF\n",
1209 level, dev->name, &dev->features);
1211 printk("%ssk family=%hu type=%u proto=%u\n",
1212 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1214 if (full_pkt && headroom)
1215 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1216 16, 1, skb->head, headroom, false);
1218 seg_len = min_t(int, skb_headlen(skb), len);
1220 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1221 16, 1, skb->data, seg_len, false);
1224 if (full_pkt && tailroom)
1225 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1226 16, 1, skb_tail_pointer(skb), tailroom, false);
1228 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1229 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1230 u32 p_off, p_len, copied;
1234 skb_frag_foreach_page(frag, skb_frag_off(frag),
1235 skb_frag_size(frag), p, p_off, p_len,
1237 seg_len = min_t(int, p_len, len);
1238 vaddr = kmap_atomic(p);
1239 print_hex_dump(level, "skb frag: ",
1241 16, 1, vaddr + p_off, seg_len, false);
1242 kunmap_atomic(vaddr);
1249 if (full_pkt && skb_has_frag_list(skb)) {
1250 printk("skb fraglist:\n");
1251 skb_walk_frags(skb, list_skb)
1252 skb_dump(level, list_skb, true);
1255 EXPORT_SYMBOL(skb_dump);
1258 * skb_tx_error - report an sk_buff xmit error
1259 * @skb: buffer that triggered an error
1261 * Report xmit error if a device callback is tracking this skb.
1262 * skb must be freed afterwards.
1264 void skb_tx_error(struct sk_buff *skb)
1267 skb_zcopy_downgrade_managed(skb);
1268 skb_zcopy_clear(skb, true);
1271 EXPORT_SYMBOL(skb_tx_error);
1273 #ifdef CONFIG_TRACEPOINTS
1275 * consume_skb - free an skbuff
1276 * @skb: buffer to free
1278 * Drop a ref to the buffer and free it if the usage count has hit zero
1279 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1280 * is being dropped after a failure and notes that
1282 void consume_skb(struct sk_buff *skb)
1284 if (!skb_unref(skb))
1287 trace_consume_skb(skb, __builtin_return_address(0));
1290 EXPORT_SYMBOL(consume_skb);
1294 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1295 * @skb: buffer to free
1297 * Alike consume_skb(), but this variant assumes that this is the last
1298 * skb reference and all the head states have been already dropped
1300 void __consume_stateless_skb(struct sk_buff *skb)
1302 trace_consume_skb(skb, __builtin_return_address(0));
1303 skb_release_data(skb, SKB_CONSUMED, false);
1307 static void napi_skb_cache_put(struct sk_buff *skb)
1309 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1312 kasan_poison_object_data(skbuff_cache, skb);
1313 nc->skb_cache[nc->skb_count++] = skb;
1315 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1316 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1317 kasan_unpoison_object_data(skbuff_cache,
1320 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1321 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1322 nc->skb_count = NAPI_SKB_CACHE_HALF;
1326 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1328 skb_release_all(skb, reason, true);
1329 napi_skb_cache_put(skb);
1332 void napi_skb_free_stolen_head(struct sk_buff *skb)
1334 if (unlikely(skb->slow_gro)) {
1341 napi_skb_cache_put(skb);
1344 void napi_consume_skb(struct sk_buff *skb, int budget)
1346 /* Zero budget indicate non-NAPI context called us, like netpoll */
1347 if (unlikely(!budget)) {
1348 dev_consume_skb_any(skb);
1352 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1354 if (!skb_unref(skb))
1357 /* if reaching here SKB is ready to free */
1358 trace_consume_skb(skb, __builtin_return_address(0));
1360 /* if SKB is a clone, don't handle this case */
1361 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1366 skb_release_all(skb, SKB_CONSUMED, !!budget);
1367 napi_skb_cache_put(skb);
1369 EXPORT_SYMBOL(napi_consume_skb);
1371 /* Make sure a field is contained by headers group */
1372 #define CHECK_SKB_FIELD(field) \
1373 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1374 offsetof(struct sk_buff, headers.field)); \
1376 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1378 new->tstamp = old->tstamp;
1379 /* We do not copy old->sk */
1380 new->dev = old->dev;
1381 memcpy(new->cb, old->cb, sizeof(old->cb));
1382 skb_dst_copy(new, old);
1383 __skb_ext_copy(new, old);
1384 __nf_copy(new, old, false);
1386 /* Note : this field could be in the headers group.
1387 * It is not yet because we do not want to have a 16 bit hole
1389 new->queue_mapping = old->queue_mapping;
1391 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1392 CHECK_SKB_FIELD(protocol);
1393 CHECK_SKB_FIELD(csum);
1394 CHECK_SKB_FIELD(hash);
1395 CHECK_SKB_FIELD(priority);
1396 CHECK_SKB_FIELD(skb_iif);
1397 CHECK_SKB_FIELD(vlan_proto);
1398 CHECK_SKB_FIELD(vlan_tci);
1399 CHECK_SKB_FIELD(transport_header);
1400 CHECK_SKB_FIELD(network_header);
1401 CHECK_SKB_FIELD(mac_header);
1402 CHECK_SKB_FIELD(inner_protocol);
1403 CHECK_SKB_FIELD(inner_transport_header);
1404 CHECK_SKB_FIELD(inner_network_header);
1405 CHECK_SKB_FIELD(inner_mac_header);
1406 CHECK_SKB_FIELD(mark);
1407 #ifdef CONFIG_NETWORK_SECMARK
1408 CHECK_SKB_FIELD(secmark);
1410 #ifdef CONFIG_NET_RX_BUSY_POLL
1411 CHECK_SKB_FIELD(napi_id);
1413 CHECK_SKB_FIELD(alloc_cpu);
1415 CHECK_SKB_FIELD(sender_cpu);
1417 #ifdef CONFIG_NET_SCHED
1418 CHECK_SKB_FIELD(tc_index);
1424 * You should not add any new code to this function. Add it to
1425 * __copy_skb_header above instead.
1427 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1429 #define C(x) n->x = skb->x
1431 n->next = n->prev = NULL;
1433 __copy_skb_header(n, skb);
1438 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1444 n->destructor = NULL;
1451 refcount_set(&n->users, 1);
1453 atomic_inc(&(skb_shinfo(skb)->dataref));
1461 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1462 * @first: first sk_buff of the msg
1464 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1468 n = alloc_skb(0, GFP_ATOMIC);
1472 n->len = first->len;
1473 n->data_len = first->len;
1474 n->truesize = first->truesize;
1476 skb_shinfo(n)->frag_list = first;
1478 __copy_skb_header(n, first);
1479 n->destructor = NULL;
1483 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1486 * skb_morph - morph one skb into another
1487 * @dst: the skb to receive the contents
1488 * @src: the skb to supply the contents
1490 * This is identical to skb_clone except that the target skb is
1491 * supplied by the user.
1493 * The target skb is returned upon exit.
1495 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1497 skb_release_all(dst, SKB_CONSUMED, false);
1498 return __skb_clone(dst, src);
1500 EXPORT_SYMBOL_GPL(skb_morph);
1502 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1504 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1505 struct user_struct *user;
1507 if (capable(CAP_IPC_LOCK) || !size)
1510 rlim = rlimit(RLIMIT_MEMLOCK);
1511 if (rlim == RLIM_INFINITY)
1514 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1515 max_pg = rlim >> PAGE_SHIFT;
1516 user = mmp->user ? : current_user();
1518 old_pg = atomic_long_read(&user->locked_vm);
1520 new_pg = old_pg + num_pg;
1521 if (new_pg > max_pg)
1523 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1526 mmp->user = get_uid(user);
1527 mmp->num_pg = num_pg;
1529 mmp->num_pg += num_pg;
1534 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1536 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1539 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1540 free_uid(mmp->user);
1543 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1545 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1547 struct ubuf_info_msgzc *uarg;
1548 struct sk_buff *skb;
1550 WARN_ON_ONCE(!in_task());
1552 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1556 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1557 uarg = (void *)skb->cb;
1558 uarg->mmp.user = NULL;
1560 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1565 uarg->ubuf.callback = msg_zerocopy_callback;
1566 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1568 uarg->bytelen = size;
1570 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1571 refcount_set(&uarg->ubuf.refcnt, 1);
1577 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1579 return container_of((void *)uarg, struct sk_buff, cb);
1582 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1583 struct ubuf_info *uarg)
1586 struct ubuf_info_msgzc *uarg_zc;
1587 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1590 /* there might be non MSG_ZEROCOPY users */
1591 if (uarg->callback != msg_zerocopy_callback)
1594 /* realloc only when socket is locked (TCP, UDP cork),
1595 * so uarg->len and sk_zckey access is serialized
1597 if (!sock_owned_by_user(sk)) {
1602 uarg_zc = uarg_to_msgzc(uarg);
1603 bytelen = uarg_zc->bytelen + size;
1604 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1605 /* TCP can create new skb to attach new uarg */
1606 if (sk->sk_type == SOCK_STREAM)
1611 next = (u32)atomic_read(&sk->sk_zckey);
1612 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1613 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1616 uarg_zc->bytelen = bytelen;
1617 atomic_set(&sk->sk_zckey, ++next);
1619 /* no extra ref when appending to datagram (MSG_MORE) */
1620 if (sk->sk_type == SOCK_STREAM)
1621 net_zcopy_get(uarg);
1628 return msg_zerocopy_alloc(sk, size);
1630 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1632 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1634 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1638 old_lo = serr->ee.ee_info;
1639 old_hi = serr->ee.ee_data;
1640 sum_len = old_hi - old_lo + 1ULL + len;
1642 if (sum_len >= (1ULL << 32))
1645 if (lo != old_hi + 1)
1648 serr->ee.ee_data += len;
1652 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1654 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1655 struct sock_exterr_skb *serr;
1656 struct sock *sk = skb->sk;
1657 struct sk_buff_head *q;
1658 unsigned long flags;
1663 mm_unaccount_pinned_pages(&uarg->mmp);
1665 /* if !len, there was only 1 call, and it was aborted
1666 * so do not queue a completion notification
1668 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1673 hi = uarg->id + len - 1;
1674 is_zerocopy = uarg->zerocopy;
1676 serr = SKB_EXT_ERR(skb);
1677 memset(serr, 0, sizeof(*serr));
1678 serr->ee.ee_errno = 0;
1679 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1680 serr->ee.ee_data = hi;
1681 serr->ee.ee_info = lo;
1683 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1685 q = &sk->sk_error_queue;
1686 spin_lock_irqsave(&q->lock, flags);
1687 tail = skb_peek_tail(q);
1688 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1689 !skb_zerocopy_notify_extend(tail, lo, len)) {
1690 __skb_queue_tail(q, skb);
1693 spin_unlock_irqrestore(&q->lock, flags);
1695 sk_error_report(sk);
1702 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1705 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1707 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1709 if (refcount_dec_and_test(&uarg->refcnt))
1710 __msg_zerocopy_callback(uarg_zc);
1712 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1714 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1716 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1718 atomic_dec(&sk->sk_zckey);
1719 uarg_to_msgzc(uarg)->len--;
1722 msg_zerocopy_callback(NULL, uarg, true);
1724 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1726 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1727 struct msghdr *msg, int len,
1728 struct ubuf_info *uarg)
1730 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1731 int err, orig_len = skb->len;
1733 /* An skb can only point to one uarg. This edge case happens when
1734 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1736 if (orig_uarg && uarg != orig_uarg)
1739 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1740 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1741 struct sock *save_sk = skb->sk;
1743 /* Streams do not free skb on error. Reset to prev state. */
1744 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1746 ___pskb_trim(skb, orig_len);
1751 skb_zcopy_set(skb, uarg, NULL);
1752 return skb->len - orig_len;
1754 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1756 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1760 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1762 skb_frag_ref(skb, i);
1764 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1766 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1769 if (skb_zcopy(orig)) {
1770 if (skb_zcopy(nskb)) {
1771 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1776 if (skb_uarg(nskb) == skb_uarg(orig))
1778 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1781 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1787 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1788 * @skb: the skb to modify
1789 * @gfp_mask: allocation priority
1791 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1792 * It will copy all frags into kernel and drop the reference
1793 * to userspace pages.
1795 * If this function is called from an interrupt gfp_mask() must be
1798 * Returns 0 on success or a negative error code on failure
1799 * to allocate kernel memory to copy to.
1801 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1803 int num_frags = skb_shinfo(skb)->nr_frags;
1804 struct page *page, *head = NULL;
1805 int i, order, psize, new_frags;
1808 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1814 /* We might have to allocate high order pages, so compute what minimum
1815 * page order is needed.
1818 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1820 psize = (PAGE_SIZE << order);
1822 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1823 for (i = 0; i < new_frags; i++) {
1824 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1827 struct page *next = (struct page *)page_private(head);
1833 set_page_private(page, (unsigned long)head);
1839 for (i = 0; i < num_frags; i++) {
1840 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1841 u32 p_off, p_len, copied;
1845 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1846 p, p_off, p_len, copied) {
1848 vaddr = kmap_atomic(p);
1850 while (done < p_len) {
1851 if (d_off == psize) {
1853 page = (struct page *)page_private(page);
1855 copy = min_t(u32, psize - d_off, p_len - done);
1856 memcpy(page_address(page) + d_off,
1857 vaddr + p_off + done, copy);
1861 kunmap_atomic(vaddr);
1865 /* skb frags release userspace buffers */
1866 for (i = 0; i < num_frags; i++)
1867 skb_frag_unref(skb, i);
1869 /* skb frags point to kernel buffers */
1870 for (i = 0; i < new_frags - 1; i++) {
1871 __skb_fill_page_desc(skb, i, head, 0, psize);
1872 head = (struct page *)page_private(head);
1874 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1875 skb_shinfo(skb)->nr_frags = new_frags;
1878 skb_zcopy_clear(skb, false);
1881 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1884 * skb_clone - duplicate an sk_buff
1885 * @skb: buffer to clone
1886 * @gfp_mask: allocation priority
1888 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1889 * copies share the same packet data but not structure. The new
1890 * buffer has a reference count of 1. If the allocation fails the
1891 * function returns %NULL otherwise the new buffer is returned.
1893 * If this function is called from an interrupt gfp_mask() must be
1897 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1899 struct sk_buff_fclones *fclones = container_of(skb,
1900 struct sk_buff_fclones,
1904 if (skb_orphan_frags(skb, gfp_mask))
1907 if (skb->fclone == SKB_FCLONE_ORIG &&
1908 refcount_read(&fclones->fclone_ref) == 1) {
1910 refcount_set(&fclones->fclone_ref, 2);
1911 n->fclone = SKB_FCLONE_CLONE;
1913 if (skb_pfmemalloc(skb))
1914 gfp_mask |= __GFP_MEMALLOC;
1916 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1920 n->fclone = SKB_FCLONE_UNAVAILABLE;
1923 return __skb_clone(n, skb);
1925 EXPORT_SYMBOL(skb_clone);
1927 void skb_headers_offset_update(struct sk_buff *skb, int off)
1929 /* Only adjust this if it actually is csum_start rather than csum */
1930 if (skb->ip_summed == CHECKSUM_PARTIAL)
1931 skb->csum_start += off;
1932 /* {transport,network,mac}_header and tail are relative to skb->head */
1933 skb->transport_header += off;
1934 skb->network_header += off;
1935 if (skb_mac_header_was_set(skb))
1936 skb->mac_header += off;
1937 skb->inner_transport_header += off;
1938 skb->inner_network_header += off;
1939 skb->inner_mac_header += off;
1941 EXPORT_SYMBOL(skb_headers_offset_update);
1943 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1945 __copy_skb_header(new, old);
1947 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1948 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1949 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1951 EXPORT_SYMBOL(skb_copy_header);
1953 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1955 if (skb_pfmemalloc(skb))
1956 return SKB_ALLOC_RX;
1961 * skb_copy - create private copy of an sk_buff
1962 * @skb: buffer to copy
1963 * @gfp_mask: allocation priority
1965 * Make a copy of both an &sk_buff and its data. This is used when the
1966 * caller wishes to modify the data and needs a private copy of the
1967 * data to alter. Returns %NULL on failure or the pointer to the buffer
1968 * on success. The returned buffer has a reference count of 1.
1970 * As by-product this function converts non-linear &sk_buff to linear
1971 * one, so that &sk_buff becomes completely private and caller is allowed
1972 * to modify all the data of returned buffer. This means that this
1973 * function is not recommended for use in circumstances when only
1974 * header is going to be modified. Use pskb_copy() instead.
1977 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1979 int headerlen = skb_headroom(skb);
1980 unsigned int size = skb_end_offset(skb) + skb->data_len;
1981 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1982 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1987 /* Set the data pointer */
1988 skb_reserve(n, headerlen);
1989 /* Set the tail pointer and length */
1990 skb_put(n, skb->len);
1992 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1994 skb_copy_header(n, skb);
1997 EXPORT_SYMBOL(skb_copy);
2000 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2001 * @skb: buffer to copy
2002 * @headroom: headroom of new skb
2003 * @gfp_mask: allocation priority
2004 * @fclone: if true allocate the copy of the skb from the fclone
2005 * cache instead of the head cache; it is recommended to set this
2006 * to true for the cases where the copy will likely be cloned
2008 * Make a copy of both an &sk_buff and part of its data, located
2009 * in header. Fragmented data remain shared. This is used when
2010 * the caller wishes to modify only header of &sk_buff and needs
2011 * private copy of the header to alter. Returns %NULL on failure
2012 * or the pointer to the buffer on success.
2013 * The returned buffer has a reference count of 1.
2016 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2017 gfp_t gfp_mask, bool fclone)
2019 unsigned int size = skb_headlen(skb) + headroom;
2020 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2021 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2026 /* Set the data pointer */
2027 skb_reserve(n, headroom);
2028 /* Set the tail pointer and length */
2029 skb_put(n, skb_headlen(skb));
2030 /* Copy the bytes */
2031 skb_copy_from_linear_data(skb, n->data, n->len);
2033 n->truesize += skb->data_len;
2034 n->data_len = skb->data_len;
2037 if (skb_shinfo(skb)->nr_frags) {
2040 if (skb_orphan_frags(skb, gfp_mask) ||
2041 skb_zerocopy_clone(n, skb, gfp_mask)) {
2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2048 skb_frag_ref(skb, i);
2050 skb_shinfo(n)->nr_frags = i;
2053 if (skb_has_frag_list(skb)) {
2054 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2055 skb_clone_fraglist(n);
2058 skb_copy_header(n, skb);
2062 EXPORT_SYMBOL(__pskb_copy_fclone);
2065 * pskb_expand_head - reallocate header of &sk_buff
2066 * @skb: buffer to reallocate
2067 * @nhead: room to add at head
2068 * @ntail: room to add at tail
2069 * @gfp_mask: allocation priority
2071 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2072 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2073 * reference count of 1. Returns zero in the case of success or error,
2074 * if expansion failed. In the last case, &sk_buff is not changed.
2076 * All the pointers pointing into skb header may change and must be
2077 * reloaded after call to this function.
2080 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2083 unsigned int osize = skb_end_offset(skb);
2084 unsigned int size = osize + nhead + ntail;
2091 BUG_ON(skb_shared(skb));
2093 skb_zcopy_downgrade_managed(skb);
2095 if (skb_pfmemalloc(skb))
2096 gfp_mask |= __GFP_MEMALLOC;
2098 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2101 size = SKB_WITH_OVERHEAD(size);
2103 /* Copy only real data... and, alas, header. This should be
2104 * optimized for the cases when header is void.
2106 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2108 memcpy((struct skb_shared_info *)(data + size),
2110 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2113 * if shinfo is shared we must drop the old head gracefully, but if it
2114 * is not we can just drop the old head and let the existing refcount
2115 * be since all we did is relocate the values
2117 if (skb_cloned(skb)) {
2118 if (skb_orphan_frags(skb, gfp_mask))
2121 refcount_inc(&skb_uarg(skb)->refcnt);
2122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2123 skb_frag_ref(skb, i);
2125 if (skb_has_frag_list(skb))
2126 skb_clone_fraglist(skb);
2128 skb_release_data(skb, SKB_CONSUMED, false);
2130 skb_free_head(skb, false);
2132 off = (data + nhead) - skb->head;
2138 skb_set_end_offset(skb, size);
2139 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2143 skb_headers_offset_update(skb, nhead);
2147 atomic_set(&skb_shinfo(skb)->dataref, 1);
2149 skb_metadata_clear(skb);
2151 /* It is not generally safe to change skb->truesize.
2152 * For the moment, we really care of rx path, or
2153 * when skb is orphaned (not attached to a socket).
2155 if (!skb->sk || skb->destructor == sock_edemux)
2156 skb->truesize += size - osize;
2161 skb_kfree_head(data, size);
2165 EXPORT_SYMBOL(pskb_expand_head);
2167 /* Make private copy of skb with writable head and some headroom */
2169 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2171 struct sk_buff *skb2;
2172 int delta = headroom - skb_headroom(skb);
2175 skb2 = pskb_copy(skb, GFP_ATOMIC);
2177 skb2 = skb_clone(skb, GFP_ATOMIC);
2178 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2186 EXPORT_SYMBOL(skb_realloc_headroom);
2188 /* Note: We plan to rework this in linux-6.4 */
2189 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2191 unsigned int saved_end_offset, saved_truesize;
2192 struct skb_shared_info *shinfo;
2195 saved_end_offset = skb_end_offset(skb);
2196 saved_truesize = skb->truesize;
2198 res = pskb_expand_head(skb, 0, 0, pri);
2202 skb->truesize = saved_truesize;
2204 if (likely(skb_end_offset(skb) == saved_end_offset))
2207 /* We can not change skb->end if the original or new value
2208 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2210 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2211 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2212 /* We think this path should not be taken.
2213 * Add a temporary trace to warn us just in case.
2215 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2216 saved_end_offset, skb_end_offset(skb));
2221 shinfo = skb_shinfo(skb);
2223 /* We are about to change back skb->end,
2224 * we need to move skb_shinfo() to its new location.
2226 memmove(skb->head + saved_end_offset,
2228 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2230 skb_set_end_offset(skb, saved_end_offset);
2236 * skb_expand_head - reallocate header of &sk_buff
2237 * @skb: buffer to reallocate
2238 * @headroom: needed headroom
2240 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2241 * if possible; copies skb->sk to new skb as needed
2242 * and frees original skb in case of failures.
2244 * It expect increased headroom and generates warning otherwise.
2247 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2249 int delta = headroom - skb_headroom(skb);
2250 int osize = skb_end_offset(skb);
2251 struct sock *sk = skb->sk;
2253 if (WARN_ONCE(delta <= 0,
2254 "%s is expecting an increase in the headroom", __func__))
2257 delta = SKB_DATA_ALIGN(delta);
2258 /* pskb_expand_head() might crash, if skb is shared. */
2259 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2260 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2262 if (unlikely(!nskb))
2266 skb_set_owner_w(nskb, sk);
2270 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2273 if (sk && is_skb_wmem(skb)) {
2274 delta = skb_end_offset(skb) - osize;
2275 refcount_add(delta, &sk->sk_wmem_alloc);
2276 skb->truesize += delta;
2284 EXPORT_SYMBOL(skb_expand_head);
2287 * skb_copy_expand - copy and expand sk_buff
2288 * @skb: buffer to copy
2289 * @newheadroom: new free bytes at head
2290 * @newtailroom: new free bytes at tail
2291 * @gfp_mask: allocation priority
2293 * Make a copy of both an &sk_buff and its data and while doing so
2294 * allocate additional space.
2296 * This is used when the caller wishes to modify the data and needs a
2297 * private copy of the data to alter as well as more space for new fields.
2298 * Returns %NULL on failure or the pointer to the buffer
2299 * on success. The returned buffer has a reference count of 1.
2301 * You must pass %GFP_ATOMIC as the allocation priority if this function
2302 * is called from an interrupt.
2304 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2305 int newheadroom, int newtailroom,
2309 * Allocate the copy buffer
2311 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2312 gfp_mask, skb_alloc_rx_flag(skb),
2314 int oldheadroom = skb_headroom(skb);
2315 int head_copy_len, head_copy_off;
2320 skb_reserve(n, newheadroom);
2322 /* Set the tail pointer and length */
2323 skb_put(n, skb->len);
2325 head_copy_len = oldheadroom;
2327 if (newheadroom <= head_copy_len)
2328 head_copy_len = newheadroom;
2330 head_copy_off = newheadroom - head_copy_len;
2332 /* Copy the linear header and data. */
2333 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2334 skb->len + head_copy_len));
2336 skb_copy_header(n, skb);
2338 skb_headers_offset_update(n, newheadroom - oldheadroom);
2342 EXPORT_SYMBOL(skb_copy_expand);
2345 * __skb_pad - zero pad the tail of an skb
2346 * @skb: buffer to pad
2347 * @pad: space to pad
2348 * @free_on_error: free buffer on error
2350 * Ensure that a buffer is followed by a padding area that is zero
2351 * filled. Used by network drivers which may DMA or transfer data
2352 * beyond the buffer end onto the wire.
2354 * May return error in out of memory cases. The skb is freed on error
2355 * if @free_on_error is true.
2358 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2363 /* If the skbuff is non linear tailroom is always zero.. */
2364 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2365 memset(skb->data+skb->len, 0, pad);
2369 ntail = skb->data_len + pad - (skb->end - skb->tail);
2370 if (likely(skb_cloned(skb) || ntail > 0)) {
2371 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2376 /* FIXME: The use of this function with non-linear skb's really needs
2379 err = skb_linearize(skb);
2383 memset(skb->data + skb->len, 0, pad);
2391 EXPORT_SYMBOL(__skb_pad);
2394 * pskb_put - add data to the tail of a potentially fragmented buffer
2395 * @skb: start of the buffer to use
2396 * @tail: tail fragment of the buffer to use
2397 * @len: amount of data to add
2399 * This function extends the used data area of the potentially
2400 * fragmented buffer. @tail must be the last fragment of @skb -- or
2401 * @skb itself. If this would exceed the total buffer size the kernel
2402 * will panic. A pointer to the first byte of the extra data is
2406 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2409 skb->data_len += len;
2412 return skb_put(tail, len);
2414 EXPORT_SYMBOL_GPL(pskb_put);
2417 * skb_put - add data to a buffer
2418 * @skb: buffer to use
2419 * @len: amount of data to add
2421 * This function extends the used data area of the buffer. If this would
2422 * exceed the total buffer size the kernel will panic. A pointer to the
2423 * first byte of the extra data is returned.
2425 void *skb_put(struct sk_buff *skb, unsigned int len)
2427 void *tmp = skb_tail_pointer(skb);
2428 SKB_LINEAR_ASSERT(skb);
2431 if (unlikely(skb->tail > skb->end))
2432 skb_over_panic(skb, len, __builtin_return_address(0));
2435 EXPORT_SYMBOL(skb_put);
2438 * skb_push - add data to the start of a buffer
2439 * @skb: buffer to use
2440 * @len: amount of data to add
2442 * This function extends the used data area of the buffer at the buffer
2443 * start. If this would exceed the total buffer headroom the kernel will
2444 * panic. A pointer to the first byte of the extra data is returned.
2446 void *skb_push(struct sk_buff *skb, unsigned int len)
2450 if (unlikely(skb->data < skb->head))
2451 skb_under_panic(skb, len, __builtin_return_address(0));
2454 EXPORT_SYMBOL(skb_push);
2457 * skb_pull - remove data from the start of a buffer
2458 * @skb: buffer to use
2459 * @len: amount of data to remove
2461 * This function removes data from the start of a buffer, returning
2462 * the memory to the headroom. A pointer to the next data in the buffer
2463 * is returned. Once the data has been pulled future pushes will overwrite
2466 void *skb_pull(struct sk_buff *skb, unsigned int len)
2468 return skb_pull_inline(skb, len);
2470 EXPORT_SYMBOL(skb_pull);
2473 * skb_pull_data - remove data from the start of a buffer returning its
2474 * original position.
2475 * @skb: buffer to use
2476 * @len: amount of data to remove
2478 * This function removes data from the start of a buffer, returning
2479 * the memory to the headroom. A pointer to the original data in the buffer
2480 * is returned after checking if there is enough data to pull. Once the
2481 * data has been pulled future pushes will overwrite the old data.
2483 void *skb_pull_data(struct sk_buff *skb, size_t len)
2485 void *data = skb->data;
2494 EXPORT_SYMBOL(skb_pull_data);
2497 * skb_trim - remove end from a buffer
2498 * @skb: buffer to alter
2501 * Cut the length of a buffer down by removing data from the tail. If
2502 * the buffer is already under the length specified it is not modified.
2503 * The skb must be linear.
2505 void skb_trim(struct sk_buff *skb, unsigned int len)
2508 __skb_trim(skb, len);
2510 EXPORT_SYMBOL(skb_trim);
2512 /* Trims skb to length len. It can change skb pointers.
2515 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2517 struct sk_buff **fragp;
2518 struct sk_buff *frag;
2519 int offset = skb_headlen(skb);
2520 int nfrags = skb_shinfo(skb)->nr_frags;
2524 if (skb_cloned(skb) &&
2525 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2532 for (; i < nfrags; i++) {
2533 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2540 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2543 skb_shinfo(skb)->nr_frags = i;
2545 for (; i < nfrags; i++)
2546 skb_frag_unref(skb, i);
2548 if (skb_has_frag_list(skb))
2549 skb_drop_fraglist(skb);
2553 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2554 fragp = &frag->next) {
2555 int end = offset + frag->len;
2557 if (skb_shared(frag)) {
2558 struct sk_buff *nfrag;
2560 nfrag = skb_clone(frag, GFP_ATOMIC);
2561 if (unlikely(!nfrag))
2564 nfrag->next = frag->next;
2576 unlikely((err = pskb_trim(frag, len - offset))))
2580 skb_drop_list(&frag->next);
2585 if (len > skb_headlen(skb)) {
2586 skb->data_len -= skb->len - len;
2591 skb_set_tail_pointer(skb, len);
2594 if (!skb->sk || skb->destructor == sock_edemux)
2598 EXPORT_SYMBOL(___pskb_trim);
2600 /* Note : use pskb_trim_rcsum() instead of calling this directly
2602 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2604 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2605 int delta = skb->len - len;
2607 skb->csum = csum_block_sub(skb->csum,
2608 skb_checksum(skb, len, delta, 0),
2610 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2611 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2612 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2614 if (offset + sizeof(__sum16) > hdlen)
2617 return __pskb_trim(skb, len);
2619 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2622 * __pskb_pull_tail - advance tail of skb header
2623 * @skb: buffer to reallocate
2624 * @delta: number of bytes to advance tail
2626 * The function makes a sense only on a fragmented &sk_buff,
2627 * it expands header moving its tail forward and copying necessary
2628 * data from fragmented part.
2630 * &sk_buff MUST have reference count of 1.
2632 * Returns %NULL (and &sk_buff does not change) if pull failed
2633 * or value of new tail of skb in the case of success.
2635 * All the pointers pointing into skb header may change and must be
2636 * reloaded after call to this function.
2639 /* Moves tail of skb head forward, copying data from fragmented part,
2640 * when it is necessary.
2641 * 1. It may fail due to malloc failure.
2642 * 2. It may change skb pointers.
2644 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2646 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2648 /* If skb has not enough free space at tail, get new one
2649 * plus 128 bytes for future expansions. If we have enough
2650 * room at tail, reallocate without expansion only if skb is cloned.
2652 int i, k, eat = (skb->tail + delta) - skb->end;
2654 if (eat > 0 || skb_cloned(skb)) {
2655 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2660 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2661 skb_tail_pointer(skb), delta));
2663 /* Optimization: no fragments, no reasons to preestimate
2664 * size of pulled pages. Superb.
2666 if (!skb_has_frag_list(skb))
2669 /* Estimate size of pulled pages. */
2671 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2672 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2679 /* If we need update frag list, we are in troubles.
2680 * Certainly, it is possible to add an offset to skb data,
2681 * but taking into account that pulling is expected to
2682 * be very rare operation, it is worth to fight against
2683 * further bloating skb head and crucify ourselves here instead.
2684 * Pure masohism, indeed. 8)8)
2687 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2688 struct sk_buff *clone = NULL;
2689 struct sk_buff *insp = NULL;
2692 if (list->len <= eat) {
2693 /* Eaten as whole. */
2698 /* Eaten partially. */
2699 if (skb_is_gso(skb) && !list->head_frag &&
2701 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2703 if (skb_shared(list)) {
2704 /* Sucks! We need to fork list. :-( */
2705 clone = skb_clone(list, GFP_ATOMIC);
2711 /* This may be pulled without
2715 if (!pskb_pull(list, eat)) {
2723 /* Free pulled out fragments. */
2724 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2725 skb_shinfo(skb)->frag_list = list->next;
2728 /* And insert new clone at head. */
2731 skb_shinfo(skb)->frag_list = clone;
2734 /* Success! Now we may commit changes to skb data. */
2739 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2740 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2743 skb_frag_unref(skb, i);
2746 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2748 *frag = skb_shinfo(skb)->frags[i];
2750 skb_frag_off_add(frag, eat);
2751 skb_frag_size_sub(frag, eat);
2759 skb_shinfo(skb)->nr_frags = k;
2763 skb->data_len -= delta;
2766 skb_zcopy_clear(skb, false);
2768 return skb_tail_pointer(skb);
2770 EXPORT_SYMBOL(__pskb_pull_tail);
2773 * skb_copy_bits - copy bits from skb to kernel buffer
2775 * @offset: offset in source
2776 * @to: destination buffer
2777 * @len: number of bytes to copy
2779 * Copy the specified number of bytes from the source skb to the
2780 * destination buffer.
2783 * If its prototype is ever changed,
2784 * check arch/{*}/net/{*}.S files,
2785 * since it is called from BPF assembly code.
2787 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2789 int start = skb_headlen(skb);
2790 struct sk_buff *frag_iter;
2793 if (offset > (int)skb->len - len)
2797 if ((copy = start - offset) > 0) {
2800 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2801 if ((len -= copy) == 0)
2807 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2809 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2811 WARN_ON(start > offset + len);
2813 end = start + skb_frag_size(f);
2814 if ((copy = end - offset) > 0) {
2815 u32 p_off, p_len, copied;
2822 skb_frag_foreach_page(f,
2823 skb_frag_off(f) + offset - start,
2824 copy, p, p_off, p_len, copied) {
2825 vaddr = kmap_atomic(p);
2826 memcpy(to + copied, vaddr + p_off, p_len);
2827 kunmap_atomic(vaddr);
2830 if ((len -= copy) == 0)
2838 skb_walk_frags(skb, frag_iter) {
2841 WARN_ON(start > offset + len);
2843 end = start + frag_iter->len;
2844 if ((copy = end - offset) > 0) {
2847 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2849 if ((len -= copy) == 0)
2863 EXPORT_SYMBOL(skb_copy_bits);
2866 * Callback from splice_to_pipe(), if we need to release some pages
2867 * at the end of the spd in case we error'ed out in filling the pipe.
2869 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2871 put_page(spd->pages[i]);
2874 static struct page *linear_to_page(struct page *page, unsigned int *len,
2875 unsigned int *offset,
2878 struct page_frag *pfrag = sk_page_frag(sk);
2880 if (!sk_page_frag_refill(sk, pfrag))
2883 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2885 memcpy(page_address(pfrag->page) + pfrag->offset,
2886 page_address(page) + *offset, *len);
2887 *offset = pfrag->offset;
2888 pfrag->offset += *len;
2893 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2895 unsigned int offset)
2897 return spd->nr_pages &&
2898 spd->pages[spd->nr_pages - 1] == page &&
2899 (spd->partial[spd->nr_pages - 1].offset +
2900 spd->partial[spd->nr_pages - 1].len == offset);
2904 * Fill page/offset/length into spd, if it can hold more pages.
2906 static bool spd_fill_page(struct splice_pipe_desc *spd,
2907 struct pipe_inode_info *pipe, struct page *page,
2908 unsigned int *len, unsigned int offset,
2912 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2916 page = linear_to_page(page, len, &offset, sk);
2920 if (spd_can_coalesce(spd, page, offset)) {
2921 spd->partial[spd->nr_pages - 1].len += *len;
2925 spd->pages[spd->nr_pages] = page;
2926 spd->partial[spd->nr_pages].len = *len;
2927 spd->partial[spd->nr_pages].offset = offset;
2933 static bool __splice_segment(struct page *page, unsigned int poff,
2934 unsigned int plen, unsigned int *off,
2936 struct splice_pipe_desc *spd, bool linear,
2938 struct pipe_inode_info *pipe)
2943 /* skip this segment if already processed */
2949 /* ignore any bits we already processed */
2955 unsigned int flen = min(*len, plen);
2957 if (spd_fill_page(spd, pipe, page, &flen, poff,
2963 } while (*len && plen);
2969 * Map linear and fragment data from the skb to spd. It reports true if the
2970 * pipe is full or if we already spliced the requested length.
2972 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2973 unsigned int *offset, unsigned int *len,
2974 struct splice_pipe_desc *spd, struct sock *sk)
2977 struct sk_buff *iter;
2979 /* map the linear part :
2980 * If skb->head_frag is set, this 'linear' part is backed by a
2981 * fragment, and if the head is not shared with any clones then
2982 * we can avoid a copy since we own the head portion of this page.
2984 if (__splice_segment(virt_to_page(skb->data),
2985 (unsigned long) skb->data & (PAGE_SIZE - 1),
2988 skb_head_is_locked(skb),
2993 * then map the fragments
2995 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2996 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2998 if (__splice_segment(skb_frag_page(f),
2999 skb_frag_off(f), skb_frag_size(f),
3000 offset, len, spd, false, sk, pipe))
3004 skb_walk_frags(skb, iter) {
3005 if (*offset >= iter->len) {
3006 *offset -= iter->len;
3009 /* __skb_splice_bits() only fails if the output has no room
3010 * left, so no point in going over the frag_list for the error
3013 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3021 * Map data from the skb to a pipe. Should handle both the linear part,
3022 * the fragments, and the frag list.
3024 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3025 struct pipe_inode_info *pipe, unsigned int tlen,
3028 struct partial_page partial[MAX_SKB_FRAGS];
3029 struct page *pages[MAX_SKB_FRAGS];
3030 struct splice_pipe_desc spd = {
3033 .nr_pages_max = MAX_SKB_FRAGS,
3034 .ops = &nosteal_pipe_buf_ops,
3035 .spd_release = sock_spd_release,
3039 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3042 ret = splice_to_pipe(pipe, &spd);
3046 EXPORT_SYMBOL_GPL(skb_splice_bits);
3048 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3050 struct socket *sock = sk->sk_socket;
3051 size_t size = msg_data_left(msg);
3056 if (!sock->ops->sendmsg_locked)
3057 return sock_no_sendmsg_locked(sk, msg, size);
3059 return sock->ops->sendmsg_locked(sk, msg, size);
3062 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3064 struct socket *sock = sk->sk_socket;
3068 return sock_sendmsg(sock, msg);
3071 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3072 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3073 int len, sendmsg_func sendmsg)
3075 unsigned int orig_len = len;
3076 struct sk_buff *head = skb;
3077 unsigned short fragidx;
3082 /* Deal with head data */
3083 while (offset < skb_headlen(skb) && len) {
3087 slen = min_t(int, len, skb_headlen(skb) - offset);
3088 kv.iov_base = skb->data + offset;
3090 memset(&msg, 0, sizeof(msg));
3091 msg.msg_flags = MSG_DONTWAIT;
3093 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3094 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3095 sendmsg_unlocked, sk, &msg);
3103 /* All the data was skb head? */
3107 /* Make offset relative to start of frags */
3108 offset -= skb_headlen(skb);
3110 /* Find where we are in frag list */
3111 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3112 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3114 if (offset < skb_frag_size(frag))
3117 offset -= skb_frag_size(frag);
3120 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3121 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3123 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3126 struct bio_vec bvec;
3127 struct msghdr msg = {
3128 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3131 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3132 skb_frag_off(frag) + offset);
3133 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3136 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3137 sendmsg_unlocked, sk, &msg);
3150 /* Process any frag lists */
3153 if (skb_has_frag_list(skb)) {
3154 skb = skb_shinfo(skb)->frag_list;
3157 } else if (skb->next) {
3164 return orig_len - len;
3167 return orig_len == len ? ret : orig_len - len;
3170 /* Send skb data on a socket. Socket must be locked. */
3171 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3174 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3176 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3178 /* Send skb data on a socket. Socket must be unlocked. */
3179 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3181 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3185 * skb_store_bits - store bits from kernel buffer to skb
3186 * @skb: destination buffer
3187 * @offset: offset in destination
3188 * @from: source buffer
3189 * @len: number of bytes to copy
3191 * Copy the specified number of bytes from the source buffer to the
3192 * destination skb. This function handles all the messy bits of
3193 * traversing fragment lists and such.
3196 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3198 int start = skb_headlen(skb);
3199 struct sk_buff *frag_iter;
3202 if (offset > (int)skb->len - len)
3205 if ((copy = start - offset) > 0) {
3208 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3209 if ((len -= copy) == 0)
3215 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3216 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3219 WARN_ON(start > offset + len);
3221 end = start + skb_frag_size(frag);
3222 if ((copy = end - offset) > 0) {
3223 u32 p_off, p_len, copied;
3230 skb_frag_foreach_page(frag,
3231 skb_frag_off(frag) + offset - start,
3232 copy, p, p_off, p_len, copied) {
3233 vaddr = kmap_atomic(p);
3234 memcpy(vaddr + p_off, from + copied, p_len);
3235 kunmap_atomic(vaddr);
3238 if ((len -= copy) == 0)
3246 skb_walk_frags(skb, frag_iter) {
3249 WARN_ON(start > offset + len);
3251 end = start + frag_iter->len;
3252 if ((copy = end - offset) > 0) {
3255 if (skb_store_bits(frag_iter, offset - start,
3258 if ((len -= copy) == 0)
3271 EXPORT_SYMBOL(skb_store_bits);
3273 /* Checksum skb data. */
3274 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3275 __wsum csum, const struct skb_checksum_ops *ops)
3277 int start = skb_headlen(skb);
3278 int i, copy = start - offset;
3279 struct sk_buff *frag_iter;
3282 /* Checksum header. */
3286 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3287 skb->data + offset, copy, csum);
3288 if ((len -= copy) == 0)
3294 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3296 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3298 WARN_ON(start > offset + len);
3300 end = start + skb_frag_size(frag);
3301 if ((copy = end - offset) > 0) {
3302 u32 p_off, p_len, copied;
3310 skb_frag_foreach_page(frag,
3311 skb_frag_off(frag) + offset - start,
3312 copy, p, p_off, p_len, copied) {
3313 vaddr = kmap_atomic(p);
3314 csum2 = INDIRECT_CALL_1(ops->update,
3316 vaddr + p_off, p_len, 0);
3317 kunmap_atomic(vaddr);
3318 csum = INDIRECT_CALL_1(ops->combine,
3319 csum_block_add_ext, csum,
3331 skb_walk_frags(skb, frag_iter) {
3334 WARN_ON(start > offset + len);
3336 end = start + frag_iter->len;
3337 if ((copy = end - offset) > 0) {
3341 csum2 = __skb_checksum(frag_iter, offset - start,
3343 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3344 csum, csum2, pos, copy);
3345 if ((len -= copy) == 0)
3356 EXPORT_SYMBOL(__skb_checksum);
3358 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3359 int len, __wsum csum)
3361 const struct skb_checksum_ops ops = {
3362 .update = csum_partial_ext,
3363 .combine = csum_block_add_ext,
3366 return __skb_checksum(skb, offset, len, csum, &ops);
3368 EXPORT_SYMBOL(skb_checksum);
3370 /* Both of above in one bottle. */
3372 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3375 int start = skb_headlen(skb);
3376 int i, copy = start - offset;
3377 struct sk_buff *frag_iter;
3385 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3387 if ((len -= copy) == 0)
3394 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3397 WARN_ON(start > offset + len);
3399 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3400 if ((copy = end - offset) > 0) {
3401 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402 u32 p_off, p_len, copied;
3410 skb_frag_foreach_page(frag,
3411 skb_frag_off(frag) + offset - start,
3412 copy, p, p_off, p_len, copied) {
3413 vaddr = kmap_atomic(p);
3414 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3417 kunmap_atomic(vaddr);
3418 csum = csum_block_add(csum, csum2, pos);
3430 skb_walk_frags(skb, frag_iter) {
3434 WARN_ON(start > offset + len);
3436 end = start + frag_iter->len;
3437 if ((copy = end - offset) > 0) {
3440 csum2 = skb_copy_and_csum_bits(frag_iter,
3443 csum = csum_block_add(csum, csum2, pos);
3444 if ((len -= copy) == 0)
3455 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3457 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3461 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3462 /* See comments in __skb_checksum_complete(). */
3464 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3465 !skb->csum_complete_sw)
3466 netdev_rx_csum_fault(skb->dev, skb);
3468 if (!skb_shared(skb))
3469 skb->csum_valid = !sum;
3472 EXPORT_SYMBOL(__skb_checksum_complete_head);
3474 /* This function assumes skb->csum already holds pseudo header's checksum,
3475 * which has been changed from the hardware checksum, for example, by
3476 * __skb_checksum_validate_complete(). And, the original skb->csum must
3477 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3479 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3480 * zero. The new checksum is stored back into skb->csum unless the skb is
3483 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3488 csum = skb_checksum(skb, 0, skb->len, 0);
3490 sum = csum_fold(csum_add(skb->csum, csum));
3491 /* This check is inverted, because we already knew the hardware
3492 * checksum is invalid before calling this function. So, if the
3493 * re-computed checksum is valid instead, then we have a mismatch
3494 * between the original skb->csum and skb_checksum(). This means either
3495 * the original hardware checksum is incorrect or we screw up skb->csum
3496 * when moving skb->data around.
3499 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3500 !skb->csum_complete_sw)
3501 netdev_rx_csum_fault(skb->dev, skb);
3504 if (!skb_shared(skb)) {
3505 /* Save full packet checksum */
3507 skb->ip_summed = CHECKSUM_COMPLETE;
3508 skb->csum_complete_sw = 1;
3509 skb->csum_valid = !sum;
3514 EXPORT_SYMBOL(__skb_checksum_complete);
3516 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3518 net_warn_ratelimited(
3519 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3524 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3525 int offset, int len)
3527 net_warn_ratelimited(
3528 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3533 static const struct skb_checksum_ops default_crc32c_ops = {
3534 .update = warn_crc32c_csum_update,
3535 .combine = warn_crc32c_csum_combine,
3538 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3539 &default_crc32c_ops;
3540 EXPORT_SYMBOL(crc32c_csum_stub);
3543 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3544 * @from: source buffer
3546 * Calculates the amount of linear headroom needed in the 'to' skb passed
3547 * into skb_zerocopy().
3550 skb_zerocopy_headlen(const struct sk_buff *from)
3552 unsigned int hlen = 0;
3554 if (!from->head_frag ||
3555 skb_headlen(from) < L1_CACHE_BYTES ||
3556 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3557 hlen = skb_headlen(from);
3562 if (skb_has_frag_list(from))
3567 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3570 * skb_zerocopy - Zero copy skb to skb
3571 * @to: destination buffer
3572 * @from: source buffer
3573 * @len: number of bytes to copy from source buffer
3574 * @hlen: size of linear headroom in destination buffer
3576 * Copies up to `len` bytes from `from` to `to` by creating references
3577 * to the frags in the source buffer.
3579 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3580 * headroom in the `to` buffer.
3583 * 0: everything is OK
3584 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3585 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3588 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3591 int plen = 0; /* length of skb->head fragment */
3594 unsigned int offset;
3596 BUG_ON(!from->head_frag && !hlen);
3598 /* dont bother with small payloads */
3599 if (len <= skb_tailroom(to))
3600 return skb_copy_bits(from, 0, skb_put(to, len), len);
3603 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3608 plen = min_t(int, skb_headlen(from), len);
3610 page = virt_to_head_page(from->head);
3611 offset = from->data - (unsigned char *)page_address(page);
3612 __skb_fill_page_desc(to, 0, page, offset, plen);
3619 skb_len_add(to, len + plen);
3621 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3625 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3627 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3632 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3633 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3635 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3637 skb_frag_ref(to, j);
3640 skb_shinfo(to)->nr_frags = j;
3644 EXPORT_SYMBOL_GPL(skb_zerocopy);
3646 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3651 if (skb->ip_summed == CHECKSUM_PARTIAL)
3652 csstart = skb_checksum_start_offset(skb);
3654 csstart = skb_headlen(skb);
3656 BUG_ON(csstart > skb_headlen(skb));
3658 skb_copy_from_linear_data(skb, to, csstart);
3661 if (csstart != skb->len)
3662 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3663 skb->len - csstart);
3665 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3666 long csstuff = csstart + skb->csum_offset;
3668 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3671 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3674 * skb_dequeue - remove from the head of the queue
3675 * @list: list to dequeue from
3677 * Remove the head of the list. The list lock is taken so the function
3678 * may be used safely with other locking list functions. The head item is
3679 * returned or %NULL if the list is empty.
3682 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3684 unsigned long flags;
3685 struct sk_buff *result;
3687 spin_lock_irqsave(&list->lock, flags);
3688 result = __skb_dequeue(list);
3689 spin_unlock_irqrestore(&list->lock, flags);
3692 EXPORT_SYMBOL(skb_dequeue);
3695 * skb_dequeue_tail - remove from the tail of the queue
3696 * @list: list to dequeue from
3698 * Remove the tail of the list. The list lock is taken so the function
3699 * may be used safely with other locking list functions. The tail item is
3700 * returned or %NULL if the list is empty.
3702 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3704 unsigned long flags;
3705 struct sk_buff *result;
3707 spin_lock_irqsave(&list->lock, flags);
3708 result = __skb_dequeue_tail(list);
3709 spin_unlock_irqrestore(&list->lock, flags);
3712 EXPORT_SYMBOL(skb_dequeue_tail);
3715 * skb_queue_purge_reason - empty a list
3716 * @list: list to empty
3717 * @reason: drop reason
3719 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3720 * the list and one reference dropped. This function takes the list
3721 * lock and is atomic with respect to other list locking functions.
3723 void skb_queue_purge_reason(struct sk_buff_head *list,
3724 enum skb_drop_reason reason)
3726 struct sk_buff_head tmp;
3727 unsigned long flags;
3729 if (skb_queue_empty_lockless(list))
3732 __skb_queue_head_init(&tmp);
3734 spin_lock_irqsave(&list->lock, flags);
3735 skb_queue_splice_init(list, &tmp);
3736 spin_unlock_irqrestore(&list->lock, flags);
3738 __skb_queue_purge_reason(&tmp, reason);
3740 EXPORT_SYMBOL(skb_queue_purge_reason);
3743 * skb_rbtree_purge - empty a skb rbtree
3744 * @root: root of the rbtree to empty
3745 * Return value: the sum of truesizes of all purged skbs.
3747 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3748 * the list and one reference dropped. This function does not take
3749 * any lock. Synchronization should be handled by the caller (e.g., TCP
3750 * out-of-order queue is protected by the socket lock).
3752 unsigned int skb_rbtree_purge(struct rb_root *root)
3754 struct rb_node *p = rb_first(root);
3755 unsigned int sum = 0;
3758 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3761 rb_erase(&skb->rbnode, root);
3762 sum += skb->truesize;
3768 void skb_errqueue_purge(struct sk_buff_head *list)
3770 struct sk_buff *skb, *next;
3771 struct sk_buff_head kill;
3772 unsigned long flags;
3774 __skb_queue_head_init(&kill);
3776 spin_lock_irqsave(&list->lock, flags);
3777 skb_queue_walk_safe(list, skb, next) {
3778 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3779 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3781 __skb_unlink(skb, list);
3782 __skb_queue_tail(&kill, skb);
3784 spin_unlock_irqrestore(&list->lock, flags);
3785 __skb_queue_purge(&kill);
3787 EXPORT_SYMBOL(skb_errqueue_purge);
3790 * skb_queue_head - queue a buffer at the list head
3791 * @list: list to use
3792 * @newsk: buffer to queue
3794 * Queue a buffer at the start of the list. This function takes the
3795 * list lock and can be used safely with other locking &sk_buff functions
3798 * A buffer cannot be placed on two lists at the same time.
3800 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3802 unsigned long flags;
3804 spin_lock_irqsave(&list->lock, flags);
3805 __skb_queue_head(list, newsk);
3806 spin_unlock_irqrestore(&list->lock, flags);
3808 EXPORT_SYMBOL(skb_queue_head);
3811 * skb_queue_tail - queue a buffer at the list tail
3812 * @list: list to use
3813 * @newsk: buffer to queue
3815 * Queue a buffer at the tail of the list. This function takes the
3816 * list lock and can be used safely with other locking &sk_buff functions
3819 * A buffer cannot be placed on two lists at the same time.
3821 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3823 unsigned long flags;
3825 spin_lock_irqsave(&list->lock, flags);
3826 __skb_queue_tail(list, newsk);
3827 spin_unlock_irqrestore(&list->lock, flags);
3829 EXPORT_SYMBOL(skb_queue_tail);
3832 * skb_unlink - remove a buffer from a list
3833 * @skb: buffer to remove
3834 * @list: list to use
3836 * Remove a packet from a list. The list locks are taken and this
3837 * function is atomic with respect to other list locked calls
3839 * You must know what list the SKB is on.
3841 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3843 unsigned long flags;
3845 spin_lock_irqsave(&list->lock, flags);
3846 __skb_unlink(skb, list);
3847 spin_unlock_irqrestore(&list->lock, flags);
3849 EXPORT_SYMBOL(skb_unlink);
3852 * skb_append - append a buffer
3853 * @old: buffer to insert after
3854 * @newsk: buffer to insert
3855 * @list: list to use
3857 * Place a packet after a given packet in a list. The list locks are taken
3858 * and this function is atomic with respect to other list locked calls.
3859 * A buffer cannot be placed on two lists at the same time.
3861 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3863 unsigned long flags;
3865 spin_lock_irqsave(&list->lock, flags);
3866 __skb_queue_after(list, old, newsk);
3867 spin_unlock_irqrestore(&list->lock, flags);
3869 EXPORT_SYMBOL(skb_append);
3871 static inline void skb_split_inside_header(struct sk_buff *skb,
3872 struct sk_buff* skb1,
3873 const u32 len, const int pos)
3877 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3879 /* And move data appendix as is. */
3880 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3881 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3883 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3884 skb_shinfo(skb)->nr_frags = 0;
3885 skb1->data_len = skb->data_len;
3886 skb1->len += skb1->data_len;
3889 skb_set_tail_pointer(skb, len);
3892 static inline void skb_split_no_header(struct sk_buff *skb,
3893 struct sk_buff* skb1,
3894 const u32 len, int pos)
3897 const int nfrags = skb_shinfo(skb)->nr_frags;
3899 skb_shinfo(skb)->nr_frags = 0;
3900 skb1->len = skb1->data_len = skb->len - len;
3902 skb->data_len = len - pos;
3904 for (i = 0; i < nfrags; i++) {
3905 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3907 if (pos + size > len) {
3908 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3912 * We have two variants in this case:
3913 * 1. Move all the frag to the second
3914 * part, if it is possible. F.e.
3915 * this approach is mandatory for TUX,
3916 * where splitting is expensive.
3917 * 2. Split is accurately. We make this.
3919 skb_frag_ref(skb, i);
3920 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3921 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3922 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3923 skb_shinfo(skb)->nr_frags++;
3927 skb_shinfo(skb)->nr_frags++;
3930 skb_shinfo(skb1)->nr_frags = k;
3934 * skb_split - Split fragmented skb to two parts at length len.
3935 * @skb: the buffer to split
3936 * @skb1: the buffer to receive the second part
3937 * @len: new length for skb
3939 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3941 int pos = skb_headlen(skb);
3942 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3944 skb_zcopy_downgrade_managed(skb);
3946 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3947 skb_zerocopy_clone(skb1, skb, 0);
3948 if (len < pos) /* Split line is inside header. */
3949 skb_split_inside_header(skb, skb1, len, pos);
3950 else /* Second chunk has no header, nothing to copy. */
3951 skb_split_no_header(skb, skb1, len, pos);
3953 EXPORT_SYMBOL(skb_split);
3955 /* Shifting from/to a cloned skb is a no-go.
3957 * Caller cannot keep skb_shinfo related pointers past calling here!
3959 static int skb_prepare_for_shift(struct sk_buff *skb)
3961 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3965 * skb_shift - Shifts paged data partially from skb to another
3966 * @tgt: buffer into which tail data gets added
3967 * @skb: buffer from which the paged data comes from
3968 * @shiftlen: shift up to this many bytes
3970 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3971 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3972 * It's up to caller to free skb if everything was shifted.
3974 * If @tgt runs out of frags, the whole operation is aborted.
3976 * Skb cannot include anything else but paged data while tgt is allowed
3977 * to have non-paged data as well.
3979 * TODO: full sized shift could be optimized but that would need
3980 * specialized skb free'er to handle frags without up-to-date nr_frags.
3982 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3984 int from, to, merge, todo;
3985 skb_frag_t *fragfrom, *fragto;
3987 BUG_ON(shiftlen > skb->len);
3989 if (skb_headlen(skb))
3991 if (skb_zcopy(tgt) || skb_zcopy(skb))
3996 to = skb_shinfo(tgt)->nr_frags;
3997 fragfrom = &skb_shinfo(skb)->frags[from];
3999 /* Actual merge is delayed until the point when we know we can
4000 * commit all, so that we don't have to undo partial changes
4003 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4004 skb_frag_off(fragfrom))) {
4009 todo -= skb_frag_size(fragfrom);
4011 if (skb_prepare_for_shift(skb) ||
4012 skb_prepare_for_shift(tgt))
4015 /* All previous frag pointers might be stale! */
4016 fragfrom = &skb_shinfo(skb)->frags[from];
4017 fragto = &skb_shinfo(tgt)->frags[merge];
4019 skb_frag_size_add(fragto, shiftlen);
4020 skb_frag_size_sub(fragfrom, shiftlen);
4021 skb_frag_off_add(fragfrom, shiftlen);
4029 /* Skip full, not-fitting skb to avoid expensive operations */
4030 if ((shiftlen == skb->len) &&
4031 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4034 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4037 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4038 if (to == MAX_SKB_FRAGS)
4041 fragfrom = &skb_shinfo(skb)->frags[from];
4042 fragto = &skb_shinfo(tgt)->frags[to];
4044 if (todo >= skb_frag_size(fragfrom)) {
4045 *fragto = *fragfrom;
4046 todo -= skb_frag_size(fragfrom);
4051 __skb_frag_ref(fragfrom);
4052 skb_frag_page_copy(fragto, fragfrom);
4053 skb_frag_off_copy(fragto, fragfrom);
4054 skb_frag_size_set(fragto, todo);
4056 skb_frag_off_add(fragfrom, todo);
4057 skb_frag_size_sub(fragfrom, todo);
4065 /* Ready to "commit" this state change to tgt */
4066 skb_shinfo(tgt)->nr_frags = to;
4069 fragfrom = &skb_shinfo(skb)->frags[0];
4070 fragto = &skb_shinfo(tgt)->frags[merge];
4072 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4073 __skb_frag_unref(fragfrom, skb->pp_recycle);
4076 /* Reposition in the original skb */
4078 while (from < skb_shinfo(skb)->nr_frags)
4079 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4080 skb_shinfo(skb)->nr_frags = to;
4082 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4085 /* Most likely the tgt won't ever need its checksum anymore, skb on
4086 * the other hand might need it if it needs to be resent
4088 tgt->ip_summed = CHECKSUM_PARTIAL;
4089 skb->ip_summed = CHECKSUM_PARTIAL;
4091 skb_len_add(skb, -shiftlen);
4092 skb_len_add(tgt, shiftlen);
4098 * skb_prepare_seq_read - Prepare a sequential read of skb data
4099 * @skb: the buffer to read
4100 * @from: lower offset of data to be read
4101 * @to: upper offset of data to be read
4102 * @st: state variable
4104 * Initializes the specified state variable. Must be called before
4105 * invoking skb_seq_read() for the first time.
4107 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4108 unsigned int to, struct skb_seq_state *st)
4110 st->lower_offset = from;
4111 st->upper_offset = to;
4112 st->root_skb = st->cur_skb = skb;
4113 st->frag_idx = st->stepped_offset = 0;
4114 st->frag_data = NULL;
4117 EXPORT_SYMBOL(skb_prepare_seq_read);
4120 * skb_seq_read - Sequentially read skb data
4121 * @consumed: number of bytes consumed by the caller so far
4122 * @data: destination pointer for data to be returned
4123 * @st: state variable
4125 * Reads a block of skb data at @consumed relative to the
4126 * lower offset specified to skb_prepare_seq_read(). Assigns
4127 * the head of the data block to @data and returns the length
4128 * of the block or 0 if the end of the skb data or the upper
4129 * offset has been reached.
4131 * The caller is not required to consume all of the data
4132 * returned, i.e. @consumed is typically set to the number
4133 * of bytes already consumed and the next call to
4134 * skb_seq_read() will return the remaining part of the block.
4136 * Note 1: The size of each block of data returned can be arbitrary,
4137 * this limitation is the cost for zerocopy sequential
4138 * reads of potentially non linear data.
4140 * Note 2: Fragment lists within fragments are not implemented
4141 * at the moment, state->root_skb could be replaced with
4142 * a stack for this purpose.
4144 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4145 struct skb_seq_state *st)
4147 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4150 if (unlikely(abs_offset >= st->upper_offset)) {
4151 if (st->frag_data) {
4152 kunmap_atomic(st->frag_data);
4153 st->frag_data = NULL;
4159 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4161 if (abs_offset < block_limit && !st->frag_data) {
4162 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4163 return block_limit - abs_offset;
4166 if (st->frag_idx == 0 && !st->frag_data)
4167 st->stepped_offset += skb_headlen(st->cur_skb);
4169 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4170 unsigned int pg_idx, pg_off, pg_sz;
4172 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4175 pg_off = skb_frag_off(frag);
4176 pg_sz = skb_frag_size(frag);
4178 if (skb_frag_must_loop(skb_frag_page(frag))) {
4179 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4180 pg_off = offset_in_page(pg_off + st->frag_off);
4181 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4182 PAGE_SIZE - pg_off);
4185 block_limit = pg_sz + st->stepped_offset;
4186 if (abs_offset < block_limit) {
4188 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4190 *data = (u8 *)st->frag_data + pg_off +
4191 (abs_offset - st->stepped_offset);
4193 return block_limit - abs_offset;
4196 if (st->frag_data) {
4197 kunmap_atomic(st->frag_data);
4198 st->frag_data = NULL;
4201 st->stepped_offset += pg_sz;
4202 st->frag_off += pg_sz;
4203 if (st->frag_off == skb_frag_size(frag)) {
4209 if (st->frag_data) {
4210 kunmap_atomic(st->frag_data);
4211 st->frag_data = NULL;
4214 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4215 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4218 } else if (st->cur_skb->next) {
4219 st->cur_skb = st->cur_skb->next;
4226 EXPORT_SYMBOL(skb_seq_read);
4229 * skb_abort_seq_read - Abort a sequential read of skb data
4230 * @st: state variable
4232 * Must be called if skb_seq_read() was not called until it
4235 void skb_abort_seq_read(struct skb_seq_state *st)
4238 kunmap_atomic(st->frag_data);
4240 EXPORT_SYMBOL(skb_abort_seq_read);
4242 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4244 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4245 struct ts_config *conf,
4246 struct ts_state *state)
4248 return skb_seq_read(offset, text, TS_SKB_CB(state));
4251 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4253 skb_abort_seq_read(TS_SKB_CB(state));
4257 * skb_find_text - Find a text pattern in skb data
4258 * @skb: the buffer to look in
4259 * @from: search offset
4261 * @config: textsearch configuration
4263 * Finds a pattern in the skb data according to the specified
4264 * textsearch configuration. Use textsearch_next() to retrieve
4265 * subsequent occurrences of the pattern. Returns the offset
4266 * to the first occurrence or UINT_MAX if no match was found.
4268 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4269 unsigned int to, struct ts_config *config)
4271 unsigned int patlen = config->ops->get_pattern_len(config);
4272 struct ts_state state;
4275 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4277 config->get_next_block = skb_ts_get_next_block;
4278 config->finish = skb_ts_finish;
4280 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4282 ret = textsearch_find(config, &state);
4283 return (ret + patlen <= to - from ? ret : UINT_MAX);
4285 EXPORT_SYMBOL(skb_find_text);
4287 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4288 int offset, size_t size, size_t max_frags)
4290 int i = skb_shinfo(skb)->nr_frags;
4292 if (skb_can_coalesce(skb, i, page, offset)) {
4293 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4294 } else if (i < max_frags) {
4295 skb_zcopy_downgrade_managed(skb);
4297 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4304 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4307 * skb_pull_rcsum - pull skb and update receive checksum
4308 * @skb: buffer to update
4309 * @len: length of data pulled
4311 * This function performs an skb_pull on the packet and updates
4312 * the CHECKSUM_COMPLETE checksum. It should be used on
4313 * receive path processing instead of skb_pull unless you know
4314 * that the checksum difference is zero (e.g., a valid IP header)
4315 * or you are setting ip_summed to CHECKSUM_NONE.
4317 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4319 unsigned char *data = skb->data;
4321 BUG_ON(len > skb->len);
4322 __skb_pull(skb, len);
4323 skb_postpull_rcsum(skb, data, len);
4326 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4328 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4330 skb_frag_t head_frag;
4333 page = virt_to_head_page(frag_skb->head);
4334 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4335 (unsigned char *)page_address(page),
4336 skb_headlen(frag_skb));
4340 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4341 netdev_features_t features,
4342 unsigned int offset)
4344 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4345 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4346 unsigned int delta_truesize = 0;
4347 unsigned int delta_len = 0;
4348 struct sk_buff *tail = NULL;
4349 struct sk_buff *nskb, *tmp;
4352 skb_push(skb, -skb_network_offset(skb) + offset);
4354 /* Ensure the head is writeable before touching the shared info */
4355 err = skb_unclone(skb, GFP_ATOMIC);
4359 skb_shinfo(skb)->frag_list = NULL;
4363 list_skb = list_skb->next;
4366 delta_truesize += nskb->truesize;
4367 if (skb_shared(nskb)) {
4368 tmp = skb_clone(nskb, GFP_ATOMIC);
4372 err = skb_unclone(nskb, GFP_ATOMIC);
4383 if (unlikely(err)) {
4384 nskb->next = list_skb;
4390 delta_len += nskb->len;
4392 skb_push(nskb, -skb_network_offset(nskb) + offset);
4394 skb_release_head_state(nskb);
4395 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4396 __copy_skb_header(nskb, skb);
4398 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4399 nskb->transport_header += len_diff;
4400 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4401 nskb->data - tnl_hlen,
4404 if (skb_needs_linearize(nskb, features) &&
4405 __skb_linearize(nskb))
4409 skb->truesize = skb->truesize - delta_truesize;
4410 skb->data_len = skb->data_len - delta_len;
4411 skb->len = skb->len - delta_len;
4417 if (skb_needs_linearize(skb, features) &&
4418 __skb_linearize(skb))
4426 kfree_skb_list(skb->next);
4428 return ERR_PTR(-ENOMEM);
4430 EXPORT_SYMBOL_GPL(skb_segment_list);
4433 * skb_segment - Perform protocol segmentation on skb.
4434 * @head_skb: buffer to segment
4435 * @features: features for the output path (see dev->features)
4437 * This function performs segmentation on the given skb. It returns
4438 * a pointer to the first in a list of new skbs for the segments.
4439 * In case of error it returns ERR_PTR(err).
4441 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4442 netdev_features_t features)
4444 struct sk_buff *segs = NULL;
4445 struct sk_buff *tail = NULL;
4446 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4447 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4448 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4449 unsigned int offset = doffset;
4450 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4451 unsigned int partial_segs = 0;
4452 unsigned int headroom;
4453 unsigned int len = head_skb->len;
4454 struct sk_buff *frag_skb;
4462 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4463 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4464 struct sk_buff *check_skb;
4466 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4467 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4468 /* gso_size is untrusted, and we have a frag_list with
4469 * a linear non head_frag item.
4471 * If head_skb's headlen does not fit requested gso_size,
4472 * it means that the frag_list members do NOT terminate
4473 * on exact gso_size boundaries. Hence we cannot perform
4474 * skb_frag_t page sharing. Therefore we must fallback to
4475 * copying the frag_list skbs; we do so by disabling SG.
4477 features &= ~NETIF_F_SG;
4483 __skb_push(head_skb, doffset);
4484 proto = skb_network_protocol(head_skb, NULL);
4485 if (unlikely(!proto))
4486 return ERR_PTR(-EINVAL);
4488 sg = !!(features & NETIF_F_SG);
4489 csum = !!can_checksum_protocol(features, proto);
4491 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4492 if (!(features & NETIF_F_GSO_PARTIAL)) {
4493 struct sk_buff *iter;
4494 unsigned int frag_len;
4497 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4500 /* If we get here then all the required
4501 * GSO features except frag_list are supported.
4502 * Try to split the SKB to multiple GSO SKBs
4503 * with no frag_list.
4504 * Currently we can do that only when the buffers don't
4505 * have a linear part and all the buffers except
4506 * the last are of the same length.
4508 frag_len = list_skb->len;
4509 skb_walk_frags(head_skb, iter) {
4510 if (frag_len != iter->len && iter->next)
4512 if (skb_headlen(iter) && !iter->head_frag)
4518 if (len != frag_len)
4522 /* GSO partial only requires that we trim off any excess that
4523 * doesn't fit into an MSS sized block, so take care of that
4526 partial_segs = len / mss;
4527 if (partial_segs > 1)
4528 mss *= partial_segs;
4534 headroom = skb_headroom(head_skb);
4535 pos = skb_headlen(head_skb);
4537 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4538 return ERR_PTR(-ENOMEM);
4540 nfrags = skb_shinfo(head_skb)->nr_frags;
4541 frag = skb_shinfo(head_skb)->frags;
4542 frag_skb = head_skb;
4545 struct sk_buff *nskb;
4546 skb_frag_t *nskb_frag;
4550 if (unlikely(mss == GSO_BY_FRAGS)) {
4551 len = list_skb->len;
4553 len = head_skb->len - offset;
4558 hsize = skb_headlen(head_skb) - offset;
4560 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4561 (skb_headlen(list_skb) == len || sg)) {
4562 BUG_ON(skb_headlen(list_skb) > len);
4564 nskb = skb_clone(list_skb, GFP_ATOMIC);
4565 if (unlikely(!nskb))
4569 nfrags = skb_shinfo(list_skb)->nr_frags;
4570 frag = skb_shinfo(list_skb)->frags;
4571 frag_skb = list_skb;
4572 pos += skb_headlen(list_skb);
4574 while (pos < offset + len) {
4575 BUG_ON(i >= nfrags);
4577 size = skb_frag_size(frag);
4578 if (pos + size > offset + len)
4586 list_skb = list_skb->next;
4588 if (unlikely(pskb_trim(nskb, len))) {
4593 hsize = skb_end_offset(nskb);
4594 if (skb_cow_head(nskb, doffset + headroom)) {
4599 nskb->truesize += skb_end_offset(nskb) - hsize;
4600 skb_release_head_state(nskb);
4601 __skb_push(nskb, doffset);
4605 if (hsize > len || !sg)
4608 nskb = __alloc_skb(hsize + doffset + headroom,
4609 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4612 if (unlikely(!nskb))
4615 skb_reserve(nskb, headroom);
4616 __skb_put(nskb, doffset);
4625 __copy_skb_header(nskb, head_skb);
4627 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4628 skb_reset_mac_len(nskb);
4630 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4631 nskb->data - tnl_hlen,
4632 doffset + tnl_hlen);
4634 if (nskb->len == len + doffset)
4635 goto perform_csum_check;
4639 if (!nskb->remcsum_offload)
4640 nskb->ip_summed = CHECKSUM_NONE;
4641 SKB_GSO_CB(nskb)->csum =
4642 skb_copy_and_csum_bits(head_skb, offset,
4646 SKB_GSO_CB(nskb)->csum_start =
4647 skb_headroom(nskb) + doffset;
4649 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4655 nskb_frag = skb_shinfo(nskb)->frags;
4657 skb_copy_from_linear_data_offset(head_skb, offset,
4658 skb_put(nskb, hsize), hsize);
4660 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4663 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4666 while (pos < offset + len) {
4668 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4669 skb_zerocopy_clone(nskb, list_skb,
4674 nfrags = skb_shinfo(list_skb)->nr_frags;
4675 frag = skb_shinfo(list_skb)->frags;
4676 frag_skb = list_skb;
4677 if (!skb_headlen(list_skb)) {
4680 BUG_ON(!list_skb->head_frag);
4682 /* to make room for head_frag. */
4687 list_skb = list_skb->next;
4690 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4692 net_warn_ratelimited(
4693 "skb_segment: too many frags: %u %u\n",
4699 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4700 __skb_frag_ref(nskb_frag);
4701 size = skb_frag_size(nskb_frag);
4704 skb_frag_off_add(nskb_frag, offset - pos);
4705 skb_frag_size_sub(nskb_frag, offset - pos);
4708 skb_shinfo(nskb)->nr_frags++;
4710 if (pos + size <= offset + len) {
4715 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4723 nskb->data_len = len - hsize;
4724 nskb->len += nskb->data_len;
4725 nskb->truesize += nskb->data_len;
4729 if (skb_has_shared_frag(nskb) &&
4730 __skb_linearize(nskb))
4733 if (!nskb->remcsum_offload)
4734 nskb->ip_summed = CHECKSUM_NONE;
4735 SKB_GSO_CB(nskb)->csum =
4736 skb_checksum(nskb, doffset,
4737 nskb->len - doffset, 0);
4738 SKB_GSO_CB(nskb)->csum_start =
4739 skb_headroom(nskb) + doffset;
4741 } while ((offset += len) < head_skb->len);
4743 /* Some callers want to get the end of the list.
4744 * Put it in segs->prev to avoid walking the list.
4745 * (see validate_xmit_skb_list() for example)
4750 struct sk_buff *iter;
4751 int type = skb_shinfo(head_skb)->gso_type;
4752 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4754 /* Update type to add partial and then remove dodgy if set */
4755 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4756 type &= ~SKB_GSO_DODGY;
4758 /* Update GSO info and prepare to start updating headers on
4759 * our way back down the stack of protocols.
4761 for (iter = segs; iter; iter = iter->next) {
4762 skb_shinfo(iter)->gso_size = gso_size;
4763 skb_shinfo(iter)->gso_segs = partial_segs;
4764 skb_shinfo(iter)->gso_type = type;
4765 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4768 if (tail->len - doffset <= gso_size)
4769 skb_shinfo(tail)->gso_size = 0;
4770 else if (tail != segs)
4771 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4774 /* Following permits correct backpressure, for protocols
4775 * using skb_set_owner_w().
4776 * Idea is to tranfert ownership from head_skb to last segment.
4778 if (head_skb->destructor == sock_wfree) {
4779 swap(tail->truesize, head_skb->truesize);
4780 swap(tail->destructor, head_skb->destructor);
4781 swap(tail->sk, head_skb->sk);
4786 kfree_skb_list(segs);
4787 return ERR_PTR(err);
4789 EXPORT_SYMBOL_GPL(skb_segment);
4791 #ifdef CONFIG_SKB_EXTENSIONS
4792 #define SKB_EXT_ALIGN_VALUE 8
4793 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4795 static const u8 skb_ext_type_len[] = {
4796 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4797 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4800 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4802 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4803 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4805 #if IS_ENABLED(CONFIG_MPTCP)
4806 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4808 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4809 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4813 static __always_inline unsigned int skb_ext_total_length(void)
4815 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4818 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4819 l += skb_ext_type_len[i];
4824 static void skb_extensions_init(void)
4826 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4827 BUILD_BUG_ON(skb_ext_total_length() > 255);
4829 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4830 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4832 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4836 static void skb_extensions_init(void) {}
4839 /* The SKB kmem_cache slab is critical for network performance. Never
4840 * merge/alias the slab with similar sized objects. This avoids fragmentation
4841 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4843 #ifndef CONFIG_SLUB_TINY
4844 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4845 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4846 #define FLAG_SKB_NO_MERGE 0
4849 void __init skb_init(void)
4851 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4852 sizeof(struct sk_buff),
4854 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4856 offsetof(struct sk_buff, cb),
4857 sizeof_field(struct sk_buff, cb),
4859 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4860 sizeof(struct sk_buff_fclones),
4862 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4864 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4865 * struct skb_shared_info is located at the end of skb->head,
4866 * and should not be copied to/from user.
4868 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4869 SKB_SMALL_HEAD_CACHE_SIZE,
4871 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4873 SKB_SMALL_HEAD_HEADROOM,
4875 skb_extensions_init();
4879 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4880 unsigned int recursion_level)
4882 int start = skb_headlen(skb);
4883 int i, copy = start - offset;
4884 struct sk_buff *frag_iter;
4887 if (unlikely(recursion_level >= 24))
4893 sg_set_buf(sg, skb->data + offset, copy);
4895 if ((len -= copy) == 0)
4900 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4903 WARN_ON(start > offset + len);
4905 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4906 if ((copy = end - offset) > 0) {
4907 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4908 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4913 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4914 skb_frag_off(frag) + offset - start);
4923 skb_walk_frags(skb, frag_iter) {
4926 WARN_ON(start > offset + len);
4928 end = start + frag_iter->len;
4929 if ((copy = end - offset) > 0) {
4930 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4935 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4936 copy, recursion_level + 1);
4937 if (unlikely(ret < 0))
4940 if ((len -= copy) == 0)
4951 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4952 * @skb: Socket buffer containing the buffers to be mapped
4953 * @sg: The scatter-gather list to map into
4954 * @offset: The offset into the buffer's contents to start mapping
4955 * @len: Length of buffer space to be mapped
4957 * Fill the specified scatter-gather list with mappings/pointers into a
4958 * region of the buffer space attached to a socket buffer. Returns either
4959 * the number of scatterlist items used, or -EMSGSIZE if the contents
4962 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4964 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4969 sg_mark_end(&sg[nsg - 1]);
4973 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4975 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4976 * sglist without mark the sg which contain last skb data as the end.
4977 * So the caller can mannipulate sg list as will when padding new data after
4978 * the first call without calling sg_unmark_end to expend sg list.
4980 * Scenario to use skb_to_sgvec_nomark:
4982 * 2. skb_to_sgvec_nomark(payload1)
4983 * 3. skb_to_sgvec_nomark(payload2)
4985 * This is equivalent to:
4987 * 2. skb_to_sgvec(payload1)
4989 * 4. skb_to_sgvec(payload2)
4991 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4992 * is more preferable.
4994 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4995 int offset, int len)
4997 return __skb_to_sgvec(skb, sg, offset, len, 0);
4999 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5004 * skb_cow_data - Check that a socket buffer's data buffers are writable
5005 * @skb: The socket buffer to check.
5006 * @tailbits: Amount of trailing space to be added
5007 * @trailer: Returned pointer to the skb where the @tailbits space begins
5009 * Make sure that the data buffers attached to a socket buffer are
5010 * writable. If they are not, private copies are made of the data buffers
5011 * and the socket buffer is set to use these instead.
5013 * If @tailbits is given, make sure that there is space to write @tailbits
5014 * bytes of data beyond current end of socket buffer. @trailer will be
5015 * set to point to the skb in which this space begins.
5017 * The number of scatterlist elements required to completely map the
5018 * COW'd and extended socket buffer will be returned.
5020 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5024 struct sk_buff *skb1, **skb_p;
5026 /* If skb is cloned or its head is paged, reallocate
5027 * head pulling out all the pages (pages are considered not writable
5028 * at the moment even if they are anonymous).
5030 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5031 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5034 /* Easy case. Most of packets will go this way. */
5035 if (!skb_has_frag_list(skb)) {
5036 /* A little of trouble, not enough of space for trailer.
5037 * This should not happen, when stack is tuned to generate
5038 * good frames. OK, on miss we reallocate and reserve even more
5039 * space, 128 bytes is fair. */
5041 if (skb_tailroom(skb) < tailbits &&
5042 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5050 /* Misery. We are in troubles, going to mincer fragments... */
5053 skb_p = &skb_shinfo(skb)->frag_list;
5056 while ((skb1 = *skb_p) != NULL) {
5059 /* The fragment is partially pulled by someone,
5060 * this can happen on input. Copy it and everything
5063 if (skb_shared(skb1))
5066 /* If the skb is the last, worry about trailer. */
5068 if (skb1->next == NULL && tailbits) {
5069 if (skb_shinfo(skb1)->nr_frags ||
5070 skb_has_frag_list(skb1) ||
5071 skb_tailroom(skb1) < tailbits)
5072 ntail = tailbits + 128;
5078 skb_shinfo(skb1)->nr_frags ||
5079 skb_has_frag_list(skb1)) {
5080 struct sk_buff *skb2;
5082 /* Fuck, we are miserable poor guys... */
5084 skb2 = skb_copy(skb1, GFP_ATOMIC);
5086 skb2 = skb_copy_expand(skb1,
5090 if (unlikely(skb2 == NULL))
5094 skb_set_owner_w(skb2, skb1->sk);
5096 /* Looking around. Are we still alive?
5097 * OK, link new skb, drop old one */
5099 skb2->next = skb1->next;
5106 skb_p = &skb1->next;
5111 EXPORT_SYMBOL_GPL(skb_cow_data);
5113 static void sock_rmem_free(struct sk_buff *skb)
5115 struct sock *sk = skb->sk;
5117 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5120 static void skb_set_err_queue(struct sk_buff *skb)
5122 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5123 * So, it is safe to (mis)use it to mark skbs on the error queue.
5125 skb->pkt_type = PACKET_OUTGOING;
5126 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5130 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5132 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5134 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5135 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5140 skb->destructor = sock_rmem_free;
5141 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5142 skb_set_err_queue(skb);
5144 /* before exiting rcu section, make sure dst is refcounted */
5147 skb_queue_tail(&sk->sk_error_queue, skb);
5148 if (!sock_flag(sk, SOCK_DEAD))
5149 sk_error_report(sk);
5152 EXPORT_SYMBOL(sock_queue_err_skb);
5154 static bool is_icmp_err_skb(const struct sk_buff *skb)
5156 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5157 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5160 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5162 struct sk_buff_head *q = &sk->sk_error_queue;
5163 struct sk_buff *skb, *skb_next = NULL;
5164 bool icmp_next = false;
5165 unsigned long flags;
5167 if (skb_queue_empty_lockless(q))
5170 spin_lock_irqsave(&q->lock, flags);
5171 skb = __skb_dequeue(q);
5172 if (skb && (skb_next = skb_peek(q))) {
5173 icmp_next = is_icmp_err_skb(skb_next);
5175 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5177 spin_unlock_irqrestore(&q->lock, flags);
5179 if (is_icmp_err_skb(skb) && !icmp_next)
5183 sk_error_report(sk);
5187 EXPORT_SYMBOL(sock_dequeue_err_skb);
5190 * skb_clone_sk - create clone of skb, and take reference to socket
5191 * @skb: the skb to clone
5193 * This function creates a clone of a buffer that holds a reference on
5194 * sk_refcnt. Buffers created via this function are meant to be
5195 * returned using sock_queue_err_skb, or free via kfree_skb.
5197 * When passing buffers allocated with this function to sock_queue_err_skb
5198 * it is necessary to wrap the call with sock_hold/sock_put in order to
5199 * prevent the socket from being released prior to being enqueued on
5200 * the sk_error_queue.
5202 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5204 struct sock *sk = skb->sk;
5205 struct sk_buff *clone;
5207 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5210 clone = skb_clone(skb, GFP_ATOMIC);
5217 clone->destructor = sock_efree;
5221 EXPORT_SYMBOL(skb_clone_sk);
5223 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5228 struct sock_exterr_skb *serr;
5231 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5233 serr = SKB_EXT_ERR(skb);
5234 memset(serr, 0, sizeof(*serr));
5235 serr->ee.ee_errno = ENOMSG;
5236 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5237 serr->ee.ee_info = tstype;
5238 serr->opt_stats = opt_stats;
5239 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5240 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5241 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5243 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5246 err = sock_queue_err_skb(sk, skb);
5252 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5256 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5259 read_lock_bh(&sk->sk_callback_lock);
5260 ret = sk->sk_socket && sk->sk_socket->file &&
5261 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5262 read_unlock_bh(&sk->sk_callback_lock);
5266 void skb_complete_tx_timestamp(struct sk_buff *skb,
5267 struct skb_shared_hwtstamps *hwtstamps)
5269 struct sock *sk = skb->sk;
5271 if (!skb_may_tx_timestamp(sk, false))
5274 /* Take a reference to prevent skb_orphan() from freeing the socket,
5275 * but only if the socket refcount is not zero.
5277 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5278 *skb_hwtstamps(skb) = *hwtstamps;
5279 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5287 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5289 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5290 const struct sk_buff *ack_skb,
5291 struct skb_shared_hwtstamps *hwtstamps,
5292 struct sock *sk, int tstype)
5294 struct sk_buff *skb;
5295 bool tsonly, opt_stats = false;
5301 tsflags = READ_ONCE(sk->sk_tsflags);
5302 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5303 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5306 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5307 if (!skb_may_tx_timestamp(sk, tsonly))
5312 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5314 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5319 skb = alloc_skb(0, GFP_ATOMIC);
5321 skb = skb_clone(orig_skb, GFP_ATOMIC);
5323 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5332 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5334 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5338 *skb_hwtstamps(skb) = *hwtstamps;
5340 __net_timestamp(skb);
5342 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5344 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5346 void skb_tstamp_tx(struct sk_buff *orig_skb,
5347 struct skb_shared_hwtstamps *hwtstamps)
5349 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5352 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5354 #ifdef CONFIG_WIRELESS
5355 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5357 struct sock *sk = skb->sk;
5358 struct sock_exterr_skb *serr;
5361 skb->wifi_acked_valid = 1;
5362 skb->wifi_acked = acked;
5364 serr = SKB_EXT_ERR(skb);
5365 memset(serr, 0, sizeof(*serr));
5366 serr->ee.ee_errno = ENOMSG;
5367 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5369 /* Take a reference to prevent skb_orphan() from freeing the socket,
5370 * but only if the socket refcount is not zero.
5372 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5373 err = sock_queue_err_skb(sk, skb);
5379 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5380 #endif /* CONFIG_WIRELESS */
5383 * skb_partial_csum_set - set up and verify partial csum values for packet
5384 * @skb: the skb to set
5385 * @start: the number of bytes after skb->data to start checksumming.
5386 * @off: the offset from start to place the checksum.
5388 * For untrusted partially-checksummed packets, we need to make sure the values
5389 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5391 * This function checks and sets those values and skb->ip_summed: if this
5392 * returns false you should drop the packet.
5394 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5396 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5397 u32 csum_start = skb_headroom(skb) + (u32)start;
5399 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5400 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5401 start, off, skb_headroom(skb), skb_headlen(skb));
5404 skb->ip_summed = CHECKSUM_PARTIAL;
5405 skb->csum_start = csum_start;
5406 skb->csum_offset = off;
5407 skb->transport_header = csum_start;
5410 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5412 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5415 if (skb_headlen(skb) >= len)
5418 /* If we need to pullup then pullup to the max, so we
5419 * won't need to do it again.
5424 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5427 if (skb_headlen(skb) < len)
5433 #define MAX_TCP_HDR_LEN (15 * 4)
5435 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5436 typeof(IPPROTO_IP) proto,
5443 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5444 off + MAX_TCP_HDR_LEN);
5445 if (!err && !skb_partial_csum_set(skb, off,
5446 offsetof(struct tcphdr,
5449 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5452 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5453 off + sizeof(struct udphdr));
5454 if (!err && !skb_partial_csum_set(skb, off,
5455 offsetof(struct udphdr,
5458 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5461 return ERR_PTR(-EPROTO);
5464 /* This value should be large enough to cover a tagged ethernet header plus
5465 * maximally sized IP and TCP or UDP headers.
5467 #define MAX_IP_HDR_LEN 128
5469 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5478 err = skb_maybe_pull_tail(skb,
5479 sizeof(struct iphdr),
5484 if (ip_is_fragment(ip_hdr(skb)))
5487 off = ip_hdrlen(skb);
5494 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5496 return PTR_ERR(csum);
5499 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5502 ip_hdr(skb)->protocol, 0);
5509 /* This value should be large enough to cover a tagged ethernet header plus
5510 * an IPv6 header, all options, and a maximal TCP or UDP header.
5512 #define MAX_IPV6_HDR_LEN 256
5514 #define OPT_HDR(type, skb, off) \
5515 (type *)(skb_network_header(skb) + (off))
5517 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5530 off = sizeof(struct ipv6hdr);
5532 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5536 nexthdr = ipv6_hdr(skb)->nexthdr;
5538 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5539 while (off <= len && !done) {
5541 case IPPROTO_DSTOPTS:
5542 case IPPROTO_HOPOPTS:
5543 case IPPROTO_ROUTING: {
5544 struct ipv6_opt_hdr *hp;
5546 err = skb_maybe_pull_tail(skb,
5548 sizeof(struct ipv6_opt_hdr),
5553 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5554 nexthdr = hp->nexthdr;
5555 off += ipv6_optlen(hp);
5559 struct ip_auth_hdr *hp;
5561 err = skb_maybe_pull_tail(skb,
5563 sizeof(struct ip_auth_hdr),
5568 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5569 nexthdr = hp->nexthdr;
5570 off += ipv6_authlen(hp);
5573 case IPPROTO_FRAGMENT: {
5574 struct frag_hdr *hp;
5576 err = skb_maybe_pull_tail(skb,
5578 sizeof(struct frag_hdr),
5583 hp = OPT_HDR(struct frag_hdr, skb, off);
5585 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5588 nexthdr = hp->nexthdr;
5589 off += sizeof(struct frag_hdr);
5600 if (!done || fragment)
5603 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5605 return PTR_ERR(csum);
5608 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5609 &ipv6_hdr(skb)->daddr,
5610 skb->len - off, nexthdr, 0);
5618 * skb_checksum_setup - set up partial checksum offset
5619 * @skb: the skb to set up
5620 * @recalculate: if true the pseudo-header checksum will be recalculated
5622 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5626 switch (skb->protocol) {
5627 case htons(ETH_P_IP):
5628 err = skb_checksum_setup_ipv4(skb, recalculate);
5631 case htons(ETH_P_IPV6):
5632 err = skb_checksum_setup_ipv6(skb, recalculate);
5642 EXPORT_SYMBOL(skb_checksum_setup);
5645 * skb_checksum_maybe_trim - maybe trims the given skb
5646 * @skb: the skb to check
5647 * @transport_len: the data length beyond the network header
5649 * Checks whether the given skb has data beyond the given transport length.
5650 * If so, returns a cloned skb trimmed to this transport length.
5651 * Otherwise returns the provided skb. Returns NULL in error cases
5652 * (e.g. transport_len exceeds skb length or out-of-memory).
5654 * Caller needs to set the skb transport header and free any returned skb if it
5655 * differs from the provided skb.
5657 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5658 unsigned int transport_len)
5660 struct sk_buff *skb_chk;
5661 unsigned int len = skb_transport_offset(skb) + transport_len;
5666 else if (skb->len == len)
5669 skb_chk = skb_clone(skb, GFP_ATOMIC);
5673 ret = pskb_trim_rcsum(skb_chk, len);
5683 * skb_checksum_trimmed - validate checksum of an skb
5684 * @skb: the skb to check
5685 * @transport_len: the data length beyond the network header
5686 * @skb_chkf: checksum function to use
5688 * Applies the given checksum function skb_chkf to the provided skb.
5689 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5691 * If the skb has data beyond the given transport length, then a
5692 * trimmed & cloned skb is checked and returned.
5694 * Caller needs to set the skb transport header and free any returned skb if it
5695 * differs from the provided skb.
5697 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5698 unsigned int transport_len,
5699 __sum16(*skb_chkf)(struct sk_buff *skb))
5701 struct sk_buff *skb_chk;
5702 unsigned int offset = skb_transport_offset(skb);
5705 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5709 if (!pskb_may_pull(skb_chk, offset))
5712 skb_pull_rcsum(skb_chk, offset);
5713 ret = skb_chkf(skb_chk);
5714 skb_push_rcsum(skb_chk, offset);
5722 if (skb_chk && skb_chk != skb)
5728 EXPORT_SYMBOL(skb_checksum_trimmed);
5730 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5732 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5735 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5737 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5740 skb_release_head_state(skb);
5741 kmem_cache_free(skbuff_cache, skb);
5746 EXPORT_SYMBOL(kfree_skb_partial);
5749 * skb_try_coalesce - try to merge skb to prior one
5751 * @from: buffer to add
5752 * @fragstolen: pointer to boolean
5753 * @delta_truesize: how much more was allocated than was requested
5755 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5756 bool *fragstolen, int *delta_truesize)
5758 struct skb_shared_info *to_shinfo, *from_shinfo;
5759 int i, delta, len = from->len;
5761 *fragstolen = false;
5766 /* In general, avoid mixing page_pool and non-page_pool allocated
5767 * pages within the same SKB. Additionally avoid dealing with clones
5768 * with page_pool pages, in case the SKB is using page_pool fragment
5769 * references (page_pool_alloc_frag()). Since we only take full page
5770 * references for cloned SKBs at the moment that would result in
5771 * inconsistent reference counts.
5772 * In theory we could take full references if @from is cloned and
5773 * !@to->pp_recycle but its tricky (due to potential race with
5774 * the clone disappearing) and rare, so not worth dealing with.
5776 if (to->pp_recycle != from->pp_recycle ||
5777 (from->pp_recycle && skb_cloned(from)))
5780 if (len <= skb_tailroom(to)) {
5782 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5783 *delta_truesize = 0;
5787 to_shinfo = skb_shinfo(to);
5788 from_shinfo = skb_shinfo(from);
5789 if (to_shinfo->frag_list || from_shinfo->frag_list)
5791 if (skb_zcopy(to) || skb_zcopy(from))
5794 if (skb_headlen(from) != 0) {
5796 unsigned int offset;
5798 if (to_shinfo->nr_frags +
5799 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5802 if (skb_head_is_locked(from))
5805 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5807 page = virt_to_head_page(from->head);
5808 offset = from->data - (unsigned char *)page_address(page);
5810 skb_fill_page_desc(to, to_shinfo->nr_frags,
5811 page, offset, skb_headlen(from));
5814 if (to_shinfo->nr_frags +
5815 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5818 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5821 WARN_ON_ONCE(delta < len);
5823 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5825 from_shinfo->nr_frags * sizeof(skb_frag_t));
5826 to_shinfo->nr_frags += from_shinfo->nr_frags;
5828 if (!skb_cloned(from))
5829 from_shinfo->nr_frags = 0;
5831 /* if the skb is not cloned this does nothing
5832 * since we set nr_frags to 0.
5834 for (i = 0; i < from_shinfo->nr_frags; i++)
5835 __skb_frag_ref(&from_shinfo->frags[i]);
5837 to->truesize += delta;
5839 to->data_len += len;
5841 *delta_truesize = delta;
5844 EXPORT_SYMBOL(skb_try_coalesce);
5847 * skb_scrub_packet - scrub an skb
5849 * @skb: buffer to clean
5850 * @xnet: packet is crossing netns
5852 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5853 * into/from a tunnel. Some information have to be cleared during these
5855 * skb_scrub_packet can also be used to clean a skb before injecting it in
5856 * another namespace (@xnet == true). We have to clear all information in the
5857 * skb that could impact namespace isolation.
5859 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5861 skb->pkt_type = PACKET_HOST;
5867 nf_reset_trace(skb);
5869 #ifdef CONFIG_NET_SWITCHDEV
5870 skb->offload_fwd_mark = 0;
5871 skb->offload_l3_fwd_mark = 0;
5879 skb_clear_tstamp(skb);
5881 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5883 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5885 int mac_len, meta_len;
5888 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5893 mac_len = skb->data - skb_mac_header(skb);
5894 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5895 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5896 mac_len - VLAN_HLEN - ETH_TLEN);
5899 meta_len = skb_metadata_len(skb);
5901 meta = skb_metadata_end(skb) - meta_len;
5902 memmove(meta + VLAN_HLEN, meta, meta_len);
5905 skb->mac_header += VLAN_HLEN;
5909 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5911 struct vlan_hdr *vhdr;
5914 if (unlikely(skb_vlan_tag_present(skb))) {
5915 /* vlan_tci is already set-up so leave this for another time */
5919 skb = skb_share_check(skb, GFP_ATOMIC);
5922 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5923 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5926 vhdr = (struct vlan_hdr *)skb->data;
5927 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5928 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5930 skb_pull_rcsum(skb, VLAN_HLEN);
5931 vlan_set_encap_proto(skb, vhdr);
5933 skb = skb_reorder_vlan_header(skb);
5937 skb_reset_network_header(skb);
5938 if (!skb_transport_header_was_set(skb))
5939 skb_reset_transport_header(skb);
5940 skb_reset_mac_len(skb);
5948 EXPORT_SYMBOL(skb_vlan_untag);
5950 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5952 if (!pskb_may_pull(skb, write_len))
5955 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5958 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5960 EXPORT_SYMBOL(skb_ensure_writable);
5962 /* remove VLAN header from packet and update csum accordingly.
5963 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5965 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5967 int offset = skb->data - skb_mac_header(skb);
5970 if (WARN_ONCE(offset,
5971 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5976 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5980 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5982 vlan_remove_tag(skb, vlan_tci);
5984 skb->mac_header += VLAN_HLEN;
5986 if (skb_network_offset(skb) < ETH_HLEN)
5987 skb_set_network_header(skb, ETH_HLEN);
5989 skb_reset_mac_len(skb);
5993 EXPORT_SYMBOL(__skb_vlan_pop);
5995 /* Pop a vlan tag either from hwaccel or from payload.
5996 * Expects skb->data at mac header.
5998 int skb_vlan_pop(struct sk_buff *skb)
6004 if (likely(skb_vlan_tag_present(skb))) {
6005 __vlan_hwaccel_clear_tag(skb);
6007 if (unlikely(!eth_type_vlan(skb->protocol)))
6010 err = __skb_vlan_pop(skb, &vlan_tci);
6014 /* move next vlan tag to hw accel tag */
6015 if (likely(!eth_type_vlan(skb->protocol)))
6018 vlan_proto = skb->protocol;
6019 err = __skb_vlan_pop(skb, &vlan_tci);
6023 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6026 EXPORT_SYMBOL(skb_vlan_pop);
6028 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6029 * Expects skb->data at mac header.
6031 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6033 if (skb_vlan_tag_present(skb)) {
6034 int offset = skb->data - skb_mac_header(skb);
6037 if (WARN_ONCE(offset,
6038 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6043 err = __vlan_insert_tag(skb, skb->vlan_proto,
6044 skb_vlan_tag_get(skb));
6048 skb->protocol = skb->vlan_proto;
6049 skb->mac_len += VLAN_HLEN;
6051 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6053 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6056 EXPORT_SYMBOL(skb_vlan_push);
6059 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6061 * @skb: Socket buffer to modify
6063 * Drop the Ethernet header of @skb.
6065 * Expects that skb->data points to the mac header and that no VLAN tags are
6068 * Returns 0 on success, -errno otherwise.
6070 int skb_eth_pop(struct sk_buff *skb)
6072 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6073 skb_network_offset(skb) < ETH_HLEN)
6076 skb_pull_rcsum(skb, ETH_HLEN);
6077 skb_reset_mac_header(skb);
6078 skb_reset_mac_len(skb);
6082 EXPORT_SYMBOL(skb_eth_pop);
6085 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6087 * @skb: Socket buffer to modify
6088 * @dst: Destination MAC address of the new header
6089 * @src: Source MAC address of the new header
6091 * Prepend @skb with a new Ethernet header.
6093 * Expects that skb->data points to the mac header, which must be empty.
6095 * Returns 0 on success, -errno otherwise.
6097 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6098 const unsigned char *src)
6103 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6106 err = skb_cow_head(skb, sizeof(*eth));
6110 skb_push(skb, sizeof(*eth));
6111 skb_reset_mac_header(skb);
6112 skb_reset_mac_len(skb);
6115 ether_addr_copy(eth->h_dest, dst);
6116 ether_addr_copy(eth->h_source, src);
6117 eth->h_proto = skb->protocol;
6119 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6123 EXPORT_SYMBOL(skb_eth_push);
6125 /* Update the ethertype of hdr and the skb csum value if required. */
6126 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6129 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6130 __be16 diff[] = { ~hdr->h_proto, ethertype };
6132 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6135 hdr->h_proto = ethertype;
6139 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6143 * @mpls_lse: MPLS label stack entry to push
6144 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6145 * @mac_len: length of the MAC header
6146 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6149 * Expects skb->data at mac header.
6151 * Returns 0 on success, -errno otherwise.
6153 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6154 int mac_len, bool ethernet)
6156 struct mpls_shim_hdr *lse;
6159 if (unlikely(!eth_p_mpls(mpls_proto)))
6162 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6163 if (skb->encapsulation)
6166 err = skb_cow_head(skb, MPLS_HLEN);
6170 if (!skb->inner_protocol) {
6171 skb_set_inner_network_header(skb, skb_network_offset(skb));
6172 skb_set_inner_protocol(skb, skb->protocol);
6175 skb_push(skb, MPLS_HLEN);
6176 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6178 skb_reset_mac_header(skb);
6179 skb_set_network_header(skb, mac_len);
6180 skb_reset_mac_len(skb);
6182 lse = mpls_hdr(skb);
6183 lse->label_stack_entry = mpls_lse;
6184 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6186 if (ethernet && mac_len >= ETH_HLEN)
6187 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6188 skb->protocol = mpls_proto;
6192 EXPORT_SYMBOL_GPL(skb_mpls_push);
6195 * skb_mpls_pop() - pop the outermost MPLS header
6198 * @next_proto: ethertype of header after popped MPLS header
6199 * @mac_len: length of the MAC header
6200 * @ethernet: flag to indicate if the packet is ethernet
6202 * Expects skb->data at mac header.
6204 * Returns 0 on success, -errno otherwise.
6206 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6211 if (unlikely(!eth_p_mpls(skb->protocol)))
6214 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6218 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6219 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6222 __skb_pull(skb, MPLS_HLEN);
6223 skb_reset_mac_header(skb);
6224 skb_set_network_header(skb, mac_len);
6226 if (ethernet && mac_len >= ETH_HLEN) {
6229 /* use mpls_hdr() to get ethertype to account for VLANs. */
6230 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6231 skb_mod_eth_type(skb, hdr, next_proto);
6233 skb->protocol = next_proto;
6237 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6240 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6243 * @mpls_lse: new MPLS label stack entry to update to
6245 * Expects skb->data at mac header.
6247 * Returns 0 on success, -errno otherwise.
6249 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6253 if (unlikely(!eth_p_mpls(skb->protocol)))
6256 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6260 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6261 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6263 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6266 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6270 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6273 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6277 * Expects skb->data at mac header.
6279 * Returns 0 on success, -errno otherwise.
6281 int skb_mpls_dec_ttl(struct sk_buff *skb)
6286 if (unlikely(!eth_p_mpls(skb->protocol)))
6289 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6292 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6293 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6297 lse &= ~MPLS_LS_TTL_MASK;
6298 lse |= ttl << MPLS_LS_TTL_SHIFT;
6300 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6302 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6305 * alloc_skb_with_frags - allocate skb with page frags
6307 * @header_len: size of linear part
6308 * @data_len: needed length in frags
6309 * @order: max page order desired.
6310 * @errcode: pointer to error code if any
6311 * @gfp_mask: allocation mask
6313 * This can be used to allocate a paged skb, given a maximal order for frags.
6315 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6316 unsigned long data_len,
6321 unsigned long chunk;
6322 struct sk_buff *skb;
6326 *errcode = -EMSGSIZE;
6327 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6330 *errcode = -ENOBUFS;
6331 skb = alloc_skb(header_len, gfp_mask);
6336 if (nr_frags == MAX_SKB_FRAGS - 1)
6338 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6342 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6351 page = alloc_page(gfp_mask);
6355 chunk = min_t(unsigned long, data_len,
6356 PAGE_SIZE << order);
6357 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6359 skb->truesize += (PAGE_SIZE << order);
6368 EXPORT_SYMBOL(alloc_skb_with_frags);
6370 /* carve out the first off bytes from skb when off < headlen */
6371 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6372 const int headlen, gfp_t gfp_mask)
6375 unsigned int size = skb_end_offset(skb);
6376 int new_hlen = headlen - off;
6379 if (skb_pfmemalloc(skb))
6380 gfp_mask |= __GFP_MEMALLOC;
6382 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6385 size = SKB_WITH_OVERHEAD(size);
6387 /* Copy real data, and all frags */
6388 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6391 memcpy((struct skb_shared_info *)(data + size),
6393 offsetof(struct skb_shared_info,
6394 frags[skb_shinfo(skb)->nr_frags]));
6395 if (skb_cloned(skb)) {
6396 /* drop the old head gracefully */
6397 if (skb_orphan_frags(skb, gfp_mask)) {
6398 skb_kfree_head(data, size);
6401 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6402 skb_frag_ref(skb, i);
6403 if (skb_has_frag_list(skb))
6404 skb_clone_fraglist(skb);
6405 skb_release_data(skb, SKB_CONSUMED, false);
6407 /* we can reuse existing recount- all we did was
6410 skb_free_head(skb, false);
6416 skb_set_end_offset(skb, size);
6417 skb_set_tail_pointer(skb, skb_headlen(skb));
6418 skb_headers_offset_update(skb, 0);
6422 atomic_set(&skb_shinfo(skb)->dataref, 1);
6427 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6429 /* carve out the first eat bytes from skb's frag_list. May recurse into
6432 static int pskb_carve_frag_list(struct sk_buff *skb,
6433 struct skb_shared_info *shinfo, int eat,
6436 struct sk_buff *list = shinfo->frag_list;
6437 struct sk_buff *clone = NULL;
6438 struct sk_buff *insp = NULL;
6442 pr_err("Not enough bytes to eat. Want %d\n", eat);
6445 if (list->len <= eat) {
6446 /* Eaten as whole. */
6451 /* Eaten partially. */
6452 if (skb_shared(list)) {
6453 clone = skb_clone(list, gfp_mask);
6459 /* This may be pulled without problems. */
6462 if (pskb_carve(list, eat, gfp_mask) < 0) {
6470 /* Free pulled out fragments. */
6471 while ((list = shinfo->frag_list) != insp) {
6472 shinfo->frag_list = list->next;
6475 /* And insert new clone at head. */
6478 shinfo->frag_list = clone;
6483 /* carve off first len bytes from skb. Split line (off) is in the
6484 * non-linear part of skb
6486 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6487 int pos, gfp_t gfp_mask)
6490 unsigned int size = skb_end_offset(skb);
6492 const int nfrags = skb_shinfo(skb)->nr_frags;
6493 struct skb_shared_info *shinfo;
6495 if (skb_pfmemalloc(skb))
6496 gfp_mask |= __GFP_MEMALLOC;
6498 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6501 size = SKB_WITH_OVERHEAD(size);
6503 memcpy((struct skb_shared_info *)(data + size),
6504 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6505 if (skb_orphan_frags(skb, gfp_mask)) {
6506 skb_kfree_head(data, size);
6509 shinfo = (struct skb_shared_info *)(data + size);
6510 for (i = 0; i < nfrags; i++) {
6511 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6513 if (pos + fsize > off) {
6514 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6518 * We have two variants in this case:
6519 * 1. Move all the frag to the second
6520 * part, if it is possible. F.e.
6521 * this approach is mandatory for TUX,
6522 * where splitting is expensive.
6523 * 2. Split is accurately. We make this.
6525 skb_frag_off_add(&shinfo->frags[0], off - pos);
6526 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6528 skb_frag_ref(skb, i);
6533 shinfo->nr_frags = k;
6534 if (skb_has_frag_list(skb))
6535 skb_clone_fraglist(skb);
6537 /* split line is in frag list */
6538 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6539 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6540 if (skb_has_frag_list(skb))
6541 kfree_skb_list(skb_shinfo(skb)->frag_list);
6542 skb_kfree_head(data, size);
6545 skb_release_data(skb, SKB_CONSUMED, false);
6550 skb_set_end_offset(skb, size);
6551 skb_reset_tail_pointer(skb);
6552 skb_headers_offset_update(skb, 0);
6557 skb->data_len = skb->len;
6558 atomic_set(&skb_shinfo(skb)->dataref, 1);
6562 /* remove len bytes from the beginning of the skb */
6563 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6565 int headlen = skb_headlen(skb);
6568 return pskb_carve_inside_header(skb, len, headlen, gfp);
6570 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6573 /* Extract to_copy bytes starting at off from skb, and return this in
6576 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6577 int to_copy, gfp_t gfp)
6579 struct sk_buff *clone = skb_clone(skb, gfp);
6584 if (pskb_carve(clone, off, gfp) < 0 ||
6585 pskb_trim(clone, to_copy)) {
6591 EXPORT_SYMBOL(pskb_extract);
6594 * skb_condense - try to get rid of fragments/frag_list if possible
6597 * Can be used to save memory before skb is added to a busy queue.
6598 * If packet has bytes in frags and enough tail room in skb->head,
6599 * pull all of them, so that we can free the frags right now and adjust
6602 * We do not reallocate skb->head thus can not fail.
6603 * Caller must re-evaluate skb->truesize if needed.
6605 void skb_condense(struct sk_buff *skb)
6607 if (skb->data_len) {
6608 if (skb->data_len > skb->end - skb->tail ||
6612 /* Nice, we can free page frag(s) right now */
6613 __pskb_pull_tail(skb, skb->data_len);
6615 /* At this point, skb->truesize might be over estimated,
6616 * because skb had a fragment, and fragments do not tell
6618 * When we pulled its content into skb->head, fragment
6619 * was freed, but __pskb_pull_tail() could not possibly
6620 * adjust skb->truesize, not knowing the frag truesize.
6622 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6624 EXPORT_SYMBOL(skb_condense);
6626 #ifdef CONFIG_SKB_EXTENSIONS
6627 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6629 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6633 * __skb_ext_alloc - allocate a new skb extensions storage
6635 * @flags: See kmalloc().
6637 * Returns the newly allocated pointer. The pointer can later attached to a
6638 * skb via __skb_ext_set().
6639 * Note: caller must handle the skb_ext as an opaque data.
6641 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6643 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6646 memset(new->offset, 0, sizeof(new->offset));
6647 refcount_set(&new->refcnt, 1);
6653 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6654 unsigned int old_active)
6656 struct skb_ext *new;
6658 if (refcount_read(&old->refcnt) == 1)
6661 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6665 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6666 refcount_set(&new->refcnt, 1);
6669 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6670 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6673 for (i = 0; i < sp->len; i++)
6674 xfrm_state_hold(sp->xvec[i]);
6682 * __skb_ext_set - attach the specified extension storage to this skb
6685 * @ext: extension storage previously allocated via __skb_ext_alloc()
6687 * Existing extensions, if any, are cleared.
6689 * Returns the pointer to the extension.
6691 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6692 struct skb_ext *ext)
6694 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6697 newlen = newoff + skb_ext_type_len[id];
6698 ext->chunks = newlen;
6699 ext->offset[id] = newoff;
6700 skb->extensions = ext;
6701 skb->active_extensions = 1 << id;
6702 return skb_ext_get_ptr(ext, id);
6706 * skb_ext_add - allocate space for given extension, COW if needed
6708 * @id: extension to allocate space for
6710 * Allocates enough space for the given extension.
6711 * If the extension is already present, a pointer to that extension
6714 * If the skb was cloned, COW applies and the returned memory can be
6715 * modified without changing the extension space of clones buffers.
6717 * Returns pointer to the extension or NULL on allocation failure.
6719 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6721 struct skb_ext *new, *old = NULL;
6722 unsigned int newlen, newoff;
6724 if (skb->active_extensions) {
6725 old = skb->extensions;
6727 new = skb_ext_maybe_cow(old, skb->active_extensions);
6731 if (__skb_ext_exist(new, id))
6734 newoff = new->chunks;
6736 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6738 new = __skb_ext_alloc(GFP_ATOMIC);
6743 newlen = newoff + skb_ext_type_len[id];
6744 new->chunks = newlen;
6745 new->offset[id] = newoff;
6748 skb->extensions = new;
6749 skb->active_extensions |= 1 << id;
6750 return skb_ext_get_ptr(new, id);
6752 EXPORT_SYMBOL(skb_ext_add);
6755 static void skb_ext_put_sp(struct sec_path *sp)
6759 for (i = 0; i < sp->len; i++)
6760 xfrm_state_put(sp->xvec[i]);
6764 #ifdef CONFIG_MCTP_FLOWS
6765 static void skb_ext_put_mctp(struct mctp_flow *flow)
6768 mctp_key_unref(flow->key);
6772 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6774 struct skb_ext *ext = skb->extensions;
6776 skb->active_extensions &= ~(1 << id);
6777 if (skb->active_extensions == 0) {
6778 skb->extensions = NULL;
6781 } else if (id == SKB_EXT_SEC_PATH &&
6782 refcount_read(&ext->refcnt) == 1) {
6783 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6790 EXPORT_SYMBOL(__skb_ext_del);
6792 void __skb_ext_put(struct skb_ext *ext)
6794 /* If this is last clone, nothing can increment
6795 * it after check passes. Avoids one atomic op.
6797 if (refcount_read(&ext->refcnt) == 1)
6800 if (!refcount_dec_and_test(&ext->refcnt))
6804 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6805 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6807 #ifdef CONFIG_MCTP_FLOWS
6808 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6809 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6812 kmem_cache_free(skbuff_ext_cache, ext);
6814 EXPORT_SYMBOL(__skb_ext_put);
6815 #endif /* CONFIG_SKB_EXTENSIONS */
6818 * skb_attempt_defer_free - queue skb for remote freeing
6821 * Put @skb in a per-cpu list, using the cpu which
6822 * allocated the skb/pages to reduce false sharing
6823 * and memory zone spinlock contention.
6825 void skb_attempt_defer_free(struct sk_buff *skb)
6827 int cpu = skb->alloc_cpu;
6828 struct softnet_data *sd;
6829 unsigned int defer_max;
6832 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6834 cpu == raw_smp_processor_id()) {
6835 nodefer: __kfree_skb(skb);
6839 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6840 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6842 sd = &per_cpu(softnet_data, cpu);
6843 defer_max = READ_ONCE(sysctl_skb_defer_max);
6844 if (READ_ONCE(sd->defer_count) >= defer_max)
6847 spin_lock_bh(&sd->defer_lock);
6848 /* Send an IPI every time queue reaches half capacity. */
6849 kick = sd->defer_count == (defer_max >> 1);
6850 /* Paired with the READ_ONCE() few lines above */
6851 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6853 skb->next = sd->defer_list;
6854 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6855 WRITE_ONCE(sd->defer_list, skb);
6856 spin_unlock_bh(&sd->defer_lock);
6858 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6859 * if we are unlucky enough (this seems very unlikely).
6861 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6862 smp_call_function_single_async(cpu, &sd->defer_csd);
6865 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6866 size_t offset, size_t len)
6871 kaddr = kmap_local_page(page);
6872 csum = csum_partial(kaddr + offset, len, 0);
6873 kunmap_local(kaddr);
6874 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6878 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6879 * @skb: The buffer to add pages to
6880 * @iter: Iterator representing the pages to be added
6881 * @maxsize: Maximum amount of pages to be added
6882 * @gfp: Allocation flags
6884 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6885 * extracts pages from an iterator and adds them to the socket buffer if
6886 * possible, copying them to fragments if not possible (such as if they're slab
6889 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6890 * insufficient space in the buffer to transfer anything.
6892 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6893 ssize_t maxsize, gfp_t gfp)
6895 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6896 struct page *pages[8], **ppages = pages;
6897 ssize_t spliced = 0, ret = 0;
6900 while (iter->count > 0) {
6901 ssize_t space, nr, len;
6905 space = frag_limit - skb_shinfo(skb)->nr_frags;
6909 /* We might be able to coalesce without increasing nr_frags */
6910 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6912 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6920 struct page *page = pages[i++];
6921 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6924 if (WARN_ON_ONCE(!sendpage_ok(page)))
6927 ret = skb_append_pagefrags(skb, page, off, part,
6930 iov_iter_revert(iter, len);
6934 if (skb->ip_summed == CHECKSUM_NONE)
6935 skb_splice_csum_page(skb, page, off, part);
6948 skb_len_add(skb, spliced);
6949 return spliced ?: ret;
6951 EXPORT_SYMBOL(skb_splice_from_iter);
6953 static __always_inline
6954 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
6955 size_t len, void *to, void *priv2)
6957 __wsum *csum = priv2;
6958 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
6960 *csum = csum_block_add(*csum, next, progress);
6964 static __always_inline
6965 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
6966 size_t len, void *to, void *priv2)
6968 __wsum next, *csum = priv2;
6970 next = csum_and_copy_from_user(iter_from, to + progress, len);
6971 *csum = csum_block_add(*csum, next, progress);
6972 return next ? 0 : len;
6975 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
6976 __wsum *csum, struct iov_iter *i)
6980 if (WARN_ON_ONCE(!i->data_source))
6982 copied = iterate_and_advance2(i, bytes, addr, csum,
6983 copy_from_user_iter_csum,
6984 memcpy_from_iter_csum);
6985 if (likely(copied == bytes))
6987 iov_iter_revert(i, copied);
6990 EXPORT_SYMBOL(csum_and_copy_from_iter_full);