1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
53 mhash_entries = simple_strtoul(str, &str, 0);
56 __setup("mhash_entries=", set_mhash_entries);
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
63 mphash_entries = simple_strtoul(str, &str, 0);
66 __setup("mphash_entries=", set_mphash_entries);
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_RWLOCK(mnt_ns_tree_lock);
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
86 unsigned int attr_set;
87 unsigned int attr_clr;
88 unsigned int propagation;
89 unsigned int lookup_flags;
91 struct user_namespace *mnt_userns;
92 struct mnt_idmap *mnt_idmap;
96 struct kobject *fs_kobj __ro_after_init;
97 EXPORT_SYMBOL_GPL(fs_kobj);
100 * vfsmount lock may be taken for read to prevent changes to the
101 * vfsmount hash, ie. during mountpoint lookups or walking back
104 * It should be taken for write in all cases where the vfsmount
105 * tree or hash is modified or when a vfsmount structure is modified.
107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
129 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 u64 seq_a = ns_a->seq;
133 return mnt_ns_cmp(seq_a, ns_b) < 0;
136 static void mnt_ns_tree_add(struct mnt_namespace *ns)
138 guard(write_lock)(&mnt_ns_tree_lock);
139 rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
142 static void mnt_ns_release(struct mnt_namespace *ns)
144 lockdep_assert_not_held(&mnt_ns_tree_lock);
146 /* keep alive for {list,stat}mount() */
147 if (refcount_dec_and_test(&ns->passive)) {
148 put_user_ns(ns->user_ns);
152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
154 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
156 /* remove from global mount namespace list */
157 if (!is_anon_ns(ns)) {
158 guard(write_lock)(&mnt_ns_tree_lock);
159 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
166 * Returns the mount namespace which either has the specified id, or has the
167 * next smallest id afer the specified one.
169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
171 struct rb_node *node = mnt_ns_tree.rb_node;
172 struct mnt_namespace *ret = NULL;
174 lockdep_assert_held(&mnt_ns_tree_lock);
177 struct mnt_namespace *n = node_to_mnt_ns(node);
179 if (mnt_ns_id <= n->seq) {
180 ret = node_to_mnt_ns(node);
181 if (mnt_ns_id == n->seq)
183 node = node->rb_left;
185 node = node->rb_right;
192 * Lookup a mount namespace by id and take a passive reference count. Taking a
193 * passive reference means the mount namespace can be emptied if e.g., the last
194 * task holding an active reference exits. To access the mounts of the
195 * namespace the @namespace_sem must first be acquired. If the namespace has
196 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
197 * see that the mount rbtree of the namespace is empty.
199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
201 struct mnt_namespace *ns;
203 guard(read_lock)(&mnt_ns_tree_lock);
204 ns = mnt_ns_find_id_at(mnt_ns_id);
205 if (!ns || ns->seq != mnt_ns_id)
208 refcount_inc(&ns->passive);
212 static inline void lock_mount_hash(void)
214 write_seqlock(&mount_lock);
217 static inline void unlock_mount_hash(void)
219 write_sequnlock(&mount_lock);
222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
224 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
225 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
226 tmp = tmp + (tmp >> m_hash_shift);
227 return &mount_hashtable[tmp & m_hash_mask];
230 static inline struct hlist_head *mp_hash(struct dentry *dentry)
232 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
233 tmp = tmp + (tmp >> mp_hash_shift);
234 return &mountpoint_hashtable[tmp & mp_hash_mask];
237 static int mnt_alloc_id(struct mount *mnt)
239 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
244 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
248 static void mnt_free_id(struct mount *mnt)
250 ida_free(&mnt_id_ida, mnt->mnt_id);
254 * Allocate a new peer group ID
256 static int mnt_alloc_group_id(struct mount *mnt)
258 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
262 mnt->mnt_group_id = res;
267 * Release a peer group ID
269 void mnt_release_group_id(struct mount *mnt)
271 ida_free(&mnt_group_ida, mnt->mnt_group_id);
272 mnt->mnt_group_id = 0;
276 * vfsmount lock must be held for read
278 static inline void mnt_add_count(struct mount *mnt, int n)
281 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
290 * vfsmount lock must be held for write
292 int mnt_get_count(struct mount *mnt)
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
304 return mnt->mnt_count;
308 static struct mount *alloc_vfsmnt(const char *name)
310 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
314 err = mnt_alloc_id(mnt);
319 mnt->mnt_devname = kstrdup_const(name,
321 if (!mnt->mnt_devname)
326 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
328 goto out_free_devname;
330 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
333 mnt->mnt_writers = 0;
336 INIT_HLIST_NODE(&mnt->mnt_hash);
337 INIT_LIST_HEAD(&mnt->mnt_child);
338 INIT_LIST_HEAD(&mnt->mnt_mounts);
339 INIT_LIST_HEAD(&mnt->mnt_list);
340 INIT_LIST_HEAD(&mnt->mnt_expire);
341 INIT_LIST_HEAD(&mnt->mnt_share);
342 INIT_LIST_HEAD(&mnt->mnt_slave_list);
343 INIT_LIST_HEAD(&mnt->mnt_slave);
344 INIT_HLIST_NODE(&mnt->mnt_mp_list);
345 INIT_LIST_HEAD(&mnt->mnt_umounting);
346 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
347 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
353 kfree_const(mnt->mnt_devname);
358 kmem_cache_free(mnt_cache, mnt);
363 * Most r/o checks on a fs are for operations that take
364 * discrete amounts of time, like a write() or unlink().
365 * We must keep track of when those operations start
366 * (for permission checks) and when they end, so that
367 * we can determine when writes are able to occur to
371 * __mnt_is_readonly: check whether a mount is read-only
372 * @mnt: the mount to check for its write status
374 * This shouldn't be used directly ouside of the VFS.
375 * It does not guarantee that the filesystem will stay
376 * r/w, just that it is right *now*. This can not and
377 * should not be used in place of IS_RDONLY(inode).
378 * mnt_want/drop_write() will _keep_ the filesystem
381 bool __mnt_is_readonly(struct vfsmount *mnt)
383 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
385 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
387 static inline void mnt_inc_writers(struct mount *mnt)
390 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
396 static inline void mnt_dec_writers(struct mount *mnt)
399 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
405 static unsigned int mnt_get_writers(struct mount *mnt)
408 unsigned int count = 0;
411 for_each_possible_cpu(cpu) {
412 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
417 return mnt->mnt_writers;
421 static int mnt_is_readonly(struct vfsmount *mnt)
423 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
426 * The barrier pairs with the barrier in sb_start_ro_state_change()
427 * making sure if we don't see s_readonly_remount set yet, we also will
428 * not see any superblock / mount flag changes done by remount.
429 * It also pairs with the barrier in sb_end_ro_state_change()
430 * assuring that if we see s_readonly_remount already cleared, we will
431 * see the values of superblock / mount flags updated by remount.
434 return __mnt_is_readonly(mnt);
438 * Most r/o & frozen checks on a fs are for operations that take discrete
439 * amounts of time, like a write() or unlink(). We must keep track of when
440 * those operations start (for permission checks) and when they end, so that we
441 * can determine when writes are able to occur to a filesystem.
444 * mnt_get_write_access - get write access to a mount without freeze protection
445 * @m: the mount on which to take a write
447 * This tells the low-level filesystem that a write is about to be performed to
448 * it, and makes sure that writes are allowed (mnt it read-write) before
449 * returning success. This operation does not protect against filesystem being
450 * frozen. When the write operation is finished, mnt_put_write_access() must be
451 * called. This is effectively a refcount.
453 int mnt_get_write_access(struct vfsmount *m)
455 struct mount *mnt = real_mount(m);
459 mnt_inc_writers(mnt);
461 * The store to mnt_inc_writers must be visible before we pass
462 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
463 * incremented count after it has set MNT_WRITE_HOLD.
466 might_lock(&mount_lock.lock);
467 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
468 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
472 * This prevents priority inversion, if the task
473 * setting MNT_WRITE_HOLD got preempted on a remote
474 * CPU, and it prevents life lock if the task setting
475 * MNT_WRITE_HOLD has a lower priority and is bound to
476 * the same CPU as the task that is spinning here.
485 * The barrier pairs with the barrier sb_start_ro_state_change() making
486 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
487 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
488 * mnt_is_readonly() and bail in case we are racing with remount
492 if (mnt_is_readonly(m)) {
493 mnt_dec_writers(mnt);
500 EXPORT_SYMBOL_GPL(mnt_get_write_access);
503 * mnt_want_write - get write access to a mount
504 * @m: the mount on which to take a write
506 * This tells the low-level filesystem that a write is about to be performed to
507 * it, and makes sure that writes are allowed (mount is read-write, filesystem
508 * is not frozen) before returning success. When the write operation is
509 * finished, mnt_drop_write() must be called. This is effectively a refcount.
511 int mnt_want_write(struct vfsmount *m)
515 sb_start_write(m->mnt_sb);
516 ret = mnt_get_write_access(m);
518 sb_end_write(m->mnt_sb);
521 EXPORT_SYMBOL_GPL(mnt_want_write);
524 * mnt_get_write_access_file - get write access to a file's mount
525 * @file: the file who's mount on which to take a write
527 * This is like mnt_get_write_access, but if @file is already open for write it
528 * skips incrementing mnt_writers (since the open file already has a reference)
529 * and instead only does the check for emergency r/o remounts. This must be
530 * paired with mnt_put_write_access_file.
532 int mnt_get_write_access_file(struct file *file)
534 if (file->f_mode & FMODE_WRITER) {
536 * Superblock may have become readonly while there are still
537 * writable fd's, e.g. due to a fs error with errors=remount-ro
539 if (__mnt_is_readonly(file->f_path.mnt))
543 return mnt_get_write_access(file->f_path.mnt);
547 * mnt_want_write_file - get write access to a file's mount
548 * @file: the file who's mount on which to take a write
550 * This is like mnt_want_write, but if the file is already open for writing it
551 * skips incrementing mnt_writers (since the open file already has a reference)
552 * and instead only does the freeze protection and the check for emergency r/o
553 * remounts. This must be paired with mnt_drop_write_file.
555 int mnt_want_write_file(struct file *file)
559 sb_start_write(file_inode(file)->i_sb);
560 ret = mnt_get_write_access_file(file);
562 sb_end_write(file_inode(file)->i_sb);
565 EXPORT_SYMBOL_GPL(mnt_want_write_file);
568 * mnt_put_write_access - give up write access to a mount
569 * @mnt: the mount on which to give up write access
571 * Tells the low-level filesystem that we are done
572 * performing writes to it. Must be matched with
573 * mnt_get_write_access() call above.
575 void mnt_put_write_access(struct vfsmount *mnt)
578 mnt_dec_writers(real_mount(mnt));
581 EXPORT_SYMBOL_GPL(mnt_put_write_access);
584 * mnt_drop_write - give up write access to a mount
585 * @mnt: the mount on which to give up write access
587 * Tells the low-level filesystem that we are done performing writes to it and
588 * also allows filesystem to be frozen again. Must be matched with
589 * mnt_want_write() call above.
591 void mnt_drop_write(struct vfsmount *mnt)
593 mnt_put_write_access(mnt);
594 sb_end_write(mnt->mnt_sb);
596 EXPORT_SYMBOL_GPL(mnt_drop_write);
598 void mnt_put_write_access_file(struct file *file)
600 if (!(file->f_mode & FMODE_WRITER))
601 mnt_put_write_access(file->f_path.mnt);
604 void mnt_drop_write_file(struct file *file)
606 mnt_put_write_access_file(file);
607 sb_end_write(file_inode(file)->i_sb);
609 EXPORT_SYMBOL(mnt_drop_write_file);
612 * mnt_hold_writers - prevent write access to the given mount
613 * @mnt: mnt to prevent write access to
615 * Prevents write access to @mnt if there are no active writers for @mnt.
616 * This function needs to be called and return successfully before changing
617 * properties of @mnt that need to remain stable for callers with write access
620 * After this functions has been called successfully callers must pair it with
621 * a call to mnt_unhold_writers() in order to stop preventing write access to
624 * Context: This function expects lock_mount_hash() to be held serializing
625 * setting MNT_WRITE_HOLD.
626 * Return: On success 0 is returned.
627 * On error, -EBUSY is returned.
629 static inline int mnt_hold_writers(struct mount *mnt)
631 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
633 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
634 * should be visible before we do.
639 * With writers on hold, if this value is zero, then there are
640 * definitely no active writers (although held writers may subsequently
641 * increment the count, they'll have to wait, and decrement it after
642 * seeing MNT_READONLY).
644 * It is OK to have counter incremented on one CPU and decremented on
645 * another: the sum will add up correctly. The danger would be when we
646 * sum up each counter, if we read a counter before it is incremented,
647 * but then read another CPU's count which it has been subsequently
648 * decremented from -- we would see more decrements than we should.
649 * MNT_WRITE_HOLD protects against this scenario, because
650 * mnt_want_write first increments count, then smp_mb, then spins on
651 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
652 * we're counting up here.
654 if (mnt_get_writers(mnt) > 0)
661 * mnt_unhold_writers - stop preventing write access to the given mount
662 * @mnt: mnt to stop preventing write access to
664 * Stop preventing write access to @mnt allowing callers to gain write access
667 * This function can only be called after a successful call to
668 * mnt_hold_writers().
670 * Context: This function expects lock_mount_hash() to be held.
672 static inline void mnt_unhold_writers(struct mount *mnt)
675 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
676 * that become unheld will see MNT_READONLY.
679 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
682 static int mnt_make_readonly(struct mount *mnt)
686 ret = mnt_hold_writers(mnt);
688 mnt->mnt.mnt_flags |= MNT_READONLY;
689 mnt_unhold_writers(mnt);
693 int sb_prepare_remount_readonly(struct super_block *sb)
698 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
699 if (atomic_long_read(&sb->s_remove_count))
703 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
704 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
705 err = mnt_hold_writers(mnt);
710 if (!err && atomic_long_read(&sb->s_remove_count))
714 sb_start_ro_state_change(sb);
715 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
716 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
717 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
724 static void free_vfsmnt(struct mount *mnt)
726 mnt_idmap_put(mnt_idmap(&mnt->mnt));
727 kfree_const(mnt->mnt_devname);
729 free_percpu(mnt->mnt_pcp);
731 kmem_cache_free(mnt_cache, mnt);
734 static void delayed_free_vfsmnt(struct rcu_head *head)
736 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
739 /* call under rcu_read_lock */
740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
743 if (read_seqretry(&mount_lock, seq))
747 mnt = real_mount(bastard);
748 mnt_add_count(mnt, 1);
749 smp_mb(); // see mntput_no_expire()
750 if (likely(!read_seqretry(&mount_lock, seq)))
752 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
753 mnt_add_count(mnt, -1);
757 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
758 mnt_add_count(mnt, -1);
763 /* caller will mntput() */
767 /* call under rcu_read_lock */
768 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
770 int res = __legitimize_mnt(bastard, seq);
773 if (unlikely(res < 0)) {
782 * __lookup_mnt - find first child mount
784 * @dentry: mountpoint
786 * If @mnt has a child mount @c mounted @dentry find and return it.
788 * Note that the child mount @c need not be unique. There are cases
789 * where shadow mounts are created. For example, during mount
790 * propagation when a source mount @mnt whose root got overmounted by a
791 * mount @o after path lookup but before @namespace_sem could be
792 * acquired gets copied and propagated. So @mnt gets copied including
793 * @o. When @mnt is propagated to a destination mount @d that already
794 * has another mount @n mounted at the same mountpoint then the source
795 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
796 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
799 * Return: The first child of @mnt mounted @dentry or NULL.
801 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
803 struct hlist_head *head = m_hash(mnt, dentry);
806 hlist_for_each_entry_rcu(p, head, mnt_hash)
807 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
813 * lookup_mnt - Return the first child mount mounted at path
815 * "First" means first mounted chronologically. If you create the
818 * mount /dev/sda1 /mnt
819 * mount /dev/sda2 /mnt
820 * mount /dev/sda3 /mnt
822 * Then lookup_mnt() on the base /mnt dentry in the root mount will
823 * return successively the root dentry and vfsmount of /dev/sda1, then
824 * /dev/sda2, then /dev/sda3, then NULL.
826 * lookup_mnt takes a reference to the found vfsmount.
828 struct vfsmount *lookup_mnt(const struct path *path)
830 struct mount *child_mnt;
836 seq = read_seqbegin(&mount_lock);
837 child_mnt = __lookup_mnt(path->mnt, path->dentry);
838 m = child_mnt ? &child_mnt->mnt : NULL;
839 } while (!legitimize_mnt(m, seq));
845 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
846 * current mount namespace.
848 * The common case is dentries are not mountpoints at all and that
849 * test is handled inline. For the slow case when we are actually
850 * dealing with a mountpoint of some kind, walk through all of the
851 * mounts in the current mount namespace and test to see if the dentry
854 * The mount_hashtable is not usable in the context because we
855 * need to identify all mounts that may be in the current mount
856 * namespace not just a mount that happens to have some specified
859 bool __is_local_mountpoint(struct dentry *dentry)
861 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
862 struct mount *mnt, *n;
863 bool is_covered = false;
865 down_read(&namespace_sem);
866 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
867 is_covered = (mnt->mnt_mountpoint == dentry);
871 up_read(&namespace_sem);
876 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
878 struct hlist_head *chain = mp_hash(dentry);
879 struct mountpoint *mp;
881 hlist_for_each_entry(mp, chain, m_hash) {
882 if (mp->m_dentry == dentry) {
890 static struct mountpoint *get_mountpoint(struct dentry *dentry)
892 struct mountpoint *mp, *new = NULL;
895 if (d_mountpoint(dentry)) {
896 /* might be worth a WARN_ON() */
897 if (d_unlinked(dentry))
898 return ERR_PTR(-ENOENT);
900 read_seqlock_excl(&mount_lock);
901 mp = lookup_mountpoint(dentry);
902 read_sequnlock_excl(&mount_lock);
908 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
910 return ERR_PTR(-ENOMEM);
913 /* Exactly one processes may set d_mounted */
914 ret = d_set_mounted(dentry);
916 /* Someone else set d_mounted? */
920 /* The dentry is not available as a mountpoint? */
925 /* Add the new mountpoint to the hash table */
926 read_seqlock_excl(&mount_lock);
927 new->m_dentry = dget(dentry);
929 hlist_add_head(&new->m_hash, mp_hash(dentry));
930 INIT_HLIST_HEAD(&new->m_list);
931 read_sequnlock_excl(&mount_lock);
941 * vfsmount lock must be held. Additionally, the caller is responsible
942 * for serializing calls for given disposal list.
944 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
946 if (!--mp->m_count) {
947 struct dentry *dentry = mp->m_dentry;
948 BUG_ON(!hlist_empty(&mp->m_list));
949 spin_lock(&dentry->d_lock);
950 dentry->d_flags &= ~DCACHE_MOUNTED;
951 spin_unlock(&dentry->d_lock);
952 dput_to_list(dentry, list);
953 hlist_del(&mp->m_hash);
958 /* called with namespace_lock and vfsmount lock */
959 static void put_mountpoint(struct mountpoint *mp)
961 __put_mountpoint(mp, &ex_mountpoints);
964 static inline int check_mnt(struct mount *mnt)
966 return mnt->mnt_ns == current->nsproxy->mnt_ns;
970 * vfsmount lock must be held for write
972 static void touch_mnt_namespace(struct mnt_namespace *ns)
976 wake_up_interruptible(&ns->poll);
981 * vfsmount lock must be held for write
983 static void __touch_mnt_namespace(struct mnt_namespace *ns)
985 if (ns && ns->event != event) {
987 wake_up_interruptible(&ns->poll);
992 * vfsmount lock must be held for write
994 static struct mountpoint *unhash_mnt(struct mount *mnt)
996 struct mountpoint *mp;
997 mnt->mnt_parent = mnt;
998 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
999 list_del_init(&mnt->mnt_child);
1000 hlist_del_init_rcu(&mnt->mnt_hash);
1001 hlist_del_init(&mnt->mnt_mp_list);
1008 * vfsmount lock must be held for write
1010 static void umount_mnt(struct mount *mnt)
1012 put_mountpoint(unhash_mnt(mnt));
1016 * vfsmount lock must be held for write
1018 void mnt_set_mountpoint(struct mount *mnt,
1019 struct mountpoint *mp,
1020 struct mount *child_mnt)
1023 mnt_add_count(mnt, 1); /* essentially, that's mntget */
1024 child_mnt->mnt_mountpoint = mp->m_dentry;
1025 child_mnt->mnt_parent = mnt;
1026 child_mnt->mnt_mp = mp;
1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1031 * mnt_set_mountpoint_beneath - mount a mount beneath another one
1033 * @new_parent: the source mount
1034 * @top_mnt: the mount beneath which @new_parent is mounted
1035 * @new_mp: the new mountpoint of @top_mnt on @new_parent
1037 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1038 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1039 * @new_mp. And mount @new_parent on the old parent and old
1040 * mountpoint of @top_mnt.
1042 * Context: This function expects namespace_lock() and lock_mount_hash()
1043 * to have been acquired in that order.
1045 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1046 struct mount *top_mnt,
1047 struct mountpoint *new_mp)
1049 struct mount *old_top_parent = top_mnt->mnt_parent;
1050 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1052 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1053 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1057 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1059 hlist_add_head_rcu(&mnt->mnt_hash,
1060 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1061 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1065 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1066 * list of child mounts
1067 * @parent: the parent
1068 * @mnt: the new mount
1069 * @mp: the new mountpoint
1070 * @beneath: whether to mount @mnt beneath or on top of @parent
1072 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1073 * to @parent's child mount list and to @mount_hashtable.
1075 * If @beneath is true, remove @mnt from its current parent and
1076 * mountpoint and mount it on @mp on @parent, and mount @parent on the
1077 * old parent and old mountpoint of @mnt. Finally, attach @parent to
1078 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1080 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1081 * to the correct parent.
1083 * Context: This function expects namespace_lock() and lock_mount_hash()
1084 * to have been acquired in that order.
1086 static void attach_mnt(struct mount *mnt, struct mount *parent,
1087 struct mountpoint *mp, bool beneath)
1090 mnt_set_mountpoint_beneath(mnt, parent, mp);
1092 mnt_set_mountpoint(parent, mp, mnt);
1094 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1095 * beneath @parent then @mnt will need to be attached to
1096 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1097 * isn't the same mount as @parent.
1099 __attach_mnt(mnt, mnt->mnt_parent);
1102 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1104 struct mountpoint *old_mp = mnt->mnt_mp;
1105 struct mount *old_parent = mnt->mnt_parent;
1107 list_del_init(&mnt->mnt_child);
1108 hlist_del_init(&mnt->mnt_mp_list);
1109 hlist_del_init_rcu(&mnt->mnt_hash);
1111 attach_mnt(mnt, parent, mp, false);
1113 put_mountpoint(old_mp);
1114 mnt_add_count(old_parent, -1);
1117 static inline struct mount *node_to_mount(struct rb_node *node)
1119 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1122 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1124 struct rb_node **link = &ns->mounts.rb_node;
1125 struct rb_node *parent = NULL;
1127 WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1131 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1132 link = &parent->rb_left;
1134 link = &parent->rb_right;
1136 rb_link_node(&mnt->mnt_node, parent, link);
1137 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1138 mnt->mnt.mnt_flags |= MNT_ONRB;
1142 * vfsmount lock must be held for write
1144 static void commit_tree(struct mount *mnt)
1146 struct mount *parent = mnt->mnt_parent;
1149 struct mnt_namespace *n = parent->mnt_ns;
1151 BUG_ON(parent == mnt);
1153 list_add_tail(&head, &mnt->mnt_list);
1154 while (!list_empty(&head)) {
1155 m = list_first_entry(&head, typeof(*m), mnt_list);
1156 list_del(&m->mnt_list);
1158 mnt_add_to_ns(n, m);
1160 n->nr_mounts += n->pending_mounts;
1161 n->pending_mounts = 0;
1163 __attach_mnt(mnt, parent);
1164 touch_mnt_namespace(n);
1167 static struct mount *next_mnt(struct mount *p, struct mount *root)
1169 struct list_head *next = p->mnt_mounts.next;
1170 if (next == &p->mnt_mounts) {
1174 next = p->mnt_child.next;
1175 if (next != &p->mnt_parent->mnt_mounts)
1180 return list_entry(next, struct mount, mnt_child);
1183 static struct mount *skip_mnt_tree(struct mount *p)
1185 struct list_head *prev = p->mnt_mounts.prev;
1186 while (prev != &p->mnt_mounts) {
1187 p = list_entry(prev, struct mount, mnt_child);
1188 prev = p->mnt_mounts.prev;
1194 * vfs_create_mount - Create a mount for a configured superblock
1195 * @fc: The configuration context with the superblock attached
1197 * Create a mount to an already configured superblock. If necessary, the
1198 * caller should invoke vfs_get_tree() before calling this.
1200 * Note that this does not attach the mount to anything.
1202 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1207 return ERR_PTR(-EINVAL);
1209 mnt = alloc_vfsmnt(fc->source ?: "none");
1211 return ERR_PTR(-ENOMEM);
1213 if (fc->sb_flags & SB_KERNMOUNT)
1214 mnt->mnt.mnt_flags = MNT_INTERNAL;
1216 atomic_inc(&fc->root->d_sb->s_active);
1217 mnt->mnt.mnt_sb = fc->root->d_sb;
1218 mnt->mnt.mnt_root = dget(fc->root);
1219 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1220 mnt->mnt_parent = mnt;
1223 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1224 unlock_mount_hash();
1227 EXPORT_SYMBOL(vfs_create_mount);
1229 struct vfsmount *fc_mount(struct fs_context *fc)
1231 int err = vfs_get_tree(fc);
1233 up_write(&fc->root->d_sb->s_umount);
1234 return vfs_create_mount(fc);
1236 return ERR_PTR(err);
1238 EXPORT_SYMBOL(fc_mount);
1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1241 int flags, const char *name,
1244 struct fs_context *fc;
1245 struct vfsmount *mnt;
1249 return ERR_PTR(-EINVAL);
1251 fc = fs_context_for_mount(type, flags);
1253 return ERR_CAST(fc);
1256 ret = vfs_parse_fs_string(fc, "source",
1257 name, strlen(name));
1259 ret = parse_monolithic_mount_data(fc, data);
1268 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1272 const char *name, void *data)
1274 /* Until it is worked out how to pass the user namespace
1275 * through from the parent mount to the submount don't support
1276 * unprivileged mounts with submounts.
1278 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1279 return ERR_PTR(-EPERM);
1281 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1283 EXPORT_SYMBOL_GPL(vfs_submount);
1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1288 struct super_block *sb = old->mnt.mnt_sb;
1292 mnt = alloc_vfsmnt(old->mnt_devname);
1294 return ERR_PTR(-ENOMEM);
1296 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1297 mnt->mnt_group_id = 0; /* not a peer of original */
1299 mnt->mnt_group_id = old->mnt_group_id;
1301 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1302 err = mnt_alloc_group_id(mnt);
1307 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1308 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1310 atomic_inc(&sb->s_active);
1311 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1313 mnt->mnt.mnt_sb = sb;
1314 mnt->mnt.mnt_root = dget(root);
1315 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1316 mnt->mnt_parent = mnt;
1318 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1319 unlock_mount_hash();
1321 if ((flag & CL_SLAVE) ||
1322 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1323 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1324 mnt->mnt_master = old;
1325 CLEAR_MNT_SHARED(mnt);
1326 } else if (!(flag & CL_PRIVATE)) {
1327 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1328 list_add(&mnt->mnt_share, &old->mnt_share);
1329 if (IS_MNT_SLAVE(old))
1330 list_add(&mnt->mnt_slave, &old->mnt_slave);
1331 mnt->mnt_master = old->mnt_master;
1333 CLEAR_MNT_SHARED(mnt);
1335 if (flag & CL_MAKE_SHARED)
1336 set_mnt_shared(mnt);
1338 /* stick the duplicate mount on the same expiry list
1339 * as the original if that was on one */
1340 if (flag & CL_EXPIRE) {
1341 if (!list_empty(&old->mnt_expire))
1342 list_add(&mnt->mnt_expire, &old->mnt_expire);
1350 return ERR_PTR(err);
1353 static void cleanup_mnt(struct mount *mnt)
1355 struct hlist_node *p;
1358 * The warning here probably indicates that somebody messed
1359 * up a mnt_want/drop_write() pair. If this happens, the
1360 * filesystem was probably unable to make r/w->r/o transitions.
1361 * The locking used to deal with mnt_count decrement provides barriers,
1362 * so mnt_get_writers() below is safe.
1364 WARN_ON(mnt_get_writers(mnt));
1365 if (unlikely(mnt->mnt_pins.first))
1367 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1368 hlist_del(&m->mnt_umount);
1371 fsnotify_vfsmount_delete(&mnt->mnt);
1372 dput(mnt->mnt.mnt_root);
1373 deactivate_super(mnt->mnt.mnt_sb);
1375 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1378 static void __cleanup_mnt(struct rcu_head *head)
1380 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1383 static LLIST_HEAD(delayed_mntput_list);
1384 static void delayed_mntput(struct work_struct *unused)
1386 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1387 struct mount *m, *t;
1389 llist_for_each_entry_safe(m, t, node, mnt_llist)
1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1394 static void mntput_no_expire(struct mount *mnt)
1400 if (likely(READ_ONCE(mnt->mnt_ns))) {
1402 * Since we don't do lock_mount_hash() here,
1403 * ->mnt_ns can change under us. However, if it's
1404 * non-NULL, then there's a reference that won't
1405 * be dropped until after an RCU delay done after
1406 * turning ->mnt_ns NULL. So if we observe it
1407 * non-NULL under rcu_read_lock(), the reference
1408 * we are dropping is not the final one.
1410 mnt_add_count(mnt, -1);
1416 * make sure that if __legitimize_mnt() has not seen us grab
1417 * mount_lock, we'll see their refcount increment here.
1420 mnt_add_count(mnt, -1);
1421 count = mnt_get_count(mnt);
1425 unlock_mount_hash();
1428 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1430 unlock_mount_hash();
1433 mnt->mnt.mnt_flags |= MNT_DOOMED;
1436 list_del(&mnt->mnt_instance);
1438 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1439 struct mount *p, *tmp;
1440 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1441 __put_mountpoint(unhash_mnt(p), &list);
1442 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1445 unlock_mount_hash();
1446 shrink_dentry_list(&list);
1448 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1449 struct task_struct *task = current;
1450 if (likely(!(task->flags & PF_KTHREAD))) {
1451 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1452 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1455 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1456 schedule_delayed_work(&delayed_mntput_work, 1);
1462 void mntput(struct vfsmount *mnt)
1465 struct mount *m = real_mount(mnt);
1466 /* avoid cacheline pingpong */
1467 if (unlikely(m->mnt_expiry_mark))
1468 WRITE_ONCE(m->mnt_expiry_mark, 0);
1469 mntput_no_expire(m);
1472 EXPORT_SYMBOL(mntput);
1474 struct vfsmount *mntget(struct vfsmount *mnt)
1477 mnt_add_count(real_mount(mnt), 1);
1480 EXPORT_SYMBOL(mntget);
1483 * Make a mount point inaccessible to new lookups.
1484 * Because there may still be current users, the caller MUST WAIT
1485 * for an RCU grace period before destroying the mount point.
1487 void mnt_make_shortterm(struct vfsmount *mnt)
1490 real_mount(mnt)->mnt_ns = NULL;
1494 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1495 * @path: path to check
1497 * d_mountpoint() can only be used reliably to establish if a dentry is
1498 * not mounted in any namespace and that common case is handled inline.
1499 * d_mountpoint() isn't aware of the possibility there may be multiple
1500 * mounts using a given dentry in a different namespace. This function
1501 * checks if the passed in path is a mountpoint rather than the dentry
1504 bool path_is_mountpoint(const struct path *path)
1509 if (!d_mountpoint(path->dentry))
1514 seq = read_seqbegin(&mount_lock);
1515 res = __path_is_mountpoint(path);
1516 } while (read_seqretry(&mount_lock, seq));
1521 EXPORT_SYMBOL(path_is_mountpoint);
1523 struct vfsmount *mnt_clone_internal(const struct path *path)
1526 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1529 p->mnt.mnt_flags |= MNT_INTERNAL;
1534 * Returns the mount which either has the specified mnt_id, or has the next
1535 * smallest id afer the specified one.
1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1539 struct rb_node *node = ns->mounts.rb_node;
1540 struct mount *ret = NULL;
1543 struct mount *m = node_to_mount(node);
1545 if (mnt_id <= m->mnt_id_unique) {
1546 ret = node_to_mount(node);
1547 if (mnt_id == m->mnt_id_unique)
1549 node = node->rb_left;
1551 node = node->rb_right;
1558 * Returns the mount which either has the specified mnt_id, or has the next
1559 * greater id before the specified one.
1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1563 struct rb_node *node = ns->mounts.rb_node;
1564 struct mount *ret = NULL;
1567 struct mount *m = node_to_mount(node);
1569 if (mnt_id >= m->mnt_id_unique) {
1570 ret = node_to_mount(node);
1571 if (mnt_id == m->mnt_id_unique)
1573 node = node->rb_right;
1575 node = node->rb_left;
1581 #ifdef CONFIG_PROC_FS
1583 /* iterator; we want it to have access to namespace_sem, thus here... */
1584 static void *m_start(struct seq_file *m, loff_t *pos)
1586 struct proc_mounts *p = m->private;
1588 down_read(&namespace_sem);
1590 return mnt_find_id_at(p->ns, *pos);
1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1595 struct mount *next = NULL, *mnt = v;
1596 struct rb_node *node = rb_next(&mnt->mnt_node);
1600 next = node_to_mount(node);
1601 *pos = next->mnt_id_unique;
1606 static void m_stop(struct seq_file *m, void *v)
1608 up_read(&namespace_sem);
1611 static int m_show(struct seq_file *m, void *v)
1613 struct proc_mounts *p = m->private;
1614 struct mount *r = v;
1615 return p->show(m, &r->mnt);
1618 const struct seq_operations mounts_op = {
1625 #endif /* CONFIG_PROC_FS */
1628 * may_umount_tree - check if a mount tree is busy
1629 * @m: root of mount tree
1631 * This is called to check if a tree of mounts has any
1632 * open files, pwds, chroots or sub mounts that are
1635 int may_umount_tree(struct vfsmount *m)
1637 struct mount *mnt = real_mount(m);
1638 int actual_refs = 0;
1639 int minimum_refs = 0;
1643 /* write lock needed for mnt_get_count */
1645 for (p = mnt; p; p = next_mnt(p, mnt)) {
1646 actual_refs += mnt_get_count(p);
1649 unlock_mount_hash();
1651 if (actual_refs > minimum_refs)
1657 EXPORT_SYMBOL(may_umount_tree);
1660 * may_umount - check if a mount point is busy
1661 * @mnt: root of mount
1663 * This is called to check if a mount point has any
1664 * open files, pwds, chroots or sub mounts. If the
1665 * mount has sub mounts this will return busy
1666 * regardless of whether the sub mounts are busy.
1668 * Doesn't take quota and stuff into account. IOW, in some cases it will
1669 * give false negatives. The main reason why it's here is that we need
1670 * a non-destructive way to look for easily umountable filesystems.
1672 int may_umount(struct vfsmount *mnt)
1675 down_read(&namespace_sem);
1677 if (propagate_mount_busy(real_mount(mnt), 2))
1679 unlock_mount_hash();
1680 up_read(&namespace_sem);
1684 EXPORT_SYMBOL(may_umount);
1686 static void namespace_unlock(void)
1688 struct hlist_head head;
1689 struct hlist_node *p;
1693 hlist_move_list(&unmounted, &head);
1694 list_splice_init(&ex_mountpoints, &list);
1696 up_write(&namespace_sem);
1698 shrink_dentry_list(&list);
1700 if (likely(hlist_empty(&head)))
1703 synchronize_rcu_expedited();
1705 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1706 hlist_del(&m->mnt_umount);
1711 static inline void namespace_lock(void)
1713 down_write(&namespace_sem);
1716 enum umount_tree_flags {
1718 UMOUNT_PROPAGATE = 2,
1719 UMOUNT_CONNECTED = 4,
1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1724 /* Leaving mounts connected is only valid for lazy umounts */
1725 if (how & UMOUNT_SYNC)
1728 /* A mount without a parent has nothing to be connected to */
1729 if (!mnt_has_parent(mnt))
1732 /* Because the reference counting rules change when mounts are
1733 * unmounted and connected, umounted mounts may not be
1734 * connected to mounted mounts.
1736 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1739 /* Has it been requested that the mount remain connected? */
1740 if (how & UMOUNT_CONNECTED)
1743 /* Is the mount locked such that it needs to remain connected? */
1744 if (IS_MNT_LOCKED(mnt))
1747 /* By default disconnect the mount */
1752 * mount_lock must be held
1753 * namespace_sem must be held for write
1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1757 LIST_HEAD(tmp_list);
1760 if (how & UMOUNT_PROPAGATE)
1761 propagate_mount_unlock(mnt);
1763 /* Gather the mounts to umount */
1764 for (p = mnt; p; p = next_mnt(p, mnt)) {
1765 p->mnt.mnt_flags |= MNT_UMOUNT;
1766 if (p->mnt.mnt_flags & MNT_ONRB)
1767 move_from_ns(p, &tmp_list);
1769 list_move(&p->mnt_list, &tmp_list);
1772 /* Hide the mounts from mnt_mounts */
1773 list_for_each_entry(p, &tmp_list, mnt_list) {
1774 list_del_init(&p->mnt_child);
1777 /* Add propogated mounts to the tmp_list */
1778 if (how & UMOUNT_PROPAGATE)
1779 propagate_umount(&tmp_list);
1781 while (!list_empty(&tmp_list)) {
1782 struct mnt_namespace *ns;
1784 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1785 list_del_init(&p->mnt_expire);
1786 list_del_init(&p->mnt_list);
1790 __touch_mnt_namespace(ns);
1793 if (how & UMOUNT_SYNC)
1794 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1796 disconnect = disconnect_mount(p, how);
1797 if (mnt_has_parent(p)) {
1798 mnt_add_count(p->mnt_parent, -1);
1800 /* Don't forget about p */
1801 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1806 change_mnt_propagation(p, MS_PRIVATE);
1808 hlist_add_head(&p->mnt_umount, &unmounted);
1812 static void shrink_submounts(struct mount *mnt);
1814 static int do_umount_root(struct super_block *sb)
1818 down_write(&sb->s_umount);
1819 if (!sb_rdonly(sb)) {
1820 struct fs_context *fc;
1822 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1827 ret = parse_monolithic_mount_data(fc, NULL);
1829 ret = reconfigure_super(fc);
1833 up_write(&sb->s_umount);
1837 static int do_umount(struct mount *mnt, int flags)
1839 struct super_block *sb = mnt->mnt.mnt_sb;
1842 retval = security_sb_umount(&mnt->mnt, flags);
1847 * Allow userspace to request a mountpoint be expired rather than
1848 * unmounting unconditionally. Unmount only happens if:
1849 * (1) the mark is already set (the mark is cleared by mntput())
1850 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1852 if (flags & MNT_EXPIRE) {
1853 if (&mnt->mnt == current->fs->root.mnt ||
1854 flags & (MNT_FORCE | MNT_DETACH))
1858 * probably don't strictly need the lock here if we examined
1859 * all race cases, but it's a slowpath.
1862 if (mnt_get_count(mnt) != 2) {
1863 unlock_mount_hash();
1866 unlock_mount_hash();
1868 if (!xchg(&mnt->mnt_expiry_mark, 1))
1873 * If we may have to abort operations to get out of this
1874 * mount, and they will themselves hold resources we must
1875 * allow the fs to do things. In the Unix tradition of
1876 * 'Gee thats tricky lets do it in userspace' the umount_begin
1877 * might fail to complete on the first run through as other tasks
1878 * must return, and the like. Thats for the mount program to worry
1879 * about for the moment.
1882 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1883 sb->s_op->umount_begin(sb);
1887 * No sense to grab the lock for this test, but test itself looks
1888 * somewhat bogus. Suggestions for better replacement?
1889 * Ho-hum... In principle, we might treat that as umount + switch
1890 * to rootfs. GC would eventually take care of the old vfsmount.
1891 * Actually it makes sense, especially if rootfs would contain a
1892 * /reboot - static binary that would close all descriptors and
1893 * call reboot(9). Then init(8) could umount root and exec /reboot.
1895 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1897 * Special case for "unmounting" root ...
1898 * we just try to remount it readonly.
1900 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1902 return do_umount_root(sb);
1908 /* Recheck MNT_LOCKED with the locks held */
1910 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1914 if (flags & MNT_DETACH) {
1915 if (mnt->mnt.mnt_flags & MNT_ONRB ||
1916 !list_empty(&mnt->mnt_list))
1917 umount_tree(mnt, UMOUNT_PROPAGATE);
1920 shrink_submounts(mnt);
1922 if (!propagate_mount_busy(mnt, 2)) {
1923 if (mnt->mnt.mnt_flags & MNT_ONRB ||
1924 !list_empty(&mnt->mnt_list))
1925 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1930 unlock_mount_hash();
1936 * __detach_mounts - lazily unmount all mounts on the specified dentry
1938 * During unlink, rmdir, and d_drop it is possible to loose the path
1939 * to an existing mountpoint, and wind up leaking the mount.
1940 * detach_mounts allows lazily unmounting those mounts instead of
1943 * The caller may hold dentry->d_inode->i_mutex.
1945 void __detach_mounts(struct dentry *dentry)
1947 struct mountpoint *mp;
1952 mp = lookup_mountpoint(dentry);
1957 while (!hlist_empty(&mp->m_list)) {
1958 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1959 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1961 hlist_add_head(&mnt->mnt_umount, &unmounted);
1963 else umount_tree(mnt, UMOUNT_CONNECTED);
1967 unlock_mount_hash();
1972 * Is the caller allowed to modify his namespace?
1974 bool may_mount(void)
1976 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1979 static void warn_mandlock(void)
1981 pr_warn_once("=======================================================\n"
1982 "WARNING: The mand mount option has been deprecated and\n"
1983 " and is ignored by this kernel. Remove the mand\n"
1984 " option from the mount to silence this warning.\n"
1985 "=======================================================\n");
1988 static int can_umount(const struct path *path, int flags)
1990 struct mount *mnt = real_mount(path->mnt);
1994 if (!path_mounted(path))
1996 if (!check_mnt(mnt))
1998 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2000 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2005 // caller is responsible for flags being sane
2006 int path_umount(struct path *path, int flags)
2008 struct mount *mnt = real_mount(path->mnt);
2011 ret = can_umount(path, flags);
2013 ret = do_umount(mnt, flags);
2015 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2017 mntput_no_expire(mnt);
2021 static int ksys_umount(char __user *name, int flags)
2023 int lookup_flags = LOOKUP_MOUNTPOINT;
2027 // basic validity checks done first
2028 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2031 if (!(flags & UMOUNT_NOFOLLOW))
2032 lookup_flags |= LOOKUP_FOLLOW;
2033 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2036 return path_umount(&path, flags);
2039 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2041 return ksys_umount(name, flags);
2044 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2047 * The 2.0 compatible umount. No flags.
2049 SYSCALL_DEFINE1(oldumount, char __user *, name)
2051 return ksys_umount(name, 0);
2056 static bool is_mnt_ns_file(struct dentry *dentry)
2058 /* Is this a proxy for a mount namespace? */
2059 return dentry->d_op == &ns_dentry_operations &&
2060 dentry->d_fsdata == &mntns_operations;
2063 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2068 struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous)
2070 guard(read_lock)(&mnt_ns_tree_lock);
2072 struct rb_node *node;
2075 node = rb_prev(&mntns->mnt_ns_tree_node);
2077 node = rb_next(&mntns->mnt_ns_tree_node);
2079 return ERR_PTR(-ENOENT);
2081 mntns = node_to_mnt_ns(node);
2082 node = &mntns->mnt_ns_tree_node;
2084 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2088 * Holding mnt_ns_tree_lock prevents the mount namespace from
2089 * being freed but it may well be on it's deathbed. We want an
2090 * active reference, not just a passive one here as we're
2091 * persisting the mount namespace.
2093 if (!refcount_inc_not_zero(&mntns->ns.count))
2100 static bool mnt_ns_loop(struct dentry *dentry)
2102 /* Could bind mounting the mount namespace inode cause a
2103 * mount namespace loop?
2105 struct mnt_namespace *mnt_ns;
2106 if (!is_mnt_ns_file(dentry))
2109 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2110 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2113 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2116 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2117 *dst_parent, *dst_mnt;
2119 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2120 return ERR_PTR(-EINVAL);
2122 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2123 return ERR_PTR(-EINVAL);
2125 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2126 if (IS_ERR(dst_mnt))
2129 src_parent = src_root;
2130 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2132 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2133 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2136 for (src_mnt = src_root_child; src_mnt;
2137 src_mnt = next_mnt(src_mnt, src_root_child)) {
2138 if (!(flag & CL_COPY_UNBINDABLE) &&
2139 IS_MNT_UNBINDABLE(src_mnt)) {
2140 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2141 /* Both unbindable and locked. */
2142 dst_mnt = ERR_PTR(-EPERM);
2145 src_mnt = skip_mnt_tree(src_mnt);
2149 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2150 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2151 src_mnt = skip_mnt_tree(src_mnt);
2154 while (src_parent != src_mnt->mnt_parent) {
2155 src_parent = src_parent->mnt_parent;
2156 dst_mnt = dst_mnt->mnt_parent;
2159 src_parent = src_mnt;
2160 dst_parent = dst_mnt;
2161 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2162 if (IS_ERR(dst_mnt))
2165 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2166 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2167 unlock_mount_hash();
2175 umount_tree(res, UMOUNT_SYNC);
2176 unlock_mount_hash();
2181 /* Caller should check returned pointer for errors */
2183 struct vfsmount *collect_mounts(const struct path *path)
2187 if (!check_mnt(real_mount(path->mnt)))
2188 tree = ERR_PTR(-EINVAL);
2190 tree = copy_tree(real_mount(path->mnt), path->dentry,
2191 CL_COPY_ALL | CL_PRIVATE);
2194 return ERR_CAST(tree);
2198 static void free_mnt_ns(struct mnt_namespace *);
2199 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2201 void dissolve_on_fput(struct vfsmount *mnt)
2203 struct mnt_namespace *ns;
2206 ns = real_mount(mnt)->mnt_ns;
2209 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2213 unlock_mount_hash();
2219 void drop_collected_mounts(struct vfsmount *mnt)
2223 umount_tree(real_mount(mnt), 0);
2224 unlock_mount_hash();
2228 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2230 struct mount *child;
2232 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2233 if (!is_subdir(child->mnt_mountpoint, dentry))
2236 if (child->mnt.mnt_flags & MNT_LOCKED)
2243 * clone_private_mount - create a private clone of a path
2244 * @path: path to clone
2246 * This creates a new vfsmount, which will be the clone of @path. The new mount
2247 * will not be attached anywhere in the namespace and will be private (i.e.
2248 * changes to the originating mount won't be propagated into this).
2250 * Release with mntput().
2252 struct vfsmount *clone_private_mount(const struct path *path)
2254 struct mount *old_mnt = real_mount(path->mnt);
2255 struct mount *new_mnt;
2257 down_read(&namespace_sem);
2258 if (IS_MNT_UNBINDABLE(old_mnt))
2261 if (!check_mnt(old_mnt))
2264 if (has_locked_children(old_mnt, path->dentry))
2267 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2268 up_read(&namespace_sem);
2270 if (IS_ERR(new_mnt))
2271 return ERR_CAST(new_mnt);
2273 /* Longterm mount to be removed by kern_unmount*() */
2274 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2276 return &new_mnt->mnt;
2279 up_read(&namespace_sem);
2280 return ERR_PTR(-EINVAL);
2282 EXPORT_SYMBOL_GPL(clone_private_mount);
2284 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2285 struct vfsmount *root)
2288 int res = f(root, arg);
2291 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2292 res = f(&mnt->mnt, arg);
2299 static void lock_mnt_tree(struct mount *mnt)
2303 for (p = mnt; p; p = next_mnt(p, mnt)) {
2304 int flags = p->mnt.mnt_flags;
2305 /* Don't allow unprivileged users to change mount flags */
2306 flags |= MNT_LOCK_ATIME;
2308 if (flags & MNT_READONLY)
2309 flags |= MNT_LOCK_READONLY;
2311 if (flags & MNT_NODEV)
2312 flags |= MNT_LOCK_NODEV;
2314 if (flags & MNT_NOSUID)
2315 flags |= MNT_LOCK_NOSUID;
2317 if (flags & MNT_NOEXEC)
2318 flags |= MNT_LOCK_NOEXEC;
2319 /* Don't allow unprivileged users to reveal what is under a mount */
2320 if (list_empty(&p->mnt_expire))
2321 flags |= MNT_LOCKED;
2322 p->mnt.mnt_flags = flags;
2326 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2330 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2331 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2332 mnt_release_group_id(p);
2336 static int invent_group_ids(struct mount *mnt, bool recurse)
2340 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2341 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2342 int err = mnt_alloc_group_id(p);
2344 cleanup_group_ids(mnt, p);
2353 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2355 unsigned int max = READ_ONCE(sysctl_mount_max);
2356 unsigned int mounts = 0;
2359 if (ns->nr_mounts >= max)
2361 max -= ns->nr_mounts;
2362 if (ns->pending_mounts >= max)
2364 max -= ns->pending_mounts;
2366 for (p = mnt; p; p = next_mnt(p, mnt))
2372 ns->pending_mounts += mounts;
2376 enum mnt_tree_flags_t {
2377 MNT_TREE_MOVE = BIT(0),
2378 MNT_TREE_BENEATH = BIT(1),
2382 * attach_recursive_mnt - attach a source mount tree
2383 * @source_mnt: mount tree to be attached
2384 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2385 * @dest_mp: the mountpoint @source_mnt will be mounted at
2386 * @flags: modify how @source_mnt is supposed to be attached
2388 * NOTE: in the table below explains the semantics when a source mount
2389 * of a given type is attached to a destination mount of a given type.
2390 * ---------------------------------------------------------------------------
2391 * | BIND MOUNT OPERATION |
2392 * |**************************************************************************
2393 * | source-->| shared | private | slave | unbindable |
2397 * |**************************************************************************
2398 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2400 * |non-shared| shared (+) | private | slave (*) | invalid |
2401 * ***************************************************************************
2402 * A bind operation clones the source mount and mounts the clone on the
2403 * destination mount.
2405 * (++) the cloned mount is propagated to all the mounts in the propagation
2406 * tree of the destination mount and the cloned mount is added to
2407 * the peer group of the source mount.
2408 * (+) the cloned mount is created under the destination mount and is marked
2409 * as shared. The cloned mount is added to the peer group of the source
2411 * (+++) the mount is propagated to all the mounts in the propagation tree
2412 * of the destination mount and the cloned mount is made slave
2413 * of the same master as that of the source mount. The cloned mount
2414 * is marked as 'shared and slave'.
2415 * (*) the cloned mount is made a slave of the same master as that of the
2418 * ---------------------------------------------------------------------------
2419 * | MOVE MOUNT OPERATION |
2420 * |**************************************************************************
2421 * | source-->| shared | private | slave | unbindable |
2425 * |**************************************************************************
2426 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2428 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2429 * ***************************************************************************
2431 * (+) the mount is moved to the destination. And is then propagated to
2432 * all the mounts in the propagation tree of the destination mount.
2433 * (+*) the mount is moved to the destination.
2434 * (+++) the mount is moved to the destination and is then propagated to
2435 * all the mounts belonging to the destination mount's propagation tree.
2436 * the mount is marked as 'shared and slave'.
2437 * (*) the mount continues to be a slave at the new location.
2439 * if the source mount is a tree, the operations explained above is
2440 * applied to each mount in the tree.
2441 * Must be called without spinlocks held, since this function can sleep
2444 * Context: The function expects namespace_lock() to be held.
2445 * Return: If @source_mnt was successfully attached 0 is returned.
2446 * Otherwise a negative error code is returned.
2448 static int attach_recursive_mnt(struct mount *source_mnt,
2449 struct mount *top_mnt,
2450 struct mountpoint *dest_mp,
2451 enum mnt_tree_flags_t flags)
2453 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2454 HLIST_HEAD(tree_list);
2455 struct mnt_namespace *ns = top_mnt->mnt_ns;
2456 struct mountpoint *smp;
2457 struct mount *child, *dest_mnt, *p;
2458 struct hlist_node *n;
2460 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2463 * Preallocate a mountpoint in case the new mounts need to be
2464 * mounted beneath mounts on the same mountpoint.
2466 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2468 return PTR_ERR(smp);
2470 /* Is there space to add these mounts to the mount namespace? */
2472 err = count_mounts(ns, source_mnt);
2478 dest_mnt = top_mnt->mnt_parent;
2482 if (IS_MNT_SHARED(dest_mnt)) {
2483 err = invent_group_ids(source_mnt, true);
2486 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2490 goto out_cleanup_ids;
2492 if (IS_MNT_SHARED(dest_mnt)) {
2493 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2500 unhash_mnt(source_mnt);
2501 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2502 touch_mnt_namespace(source_mnt->mnt_ns);
2504 if (source_mnt->mnt_ns) {
2507 /* move from anon - the caller will destroy */
2508 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2509 move_from_ns(p, &head);
2510 list_del_init(&head);
2513 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2515 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2516 commit_tree(source_mnt);
2519 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2521 hlist_del_init(&child->mnt_hash);
2522 q = __lookup_mnt(&child->mnt_parent->mnt,
2523 child->mnt_mountpoint);
2525 mnt_change_mountpoint(child, smp, q);
2526 /* Notice when we are propagating across user namespaces */
2527 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2528 lock_mnt_tree(child);
2529 child->mnt.mnt_flags &= ~MNT_LOCKED;
2532 put_mountpoint(smp);
2533 unlock_mount_hash();
2538 while (!hlist_empty(&tree_list)) {
2539 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2540 child->mnt_parent->mnt_ns->pending_mounts = 0;
2541 umount_tree(child, UMOUNT_SYNC);
2543 unlock_mount_hash();
2544 cleanup_group_ids(source_mnt, NULL);
2546 ns->pending_mounts = 0;
2548 read_seqlock_excl(&mount_lock);
2549 put_mountpoint(smp);
2550 read_sequnlock_excl(&mount_lock);
2556 * do_lock_mount - lock mount and mountpoint
2557 * @path: target path
2558 * @beneath: whether the intention is to mount beneath @path
2560 * Follow the mount stack on @path until the top mount @mnt is found. If
2561 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2562 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2563 * until nothing is stacked on top of it anymore.
2565 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2566 * against concurrent removal of the new mountpoint from another mount
2569 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2570 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2571 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2572 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2573 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2574 * on top of it for @beneath.
2576 * In addition, @beneath needs to make sure that @mnt hasn't been
2577 * unmounted or moved from its current mountpoint in between dropping
2578 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2579 * being unmounted would be detected later by e.g., calling
2580 * check_mnt(mnt) in the function it's called from. For the @beneath
2581 * case however, it's useful to detect it directly in do_lock_mount().
2582 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2583 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2584 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2586 * Return: Either the target mountpoint on the top mount or the top
2587 * mount's mountpoint.
2589 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2591 struct vfsmount *mnt = path->mnt;
2592 struct dentry *dentry;
2593 struct mountpoint *mp = ERR_PTR(-ENOENT);
2599 m = real_mount(mnt);
2600 read_seqlock_excl(&mount_lock);
2601 dentry = dget(m->mnt_mountpoint);
2602 read_sequnlock_excl(&mount_lock);
2604 dentry = path->dentry;
2607 inode_lock(dentry->d_inode);
2608 if (unlikely(cant_mount(dentry))) {
2609 inode_unlock(dentry->d_inode);
2615 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2617 inode_unlock(dentry->d_inode);
2621 mnt = lookup_mnt(path);
2626 inode_unlock(dentry->d_inode);
2631 path->dentry = dget(mnt->mnt_root);
2634 mp = get_mountpoint(dentry);
2637 inode_unlock(dentry->d_inode);
2647 static inline struct mountpoint *lock_mount(struct path *path)
2649 return do_lock_mount(path, false);
2652 static void unlock_mount(struct mountpoint *where)
2654 struct dentry *dentry = where->m_dentry;
2656 read_seqlock_excl(&mount_lock);
2657 put_mountpoint(where);
2658 read_sequnlock_excl(&mount_lock);
2661 inode_unlock(dentry->d_inode);
2664 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2666 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2669 if (d_is_dir(mp->m_dentry) !=
2670 d_is_dir(mnt->mnt.mnt_root))
2673 return attach_recursive_mnt(mnt, p, mp, 0);
2677 * Sanity check the flags to change_mnt_propagation.
2680 static int flags_to_propagation_type(int ms_flags)
2682 int type = ms_flags & ~(MS_REC | MS_SILENT);
2684 /* Fail if any non-propagation flags are set */
2685 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2687 /* Only one propagation flag should be set */
2688 if (!is_power_of_2(type))
2694 * recursively change the type of the mountpoint.
2696 static int do_change_type(struct path *path, int ms_flags)
2699 struct mount *mnt = real_mount(path->mnt);
2700 int recurse = ms_flags & MS_REC;
2704 if (!path_mounted(path))
2707 type = flags_to_propagation_type(ms_flags);
2712 if (type == MS_SHARED) {
2713 err = invent_group_ids(mnt, recurse);
2719 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2720 change_mnt_propagation(m, type);
2721 unlock_mount_hash();
2728 static struct mount *__do_loopback(struct path *old_path, int recurse)
2730 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2732 if (IS_MNT_UNBINDABLE(old))
2735 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2738 if (!recurse && has_locked_children(old, old_path->dentry))
2742 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2744 mnt = clone_mnt(old, old_path->dentry, 0);
2747 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2753 * do loopback mount.
2755 static int do_loopback(struct path *path, const char *old_name,
2758 struct path old_path;
2759 struct mount *mnt = NULL, *parent;
2760 struct mountpoint *mp;
2762 if (!old_name || !*old_name)
2764 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2769 if (mnt_ns_loop(old_path.dentry))
2772 mp = lock_mount(path);
2778 parent = real_mount(path->mnt);
2779 if (!check_mnt(parent))
2782 mnt = __do_loopback(&old_path, recurse);
2788 err = graft_tree(mnt, parent, mp);
2791 umount_tree(mnt, UMOUNT_SYNC);
2792 unlock_mount_hash();
2797 path_put(&old_path);
2801 static struct file *open_detached_copy(struct path *path, bool recursive)
2803 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2804 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2805 struct mount *mnt, *p;
2809 return ERR_CAST(ns);
2812 mnt = __do_loopback(path, recursive);
2816 return ERR_CAST(mnt);
2820 for (p = mnt; p; p = next_mnt(p, mnt)) {
2821 mnt_add_to_ns(ns, p);
2826 unlock_mount_hash();
2830 path->mnt = &mnt->mnt;
2831 file = dentry_open(path, O_PATH, current_cred());
2833 dissolve_on_fput(path->mnt);
2835 file->f_mode |= FMODE_NEED_UNMOUNT;
2839 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2843 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2844 bool detached = flags & OPEN_TREE_CLONE;
2848 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2850 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2851 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2855 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2858 if (flags & AT_NO_AUTOMOUNT)
2859 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2860 if (flags & AT_SYMLINK_NOFOLLOW)
2861 lookup_flags &= ~LOOKUP_FOLLOW;
2862 if (flags & AT_EMPTY_PATH)
2863 lookup_flags |= LOOKUP_EMPTY;
2865 if (detached && !may_mount())
2868 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2872 error = user_path_at(dfd, filename, lookup_flags, &path);
2873 if (unlikely(error)) {
2874 file = ERR_PTR(error);
2877 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2879 file = dentry_open(&path, O_PATH, current_cred());
2884 return PTR_ERR(file);
2886 fd_install(fd, file);
2891 * Don't allow locked mount flags to be cleared.
2893 * No locks need to be held here while testing the various MNT_LOCK
2894 * flags because those flags can never be cleared once they are set.
2896 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2898 unsigned int fl = mnt->mnt.mnt_flags;
2900 if ((fl & MNT_LOCK_READONLY) &&
2901 !(mnt_flags & MNT_READONLY))
2904 if ((fl & MNT_LOCK_NODEV) &&
2905 !(mnt_flags & MNT_NODEV))
2908 if ((fl & MNT_LOCK_NOSUID) &&
2909 !(mnt_flags & MNT_NOSUID))
2912 if ((fl & MNT_LOCK_NOEXEC) &&
2913 !(mnt_flags & MNT_NOEXEC))
2916 if ((fl & MNT_LOCK_ATIME) &&
2917 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2923 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2925 bool readonly_request = (mnt_flags & MNT_READONLY);
2927 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2930 if (readonly_request)
2931 return mnt_make_readonly(mnt);
2933 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2937 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2939 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2940 mnt->mnt.mnt_flags = mnt_flags;
2941 touch_mnt_namespace(mnt->mnt_ns);
2944 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2946 struct super_block *sb = mnt->mnt_sb;
2948 if (!__mnt_is_readonly(mnt) &&
2949 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2950 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2951 char *buf = (char *)__get_free_page(GFP_KERNEL);
2952 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2954 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2956 is_mounted(mnt) ? "remounted" : "mounted",
2957 mntpath, &sb->s_time_max,
2958 (unsigned long long)sb->s_time_max);
2960 free_page((unsigned long)buf);
2961 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2966 * Handle reconfiguration of the mountpoint only without alteration of the
2967 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2970 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2972 struct super_block *sb = path->mnt->mnt_sb;
2973 struct mount *mnt = real_mount(path->mnt);
2976 if (!check_mnt(mnt))
2979 if (!path_mounted(path))
2982 if (!can_change_locked_flags(mnt, mnt_flags))
2986 * We're only checking whether the superblock is read-only not
2987 * changing it, so only take down_read(&sb->s_umount).
2989 down_read(&sb->s_umount);
2991 ret = change_mount_ro_state(mnt, mnt_flags);
2993 set_mount_attributes(mnt, mnt_flags);
2994 unlock_mount_hash();
2995 up_read(&sb->s_umount);
2997 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3003 * change filesystem flags. dir should be a physical root of filesystem.
3004 * If you've mounted a non-root directory somewhere and want to do remount
3005 * on it - tough luck.
3007 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3008 int mnt_flags, void *data)
3011 struct super_block *sb = path->mnt->mnt_sb;
3012 struct mount *mnt = real_mount(path->mnt);
3013 struct fs_context *fc;
3015 if (!check_mnt(mnt))
3018 if (!path_mounted(path))
3021 if (!can_change_locked_flags(mnt, mnt_flags))
3024 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3029 * Indicate to the filesystem that the remount request is coming
3030 * from the legacy mount system call.
3034 err = parse_monolithic_mount_data(fc, data);
3036 down_write(&sb->s_umount);
3038 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3039 err = reconfigure_super(fc);
3042 set_mount_attributes(mnt, mnt_flags);
3043 unlock_mount_hash();
3046 up_write(&sb->s_umount);
3049 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3055 static inline int tree_contains_unbindable(struct mount *mnt)
3058 for (p = mnt; p; p = next_mnt(p, mnt)) {
3059 if (IS_MNT_UNBINDABLE(p))
3066 * Check that there aren't references to earlier/same mount namespaces in the
3067 * specified subtree. Such references can act as pins for mount namespaces
3068 * that aren't checked by the mount-cycle checking code, thereby allowing
3069 * cycles to be made.
3071 static bool check_for_nsfs_mounts(struct mount *subtree)
3077 for (p = subtree; p; p = next_mnt(p, subtree))
3078 if (mnt_ns_loop(p->mnt.mnt_root))
3083 unlock_mount_hash();
3087 static int do_set_group(struct path *from_path, struct path *to_path)
3089 struct mount *from, *to;
3092 from = real_mount(from_path->mnt);
3093 to = real_mount(to_path->mnt);
3098 /* To and From must be mounted */
3099 if (!is_mounted(&from->mnt))
3101 if (!is_mounted(&to->mnt))
3105 /* We should be allowed to modify mount namespaces of both mounts */
3106 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3108 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3112 /* To and From paths should be mount roots */
3113 if (!path_mounted(from_path))
3115 if (!path_mounted(to_path))
3118 /* Setting sharing groups is only allowed across same superblock */
3119 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3122 /* From mount root should be wider than To mount root */
3123 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3126 /* From mount should not have locked children in place of To's root */
3127 if (has_locked_children(from, to->mnt.mnt_root))
3130 /* Setting sharing groups is only allowed on private mounts */
3131 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3134 /* From should not be private */
3135 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3138 if (IS_MNT_SLAVE(from)) {
3139 struct mount *m = from->mnt_master;
3141 list_add(&to->mnt_slave, &m->mnt_slave_list);
3145 if (IS_MNT_SHARED(from)) {
3146 to->mnt_group_id = from->mnt_group_id;
3147 list_add(&to->mnt_share, &from->mnt_share);
3150 unlock_mount_hash();
3160 * path_overmounted - check if path is overmounted
3161 * @path: path to check
3163 * Check if path is overmounted, i.e., if there's a mount on top of
3164 * @path->mnt with @path->dentry as mountpoint.
3166 * Context: This function expects namespace_lock() to be held.
3167 * Return: If path is overmounted true is returned, false if not.
3169 static inline bool path_overmounted(const struct path *path)
3172 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3181 * can_move_mount_beneath - check that we can mount beneath the top mount
3182 * @from: mount to mount beneath
3183 * @to: mount under which to mount
3184 * @mp: mountpoint of @to
3186 * - Make sure that @to->dentry is actually the root of a mount under
3187 * which we can mount another mount.
3188 * - Make sure that nothing can be mounted beneath the caller's current
3189 * root or the rootfs of the namespace.
3190 * - Make sure that the caller can unmount the topmost mount ensuring
3191 * that the caller could reveal the underlying mountpoint.
3192 * - Ensure that nothing has been mounted on top of @from before we
3193 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3194 * - Prevent mounting beneath a mount if the propagation relationship
3195 * between the source mount, parent mount, and top mount would lead to
3196 * nonsensical mount trees.
3198 * Context: This function expects namespace_lock() to be held.
3199 * Return: On success 0, and on error a negative error code is returned.
3201 static int can_move_mount_beneath(const struct path *from,
3202 const struct path *to,
3203 const struct mountpoint *mp)
3205 struct mount *mnt_from = real_mount(from->mnt),
3206 *mnt_to = real_mount(to->mnt),
3207 *parent_mnt_to = mnt_to->mnt_parent;
3209 if (!mnt_has_parent(mnt_to))
3212 if (!path_mounted(to))
3215 if (IS_MNT_LOCKED(mnt_to))
3218 /* Avoid creating shadow mounts during mount propagation. */
3219 if (path_overmounted(from))
3223 * Mounting beneath the rootfs only makes sense when the
3224 * semantics of pivot_root(".", ".") are used.
3226 if (&mnt_to->mnt == current->fs->root.mnt)
3228 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3231 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3236 * If the parent mount propagates to the child mount this would
3237 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3238 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3239 * defeats the whole purpose of mounting beneath another mount.
3241 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3245 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3246 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3247 * Afterwards @mnt_from would be mounted on top of
3248 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3249 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3250 * already mounted on @mnt_from, @mnt_to would ultimately be
3251 * remounted on top of @c. Afterwards, @mnt_from would be
3252 * covered by a copy @c of @mnt_from and @c would be covered by
3253 * @mnt_from itself. This defeats the whole purpose of mounting
3254 * @mnt_from beneath @mnt_to.
3256 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3262 static int do_move_mount(struct path *old_path, struct path *new_path,
3265 struct mnt_namespace *ns;
3268 struct mount *parent;
3269 struct mountpoint *mp, *old_mp;
3272 enum mnt_tree_flags_t flags = 0;
3274 mp = do_lock_mount(new_path, beneath);
3278 old = real_mount(old_path->mnt);
3279 p = real_mount(new_path->mnt);
3280 parent = old->mnt_parent;
3281 attached = mnt_has_parent(old);
3283 flags |= MNT_TREE_MOVE;
3284 old_mp = old->mnt_mp;
3288 /* The mountpoint must be in our namespace. */
3292 /* The thing moved must be mounted... */
3293 if (!is_mounted(&old->mnt))
3296 /* ... and either ours or the root of anon namespace */
3297 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3300 if (old->mnt.mnt_flags & MNT_LOCKED)
3303 if (!path_mounted(old_path))
3306 if (d_is_dir(new_path->dentry) !=
3307 d_is_dir(old_path->dentry))
3310 * Don't move a mount residing in a shared parent.
3312 if (attached && IS_MNT_SHARED(parent))
3316 err = can_move_mount_beneath(old_path, new_path, mp);
3322 flags |= MNT_TREE_BENEATH;
3326 * Don't move a mount tree containing unbindable mounts to a destination
3327 * mount which is shared.
3329 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3332 if (!check_for_nsfs_mounts(old))
3334 for (; mnt_has_parent(p); p = p->mnt_parent)
3338 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3342 /* if the mount is moved, it should no longer be expire
3344 list_del_init(&old->mnt_expire);
3346 put_mountpoint(old_mp);
3351 mntput_no_expire(parent);
3358 static int do_move_mount_old(struct path *path, const char *old_name)
3360 struct path old_path;
3363 if (!old_name || !*old_name)
3366 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3370 err = do_move_mount(&old_path, path, false);
3371 path_put(&old_path);
3376 * add a mount into a namespace's mount tree
3378 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3379 const struct path *path, int mnt_flags)
3381 struct mount *parent = real_mount(path->mnt);
3383 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3385 if (unlikely(!check_mnt(parent))) {
3386 /* that's acceptable only for automounts done in private ns */
3387 if (!(mnt_flags & MNT_SHRINKABLE))
3389 /* ... and for those we'd better have mountpoint still alive */
3390 if (!parent->mnt_ns)
3394 /* Refuse the same filesystem on the same mount point */
3395 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3398 if (d_is_symlink(newmnt->mnt.mnt_root))
3401 newmnt->mnt.mnt_flags = mnt_flags;
3402 return graft_tree(newmnt, parent, mp);
3405 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3408 * Create a new mount using a superblock configuration and request it
3409 * be added to the namespace tree.
3411 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3412 unsigned int mnt_flags)
3414 struct vfsmount *mnt;
3415 struct mountpoint *mp;
3416 struct super_block *sb = fc->root->d_sb;
3419 error = security_sb_kern_mount(sb);
3420 if (!error && mount_too_revealing(sb, &mnt_flags))
3423 if (unlikely(error)) {
3428 up_write(&sb->s_umount);
3430 mnt = vfs_create_mount(fc);
3432 return PTR_ERR(mnt);
3434 mnt_warn_timestamp_expiry(mountpoint, mnt);
3436 mp = lock_mount(mountpoint);
3441 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3449 * create a new mount for userspace and request it to be added into the
3452 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3453 int mnt_flags, const char *name, void *data)
3455 struct file_system_type *type;
3456 struct fs_context *fc;
3457 const char *subtype = NULL;
3463 type = get_fs_type(fstype);
3467 if (type->fs_flags & FS_HAS_SUBTYPE) {
3468 subtype = strchr(fstype, '.');
3472 put_filesystem(type);
3478 fc = fs_context_for_mount(type, sb_flags);
3479 put_filesystem(type);
3484 * Indicate to the filesystem that the mount request is coming
3485 * from the legacy mount system call.
3490 err = vfs_parse_fs_string(fc, "subtype",
3491 subtype, strlen(subtype));
3493 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3495 err = parse_monolithic_mount_data(fc, data);
3496 if (!err && !mount_capable(fc))
3499 err = vfs_get_tree(fc);
3501 err = do_new_mount_fc(fc, path, mnt_flags);
3507 int finish_automount(struct vfsmount *m, const struct path *path)
3509 struct dentry *dentry = path->dentry;
3510 struct mountpoint *mp;
3519 mnt = real_mount(m);
3520 /* The new mount record should have at least 2 refs to prevent it being
3521 * expired before we get a chance to add it
3523 BUG_ON(mnt_get_count(mnt) < 2);
3525 if (m->mnt_sb == path->mnt->mnt_sb &&
3526 m->mnt_root == dentry) {
3532 * we don't want to use lock_mount() - in this case finding something
3533 * that overmounts our mountpoint to be means "quitely drop what we've
3534 * got", not "try to mount it on top".
3536 inode_lock(dentry->d_inode);
3538 if (unlikely(cant_mount(dentry))) {
3540 goto discard_locked;
3542 if (path_overmounted(path)) {
3544 goto discard_locked;
3546 mp = get_mountpoint(dentry);
3549 goto discard_locked;
3552 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3561 inode_unlock(dentry->d_inode);
3563 /* remove m from any expiration list it may be on */
3564 if (!list_empty(&mnt->mnt_expire)) {
3566 list_del_init(&mnt->mnt_expire);
3575 * mnt_set_expiry - Put a mount on an expiration list
3576 * @mnt: The mount to list.
3577 * @expiry_list: The list to add the mount to.
3579 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3583 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3587 EXPORT_SYMBOL(mnt_set_expiry);
3590 * process a list of expirable mountpoints with the intent of discarding any
3591 * mountpoints that aren't in use and haven't been touched since last we came
3594 void mark_mounts_for_expiry(struct list_head *mounts)
3596 struct mount *mnt, *next;
3597 LIST_HEAD(graveyard);
3599 if (list_empty(mounts))
3605 /* extract from the expiration list every vfsmount that matches the
3606 * following criteria:
3607 * - only referenced by its parent vfsmount
3608 * - still marked for expiry (marked on the last call here; marks are
3609 * cleared by mntput())
3611 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3612 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3613 propagate_mount_busy(mnt, 1))
3615 list_move(&mnt->mnt_expire, &graveyard);
3617 while (!list_empty(&graveyard)) {
3618 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3619 touch_mnt_namespace(mnt->mnt_ns);
3620 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3622 unlock_mount_hash();
3626 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3629 * Ripoff of 'select_parent()'
3631 * search the list of submounts for a given mountpoint, and move any
3632 * shrinkable submounts to the 'graveyard' list.
3634 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3636 struct mount *this_parent = parent;
3637 struct list_head *next;
3641 next = this_parent->mnt_mounts.next;
3643 while (next != &this_parent->mnt_mounts) {
3644 struct list_head *tmp = next;
3645 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3648 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3651 * Descend a level if the d_mounts list is non-empty.
3653 if (!list_empty(&mnt->mnt_mounts)) {
3658 if (!propagate_mount_busy(mnt, 1)) {
3659 list_move_tail(&mnt->mnt_expire, graveyard);
3664 * All done at this level ... ascend and resume the search
3666 if (this_parent != parent) {
3667 next = this_parent->mnt_child.next;
3668 this_parent = this_parent->mnt_parent;
3675 * process a list of expirable mountpoints with the intent of discarding any
3676 * submounts of a specific parent mountpoint
3678 * mount_lock must be held for write
3680 static void shrink_submounts(struct mount *mnt)
3682 LIST_HEAD(graveyard);
3685 /* extract submounts of 'mountpoint' from the expiration list */
3686 while (select_submounts(mnt, &graveyard)) {
3687 while (!list_empty(&graveyard)) {
3688 m = list_first_entry(&graveyard, struct mount,
3690 touch_mnt_namespace(m->mnt_ns);
3691 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3696 static void *copy_mount_options(const void __user * data)
3699 unsigned left, offset;
3704 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3706 return ERR_PTR(-ENOMEM);
3708 left = copy_from_user(copy, data, PAGE_SIZE);
3711 * Not all architectures have an exact copy_from_user(). Resort to
3714 offset = PAGE_SIZE - left;
3717 if (get_user(c, (const char __user *)data + offset))
3724 if (left == PAGE_SIZE) {
3726 return ERR_PTR(-EFAULT);
3732 static char *copy_mount_string(const void __user *data)
3734 return data ? strndup_user(data, PATH_MAX) : NULL;
3738 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3739 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3741 * data is a (void *) that can point to any structure up to
3742 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3743 * information (or be NULL).
3745 * Pre-0.97 versions of mount() didn't have a flags word.
3746 * When the flags word was introduced its top half was required
3747 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3748 * Therefore, if this magic number is present, it carries no information
3749 * and must be discarded.
3751 int path_mount(const char *dev_name, struct path *path,
3752 const char *type_page, unsigned long flags, void *data_page)
3754 unsigned int mnt_flags = 0, sb_flags;
3758 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3759 flags &= ~MS_MGC_MSK;
3761 /* Basic sanity checks */
3763 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3765 if (flags & MS_NOUSER)
3768 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3773 if (flags & SB_MANDLOCK)
3776 /* Default to relatime unless overriden */
3777 if (!(flags & MS_NOATIME))
3778 mnt_flags |= MNT_RELATIME;
3780 /* Separate the per-mountpoint flags */
3781 if (flags & MS_NOSUID)
3782 mnt_flags |= MNT_NOSUID;
3783 if (flags & MS_NODEV)
3784 mnt_flags |= MNT_NODEV;
3785 if (flags & MS_NOEXEC)
3786 mnt_flags |= MNT_NOEXEC;
3787 if (flags & MS_NOATIME)
3788 mnt_flags |= MNT_NOATIME;
3789 if (flags & MS_NODIRATIME)
3790 mnt_flags |= MNT_NODIRATIME;
3791 if (flags & MS_STRICTATIME)
3792 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3793 if (flags & MS_RDONLY)
3794 mnt_flags |= MNT_READONLY;
3795 if (flags & MS_NOSYMFOLLOW)
3796 mnt_flags |= MNT_NOSYMFOLLOW;
3798 /* The default atime for remount is preservation */
3799 if ((flags & MS_REMOUNT) &&
3800 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3801 MS_STRICTATIME)) == 0)) {
3802 mnt_flags &= ~MNT_ATIME_MASK;
3803 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3806 sb_flags = flags & (SB_RDONLY |
3815 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3816 return do_reconfigure_mnt(path, mnt_flags);
3817 if (flags & MS_REMOUNT)
3818 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3819 if (flags & MS_BIND)
3820 return do_loopback(path, dev_name, flags & MS_REC);
3821 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3822 return do_change_type(path, flags);
3823 if (flags & MS_MOVE)
3824 return do_move_mount_old(path, dev_name);
3826 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3830 long do_mount(const char *dev_name, const char __user *dir_name,
3831 const char *type_page, unsigned long flags, void *data_page)
3836 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3839 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3844 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3846 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3849 static void dec_mnt_namespaces(struct ucounts *ucounts)
3851 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3854 static void free_mnt_ns(struct mnt_namespace *ns)
3856 if (!is_anon_ns(ns))
3857 ns_free_inum(&ns->ns);
3858 dec_mnt_namespaces(ns->ucounts);
3859 mnt_ns_tree_remove(ns);
3863 * Assign a sequence number so we can detect when we attempt to bind
3864 * mount a reference to an older mount namespace into the current
3865 * mount namespace, preventing reference counting loops. A 64bit
3866 * number incrementing at 10Ghz will take 12,427 years to wrap which
3867 * is effectively never, so we can ignore the possibility.
3869 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3871 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3873 struct mnt_namespace *new_ns;
3874 struct ucounts *ucounts;
3877 ucounts = inc_mnt_namespaces(user_ns);
3879 return ERR_PTR(-ENOSPC);
3881 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3883 dec_mnt_namespaces(ucounts);
3884 return ERR_PTR(-ENOMEM);
3887 ret = ns_alloc_inum(&new_ns->ns);
3890 dec_mnt_namespaces(ucounts);
3891 return ERR_PTR(ret);
3894 new_ns->ns.ops = &mntns_operations;
3896 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3897 refcount_set(&new_ns->ns.count, 1);
3898 refcount_set(&new_ns->passive, 1);
3899 new_ns->mounts = RB_ROOT;
3900 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3901 init_waitqueue_head(&new_ns->poll);
3902 new_ns->user_ns = get_user_ns(user_ns);
3903 new_ns->ucounts = ucounts;
3908 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3909 struct user_namespace *user_ns, struct fs_struct *new_fs)
3911 struct mnt_namespace *new_ns;
3912 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3913 struct mount *p, *q;
3920 if (likely(!(flags & CLONE_NEWNS))) {
3927 new_ns = alloc_mnt_ns(user_ns, false);
3932 /* First pass: copy the tree topology */
3933 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3934 if (user_ns != ns->user_ns)
3935 copy_flags |= CL_SHARED_TO_SLAVE;
3936 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3939 free_mnt_ns(new_ns);
3940 return ERR_CAST(new);
3942 if (user_ns != ns->user_ns) {
3945 unlock_mount_hash();
3950 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3951 * as belonging to new namespace. We have already acquired a private
3952 * fs_struct, so tsk->fs->lock is not needed.
3957 mnt_add_to_ns(new_ns, q);
3958 new_ns->nr_mounts++;
3960 if (&p->mnt == new_fs->root.mnt) {
3961 new_fs->root.mnt = mntget(&q->mnt);
3964 if (&p->mnt == new_fs->pwd.mnt) {
3965 new_fs->pwd.mnt = mntget(&q->mnt);
3969 p = next_mnt(p, old);
3970 q = next_mnt(q, new);
3973 // an mntns binding we'd skipped?
3974 while (p->mnt.mnt_root != q->mnt.mnt_root)
3975 p = next_mnt(skip_mnt_tree(p), old);
3977 mnt_ns_tree_add(new_ns);
3988 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3990 struct mount *mnt = real_mount(m);
3991 struct mnt_namespace *ns;
3992 struct super_block *s;
3996 ns = alloc_mnt_ns(&init_user_ns, true);
3999 return ERR_CAST(ns);
4003 mnt_add_to_ns(ns, mnt);
4005 err = vfs_path_lookup(m->mnt_root, m,
4006 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4011 return ERR_PTR(err);
4013 /* trade a vfsmount reference for active sb one */
4014 s = path.mnt->mnt_sb;
4015 atomic_inc(&s->s_active);
4017 /* lock the sucker */
4018 down_write(&s->s_umount);
4019 /* ... and return the root of (sub)tree on it */
4022 EXPORT_SYMBOL(mount_subtree);
4024 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4025 char __user *, type, unsigned long, flags, void __user *, data)
4032 kernel_type = copy_mount_string(type);
4033 ret = PTR_ERR(kernel_type);
4034 if (IS_ERR(kernel_type))
4037 kernel_dev = copy_mount_string(dev_name);
4038 ret = PTR_ERR(kernel_dev);
4039 if (IS_ERR(kernel_dev))
4042 options = copy_mount_options(data);
4043 ret = PTR_ERR(options);
4044 if (IS_ERR(options))
4047 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4058 #define FSMOUNT_VALID_FLAGS \
4059 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4060 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4061 MOUNT_ATTR_NOSYMFOLLOW)
4063 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4065 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4066 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4068 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4070 unsigned int mnt_flags = 0;
4072 if (attr_flags & MOUNT_ATTR_RDONLY)
4073 mnt_flags |= MNT_READONLY;
4074 if (attr_flags & MOUNT_ATTR_NOSUID)
4075 mnt_flags |= MNT_NOSUID;
4076 if (attr_flags & MOUNT_ATTR_NODEV)
4077 mnt_flags |= MNT_NODEV;
4078 if (attr_flags & MOUNT_ATTR_NOEXEC)
4079 mnt_flags |= MNT_NOEXEC;
4080 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4081 mnt_flags |= MNT_NODIRATIME;
4082 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4083 mnt_flags |= MNT_NOSYMFOLLOW;
4089 * Create a kernel mount representation for a new, prepared superblock
4090 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4092 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4093 unsigned int, attr_flags)
4095 struct mnt_namespace *ns;
4096 struct fs_context *fc;
4098 struct path newmount;
4101 unsigned int mnt_flags = 0;
4107 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4110 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4113 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4115 switch (attr_flags & MOUNT_ATTR__ATIME) {
4116 case MOUNT_ATTR_STRICTATIME:
4118 case MOUNT_ATTR_NOATIME:
4119 mnt_flags |= MNT_NOATIME;
4121 case MOUNT_ATTR_RELATIME:
4122 mnt_flags |= MNT_RELATIME;
4133 if (f.file->f_op != &fscontext_fops)
4136 fc = f.file->private_data;
4138 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4142 /* There must be a valid superblock or we can't mount it */
4148 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4149 pr_warn("VFS: Mount too revealing\n");
4154 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4157 if (fc->sb_flags & SB_MANDLOCK)
4160 newmount.mnt = vfs_create_mount(fc);
4161 if (IS_ERR(newmount.mnt)) {
4162 ret = PTR_ERR(newmount.mnt);
4165 newmount.dentry = dget(fc->root);
4166 newmount.mnt->mnt_flags = mnt_flags;
4168 /* We've done the mount bit - now move the file context into more or
4169 * less the same state as if we'd done an fspick(). We don't want to
4170 * do any memory allocation or anything like that at this point as we
4171 * don't want to have to handle any errors incurred.
4173 vfs_clean_context(fc);
4175 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4180 mnt = real_mount(newmount.mnt);
4183 mnt_add_to_ns(ns, mnt);
4184 mntget(newmount.mnt);
4186 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4187 * it, not just simply put it.
4189 file = dentry_open(&newmount, O_PATH, fc->cred);
4191 dissolve_on_fput(newmount.mnt);
4192 ret = PTR_ERR(file);
4195 file->f_mode |= FMODE_NEED_UNMOUNT;
4197 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4199 fd_install(ret, file);
4204 path_put(&newmount);
4206 mutex_unlock(&fc->uapi_mutex);
4213 * Move a mount from one place to another. In combination with
4214 * fsopen()/fsmount() this is used to install a new mount and in combination
4215 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4218 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4220 SYSCALL_DEFINE5(move_mount,
4221 int, from_dfd, const char __user *, from_pathname,
4222 int, to_dfd, const char __user *, to_pathname,
4223 unsigned int, flags)
4225 struct path from_path, to_path;
4226 unsigned int lflags;
4232 if (flags & ~MOVE_MOUNT__MASK)
4235 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4236 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4239 /* If someone gives a pathname, they aren't permitted to move
4240 * from an fd that requires unmount as we can't get at the flag
4241 * to clear it afterwards.
4244 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4245 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4246 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4248 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4253 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4254 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4255 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4257 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4261 ret = security_move_mount(&from_path, &to_path);
4265 if (flags & MOVE_MOUNT_SET_GROUP)
4266 ret = do_set_group(&from_path, &to_path);
4268 ret = do_move_mount(&from_path, &to_path,
4269 (flags & MOVE_MOUNT_BENEATH));
4274 path_put(&from_path);
4279 * Return true if path is reachable from root
4281 * namespace_sem or mount_lock is held
4283 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4284 const struct path *root)
4286 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4287 dentry = mnt->mnt_mountpoint;
4288 mnt = mnt->mnt_parent;
4290 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4293 bool path_is_under(const struct path *path1, const struct path *path2)
4296 read_seqlock_excl(&mount_lock);
4297 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4298 read_sequnlock_excl(&mount_lock);
4301 EXPORT_SYMBOL(path_is_under);
4304 * pivot_root Semantics:
4305 * Moves the root file system of the current process to the directory put_old,
4306 * makes new_root as the new root file system of the current process, and sets
4307 * root/cwd of all processes which had them on the current root to new_root.
4310 * The new_root and put_old must be directories, and must not be on the
4311 * same file system as the current process root. The put_old must be
4312 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4313 * pointed to by put_old must yield the same directory as new_root. No other
4314 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4316 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4317 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4318 * in this situation.
4321 * - we don't move root/cwd if they are not at the root (reason: if something
4322 * cared enough to change them, it's probably wrong to force them elsewhere)
4323 * - it's okay to pick a root that isn't the root of a file system, e.g.
4324 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4325 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4328 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4329 const char __user *, put_old)
4331 struct path new, old, root;
4332 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4333 struct mountpoint *old_mp, *root_mp;
4339 error = user_path_at(AT_FDCWD, new_root,
4340 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4344 error = user_path_at(AT_FDCWD, put_old,
4345 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4349 error = security_sb_pivotroot(&old, &new);
4353 get_fs_root(current->fs, &root);
4354 old_mp = lock_mount(&old);
4355 error = PTR_ERR(old_mp);
4360 new_mnt = real_mount(new.mnt);
4361 root_mnt = real_mount(root.mnt);
4362 old_mnt = real_mount(old.mnt);
4363 ex_parent = new_mnt->mnt_parent;
4364 root_parent = root_mnt->mnt_parent;
4365 if (IS_MNT_SHARED(old_mnt) ||
4366 IS_MNT_SHARED(ex_parent) ||
4367 IS_MNT_SHARED(root_parent))
4369 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4371 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4374 if (d_unlinked(new.dentry))
4377 if (new_mnt == root_mnt || old_mnt == root_mnt)
4378 goto out4; /* loop, on the same file system */
4380 if (!path_mounted(&root))
4381 goto out4; /* not a mountpoint */
4382 if (!mnt_has_parent(root_mnt))
4383 goto out4; /* not attached */
4384 if (!path_mounted(&new))
4385 goto out4; /* not a mountpoint */
4386 if (!mnt_has_parent(new_mnt))
4387 goto out4; /* not attached */
4388 /* make sure we can reach put_old from new_root */
4389 if (!is_path_reachable(old_mnt, old.dentry, &new))
4391 /* make certain new is below the root */
4392 if (!is_path_reachable(new_mnt, new.dentry, &root))
4395 umount_mnt(new_mnt);
4396 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4397 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4398 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4399 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4401 /* mount old root on put_old */
4402 attach_mnt(root_mnt, old_mnt, old_mp, false);
4403 /* mount new_root on / */
4404 attach_mnt(new_mnt, root_parent, root_mp, false);
4405 mnt_add_count(root_parent, -1);
4406 touch_mnt_namespace(current->nsproxy->mnt_ns);
4407 /* A moved mount should not expire automatically */
4408 list_del_init(&new_mnt->mnt_expire);
4409 put_mountpoint(root_mp);
4410 unlock_mount_hash();
4411 chroot_fs_refs(&root, &new);
4414 unlock_mount(old_mp);
4416 mntput_no_expire(ex_parent);
4427 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4429 unsigned int flags = mnt->mnt.mnt_flags;
4431 /* flags to clear */
4432 flags &= ~kattr->attr_clr;
4433 /* flags to raise */
4434 flags |= kattr->attr_set;
4439 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4441 struct vfsmount *m = &mnt->mnt;
4442 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4444 if (!kattr->mnt_idmap)
4448 * Creating an idmapped mount with the filesystem wide idmapping
4449 * doesn't make sense so block that. We don't allow mushy semantics.
4451 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4455 * Once a mount has been idmapped we don't allow it to change its
4456 * mapping. It makes things simpler and callers can just create
4457 * another bind-mount they can idmap if they want to.
4459 if (is_idmapped_mnt(m))
4462 /* The underlying filesystem doesn't support idmapped mounts yet. */
4463 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4466 /* We're not controlling the superblock. */
4467 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4470 /* Mount has already been visible in the filesystem hierarchy. */
4471 if (!is_anon_ns(mnt->mnt_ns))
4478 * mnt_allow_writers() - check whether the attribute change allows writers
4479 * @kattr: the new mount attributes
4480 * @mnt: the mount to which @kattr will be applied
4482 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4484 * Return: true if writers need to be held, false if not
4486 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4487 const struct mount *mnt)
4489 return (!(kattr->attr_set & MNT_READONLY) ||
4490 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4494 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4499 for (m = mnt; m; m = next_mnt(m, mnt)) {
4500 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4505 err = can_idmap_mount(kattr, m);
4509 if (!mnt_allow_writers(kattr, m)) {
4510 err = mnt_hold_writers(m);
4515 if (!kattr->recurse)
4523 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4524 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4525 * mounts and needs to take care to include the first mount.
4527 for (p = mnt; p; p = next_mnt(p, mnt)) {
4528 /* If we had to hold writers unblock them. */
4529 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4530 mnt_unhold_writers(p);
4533 * We're done once the first mount we changed got
4534 * MNT_WRITE_HOLD unset.
4543 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4545 if (!kattr->mnt_idmap)
4549 * Pairs with smp_load_acquire() in mnt_idmap().
4551 * Since we only allow a mount to change the idmapping once and
4552 * verified this in can_idmap_mount() we know that the mount has
4553 * @nop_mnt_idmap attached to it. So there's no need to drop any
4556 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4559 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4563 for (m = mnt; m; m = next_mnt(m, mnt)) {
4566 do_idmap_mount(kattr, m);
4567 flags = recalc_flags(kattr, m);
4568 WRITE_ONCE(m->mnt.mnt_flags, flags);
4570 /* If we had to hold writers unblock them. */
4571 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4572 mnt_unhold_writers(m);
4574 if (kattr->propagation)
4575 change_mnt_propagation(m, kattr->propagation);
4576 if (!kattr->recurse)
4579 touch_mnt_namespace(mnt->mnt_ns);
4582 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4584 struct mount *mnt = real_mount(path->mnt);
4587 if (!path_mounted(path))
4590 if (kattr->mnt_userns) {
4591 struct mnt_idmap *mnt_idmap;
4593 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4594 if (IS_ERR(mnt_idmap))
4595 return PTR_ERR(mnt_idmap);
4596 kattr->mnt_idmap = mnt_idmap;
4599 if (kattr->propagation) {
4601 * Only take namespace_lock() if we're actually changing
4605 if (kattr->propagation == MS_SHARED) {
4606 err = invent_group_ids(mnt, kattr->recurse);
4617 /* Ensure that this isn't anything purely vfs internal. */
4618 if (!is_mounted(&mnt->mnt))
4622 * If this is an attached mount make sure it's located in the callers
4623 * mount namespace. If it's not don't let the caller interact with it.
4625 * If this mount doesn't have a parent it's most often simply a
4626 * detached mount with an anonymous mount namespace. IOW, something
4627 * that's simply not attached yet. But there are apparently also users
4628 * that do change mount properties on the rootfs itself. That obviously
4629 * neither has a parent nor is it a detached mount so we cannot
4630 * unconditionally check for detached mounts.
4632 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4636 * First, we get the mount tree in a shape where we can change mount
4637 * properties without failure. If we succeeded to do so we commit all
4638 * changes and if we failed we clean up.
4640 err = mount_setattr_prepare(kattr, mnt);
4642 mount_setattr_commit(kattr, mnt);
4645 unlock_mount_hash();
4647 if (kattr->propagation) {
4649 cleanup_group_ids(mnt, NULL);
4656 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4657 struct mount_kattr *kattr, unsigned int flags)
4660 struct ns_common *ns;
4661 struct user_namespace *mnt_userns;
4664 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4668 * We currently do not support clearing an idmapped mount. If this ever
4669 * is a use-case we can revisit this but for now let's keep it simple
4672 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4675 if (attr->userns_fd > INT_MAX)
4678 f = fdget(attr->userns_fd);
4682 if (!proc_ns_file(f.file)) {
4687 ns = get_proc_ns(file_inode(f.file));
4688 if (ns->ops->type != CLONE_NEWUSER) {
4694 * The initial idmapping cannot be used to create an idmapped
4695 * mount. We use the initial idmapping as an indicator of a mount
4696 * that is not idmapped. It can simply be passed into helpers that
4697 * are aware of idmapped mounts as a convenient shortcut. A user
4698 * can just create a dedicated identity mapping to achieve the same
4701 mnt_userns = container_of(ns, struct user_namespace, ns);
4702 if (mnt_userns == &init_user_ns) {
4707 /* We're not controlling the target namespace. */
4708 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4713 kattr->mnt_userns = get_user_ns(mnt_userns);
4720 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4721 struct mount_kattr *kattr, unsigned int flags)
4723 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4725 if (flags & AT_NO_AUTOMOUNT)
4726 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4727 if (flags & AT_SYMLINK_NOFOLLOW)
4728 lookup_flags &= ~LOOKUP_FOLLOW;
4729 if (flags & AT_EMPTY_PATH)
4730 lookup_flags |= LOOKUP_EMPTY;
4732 *kattr = (struct mount_kattr) {
4733 .lookup_flags = lookup_flags,
4734 .recurse = !!(flags & AT_RECURSIVE),
4737 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4739 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4741 kattr->propagation = attr->propagation;
4743 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4746 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4747 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4750 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4751 * users wanting to transition to a different atime setting cannot
4752 * simply specify the atime setting in @attr_set, but must also
4753 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4754 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4755 * @attr_clr and that @attr_set can't have any atime bits set if
4756 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4758 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4759 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4763 * Clear all previous time settings as they are mutually
4766 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4767 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4768 case MOUNT_ATTR_RELATIME:
4769 kattr->attr_set |= MNT_RELATIME;
4771 case MOUNT_ATTR_NOATIME:
4772 kattr->attr_set |= MNT_NOATIME;
4774 case MOUNT_ATTR_STRICTATIME:
4780 if (attr->attr_set & MOUNT_ATTR__ATIME)
4784 return build_mount_idmapped(attr, usize, kattr, flags);
4787 static void finish_mount_kattr(struct mount_kattr *kattr)
4789 put_user_ns(kattr->mnt_userns);
4790 kattr->mnt_userns = NULL;
4792 if (kattr->mnt_idmap)
4793 mnt_idmap_put(kattr->mnt_idmap);
4796 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4797 unsigned int, flags, struct mount_attr __user *, uattr,
4802 struct mount_attr attr;
4803 struct mount_kattr kattr;
4805 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4807 if (flags & ~(AT_EMPTY_PATH |
4809 AT_SYMLINK_NOFOLLOW |
4813 if (unlikely(usize > PAGE_SIZE))
4815 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4821 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4825 /* Don't bother walking through the mounts if this is a nop. */
4826 if (attr.attr_set == 0 &&
4827 attr.attr_clr == 0 &&
4828 attr.propagation == 0)
4831 err = build_mount_kattr(&attr, usize, &kattr, flags);
4835 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4837 err = do_mount_setattr(&target, &kattr);
4840 finish_mount_kattr(&kattr);
4844 int show_path(struct seq_file *m, struct dentry *root)
4846 if (root->d_sb->s_op->show_path)
4847 return root->d_sb->s_op->show_path(m, root);
4849 seq_dentry(m, root, " \t\n\\");
4853 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4855 struct mount *mnt = mnt_find_id_at(ns, id);
4857 if (!mnt || mnt->mnt_id_unique != id)
4864 struct statmount __user *buf;
4866 struct vfsmount *mnt;
4869 struct statmount sm;
4870 struct seq_file seq;
4873 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4875 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4878 if (mnt_flags & MNT_READONLY)
4879 attr_flags |= MOUNT_ATTR_RDONLY;
4880 if (mnt_flags & MNT_NOSUID)
4881 attr_flags |= MOUNT_ATTR_NOSUID;
4882 if (mnt_flags & MNT_NODEV)
4883 attr_flags |= MOUNT_ATTR_NODEV;
4884 if (mnt_flags & MNT_NOEXEC)
4885 attr_flags |= MOUNT_ATTR_NOEXEC;
4886 if (mnt_flags & MNT_NODIRATIME)
4887 attr_flags |= MOUNT_ATTR_NODIRATIME;
4888 if (mnt_flags & MNT_NOSYMFOLLOW)
4889 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4891 if (mnt_flags & MNT_NOATIME)
4892 attr_flags |= MOUNT_ATTR_NOATIME;
4893 else if (mnt_flags & MNT_RELATIME)
4894 attr_flags |= MOUNT_ATTR_RELATIME;
4896 attr_flags |= MOUNT_ATTR_STRICTATIME;
4898 if (is_idmapped_mnt(mnt))
4899 attr_flags |= MOUNT_ATTR_IDMAP;
4904 static u64 mnt_to_propagation_flags(struct mount *m)
4906 u64 propagation = 0;
4908 if (IS_MNT_SHARED(m))
4909 propagation |= MS_SHARED;
4910 if (IS_MNT_SLAVE(m))
4911 propagation |= MS_SLAVE;
4912 if (IS_MNT_UNBINDABLE(m))
4913 propagation |= MS_UNBINDABLE;
4915 propagation |= MS_PRIVATE;
4920 static void statmount_sb_basic(struct kstatmount *s)
4922 struct super_block *sb = s->mnt->mnt_sb;
4924 s->sm.mask |= STATMOUNT_SB_BASIC;
4925 s->sm.sb_dev_major = MAJOR(sb->s_dev);
4926 s->sm.sb_dev_minor = MINOR(sb->s_dev);
4927 s->sm.sb_magic = sb->s_magic;
4928 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4931 static void statmount_mnt_basic(struct kstatmount *s)
4933 struct mount *m = real_mount(s->mnt);
4935 s->sm.mask |= STATMOUNT_MNT_BASIC;
4936 s->sm.mnt_id = m->mnt_id_unique;
4937 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4938 s->sm.mnt_id_old = m->mnt_id;
4939 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4940 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4941 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4942 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4943 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4946 static void statmount_propagate_from(struct kstatmount *s)
4948 struct mount *m = real_mount(s->mnt);
4950 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4951 if (IS_MNT_SLAVE(m))
4952 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
4955 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4958 size_t start = seq->count;
4960 ret = show_path(seq, s->mnt->mnt_root);
4964 if (unlikely(seq_has_overflowed(seq)))
4968 * Unescape the result. It would be better if supplied string was not
4969 * escaped in the first place, but that's a pretty invasive change.
4971 seq->buf[seq->count] = '\0';
4973 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4977 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4979 struct vfsmount *mnt = s->mnt;
4980 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4983 err = seq_path_root(seq, &mnt_path, &s->root, "");
4984 return err == SEQ_SKIP ? 0 : err;
4987 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4989 struct super_block *sb = s->mnt->mnt_sb;
4991 seq_puts(seq, sb->s_type->name);
4995 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
4997 s->sm.mask |= STATMOUNT_MNT_NS_ID;
4998 s->sm.mnt_ns_id = ns->seq;
5001 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5003 struct vfsmount *mnt = s->mnt;
5004 struct super_block *sb = mnt->mnt_sb;
5007 if (sb->s_op->show_options) {
5008 size_t start = seq->count;
5010 err = sb->s_op->show_options(seq, mnt->mnt_root);
5014 if (unlikely(seq_has_overflowed(seq)))
5017 if (seq->count == start)
5020 /* skip leading comma */
5021 memmove(seq->buf + start, seq->buf + start + 1,
5022 seq->count - start - 1);
5029 static int statmount_string(struct kstatmount *s, u64 flag)
5033 struct seq_file *seq = &s->seq;
5034 struct statmount *sm = &s->sm;
5037 case STATMOUNT_FS_TYPE:
5038 sm->fs_type = seq->count;
5039 ret = statmount_fs_type(s, seq);
5041 case STATMOUNT_MNT_ROOT:
5042 sm->mnt_root = seq->count;
5043 ret = statmount_mnt_root(s, seq);
5045 case STATMOUNT_MNT_POINT:
5046 sm->mnt_point = seq->count;
5047 ret = statmount_mnt_point(s, seq);
5049 case STATMOUNT_MNT_OPTS:
5050 sm->mnt_opts = seq->count;
5051 ret = statmount_mnt_opts(s, seq);
5058 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5060 if (kbufsize >= s->bufsize)
5063 /* signal a retry */
5064 if (unlikely(seq_has_overflowed(seq)))
5070 seq->buf[seq->count++] = '\0';
5075 static int copy_statmount_to_user(struct kstatmount *s)
5077 struct statmount *sm = &s->sm;
5078 struct seq_file *seq = &s->seq;
5079 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5080 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5082 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5085 /* Return the number of bytes copied to the buffer */
5086 sm->size = copysize + seq->count;
5087 if (copy_to_user(s->buf, sm, copysize))
5093 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5095 struct rb_node *node;
5098 node = rb_prev(&curr->mnt_node);
5100 node = rb_next(&curr->mnt_node);
5102 return node_to_mount(node);
5105 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5107 struct mount *first, *child;
5109 rwsem_assert_held(&namespace_sem);
5111 /* We're looking at our own ns, just use get_fs_root. */
5112 if (ns == current->nsproxy->mnt_ns) {
5113 get_fs_root(current->fs, root);
5118 * We have to find the first mount in our ns and use that, however it
5119 * may not exist, so handle that properly.
5121 if (RB_EMPTY_ROOT(&ns->mounts))
5124 first = child = ns->root;
5126 child = listmnt_next(child, false);
5129 if (child->mnt_parent == first)
5133 root->mnt = mntget(&child->mnt);
5134 root->dentry = dget(root->mnt->mnt_root);
5138 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5139 struct mnt_namespace *ns)
5141 struct path root __free(path_put) = {};
5145 /* Has the namespace already been emptied? */
5146 if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5149 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5153 err = grab_requested_root(ns, &root);
5158 * Don't trigger audit denials. We just want to determine what
5159 * mounts to show users.
5161 m = real_mount(s->mnt);
5162 if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5163 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5166 err = security_sb_statfs(s->mnt->mnt_root);
5171 if (s->mask & STATMOUNT_SB_BASIC)
5172 statmount_sb_basic(s);
5174 if (s->mask & STATMOUNT_MNT_BASIC)
5175 statmount_mnt_basic(s);
5177 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5178 statmount_propagate_from(s);
5180 if (s->mask & STATMOUNT_FS_TYPE)
5181 err = statmount_string(s, STATMOUNT_FS_TYPE);
5183 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5184 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5186 if (!err && s->mask & STATMOUNT_MNT_POINT)
5187 err = statmount_string(s, STATMOUNT_MNT_POINT);
5189 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5190 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5192 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5193 statmount_mnt_ns_id(s, ns);
5201 static inline bool retry_statmount(const long ret, size_t *seq_size)
5203 if (likely(ret != -EAGAIN))
5205 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5207 if (unlikely(*seq_size > MAX_RW_COUNT))
5212 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5213 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS)
5215 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5216 struct statmount __user *buf, size_t bufsize,
5219 if (!access_ok(buf, bufsize))
5222 memset(ks, 0, sizeof(*ks));
5223 ks->mask = kreq->param;
5225 ks->bufsize = bufsize;
5227 if (ks->mask & STATMOUNT_STRING_REQ) {
5228 if (bufsize == sizeof(ks->sm))
5231 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5235 ks->seq.size = seq_size;
5241 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5242 struct mnt_id_req *kreq)
5247 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5249 ret = get_user(usize, &req->size);
5252 if (unlikely(usize > PAGE_SIZE))
5254 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5256 memset(kreq, 0, sizeof(*kreq));
5257 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5260 if (kreq->spare != 0)
5262 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5263 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5269 * If the user requested a specific mount namespace id, look that up and return
5270 * that, or if not simply grab a passive reference on our mount namespace and
5273 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5275 struct mnt_namespace *mnt_ns;
5277 if (kreq->mnt_ns_id && kreq->spare)
5278 return ERR_PTR(-EINVAL);
5280 if (kreq->mnt_ns_id)
5281 return lookup_mnt_ns(kreq->mnt_ns_id);
5284 struct ns_common *ns;
5286 CLASS(fd, f)(kreq->spare);
5288 return ERR_PTR(-EBADF);
5290 if (!proc_ns_file(f.file))
5291 return ERR_PTR(-EINVAL);
5293 ns = get_proc_ns(file_inode(f.file));
5294 if (ns->ops->type != CLONE_NEWNS)
5295 return ERR_PTR(-EINVAL);
5297 mnt_ns = to_mnt_ns(ns);
5299 mnt_ns = current->nsproxy->mnt_ns;
5302 refcount_inc(&mnt_ns->passive);
5306 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5307 struct statmount __user *, buf, size_t, bufsize,
5308 unsigned int, flags)
5310 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5311 struct kstatmount *ks __free(kfree) = NULL;
5312 struct mnt_id_req kreq;
5313 /* We currently support retrieval of 3 strings. */
5314 size_t seq_size = 3 * PATH_MAX;
5320 ret = copy_mnt_id_req(req, &kreq);
5324 ns = grab_requested_mnt_ns(&kreq);
5328 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5329 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5332 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5337 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5341 scoped_guard(rwsem_read, &namespace_sem)
5342 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5345 ret = copy_statmount_to_user(ks);
5346 kvfree(ks->seq.buf);
5347 if (retry_statmount(ret, &seq_size))
5352 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5353 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5356 struct path root __free(path_put) = {};
5358 struct mount *r, *first;
5361 rwsem_assert_held(&namespace_sem);
5363 ret = grab_requested_root(ns, &root);
5367 if (mnt_parent_id == LSMT_ROOT) {
5370 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5373 orig.dentry = orig.mnt->mnt_root;
5377 * Don't trigger audit denials. We just want to determine what
5378 * mounts to show users.
5380 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5381 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5384 ret = security_sb_statfs(orig.dentry);
5390 first = node_to_mount(rb_last(&ns->mounts));
5392 first = node_to_mount(rb_first(&ns->mounts));
5395 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5397 first = mnt_find_id_at(ns, last_mnt_id + 1);
5400 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5401 if (r->mnt_id_unique == mnt_parent_id)
5403 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5405 *mnt_ids = r->mnt_id_unique;
5413 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5414 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5416 u64 *kmnt_ids __free(kvfree) = NULL;
5417 const size_t maxcount = 1000000;
5418 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5419 struct mnt_id_req kreq;
5423 if (flags & ~LISTMOUNT_REVERSE)
5427 * If the mount namespace really has more than 1 million mounts the
5428 * caller must iterate over the mount namespace (and reconsider their
5429 * system design...).
5431 if (unlikely(nr_mnt_ids > maxcount))
5434 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5437 ret = copy_mnt_id_req(req, &kreq);
5441 last_mnt_id = kreq.param;
5442 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5443 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5446 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5447 GFP_KERNEL_ACCOUNT);
5451 ns = grab_requested_mnt_ns(&kreq);
5455 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5456 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5459 scoped_guard(rwsem_read, &namespace_sem)
5460 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5461 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5465 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5471 static void __init init_mount_tree(void)
5473 struct vfsmount *mnt;
5475 struct mnt_namespace *ns;
5478 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5480 panic("Can't create rootfs");
5482 ns = alloc_mnt_ns(&init_user_ns, false);
5484 panic("Can't allocate initial namespace");
5485 m = real_mount(mnt);
5488 mnt_add_to_ns(ns, m);
5489 init_task.nsproxy->mnt_ns = ns;
5493 root.dentry = mnt->mnt_root;
5494 mnt->mnt_flags |= MNT_LOCKED;
5496 set_fs_pwd(current->fs, &root);
5497 set_fs_root(current->fs, &root);
5499 mnt_ns_tree_add(ns);
5502 void __init mnt_init(void)
5506 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5507 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5509 mount_hashtable = alloc_large_system_hash("Mount-cache",
5510 sizeof(struct hlist_head),
5513 &m_hash_shift, &m_hash_mask, 0, 0);
5514 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5515 sizeof(struct hlist_head),
5518 &mp_hash_shift, &mp_hash_mask, 0, 0);
5520 if (!mount_hashtable || !mountpoint_hashtable)
5521 panic("Failed to allocate mount hash table\n");
5527 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5529 fs_kobj = kobject_create_and_add("fs", NULL);
5531 printk(KERN_WARNING "%s: kobj create error\n", __func__);
5537 void put_mnt_ns(struct mnt_namespace *ns)
5539 if (!refcount_dec_and_test(&ns->ns.count))
5541 drop_collected_mounts(&ns->root->mnt);
5545 struct vfsmount *kern_mount(struct file_system_type *type)
5547 struct vfsmount *mnt;
5548 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5551 * it is a longterm mount, don't release mnt until
5552 * we unmount before file sys is unregistered
5554 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5558 EXPORT_SYMBOL_GPL(kern_mount);
5560 void kern_unmount(struct vfsmount *mnt)
5562 /* release long term mount so mount point can be released */
5564 mnt_make_shortterm(mnt);
5565 synchronize_rcu(); /* yecchhh... */
5569 EXPORT_SYMBOL(kern_unmount);
5571 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5575 for (i = 0; i < num; i++)
5576 mnt_make_shortterm(mnt[i]);
5577 synchronize_rcu_expedited();
5578 for (i = 0; i < num; i++)
5581 EXPORT_SYMBOL(kern_unmount_array);
5583 bool our_mnt(struct vfsmount *mnt)
5585 return check_mnt(real_mount(mnt));
5588 bool current_chrooted(void)
5590 /* Does the current process have a non-standard root */
5591 struct path ns_root;
5592 struct path fs_root;
5595 /* Find the namespace root */
5596 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
5597 ns_root.dentry = ns_root.mnt->mnt_root;
5599 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5602 get_fs_root(current->fs, &fs_root);
5604 chrooted = !path_equal(&fs_root, &ns_root);
5612 static bool mnt_already_visible(struct mnt_namespace *ns,
5613 const struct super_block *sb,
5616 int new_flags = *new_mnt_flags;
5617 struct mount *mnt, *n;
5618 bool visible = false;
5620 down_read(&namespace_sem);
5621 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5622 struct mount *child;
5625 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5628 /* This mount is not fully visible if it's root directory
5629 * is not the root directory of the filesystem.
5631 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5634 /* A local view of the mount flags */
5635 mnt_flags = mnt->mnt.mnt_flags;
5637 /* Don't miss readonly hidden in the superblock flags */
5638 if (sb_rdonly(mnt->mnt.mnt_sb))
5639 mnt_flags |= MNT_LOCK_READONLY;
5641 /* Verify the mount flags are equal to or more permissive
5642 * than the proposed new mount.
5644 if ((mnt_flags & MNT_LOCK_READONLY) &&
5645 !(new_flags & MNT_READONLY))
5647 if ((mnt_flags & MNT_LOCK_ATIME) &&
5648 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5651 /* This mount is not fully visible if there are any
5652 * locked child mounts that cover anything except for
5653 * empty directories.
5655 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5656 struct inode *inode = child->mnt_mountpoint->d_inode;
5657 /* Only worry about locked mounts */
5658 if (!(child->mnt.mnt_flags & MNT_LOCKED))
5660 /* Is the directory permanetly empty? */
5661 if (!is_empty_dir_inode(inode))
5664 /* Preserve the locked attributes */
5665 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5672 up_read(&namespace_sem);
5676 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5678 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5679 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5680 unsigned long s_iflags;
5682 if (ns->user_ns == &init_user_ns)
5685 /* Can this filesystem be too revealing? */
5686 s_iflags = sb->s_iflags;
5687 if (!(s_iflags & SB_I_USERNS_VISIBLE))
5690 if ((s_iflags & required_iflags) != required_iflags) {
5691 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5696 return !mnt_already_visible(ns, sb, new_mnt_flags);
5699 bool mnt_may_suid(struct vfsmount *mnt)
5702 * Foreign mounts (accessed via fchdir or through /proc
5703 * symlinks) are always treated as if they are nosuid. This
5704 * prevents namespaces from trusting potentially unsafe
5705 * suid/sgid bits, file caps, or security labels that originate
5706 * in other namespaces.
5708 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5709 current_in_userns(mnt->mnt_sb->s_user_ns);
5712 static struct ns_common *mntns_get(struct task_struct *task)
5714 struct ns_common *ns = NULL;
5715 struct nsproxy *nsproxy;
5718 nsproxy = task->nsproxy;
5720 ns = &nsproxy->mnt_ns->ns;
5721 get_mnt_ns(to_mnt_ns(ns));
5728 static void mntns_put(struct ns_common *ns)
5730 put_mnt_ns(to_mnt_ns(ns));
5733 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5735 struct nsproxy *nsproxy = nsset->nsproxy;
5736 struct fs_struct *fs = nsset->fs;
5737 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5738 struct user_namespace *user_ns = nsset->cred->user_ns;
5742 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5743 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5744 !ns_capable(user_ns, CAP_SYS_ADMIN))
5747 if (is_anon_ns(mnt_ns))
5754 old_mnt_ns = nsproxy->mnt_ns;
5755 nsproxy->mnt_ns = mnt_ns;
5758 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5759 "/", LOOKUP_DOWN, &root);
5761 /* revert to old namespace */
5762 nsproxy->mnt_ns = old_mnt_ns;
5767 put_mnt_ns(old_mnt_ns);
5769 /* Update the pwd and root */
5770 set_fs_pwd(fs, &root);
5771 set_fs_root(fs, &root);
5777 static struct user_namespace *mntns_owner(struct ns_common *ns)
5779 return to_mnt_ns(ns)->user_ns;
5782 const struct proc_ns_operations mntns_operations = {
5784 .type = CLONE_NEWNS,
5787 .install = mntns_install,
5788 .owner = mntns_owner,
5791 #ifdef CONFIG_SYSCTL
5792 static struct ctl_table fs_namespace_sysctls[] = {
5794 .procname = "mount-max",
5795 .data = &sysctl_mount_max,
5796 .maxlen = sizeof(unsigned int),
5798 .proc_handler = proc_dointvec_minmax,
5799 .extra1 = SYSCTL_ONE,
5803 static int __init init_fs_namespace_sysctls(void)
5805 register_sysctl_init("fs", fs_namespace_sysctls);
5808 fs_initcall(init_fs_namespace_sysctls);
5810 #endif /* CONFIG_SYSCTL */