1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
39 static struct ctl_table vm_userfaultfd_table[] = {
41 .procname = "unprivileged_userfaultfd",
42 .data = &sysctl_unprivileged_userfaultfd,
43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
45 .proc_handler = proc_dointvec_minmax,
46 .extra1 = SYSCTL_ZERO,
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
54 struct userfaultfd_fork_ctx {
55 struct userfaultfd_ctx *orig;
56 struct userfaultfd_ctx *new;
57 struct list_head list;
60 struct userfaultfd_unmap_ctx {
61 struct userfaultfd_ctx *ctx;
64 struct list_head list;
67 struct userfaultfd_wait_queue {
69 wait_queue_entry_t wq;
70 struct userfaultfd_ctx *ctx;
74 struct userfaultfd_wake_range {
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED (1u << 31)
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
84 return ctx->features & UFFD_FEATURE_INITIALIZED;
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
94 * meaningful when userfaultfd_wp()==true on the vma and when it's
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
107 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
110 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
112 vm_flags_reset(vma, flags);
114 * For shared mappings, we want to enable writenotify while
115 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
116 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
118 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
119 vma_set_page_prot(vma);
122 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
123 int wake_flags, void *key)
125 struct userfaultfd_wake_range *range = key;
127 struct userfaultfd_wait_queue *uwq;
128 unsigned long start, len;
130 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
132 /* len == 0 means wake all */
133 start = range->start;
135 if (len && (start > uwq->msg.arg.pagefault.address ||
136 start + len <= uwq->msg.arg.pagefault.address))
138 WRITE_ONCE(uwq->waken, true);
140 * The Program-Order guarantees provided by the scheduler
141 * ensure uwq->waken is visible before the task is woken.
143 ret = wake_up_state(wq->private, mode);
146 * Wake only once, autoremove behavior.
148 * After the effect of list_del_init is visible to the other
149 * CPUs, the waitqueue may disappear from under us, see the
150 * !list_empty_careful() in handle_userfault().
152 * try_to_wake_up() has an implicit smp_mb(), and the
153 * wq->private is read before calling the extern function
154 * "wake_up_state" (which in turns calls try_to_wake_up).
156 list_del_init(&wq->entry);
163 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
165 * @ctx: [in] Pointer to the userfaultfd context.
167 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
169 refcount_inc(&ctx->refcount);
173 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
175 * @ctx: [in] Pointer to userfaultfd context.
177 * The userfaultfd context reference must have been previously acquired either
178 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
180 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
182 if (refcount_dec_and_test(&ctx->refcount)) {
183 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
184 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
185 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
186 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
187 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
188 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
189 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
190 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
192 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
196 static inline void msg_init(struct uffd_msg *msg)
198 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
200 * Must use memset to zero out the paddings or kernel data is
201 * leaked to userland.
203 memset(msg, 0, sizeof(struct uffd_msg));
206 static inline struct uffd_msg userfault_msg(unsigned long address,
207 unsigned long real_address,
209 unsigned long reason,
210 unsigned int features)
215 msg.event = UFFD_EVENT_PAGEFAULT;
217 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
218 real_address : address;
221 * These flags indicate why the userfault occurred:
222 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
223 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
224 * - Neither of these flags being set indicates a MISSING fault.
226 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
227 * fault. Otherwise, it was a read fault.
229 if (flags & FAULT_FLAG_WRITE)
230 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
231 if (reason & VM_UFFD_WP)
232 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
233 if (reason & VM_UFFD_MINOR)
234 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
235 if (features & UFFD_FEATURE_THREAD_ID)
236 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
240 #ifdef CONFIG_HUGETLB_PAGE
242 * Same functionality as userfaultfd_must_wait below with modifications for
245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
246 struct vm_fault *vmf,
247 unsigned long reason)
249 struct vm_area_struct *vma = vmf->vma;
253 assert_fault_locked(vmf);
255 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
260 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
263 * Lockless access: we're in a wait_event so it's ok if it
264 * changes under us. PTE markers should be handled the same as none
267 if (huge_pte_none_mostly(pte))
269 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
275 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
276 struct vm_fault *vmf,
277 unsigned long reason)
279 return false; /* should never get here */
281 #endif /* CONFIG_HUGETLB_PAGE */
284 * Verify the pagetables are still not ok after having reigstered into
285 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
286 * userfault that has already been resolved, if userfaultfd_read_iter and
287 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
290 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
291 struct vm_fault *vmf,
292 unsigned long reason)
294 struct mm_struct *mm = ctx->mm;
295 unsigned long address = vmf->address;
304 assert_fault_locked(vmf);
306 pgd = pgd_offset(mm, address);
307 if (!pgd_present(*pgd))
309 p4d = p4d_offset(pgd, address);
310 if (!p4d_present(*p4d))
312 pud = pud_offset(p4d, address);
313 if (!pud_present(*pud))
315 pmd = pmd_offset(pud, address);
317 _pmd = pmdp_get_lockless(pmd);
322 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
325 if (pmd_trans_huge(_pmd)) {
326 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
331 pte = pte_offset_map(pmd, address);
337 * Lockless access: we're in a wait_event so it's ok if it
338 * changes under us. PTE markers should be handled the same as none
341 ptent = ptep_get(pte);
342 if (pte_none_mostly(ptent))
344 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
352 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
354 if (flags & FAULT_FLAG_INTERRUPTIBLE)
355 return TASK_INTERRUPTIBLE;
357 if (flags & FAULT_FLAG_KILLABLE)
358 return TASK_KILLABLE;
360 return TASK_UNINTERRUPTIBLE;
364 * The locking rules involved in returning VM_FAULT_RETRY depending on
365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
366 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
367 * recommendation in __lock_page_or_retry is not an understatement.
369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
370 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
374 * set, VM_FAULT_RETRY can still be returned if and only if there are
375 * fatal_signal_pending()s, and the mmap_lock must be released before
378 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
380 struct vm_area_struct *vma = vmf->vma;
381 struct mm_struct *mm = vma->vm_mm;
382 struct userfaultfd_ctx *ctx;
383 struct userfaultfd_wait_queue uwq;
384 vm_fault_t ret = VM_FAULT_SIGBUS;
386 unsigned int blocking_state;
389 * We don't do userfault handling for the final child pid update.
391 * We also don't do userfault handling during
392 * coredumping. hugetlbfs has the special
393 * hugetlb_follow_page_mask() to skip missing pages in the
394 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
395 * the no_page_table() helper in follow_page_mask(), but the
396 * shmem_vm_ops->fault method is invoked even during
397 * coredumping and it ends up here.
399 if (current->flags & (PF_EXITING|PF_DUMPCORE))
402 assert_fault_locked(vmf);
404 ctx = vma->vm_userfaultfd_ctx.ctx;
408 BUG_ON(ctx->mm != mm);
410 /* Any unrecognized flag is a bug. */
411 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
412 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
413 VM_BUG_ON(!reason || (reason & (reason - 1)));
415 if (ctx->features & UFFD_FEATURE_SIGBUS)
417 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
421 * If it's already released don't get it. This avoids to loop
422 * in __get_user_pages if userfaultfd_release waits on the
423 * caller of handle_userfault to release the mmap_lock.
425 if (unlikely(READ_ONCE(ctx->released))) {
427 * Don't return VM_FAULT_SIGBUS in this case, so a non
428 * cooperative manager can close the uffd after the
429 * last UFFDIO_COPY, without risking to trigger an
430 * involuntary SIGBUS if the process was starting the
431 * userfaultfd while the userfaultfd was still armed
432 * (but after the last UFFDIO_COPY). If the uffd
433 * wasn't already closed when the userfault reached
434 * this point, that would normally be solved by
435 * userfaultfd_must_wait returning 'false'.
437 * If we were to return VM_FAULT_SIGBUS here, the non
438 * cooperative manager would be instead forced to
439 * always call UFFDIO_UNREGISTER before it can safely
442 ret = VM_FAULT_NOPAGE;
447 * Check that we can return VM_FAULT_RETRY.
449 * NOTE: it should become possible to return VM_FAULT_RETRY
450 * even if FAULT_FLAG_TRIED is set without leading to gup()
451 * -EBUSY failures, if the userfaultfd is to be extended for
452 * VM_UFFD_WP tracking and we intend to arm the userfault
453 * without first stopping userland access to the memory. For
454 * VM_UFFD_MISSING userfaults this is enough for now.
456 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
458 * Validate the invariant that nowait must allow retry
459 * to be sure not to return SIGBUS erroneously on
460 * nowait invocations.
462 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
463 #ifdef CONFIG_DEBUG_VM
464 if (printk_ratelimit()) {
466 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
475 * Handle nowait, not much to do other than tell it to retry
478 ret = VM_FAULT_RETRY;
479 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
482 /* take the reference before dropping the mmap_lock */
483 userfaultfd_ctx_get(ctx);
485 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
486 uwq.wq.private = current;
487 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
488 reason, ctx->features);
492 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
495 * Take the vma lock now, in order to safely call
496 * userfaultfd_huge_must_wait() later. Since acquiring the
497 * (sleepable) vma lock can modify the current task state, that
498 * must be before explicitly calling set_current_state().
500 if (is_vm_hugetlb_page(vma))
501 hugetlb_vma_lock_read(vma);
503 spin_lock_irq(&ctx->fault_pending_wqh.lock);
505 * After the __add_wait_queue the uwq is visible to userland
506 * through poll/read().
508 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
510 * The smp_mb() after __set_current_state prevents the reads
511 * following the spin_unlock to happen before the list_add in
514 set_current_state(blocking_state);
515 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
517 if (!is_vm_hugetlb_page(vma))
518 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
520 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
521 if (is_vm_hugetlb_page(vma))
522 hugetlb_vma_unlock_read(vma);
523 release_fault_lock(vmf);
525 if (likely(must_wait && !READ_ONCE(ctx->released))) {
526 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
530 __set_current_state(TASK_RUNNING);
533 * Here we race with the list_del; list_add in
534 * userfaultfd_ctx_read(), however because we don't ever run
535 * list_del_init() to refile across the two lists, the prev
536 * and next pointers will never point to self. list_add also
537 * would never let any of the two pointers to point to
538 * self. So list_empty_careful won't risk to see both pointers
539 * pointing to self at any time during the list refile. The
540 * only case where list_del_init() is called is the full
541 * removal in the wake function and there we don't re-list_add
542 * and it's fine not to block on the spinlock. The uwq on this
543 * kernel stack can be released after the list_del_init.
545 if (!list_empty_careful(&uwq.wq.entry)) {
546 spin_lock_irq(&ctx->fault_pending_wqh.lock);
548 * No need of list_del_init(), the uwq on the stack
549 * will be freed shortly anyway.
551 list_del(&uwq.wq.entry);
552 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
556 * ctx may go away after this if the userfault pseudo fd is
559 userfaultfd_ctx_put(ctx);
565 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
566 struct userfaultfd_wait_queue *ewq)
568 struct userfaultfd_ctx *release_new_ctx;
570 if (WARN_ON_ONCE(current->flags & PF_EXITING))
574 init_waitqueue_entry(&ewq->wq, current);
575 release_new_ctx = NULL;
577 spin_lock_irq(&ctx->event_wqh.lock);
579 * After the __add_wait_queue the uwq is visible to userland
580 * through poll/read().
582 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
584 set_current_state(TASK_KILLABLE);
585 if (ewq->msg.event == 0)
587 if (READ_ONCE(ctx->released) ||
588 fatal_signal_pending(current)) {
590 * &ewq->wq may be queued in fork_event, but
591 * __remove_wait_queue ignores the head
592 * parameter. It would be a problem if it
595 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
596 if (ewq->msg.event == UFFD_EVENT_FORK) {
597 struct userfaultfd_ctx *new;
599 new = (struct userfaultfd_ctx *)
601 ewq->msg.arg.reserved.reserved1;
602 release_new_ctx = new;
607 spin_unlock_irq(&ctx->event_wqh.lock);
609 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
612 spin_lock_irq(&ctx->event_wqh.lock);
614 __set_current_state(TASK_RUNNING);
615 spin_unlock_irq(&ctx->event_wqh.lock);
617 if (release_new_ctx) {
618 struct vm_area_struct *vma;
619 struct mm_struct *mm = release_new_ctx->mm;
620 VMA_ITERATOR(vmi, mm, 0);
622 /* the various vma->vm_userfaultfd_ctx still points to it */
624 for_each_vma(vmi, vma) {
625 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
626 vma_start_write(vma);
627 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
628 userfaultfd_set_vm_flags(vma,
629 vma->vm_flags & ~__VM_UFFD_FLAGS);
632 mmap_write_unlock(mm);
634 userfaultfd_ctx_put(release_new_ctx);
638 * ctx may go away after this if the userfault pseudo fd is
642 atomic_dec(&ctx->mmap_changing);
643 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
644 userfaultfd_ctx_put(ctx);
647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648 struct userfaultfd_wait_queue *ewq)
651 wake_up_locked(&ctx->event_wqh);
652 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
657 struct userfaultfd_ctx *ctx = NULL, *octx;
658 struct userfaultfd_fork_ctx *fctx;
660 octx = vma->vm_userfaultfd_ctx.ctx;
664 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 vma_start_write(vma);
666 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
671 list_for_each_entry(fctx, fcs, list)
672 if (fctx->orig == octx) {
678 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
682 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
688 refcount_set(&ctx->refcount, 1);
689 ctx->flags = octx->flags;
690 ctx->features = octx->features;
691 ctx->released = false;
692 init_rwsem(&ctx->map_changing_lock);
693 atomic_set(&ctx->mmap_changing, 0);
694 ctx->mm = vma->vm_mm;
697 userfaultfd_ctx_get(octx);
698 down_write(&octx->map_changing_lock);
699 atomic_inc(&octx->mmap_changing);
700 up_write(&octx->map_changing_lock);
703 list_add_tail(&fctx->list, fcs);
706 vma->vm_userfaultfd_ctx.ctx = ctx;
710 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
712 struct userfaultfd_ctx *ctx = fctx->orig;
713 struct userfaultfd_wait_queue ewq;
717 ewq.msg.event = UFFD_EVENT_FORK;
718 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
720 userfaultfd_event_wait_completion(ctx, &ewq);
723 void dup_userfaultfd_complete(struct list_head *fcs)
725 struct userfaultfd_fork_ctx *fctx, *n;
727 list_for_each_entry_safe(fctx, n, fcs, list) {
729 list_del(&fctx->list);
734 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
735 struct vm_userfaultfd_ctx *vm_ctx)
737 struct userfaultfd_ctx *ctx;
739 ctx = vma->vm_userfaultfd_ctx.ctx;
744 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
746 userfaultfd_ctx_get(ctx);
747 down_write(&ctx->map_changing_lock);
748 atomic_inc(&ctx->mmap_changing);
749 up_write(&ctx->map_changing_lock);
751 /* Drop uffd context if remap feature not enabled */
752 vma_start_write(vma);
753 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
754 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
758 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
759 unsigned long from, unsigned long to,
762 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
763 struct userfaultfd_wait_queue ewq;
768 if (to & ~PAGE_MASK) {
769 userfaultfd_ctx_put(ctx);
775 ewq.msg.event = UFFD_EVENT_REMAP;
776 ewq.msg.arg.remap.from = from;
777 ewq.msg.arg.remap.to = to;
778 ewq.msg.arg.remap.len = len;
780 userfaultfd_event_wait_completion(ctx, &ewq);
783 bool userfaultfd_remove(struct vm_area_struct *vma,
784 unsigned long start, unsigned long end)
786 struct mm_struct *mm = vma->vm_mm;
787 struct userfaultfd_ctx *ctx;
788 struct userfaultfd_wait_queue ewq;
790 ctx = vma->vm_userfaultfd_ctx.ctx;
791 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
794 userfaultfd_ctx_get(ctx);
795 down_write(&ctx->map_changing_lock);
796 atomic_inc(&ctx->mmap_changing);
797 up_write(&ctx->map_changing_lock);
798 mmap_read_unlock(mm);
802 ewq.msg.event = UFFD_EVENT_REMOVE;
803 ewq.msg.arg.remove.start = start;
804 ewq.msg.arg.remove.end = end;
806 userfaultfd_event_wait_completion(ctx, &ewq);
811 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
812 unsigned long start, unsigned long end)
814 struct userfaultfd_unmap_ctx *unmap_ctx;
816 list_for_each_entry(unmap_ctx, unmaps, list)
817 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
818 unmap_ctx->end == end)
824 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
825 unsigned long end, struct list_head *unmaps)
827 struct userfaultfd_unmap_ctx *unmap_ctx;
828 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
830 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
831 has_unmap_ctx(ctx, unmaps, start, end))
834 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
838 userfaultfd_ctx_get(ctx);
839 down_write(&ctx->map_changing_lock);
840 atomic_inc(&ctx->mmap_changing);
841 up_write(&ctx->map_changing_lock);
842 unmap_ctx->ctx = ctx;
843 unmap_ctx->start = start;
844 unmap_ctx->end = end;
845 list_add_tail(&unmap_ctx->list, unmaps);
850 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
852 struct userfaultfd_unmap_ctx *ctx, *n;
853 struct userfaultfd_wait_queue ewq;
855 list_for_each_entry_safe(ctx, n, uf, list) {
858 ewq.msg.event = UFFD_EVENT_UNMAP;
859 ewq.msg.arg.remove.start = ctx->start;
860 ewq.msg.arg.remove.end = ctx->end;
862 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
864 list_del(&ctx->list);
869 static int userfaultfd_release(struct inode *inode, struct file *file)
871 struct userfaultfd_ctx *ctx = file->private_data;
872 struct mm_struct *mm = ctx->mm;
873 struct vm_area_struct *vma, *prev;
874 /* len == 0 means wake all */
875 struct userfaultfd_wake_range range = { .len = 0, };
876 unsigned long new_flags;
877 VMA_ITERATOR(vmi, mm, 0);
879 WRITE_ONCE(ctx->released, true);
881 if (!mmget_not_zero(mm))
885 * Flush page faults out of all CPUs. NOTE: all page faults
886 * must be retried without returning VM_FAULT_SIGBUS if
887 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
888 * changes while handle_userfault released the mmap_lock. So
889 * it's critical that released is set to true (above), before
890 * taking the mmap_lock for writing.
894 for_each_vma(vmi, vma) {
896 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
897 !!(vma->vm_flags & __VM_UFFD_FLAGS));
898 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
902 /* Reset ptes for the whole vma range if wr-protected */
903 if (userfaultfd_wp(vma))
904 uffd_wp_range(vma, vma->vm_start,
905 vma->vm_end - vma->vm_start, false);
906 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
907 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
908 vma->vm_end, new_flags,
911 vma_start_write(vma);
912 userfaultfd_set_vm_flags(vma, new_flags);
913 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
917 mmap_write_unlock(mm);
921 * After no new page faults can wait on this fault_*wqh, flush
922 * the last page faults that may have been already waiting on
925 spin_lock_irq(&ctx->fault_pending_wqh.lock);
926 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
927 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
928 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
930 /* Flush pending events that may still wait on event_wqh */
931 wake_up_all(&ctx->event_wqh);
933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
934 userfaultfd_ctx_put(ctx);
938 /* fault_pending_wqh.lock must be hold by the caller */
939 static inline struct userfaultfd_wait_queue *find_userfault_in(
940 wait_queue_head_t *wqh)
942 wait_queue_entry_t *wq;
943 struct userfaultfd_wait_queue *uwq;
945 lockdep_assert_held(&wqh->lock);
948 if (!waitqueue_active(wqh))
950 /* walk in reverse to provide FIFO behavior to read userfaults */
951 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
952 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
957 static inline struct userfaultfd_wait_queue *find_userfault(
958 struct userfaultfd_ctx *ctx)
960 return find_userfault_in(&ctx->fault_pending_wqh);
963 static inline struct userfaultfd_wait_queue *find_userfault_evt(
964 struct userfaultfd_ctx *ctx)
966 return find_userfault_in(&ctx->event_wqh);
969 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
971 struct userfaultfd_ctx *ctx = file->private_data;
974 poll_wait(file, &ctx->fd_wqh, wait);
976 if (!userfaultfd_is_initialized(ctx))
980 * poll() never guarantees that read won't block.
981 * userfaults can be waken before they're read().
983 if (unlikely(!(file->f_flags & O_NONBLOCK)))
986 * lockless access to see if there are pending faults
987 * __pollwait last action is the add_wait_queue but
988 * the spin_unlock would allow the waitqueue_active to
989 * pass above the actual list_add inside
990 * add_wait_queue critical section. So use a full
991 * memory barrier to serialize the list_add write of
992 * add_wait_queue() with the waitqueue_active read
997 if (waitqueue_active(&ctx->fault_pending_wqh))
999 else if (waitqueue_active(&ctx->event_wqh))
1005 static const struct file_operations userfaultfd_fops;
1007 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1008 struct inode *inode,
1009 struct uffd_msg *msg)
1013 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1014 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1018 msg->arg.reserved.reserved1 = 0;
1019 msg->arg.fork.ufd = fd;
1023 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1024 struct uffd_msg *msg, struct inode *inode)
1027 DECLARE_WAITQUEUE(wait, current);
1028 struct userfaultfd_wait_queue *uwq;
1030 * Handling fork event requires sleeping operations, so
1031 * we drop the event_wqh lock, then do these ops, then
1032 * lock it back and wake up the waiter. While the lock is
1033 * dropped the ewq may go away so we keep track of it
1036 LIST_HEAD(fork_event);
1037 struct userfaultfd_ctx *fork_nctx = NULL;
1039 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1040 spin_lock_irq(&ctx->fd_wqh.lock);
1041 __add_wait_queue(&ctx->fd_wqh, &wait);
1043 set_current_state(TASK_INTERRUPTIBLE);
1044 spin_lock(&ctx->fault_pending_wqh.lock);
1045 uwq = find_userfault(ctx);
1048 * Use a seqcount to repeat the lockless check
1049 * in wake_userfault() to avoid missing
1050 * wakeups because during the refile both
1051 * waitqueue could become empty if this is the
1054 write_seqcount_begin(&ctx->refile_seq);
1057 * The fault_pending_wqh.lock prevents the uwq
1058 * to disappear from under us.
1060 * Refile this userfault from
1061 * fault_pending_wqh to fault_wqh, it's not
1062 * pending anymore after we read it.
1064 * Use list_del() by hand (as
1065 * userfaultfd_wake_function also uses
1066 * list_del_init() by hand) to be sure nobody
1067 * changes __remove_wait_queue() to use
1068 * list_del_init() in turn breaking the
1069 * !list_empty_careful() check in
1070 * handle_userfault(). The uwq->wq.head list
1071 * must never be empty at any time during the
1072 * refile, or the waitqueue could disappear
1073 * from under us. The "wait_queue_head_t"
1074 * parameter of __remove_wait_queue() is unused
1077 list_del(&uwq->wq.entry);
1078 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1080 write_seqcount_end(&ctx->refile_seq);
1082 /* careful to always initialize msg if ret == 0 */
1084 spin_unlock(&ctx->fault_pending_wqh.lock);
1088 spin_unlock(&ctx->fault_pending_wqh.lock);
1090 spin_lock(&ctx->event_wqh.lock);
1091 uwq = find_userfault_evt(ctx);
1095 if (uwq->msg.event == UFFD_EVENT_FORK) {
1096 fork_nctx = (struct userfaultfd_ctx *)
1098 uwq->msg.arg.reserved.reserved1;
1099 list_move(&uwq->wq.entry, &fork_event);
1101 * fork_nctx can be freed as soon as
1102 * we drop the lock, unless we take a
1105 userfaultfd_ctx_get(fork_nctx);
1106 spin_unlock(&ctx->event_wqh.lock);
1111 userfaultfd_event_complete(ctx, uwq);
1112 spin_unlock(&ctx->event_wqh.lock);
1116 spin_unlock(&ctx->event_wqh.lock);
1118 if (signal_pending(current)) {
1126 spin_unlock_irq(&ctx->fd_wqh.lock);
1128 spin_lock_irq(&ctx->fd_wqh.lock);
1130 __remove_wait_queue(&ctx->fd_wqh, &wait);
1131 __set_current_state(TASK_RUNNING);
1132 spin_unlock_irq(&ctx->fd_wqh.lock);
1134 if (!ret && msg->event == UFFD_EVENT_FORK) {
1135 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1136 spin_lock_irq(&ctx->event_wqh.lock);
1137 if (!list_empty(&fork_event)) {
1139 * The fork thread didn't abort, so we can
1140 * drop the temporary refcount.
1142 userfaultfd_ctx_put(fork_nctx);
1144 uwq = list_first_entry(&fork_event,
1148 * If fork_event list wasn't empty and in turn
1149 * the event wasn't already released by fork
1150 * (the event is allocated on fork kernel
1151 * stack), put the event back to its place in
1152 * the event_wq. fork_event head will be freed
1153 * as soon as we return so the event cannot
1154 * stay queued there no matter the current
1157 list_del(&uwq->wq.entry);
1158 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1161 * Leave the event in the waitqueue and report
1162 * error to userland if we failed to resolve
1163 * the userfault fork.
1166 userfaultfd_event_complete(ctx, uwq);
1169 * Here the fork thread aborted and the
1170 * refcount from the fork thread on fork_nctx
1171 * has already been released. We still hold
1172 * the reference we took before releasing the
1173 * lock above. If resolve_userfault_fork
1174 * failed we've to drop it because the
1175 * fork_nctx has to be freed in such case. If
1176 * it succeeded we'll hold it because the new
1177 * uffd references it.
1180 userfaultfd_ctx_put(fork_nctx);
1182 spin_unlock_irq(&ctx->event_wqh.lock);
1188 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1190 struct file *file = iocb->ki_filp;
1191 struct userfaultfd_ctx *ctx = file->private_data;
1192 ssize_t _ret, ret = 0;
1193 struct uffd_msg msg;
1194 struct inode *inode = file_inode(file);
1197 if (!userfaultfd_is_initialized(ctx))
1200 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1202 if (iov_iter_count(to) < sizeof(msg))
1203 return ret ? ret : -EINVAL;
1204 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1206 return ret ? ret : _ret;
1207 _ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1209 return ret ? ret : -EFAULT;
1212 * Allow to read more than one fault at time but only
1213 * block if waiting for the very first one.
1219 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1220 struct userfaultfd_wake_range *range)
1222 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1223 /* wake all in the range and autoremove */
1224 if (waitqueue_active(&ctx->fault_pending_wqh))
1225 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1227 if (waitqueue_active(&ctx->fault_wqh))
1228 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1229 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1233 struct userfaultfd_wake_range *range)
1239 * To be sure waitqueue_active() is not reordered by the CPU
1240 * before the pagetable update, use an explicit SMP memory
1241 * barrier here. PT lock release or mmap_read_unlock(mm) still
1242 * have release semantics that can allow the
1243 * waitqueue_active() to be reordered before the pte update.
1248 * Use waitqueue_active because it's very frequent to
1249 * change the address space atomically even if there are no
1250 * userfaults yet. So we take the spinlock only when we're
1251 * sure we've userfaults to wake.
1254 seq = read_seqcount_begin(&ctx->refile_seq);
1255 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1256 waitqueue_active(&ctx->fault_wqh);
1258 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1260 __wake_userfault(ctx, range);
1263 static __always_inline int validate_unaligned_range(
1264 struct mm_struct *mm, __u64 start, __u64 len)
1266 __u64 task_size = mm->task_size;
1268 if (len & ~PAGE_MASK)
1272 if (start < mmap_min_addr)
1274 if (start >= task_size)
1276 if (len > task_size - start)
1278 if (start + len <= start)
1283 static __always_inline int validate_range(struct mm_struct *mm,
1284 __u64 start, __u64 len)
1286 if (start & ~PAGE_MASK)
1289 return validate_unaligned_range(mm, start, len);
1292 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1295 struct mm_struct *mm = ctx->mm;
1296 struct vm_area_struct *vma, *prev, *cur;
1298 struct uffdio_register uffdio_register;
1299 struct uffdio_register __user *user_uffdio_register;
1300 unsigned long vm_flags, new_flags;
1303 unsigned long start, end, vma_end;
1304 struct vma_iterator vmi;
1305 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1307 user_uffdio_register = (struct uffdio_register __user *) arg;
1310 if (copy_from_user(&uffdio_register, user_uffdio_register,
1311 sizeof(uffdio_register)-sizeof(__u64)))
1315 if (!uffdio_register.mode)
1317 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1320 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1321 vm_flags |= VM_UFFD_MISSING;
1322 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1326 vm_flags |= VM_UFFD_WP;
1328 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1332 vm_flags |= VM_UFFD_MINOR;
1335 ret = validate_range(mm, uffdio_register.range.start,
1336 uffdio_register.range.len);
1340 start = uffdio_register.range.start;
1341 end = start + uffdio_register.range.len;
1344 if (!mmget_not_zero(mm))
1348 mmap_write_lock(mm);
1349 vma_iter_init(&vmi, mm, start);
1350 vma = vma_find(&vmi, end);
1355 * If the first vma contains huge pages, make sure start address
1356 * is aligned to huge page size.
1358 if (is_vm_hugetlb_page(vma)) {
1359 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1361 if (start & (vma_hpagesize - 1))
1366 * Search for not compatible vmas.
1369 basic_ioctls = false;
1374 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1375 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1377 /* check not compatible vmas */
1379 if (!vma_can_userfault(cur, vm_flags, wp_async))
1383 * UFFDIO_COPY will fill file holes even without
1384 * PROT_WRITE. This check enforces that if this is a
1385 * MAP_SHARED, the process has write permission to the backing
1386 * file. If VM_MAYWRITE is set it also enforces that on a
1387 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1388 * F_WRITE_SEAL can be taken until the vma is destroyed.
1391 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1395 * If this vma contains ending address, and huge pages
1398 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1399 end > cur->vm_start) {
1400 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1404 if (end & (vma_hpagesize - 1))
1407 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1411 * Check that this vma isn't already owned by a
1412 * different userfaultfd. We can't allow more than one
1413 * userfaultfd to own a single vma simultaneously or we
1414 * wouldn't know which one to deliver the userfaults to.
1417 if (cur->vm_userfaultfd_ctx.ctx &&
1418 cur->vm_userfaultfd_ctx.ctx != ctx)
1422 * Note vmas containing huge pages
1424 if (is_vm_hugetlb_page(cur))
1425 basic_ioctls = true;
1428 } for_each_vma_range(vmi, cur, end);
1431 vma_iter_set(&vmi, start);
1432 prev = vma_prev(&vmi);
1433 if (vma->vm_start < start)
1437 for_each_vma_range(vmi, vma, end) {
1440 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1441 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442 vma->vm_userfaultfd_ctx.ctx != ctx);
1443 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1446 * Nothing to do: this vma is already registered into this
1447 * userfaultfd and with the right tracking mode too.
1449 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450 (vma->vm_flags & vm_flags) == vm_flags)
1453 if (vma->vm_start > start)
1454 start = vma->vm_start;
1455 vma_end = min(end, vma->vm_end);
1457 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1458 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1460 (struct vm_userfaultfd_ctx){ctx});
1467 * In the vma_merge() successful mprotect-like case 8:
1468 * the next vma was merged into the current one and
1469 * the current one has not been updated yet.
1471 vma_start_write(vma);
1472 userfaultfd_set_vm_flags(vma, new_flags);
1473 vma->vm_userfaultfd_ctx.ctx = ctx;
1475 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1476 hugetlb_unshare_all_pmds(vma);
1480 start = vma->vm_end;
1484 mmap_write_unlock(mm);
1489 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1490 UFFD_API_RANGE_IOCTLS;
1493 * Declare the WP ioctl only if the WP mode is
1494 * specified and all checks passed with the range
1496 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1497 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1499 /* CONTINUE ioctl is only supported for MINOR ranges. */
1500 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1501 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1504 * Now that we scanned all vmas we can already tell
1505 * userland which ioctls methods are guaranteed to
1506 * succeed on this range.
1508 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1515 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1518 struct mm_struct *mm = ctx->mm;
1519 struct vm_area_struct *vma, *prev, *cur;
1521 struct uffdio_range uffdio_unregister;
1522 unsigned long new_flags;
1524 unsigned long start, end, vma_end;
1525 const void __user *buf = (void __user *)arg;
1526 struct vma_iterator vmi;
1527 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1530 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1533 ret = validate_range(mm, uffdio_unregister.start,
1534 uffdio_unregister.len);
1538 start = uffdio_unregister.start;
1539 end = start + uffdio_unregister.len;
1542 if (!mmget_not_zero(mm))
1545 mmap_write_lock(mm);
1547 vma_iter_init(&vmi, mm, start);
1548 vma = vma_find(&vmi, end);
1553 * If the first vma contains huge pages, make sure start address
1554 * is aligned to huge page size.
1556 if (is_vm_hugetlb_page(vma)) {
1557 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1559 if (start & (vma_hpagesize - 1))
1564 * Search for not compatible vmas.
1571 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1572 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1575 * Check not compatible vmas, not strictly required
1576 * here as not compatible vmas cannot have an
1577 * userfaultfd_ctx registered on them, but this
1578 * provides for more strict behavior to notice
1579 * unregistration errors.
1581 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1585 } for_each_vma_range(vmi, cur, end);
1588 vma_iter_set(&vmi, start);
1589 prev = vma_prev(&vmi);
1590 if (vma->vm_start < start)
1594 for_each_vma_range(vmi, vma, end) {
1597 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1600 * Nothing to do: this vma is already registered into this
1601 * userfaultfd and with the right tracking mode too.
1603 if (!vma->vm_userfaultfd_ctx.ctx)
1606 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1608 if (vma->vm_start > start)
1609 start = vma->vm_start;
1610 vma_end = min(end, vma->vm_end);
1612 if (userfaultfd_missing(vma)) {
1614 * Wake any concurrent pending userfault while
1615 * we unregister, so they will not hang
1616 * permanently and it avoids userland to call
1617 * UFFDIO_WAKE explicitly.
1619 struct userfaultfd_wake_range range;
1620 range.start = start;
1621 range.len = vma_end - start;
1622 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1625 /* Reset ptes for the whole vma range if wr-protected */
1626 if (userfaultfd_wp(vma))
1627 uffd_wp_range(vma, start, vma_end - start, false);
1629 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1630 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1631 new_flags, NULL_VM_UFFD_CTX);
1638 * In the vma_merge() successful mprotect-like case 8:
1639 * the next vma was merged into the current one and
1640 * the current one has not been updated yet.
1642 vma_start_write(vma);
1643 userfaultfd_set_vm_flags(vma, new_flags);
1644 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1648 start = vma->vm_end;
1652 mmap_write_unlock(mm);
1659 * userfaultfd_wake may be used in combination with the
1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1662 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1666 struct uffdio_range uffdio_wake;
1667 struct userfaultfd_wake_range range;
1668 const void __user *buf = (void __user *)arg;
1671 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1674 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1678 range.start = uffdio_wake.start;
1679 range.len = uffdio_wake.len;
1682 * len == 0 means wake all and we don't want to wake all here,
1683 * so check it again to be sure.
1685 VM_BUG_ON(!range.len);
1687 wake_userfault(ctx, &range);
1694 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1698 struct uffdio_copy uffdio_copy;
1699 struct uffdio_copy __user *user_uffdio_copy;
1700 struct userfaultfd_wake_range range;
1701 uffd_flags_t flags = 0;
1703 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1706 if (atomic_read(&ctx->mmap_changing))
1710 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1711 /* don't copy "copy" last field */
1712 sizeof(uffdio_copy)-sizeof(__s64)))
1715 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1719 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1726 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1727 flags |= MFILL_ATOMIC_WP;
1728 if (mmget_not_zero(ctx->mm)) {
1729 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1730 uffdio_copy.len, flags);
1735 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1740 /* len == 0 would wake all */
1742 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1743 range.start = uffdio_copy.dst;
1744 wake_userfault(ctx, &range);
1746 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1751 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1755 struct uffdio_zeropage uffdio_zeropage;
1756 struct uffdio_zeropage __user *user_uffdio_zeropage;
1757 struct userfaultfd_wake_range range;
1759 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1762 if (atomic_read(&ctx->mmap_changing))
1766 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1767 /* don't copy "zeropage" last field */
1768 sizeof(uffdio_zeropage)-sizeof(__s64)))
1771 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1772 uffdio_zeropage.range.len);
1776 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1779 if (mmget_not_zero(ctx->mm)) {
1780 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1781 uffdio_zeropage.range.len);
1786 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1790 /* len == 0 would wake all */
1793 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 range.start = uffdio_zeropage.range.start;
1795 wake_userfault(ctx, &range);
1797 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1806 struct uffdio_writeprotect uffdio_wp;
1807 struct uffdio_writeprotect __user *user_uffdio_wp;
1808 struct userfaultfd_wake_range range;
1809 bool mode_wp, mode_dontwake;
1811 if (atomic_read(&ctx->mmap_changing))
1814 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1816 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817 sizeof(struct uffdio_writeprotect)))
1820 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821 uffdio_wp.range.len);
1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826 UFFDIO_WRITEPROTECT_MODE_WP))
1829 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1832 if (mode_wp && mode_dontwake)
1835 if (mmget_not_zero(ctx->mm)) {
1836 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1837 uffdio_wp.range.len, mode_wp);
1846 if (!mode_wp && !mode_dontwake) {
1847 range.start = uffdio_wp.range.start;
1848 range.len = uffdio_wp.range.len;
1849 wake_userfault(ctx, &range);
1854 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1857 struct uffdio_continue uffdio_continue;
1858 struct uffdio_continue __user *user_uffdio_continue;
1859 struct userfaultfd_wake_range range;
1860 uffd_flags_t flags = 0;
1862 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1865 if (atomic_read(&ctx->mmap_changing))
1869 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870 /* don't copy the output fields */
1871 sizeof(uffdio_continue) - (sizeof(__s64))))
1874 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875 uffdio_continue.range.len);
1880 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1881 UFFDIO_CONTINUE_MODE_WP))
1883 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1884 flags |= MFILL_ATOMIC_WP;
1886 if (mmget_not_zero(ctx->mm)) {
1887 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1888 uffdio_continue.range.len, flags);
1894 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1899 /* len == 0 would wake all */
1902 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1903 range.start = uffdio_continue.range.start;
1904 wake_userfault(ctx, &range);
1906 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1912 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1915 struct uffdio_poison uffdio_poison;
1916 struct uffdio_poison __user *user_uffdio_poison;
1917 struct userfaultfd_wake_range range;
1919 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1922 if (atomic_read(&ctx->mmap_changing))
1926 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1927 /* don't copy the output fields */
1928 sizeof(uffdio_poison) - (sizeof(__s64))))
1931 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1932 uffdio_poison.range.len);
1937 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1940 if (mmget_not_zero(ctx->mm)) {
1941 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1942 uffdio_poison.range.len, 0);
1948 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1953 /* len == 0 would wake all */
1956 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1957 range.start = uffdio_poison.range.start;
1958 wake_userfault(ctx, &range);
1960 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1966 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1968 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1971 static inline unsigned int uffd_ctx_features(__u64 user_features)
1974 * For the current set of features the bits just coincide. Set
1975 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1977 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1980 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1984 struct uffdio_move uffdio_move;
1985 struct uffdio_move __user *user_uffdio_move;
1986 struct userfaultfd_wake_range range;
1987 struct mm_struct *mm = ctx->mm;
1989 user_uffdio_move = (struct uffdio_move __user *) arg;
1991 if (atomic_read(&ctx->mmap_changing))
1994 if (copy_from_user(&uffdio_move, user_uffdio_move,
1995 /* don't copy "move" last field */
1996 sizeof(uffdio_move)-sizeof(__s64)))
1999 /* Do not allow cross-mm moves. */
2000 if (mm != current->mm)
2003 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2007 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2011 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2012 UFFDIO_MOVE_MODE_DONTWAKE))
2015 if (mmget_not_zero(mm)) {
2016 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2017 uffdio_move.len, uffdio_move.mode);
2023 if (unlikely(put_user(ret, &user_uffdio_move->move)))
2028 /* len == 0 would wake all */
2031 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2032 range.start = uffdio_move.dst;
2033 wake_userfault(ctx, &range);
2035 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2042 * userland asks for a certain API version and we return which bits
2043 * and ioctl commands are implemented in this kernel for such API
2044 * version or -EINVAL if unknown.
2046 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2049 struct uffdio_api uffdio_api;
2050 void __user *buf = (void __user *)arg;
2051 unsigned int ctx_features;
2056 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2058 features = uffdio_api.features;
2060 if (uffdio_api.api != UFFD_API)
2063 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2066 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2067 if (features & UFFD_FEATURE_WP_ASYNC)
2068 features |= UFFD_FEATURE_WP_UNPOPULATED;
2070 /* report all available features and ioctls to userland */
2071 uffdio_api.features = UFFD_API_FEATURES;
2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2073 uffdio_api.features &=
2074 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2077 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2080 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2081 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2082 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2086 if (features & ~uffdio_api.features)
2089 uffdio_api.ioctls = UFFD_API_IOCTLS;
2091 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2094 /* only enable the requested features for this uffd context */
2095 ctx_features = uffd_ctx_features(features);
2097 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2104 memset(&uffdio_api, 0, sizeof(uffdio_api));
2105 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2110 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2114 struct userfaultfd_ctx *ctx = file->private_data;
2116 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2121 ret = userfaultfd_api(ctx, arg);
2123 case UFFDIO_REGISTER:
2124 ret = userfaultfd_register(ctx, arg);
2126 case UFFDIO_UNREGISTER:
2127 ret = userfaultfd_unregister(ctx, arg);
2130 ret = userfaultfd_wake(ctx, arg);
2133 ret = userfaultfd_copy(ctx, arg);
2135 case UFFDIO_ZEROPAGE:
2136 ret = userfaultfd_zeropage(ctx, arg);
2139 ret = userfaultfd_move(ctx, arg);
2141 case UFFDIO_WRITEPROTECT:
2142 ret = userfaultfd_writeprotect(ctx, arg);
2144 case UFFDIO_CONTINUE:
2145 ret = userfaultfd_continue(ctx, arg);
2148 ret = userfaultfd_poison(ctx, arg);
2154 #ifdef CONFIG_PROC_FS
2155 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2157 struct userfaultfd_ctx *ctx = f->private_data;
2158 wait_queue_entry_t *wq;
2159 unsigned long pending = 0, total = 0;
2161 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2162 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2166 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2169 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2172 * If more protocols will be added, there will be all shown
2173 * separated by a space. Like this:
2174 * protocols: aa:... bb:...
2176 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2177 pending, total, UFFD_API, ctx->features,
2178 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2182 static const struct file_operations userfaultfd_fops = {
2183 #ifdef CONFIG_PROC_FS
2184 .show_fdinfo = userfaultfd_show_fdinfo,
2186 .release = userfaultfd_release,
2187 .poll = userfaultfd_poll,
2188 .read_iter = userfaultfd_read_iter,
2189 .unlocked_ioctl = userfaultfd_ioctl,
2190 .compat_ioctl = compat_ptr_ioctl,
2191 .llseek = noop_llseek,
2194 static void init_once_userfaultfd_ctx(void *mem)
2196 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2198 init_waitqueue_head(&ctx->fault_pending_wqh);
2199 init_waitqueue_head(&ctx->fault_wqh);
2200 init_waitqueue_head(&ctx->event_wqh);
2201 init_waitqueue_head(&ctx->fd_wqh);
2202 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2205 static int new_userfaultfd(int flags)
2207 struct userfaultfd_ctx *ctx;
2211 BUG_ON(!current->mm);
2213 /* Check the UFFD_* constants for consistency. */
2214 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2215 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2216 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2218 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2221 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2225 refcount_set(&ctx->refcount, 1);
2228 ctx->released = false;
2229 init_rwsem(&ctx->map_changing_lock);
2230 atomic_set(&ctx->mmap_changing, 0);
2231 ctx->mm = current->mm;
2233 fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2237 /* Create a new inode so that the LSM can block the creation. */
2238 file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2239 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2245 /* prevent the mm struct to be freed */
2247 file->f_mode |= FMODE_NOWAIT;
2248 fd_install(fd, file);
2251 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2255 static inline bool userfaultfd_syscall_allowed(int flags)
2257 /* Userspace-only page faults are always allowed */
2258 if (flags & UFFD_USER_MODE_ONLY)
2262 * The user is requesting a userfaultfd which can handle kernel faults.
2263 * Privileged users are always allowed to do this.
2265 if (capable(CAP_SYS_PTRACE))
2268 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2269 return sysctl_unprivileged_userfaultfd;
2272 SYSCALL_DEFINE1(userfaultfd, int, flags)
2274 if (!userfaultfd_syscall_allowed(flags))
2277 return new_userfaultfd(flags);
2280 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2282 if (cmd != USERFAULTFD_IOC_NEW)
2285 return new_userfaultfd(flags);
2288 static const struct file_operations userfaultfd_dev_fops = {
2289 .unlocked_ioctl = userfaultfd_dev_ioctl,
2290 .compat_ioctl = userfaultfd_dev_ioctl,
2291 .owner = THIS_MODULE,
2292 .llseek = noop_llseek,
2295 static struct miscdevice userfaultfd_misc = {
2296 .minor = MISC_DYNAMIC_MINOR,
2297 .name = "userfaultfd",
2298 .fops = &userfaultfd_dev_fops
2301 static int __init userfaultfd_init(void)
2305 ret = misc_register(&userfaultfd_misc);
2309 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2310 sizeof(struct userfaultfd_ctx),
2312 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2313 init_once_userfaultfd_ctx);
2314 #ifdef CONFIG_SYSCTL
2315 register_sysctl_init("vm", vm_userfaultfd_table);
2319 __initcall(userfaultfd_init);