2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
54 #include "compression.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
118 static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
139 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
140 bytes - PAGE_SIZE, false);
143 static int btrfs_dirty_inode(struct inode *inode);
145 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
146 void btrfs_test_inode_set_ops(struct inode *inode)
148 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
152 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
153 struct inode *inode, struct inode *dir,
154 const struct qstr *qstr)
158 err = btrfs_init_acl(trans, inode, dir);
160 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
165 * this does all the hard work for inserting an inline extent into
166 * the btree. The caller should have done a btrfs_drop_extents so that
167 * no overlapping inline items exist in the btree
169 static int insert_inline_extent(struct btrfs_trans_handle *trans,
170 struct btrfs_path *path, int extent_inserted,
171 struct btrfs_root *root, struct inode *inode,
172 u64 start, size_t size, size_t compressed_size,
174 struct page **compressed_pages)
176 struct extent_buffer *leaf;
177 struct page *page = NULL;
180 struct btrfs_file_extent_item *ei;
183 size_t cur_size = size;
184 unsigned long offset;
186 if (compressed_size && compressed_pages)
187 cur_size = compressed_size;
189 inode_add_bytes(inode, size);
191 if (!extent_inserted) {
192 struct btrfs_key key;
195 key.objectid = btrfs_ino(BTRFS_I(inode));
197 key.type = BTRFS_EXTENT_DATA_KEY;
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
208 leaf = path->nodes[0];
209 ei = btrfs_item_ptr(leaf, path->slots[0],
210 struct btrfs_file_extent_item);
211 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
212 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
213 btrfs_set_file_extent_encryption(leaf, ei, 0);
214 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
215 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
216 ptr = btrfs_file_extent_inline_start(ei);
218 if (compress_type != BTRFS_COMPRESS_NONE) {
221 while (compressed_size > 0) {
222 cpage = compressed_pages[i];
223 cur_size = min_t(unsigned long, compressed_size,
226 kaddr = kmap_atomic(cpage);
227 write_extent_buffer(leaf, kaddr, ptr, cur_size);
228 kunmap_atomic(kaddr);
232 compressed_size -= cur_size;
234 btrfs_set_file_extent_compression(leaf, ei,
237 page = find_get_page(inode->i_mapping,
238 start >> PAGE_SHIFT);
239 btrfs_set_file_extent_compression(leaf, ei, 0);
240 kaddr = kmap_atomic(page);
241 offset = start & (PAGE_SIZE - 1);
242 write_extent_buffer(leaf, kaddr + offset, ptr, size);
243 kunmap_atomic(kaddr);
246 btrfs_mark_buffer_dirty(leaf);
247 btrfs_release_path(path);
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
258 BTRFS_I(inode)->disk_i_size = inode->i_size;
259 ret = btrfs_update_inode(trans, root, inode);
268 * conditionally insert an inline extent into the file. This
269 * does the checks required to make sure the data is small enough
270 * to fit as an inline extent.
272 static noinline int cow_file_range_inline(struct btrfs_root *root,
273 struct inode *inode, u64 start,
274 u64 end, size_t compressed_size,
276 struct page **compressed_pages)
278 struct btrfs_fs_info *fs_info = root->fs_info;
279 struct btrfs_trans_handle *trans;
280 u64 isize = i_size_read(inode);
281 u64 actual_end = min(end + 1, isize);
282 u64 inline_len = actual_end - start;
283 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
284 u64 data_len = inline_len;
286 struct btrfs_path *path;
287 int extent_inserted = 0;
288 u32 extent_item_size;
291 data_len = compressed_size;
294 actual_end > fs_info->sectorsize ||
295 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
297 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
299 data_len > fs_info->max_inline) {
303 path = btrfs_alloc_path();
307 trans = btrfs_join_transaction(root);
309 btrfs_free_path(path);
310 return PTR_ERR(trans);
312 trans->block_rsv = &fs_info->delalloc_block_rsv;
314 if (compressed_size && compressed_pages)
315 extent_item_size = btrfs_file_extent_calc_inline_size(
318 extent_item_size = btrfs_file_extent_calc_inline_size(
321 ret = __btrfs_drop_extents(trans, root, inode, path,
322 start, aligned_end, NULL,
323 1, 1, extent_item_size, &extent_inserted);
325 btrfs_abort_transaction(trans, ret);
329 if (isize > actual_end)
330 inline_len = min_t(u64, isize, actual_end);
331 ret = insert_inline_extent(trans, path, extent_inserted,
333 inline_len, compressed_size,
334 compress_type, compressed_pages);
335 if (ret && ret != -ENOSPC) {
336 btrfs_abort_transaction(trans, ret);
338 } else if (ret == -ENOSPC) {
343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
344 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
348 * Don't forget to free the reserved space, as for inlined extent
349 * it won't count as data extent, free them directly here.
350 * And at reserve time, it's always aligned to page size, so
351 * just free one page here.
353 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
354 btrfs_free_path(path);
355 btrfs_end_transaction(trans);
359 struct async_extent {
364 unsigned long nr_pages;
366 struct list_head list;
371 struct btrfs_root *root;
372 struct page *locked_page;
375 struct list_head extents;
376 struct btrfs_work work;
379 static noinline int add_async_extent(struct async_cow *cow,
380 u64 start, u64 ram_size,
383 unsigned long nr_pages,
386 struct async_extent *async_extent;
388 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
389 BUG_ON(!async_extent); /* -ENOMEM */
390 async_extent->start = start;
391 async_extent->ram_size = ram_size;
392 async_extent->compressed_size = compressed_size;
393 async_extent->pages = pages;
394 async_extent->nr_pages = nr_pages;
395 async_extent->compress_type = compress_type;
396 list_add_tail(&async_extent->list, &cow->extents);
400 static inline int inode_need_compress(struct inode *inode)
402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
405 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
407 /* bad compression ratios */
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
410 if (btrfs_test_opt(fs_info, COMPRESS) ||
411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
412 BTRFS_I(inode)->force_compress)
417 static inline void inode_should_defrag(struct btrfs_inode *inode,
418 u64 start, u64 end, u64 num_bytes, u64 small_write)
420 /* If this is a small write inside eof, kick off a defrag */
421 if (num_bytes < small_write &&
422 (start > 0 || end + 1 < inode->disk_i_size))
423 btrfs_add_inode_defrag(NULL, inode);
427 * we create compressed extents in two phases. The first
428 * phase compresses a range of pages that have already been
429 * locked (both pages and state bits are locked).
431 * This is done inside an ordered work queue, and the compression
432 * is spread across many cpus. The actual IO submission is step
433 * two, and the ordered work queue takes care of making sure that
434 * happens in the same order things were put onto the queue by
435 * writepages and friends.
437 * If this code finds it can't get good compression, it puts an
438 * entry onto the work queue to write the uncompressed bytes. This
439 * makes sure that both compressed inodes and uncompressed inodes
440 * are written in the same order that the flusher thread sent them
443 static noinline void compress_file_range(struct inode *inode,
444 struct page *locked_page,
446 struct async_cow *async_cow,
449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
450 struct btrfs_root *root = BTRFS_I(inode)->root;
452 u64 blocksize = fs_info->sectorsize;
454 u64 isize = i_size_read(inode);
456 struct page **pages = NULL;
457 unsigned long nr_pages;
458 unsigned long total_compressed = 0;
459 unsigned long total_in = 0;
462 int compress_type = fs_info->compress_type;
465 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
468 actual_end = min_t(u64, isize, end + 1);
471 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
472 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
473 nr_pages = min_t(unsigned long, nr_pages,
474 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
477 * we don't want to send crud past the end of i_size through
478 * compression, that's just a waste of CPU time. So, if the
479 * end of the file is before the start of our current
480 * requested range of bytes, we bail out to the uncompressed
481 * cleanup code that can deal with all of this.
483 * It isn't really the fastest way to fix things, but this is a
484 * very uncommon corner.
486 if (actual_end <= start)
487 goto cleanup_and_bail_uncompressed;
489 total_compressed = actual_end - start;
492 * skip compression for a small file range(<=blocksize) that
493 * isn't an inline extent, since it doesn't save disk space at all.
495 if (total_compressed <= blocksize &&
496 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
497 goto cleanup_and_bail_uncompressed;
499 total_compressed = min_t(unsigned long, total_compressed,
500 BTRFS_MAX_UNCOMPRESSED);
501 num_bytes = ALIGN(end - start + 1, blocksize);
502 num_bytes = max(blocksize, num_bytes);
507 * we do compression for mount -o compress and when the
508 * inode has not been flagged as nocompress. This flag can
509 * change at any time if we discover bad compression ratios.
511 if (inode_need_compress(inode)) {
513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
515 /* just bail out to the uncompressed code */
519 if (BTRFS_I(inode)->force_compress)
520 compress_type = BTRFS_I(inode)->force_compress;
523 * we need to call clear_page_dirty_for_io on each
524 * page in the range. Otherwise applications with the file
525 * mmap'd can wander in and change the page contents while
526 * we are compressing them.
528 * If the compression fails for any reason, we set the pages
529 * dirty again later on.
531 extent_range_clear_dirty_for_io(inode, start, end);
533 ret = btrfs_compress_pages(compress_type,
534 inode->i_mapping, start,
541 unsigned long offset = total_compressed &
543 struct page *page = pages[nr_pages - 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr = kmap_atomic(page);
551 memset(kaddr + offset, 0,
553 kunmap_atomic(kaddr);
560 /* lets try to make an inline extent */
561 if (ret || total_in < (actual_end - start)) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret = cow_file_range_inline(root, inode, start, end,
566 0, BTRFS_COMPRESS_NONE, NULL);
568 /* try making a compressed inline extent */
569 ret = cow_file_range_inline(root, inode, start, end,
571 compress_type, pages);
574 unsigned long clear_flags = EXTENT_DELALLOC |
575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
576 unsigned long page_error_op;
578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 extent_clear_unlock_delalloc(inode, start, end, end,
594 btrfs_free_reserved_data_space_noquota(inode,
603 * we aren't doing an inline extent round the compressed size
604 * up to a block size boundary so the allocator does sane
607 total_compressed = ALIGN(total_compressed, blocksize);
610 * one last check to make sure the compression is really a
611 * win, compare the page count read with the blocks on disk
613 total_in = ALIGN(total_in, PAGE_SIZE);
614 if (total_compressed >= total_in) {
617 num_bytes = total_in;
621 * The async work queues will take care of doing actual
622 * allocation on disk for these compressed pages, and
623 * will submit them to the elevator.
625 add_async_extent(async_cow, start, num_bytes,
626 total_compressed, pages, nr_pages,
629 if (start + num_bytes < end) {
640 * the compression code ran but failed to make things smaller,
641 * free any pages it allocated and our page pointer array
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
649 total_compressed = 0;
652 /* flag the file so we don't compress in the future */
653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
654 !(BTRFS_I(inode)->force_compress)) {
655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
658 cleanup_and_bail_uncompressed:
660 * No compression, but we still need to write the pages in the file
661 * we've been given so far. redirty the locked page if it corresponds
662 * to our extent and set things up for the async work queue to run
663 * cow_file_range to do the normal delalloc dance.
665 if (page_offset(locked_page) >= start &&
666 page_offset(locked_page) <= end)
667 __set_page_dirty_nobuffers(locked_page);
668 /* unlocked later on in the async handlers */
671 extent_range_redirty_for_io(inode, start, end);
672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 BTRFS_COMPRESS_NONE);
679 for (i = 0; i < nr_pages; i++) {
680 WARN_ON(pages[i]->mapping);
686 static void free_async_extent_pages(struct async_extent *async_extent)
690 if (!async_extent->pages)
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
695 put_page(async_extent->pages[i]);
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
703 * phase two of compressed writeback. This is the ordered portion
704 * of the code, which only gets called in the order the work was
705 * queued. We walk all the async extents created by compress_file_range
706 * and send them down to the disk.
708 static noinline void submit_compressed_extents(struct inode *inode,
709 struct async_cow *async_cow)
711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
712 struct async_extent *async_extent;
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct btrfs_root *root = BTRFS_I(inode)->root;
717 struct extent_io_tree *io_tree;
721 while (!list_empty(&async_cow->extents)) {
722 async_extent = list_entry(async_cow->extents.next,
723 struct async_extent, list);
724 list_del(&async_extent->list);
726 io_tree = &BTRFS_I(inode)->io_tree;
729 /* did the compression code fall back to uncompressed IO? */
730 if (!async_extent->pages) {
731 int page_started = 0;
732 unsigned long nr_written = 0;
734 lock_extent(io_tree, async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
738 /* allocate blocks */
739 ret = cow_file_range(inode, async_cow->locked_page,
741 async_extent->start +
742 async_extent->ram_size - 1,
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
756 if (!page_started && !ret)
757 extent_write_locked_range(io_tree,
758 inode, async_extent->start,
759 async_extent->start +
760 async_extent->ram_size - 1,
764 unlock_page(async_cow->locked_page);
770 lock_extent(io_tree, async_extent->start,
771 async_extent->start + async_extent->ram_size - 1);
773 ret = btrfs_reserve_extent(root, async_extent->ram_size,
774 async_extent->compressed_size,
775 async_extent->compressed_size,
776 0, alloc_hint, &ins, 1, 1);
778 free_async_extent_pages(async_extent);
780 if (ret == -ENOSPC) {
781 unlock_extent(io_tree, async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1);
786 * we need to redirty the pages if we decide to
787 * fallback to uncompressed IO, otherwise we
788 * will not submit these pages down to lower
791 extent_range_redirty_for_io(inode,
793 async_extent->start +
794 async_extent->ram_size - 1);
801 * here we're doing allocation and writeback of the
804 em = create_io_em(inode, async_extent->start,
805 async_extent->ram_size, /* len */
806 async_extent->start, /* orig_start */
807 ins.objectid, /* block_start */
808 ins.offset, /* block_len */
809 ins.offset, /* orig_block_len */
810 async_extent->ram_size, /* ram_bytes */
811 async_extent->compress_type,
812 BTRFS_ORDERED_COMPRESSED);
814 /* ret value is not necessary due to void function */
815 goto out_free_reserve;
818 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->ram_size,
823 BTRFS_ORDERED_COMPRESSED,
824 async_extent->compress_type);
826 btrfs_drop_extent_cache(BTRFS_I(inode),
828 async_extent->start +
829 async_extent->ram_size - 1, 0);
830 goto out_free_reserve;
832 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
835 * clear dirty, set writeback and unlock the pages.
837 extent_clear_unlock_delalloc(inode, async_extent->start,
838 async_extent->start +
839 async_extent->ram_size - 1,
840 async_extent->start +
841 async_extent->ram_size - 1,
842 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
843 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
845 ret = btrfs_submit_compressed_write(inode,
847 async_extent->ram_size,
849 ins.offset, async_extent->pages,
850 async_extent->nr_pages);
852 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
853 struct page *p = async_extent->pages[0];
854 const u64 start = async_extent->start;
855 const u64 end = start + async_extent->ram_size - 1;
857 p->mapping = inode->i_mapping;
858 tree->ops->writepage_end_io_hook(p, start, end,
861 extent_clear_unlock_delalloc(inode, start, end, end,
865 free_async_extent_pages(async_extent);
867 alloc_hint = ins.objectid + ins.offset;
873 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
874 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
876 extent_clear_unlock_delalloc(inode, async_extent->start,
877 async_extent->start +
878 async_extent->ram_size - 1,
879 async_extent->start +
880 async_extent->ram_size - 1,
881 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
882 EXTENT_DELALLOC_NEW |
883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
887 free_async_extent_pages(async_extent);
892 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 struct extent_map *em;
899 read_lock(&em_tree->lock);
900 em = search_extent_mapping(em_tree, start, num_bytes);
903 * if block start isn't an actual block number then find the
904 * first block in this inode and use that as a hint. If that
905 * block is also bogus then just don't worry about it.
907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
909 em = search_extent_mapping(em_tree, 0, 0);
910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 alloc_hint = em->block_start;
915 alloc_hint = em->block_start;
919 read_unlock(&em_tree->lock);
925 * when extent_io.c finds a delayed allocation range in the file,
926 * the call backs end up in this code. The basic idea is to
927 * allocate extents on disk for the range, and create ordered data structs
928 * in ram to track those extents.
930 * locked_page is the page that writepage had locked already. We use
931 * it to make sure we don't do extra locks or unlocks.
933 * *page_started is set to one if we unlock locked_page and do everything
934 * required to start IO on it. It may be clean and already done with
937 static noinline int cow_file_range(struct inode *inode,
938 struct page *locked_page,
939 u64 start, u64 end, u64 delalloc_end,
940 int *page_started, unsigned long *nr_written,
941 int unlock, struct btrfs_dedupe_hash *hash)
943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
944 struct btrfs_root *root = BTRFS_I(inode)->root;
947 unsigned long ram_size;
949 u64 cur_alloc_size = 0;
950 u64 blocksize = fs_info->sectorsize;
951 struct btrfs_key ins;
952 struct extent_map *em;
954 unsigned long page_ops;
955 bool extent_reserved = false;
958 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
964 num_bytes = ALIGN(end - start + 1, blocksize);
965 num_bytes = max(blocksize, num_bytes);
966 disk_num_bytes = num_bytes;
968 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
971 /* lets try to make an inline extent */
972 ret = cow_file_range_inline(root, inode, start, end, 0,
973 BTRFS_COMPRESS_NONE, NULL);
975 extent_clear_unlock_delalloc(inode, start, end,
977 EXTENT_LOCKED | EXTENT_DELALLOC |
978 EXTENT_DELALLOC_NEW |
979 EXTENT_DEFRAG, PAGE_UNLOCK |
980 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
982 btrfs_free_reserved_data_space_noquota(inode, start,
984 *nr_written = *nr_written +
985 (end - start + PAGE_SIZE) / PAGE_SIZE;
988 } else if (ret < 0) {
993 BUG_ON(disk_num_bytes >
994 btrfs_super_total_bytes(fs_info->super_copy));
996 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
997 btrfs_drop_extent_cache(BTRFS_I(inode), start,
998 start + num_bytes - 1, 0);
1000 while (disk_num_bytes > 0) {
1001 cur_alloc_size = disk_num_bytes;
1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1003 fs_info->sectorsize, 0, alloc_hint,
1007 cur_alloc_size = ins.offset;
1008 extent_reserved = true;
1010 ram_size = ins.offset;
1011 em = create_io_em(inode, start, ins.offset, /* len */
1012 start, /* orig_start */
1013 ins.objectid, /* block_start */
1014 ins.offset, /* block_len */
1015 ins.offset, /* orig_block_len */
1016 ram_size, /* ram_bytes */
1017 BTRFS_COMPRESS_NONE, /* compress_type */
1018 BTRFS_ORDERED_REGULAR /* type */);
1021 free_extent_map(em);
1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 ram_size, cur_alloc_size, 0);
1026 goto out_drop_extent_cache;
1028 if (root->root_key.objectid ==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 ret = btrfs_reloc_clone_csums(inode, start,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 start + ram_size - 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops = unlock ? PAGE_UNLOCK : 0;
1058 page_ops |= PAGE_SET_PRIVATE2;
1060 extent_clear_unlock_delalloc(inode, start,
1061 start + ram_size - 1,
1062 delalloc_end, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 if (disk_num_bytes < cur_alloc_size)
1068 disk_num_bytes -= cur_alloc_size;
1069 num_bytes -= cur_alloc_size;
1070 alloc_hint = ins.objectid + ins.offset;
1071 start += cur_alloc_size;
1072 extent_reserved = false;
1075 * btrfs_reloc_clone_csums() error, since start is increased
1076 * extent_clear_unlock_delalloc() at out_unlock label won't
1077 * free metadata of current ordered extent, we're OK to exit.
1085 out_drop_extent_cache:
1086 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1088 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1089 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1091 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1092 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1093 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1096 * If we reserved an extent for our delalloc range (or a subrange) and
1097 * failed to create the respective ordered extent, then it means that
1098 * when we reserved the extent we decremented the extent's size from
1099 * the data space_info's bytes_may_use counter and incremented the
1100 * space_info's bytes_reserved counter by the same amount. We must make
1101 * sure extent_clear_unlock_delalloc() does not try to decrement again
1102 * the data space_info's bytes_may_use counter, therefore we do not pass
1103 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 if (extent_reserved) {
1106 extent_clear_unlock_delalloc(inode, start,
1107 start + cur_alloc_size,
1108 start + cur_alloc_size,
1112 start += cur_alloc_size;
1116 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 clear_bits | EXTENT_CLEAR_DATA_RESV,
1124 * work queue call back to started compression on a file and pages
1126 static noinline void async_cow_start(struct btrfs_work *work)
1128 struct async_cow *async_cow;
1130 async_cow = container_of(work, struct async_cow, work);
1132 compress_file_range(async_cow->inode, async_cow->locked_page,
1133 async_cow->start, async_cow->end, async_cow,
1135 if (num_added == 0) {
1136 btrfs_add_delayed_iput(async_cow->inode);
1137 async_cow->inode = NULL;
1142 * work queue call back to submit previously compressed pages
1144 static noinline void async_cow_submit(struct btrfs_work *work)
1146 struct btrfs_fs_info *fs_info;
1147 struct async_cow *async_cow;
1148 struct btrfs_root *root;
1149 unsigned long nr_pages;
1151 async_cow = container_of(work, struct async_cow, work);
1153 root = async_cow->root;
1154 fs_info = root->fs_info;
1155 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1159 * atomic_sub_return implies a barrier for waitqueue_active
1161 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1163 waitqueue_active(&fs_info->async_submit_wait))
1164 wake_up(&fs_info->async_submit_wait);
1166 if (async_cow->inode)
1167 submit_compressed_extents(async_cow->inode, async_cow);
1170 static noinline void async_cow_free(struct btrfs_work *work)
1172 struct async_cow *async_cow;
1173 async_cow = container_of(work, struct async_cow, work);
1174 if (async_cow->inode)
1175 btrfs_add_delayed_iput(async_cow->inode);
1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 u64 start, u64 end, int *page_started,
1181 unsigned long *nr_written)
1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1184 struct async_cow *async_cow;
1185 struct btrfs_root *root = BTRFS_I(inode)->root;
1186 unsigned long nr_pages;
1189 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1190 1, 0, NULL, GFP_NOFS);
1191 while (start < end) {
1192 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1193 BUG_ON(!async_cow); /* -ENOMEM */
1194 async_cow->inode = igrab(inode);
1195 async_cow->root = root;
1196 async_cow->locked_page = locked_page;
1197 async_cow->start = start;
1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1203 cur_end = min(end, start + SZ_512K - 1);
1205 async_cow->end = cur_end;
1206 INIT_LIST_HEAD(&async_cow->extents);
1208 btrfs_init_work(&async_cow->work,
1209 btrfs_delalloc_helper,
1210 async_cow_start, async_cow_submit,
1213 nr_pages = (cur_end - start + PAGE_SIZE) >>
1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1219 while (atomic_read(&fs_info->async_submit_draining) &&
1220 atomic_read(&fs_info->async_delalloc_pages)) {
1221 wait_event(fs_info->async_submit_wait,
1222 (atomic_read(&fs_info->async_delalloc_pages) ==
1226 *nr_written += nr_pages;
1227 start = cur_end + 1;
1233 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1234 u64 bytenr, u64 num_bytes)
1237 struct btrfs_ordered_sum *sums;
1240 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1241 bytenr + num_bytes - 1, &list, 0);
1242 if (ret == 0 && list_empty(&list))
1245 while (!list_empty(&list)) {
1246 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1247 list_del(&sums->list);
1254 * when nowcow writeback call back. This checks for snapshots or COW copies
1255 * of the extents that exist in the file, and COWs the file as required.
1257 * If no cow copies or snapshots exist, we write directly to the existing
1260 static noinline int run_delalloc_nocow(struct inode *inode,
1261 struct page *locked_page,
1262 u64 start, u64 end, int *page_started, int force,
1263 unsigned long *nr_written)
1265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1266 struct btrfs_root *root = BTRFS_I(inode)->root;
1267 struct extent_buffer *leaf;
1268 struct btrfs_path *path;
1269 struct btrfs_file_extent_item *fi;
1270 struct btrfs_key found_key;
1271 struct extent_map *em;
1286 u64 ino = btrfs_ino(BTRFS_I(inode));
1288 path = btrfs_alloc_path();
1290 extent_clear_unlock_delalloc(inode, start, end, end,
1292 EXTENT_LOCKED | EXTENT_DELALLOC |
1293 EXTENT_DO_ACCOUNTING |
1294 EXTENT_DEFRAG, PAGE_UNLOCK |
1296 PAGE_SET_WRITEBACK |
1297 PAGE_END_WRITEBACK);
1301 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1303 cow_start = (u64)-1;
1306 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1310 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 leaf = path->nodes[0];
1312 btrfs_item_key_to_cpu(leaf, &found_key,
1313 path->slots[0] - 1);
1314 if (found_key.objectid == ino &&
1315 found_key.type == BTRFS_EXTENT_DATA_KEY)
1320 leaf = path->nodes[0];
1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 ret = btrfs_next_leaf(root, path);
1327 leaf = path->nodes[0];
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1335 if (found_key.objectid > ino)
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1343 found_key.offset > end)
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
1365 if (extent_end <= start) {
1369 if (disk_bytenr == 0)
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1377 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1379 if (btrfs_cross_ref_exist(root, ino,
1381 extent_offset, disk_bytenr))
1383 disk_bytenr += extent_offset;
1384 disk_bytenr += cur_offset - found_key.offset;
1385 num_bytes = min(end + 1, extent_end) - cur_offset;
1387 * if there are pending snapshots for this root,
1388 * we fall into common COW way.
1391 err = btrfs_start_write_no_snapshoting(root);
1396 * force cow if csum exists in the range.
1397 * this ensure that csum for a given extent are
1398 * either valid or do not exist.
1400 if (csum_exist_in_range(fs_info, disk_bytenr,
1403 btrfs_end_write_no_snapshoting(root);
1406 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1408 btrfs_end_write_no_snapshoting(root);
1412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1413 extent_end = found_key.offset +
1414 btrfs_file_extent_inline_len(leaf,
1415 path->slots[0], fi);
1416 extent_end = ALIGN(extent_end,
1417 fs_info->sectorsize);
1422 if (extent_end <= start) {
1424 if (!nolock && nocow)
1425 btrfs_end_write_no_snapshoting(root);
1427 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1431 if (cow_start == (u64)-1)
1432 cow_start = cur_offset;
1433 cur_offset = extent_end;
1434 if (cur_offset > end)
1440 btrfs_release_path(path);
1441 if (cow_start != (u64)-1) {
1442 ret = cow_file_range(inode, locked_page,
1443 cow_start, found_key.offset - 1,
1444 end, page_started, nr_written, 1,
1447 if (!nolock && nocow)
1448 btrfs_end_write_no_snapshoting(root);
1450 btrfs_dec_nocow_writers(fs_info,
1454 cow_start = (u64)-1;
1457 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1458 u64 orig_start = found_key.offset - extent_offset;
1460 em = create_io_em(inode, cur_offset, num_bytes,
1462 disk_bytenr, /* block_start */
1463 num_bytes, /* block_len */
1464 disk_num_bytes, /* orig_block_len */
1465 ram_bytes, BTRFS_COMPRESS_NONE,
1466 BTRFS_ORDERED_PREALLOC);
1468 if (!nolock && nocow)
1469 btrfs_end_write_no_snapshoting(root);
1471 btrfs_dec_nocow_writers(fs_info,
1476 free_extent_map(em);
1479 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1480 type = BTRFS_ORDERED_PREALLOC;
1482 type = BTRFS_ORDERED_NOCOW;
1485 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1486 num_bytes, num_bytes, type);
1488 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1489 BUG_ON(ret); /* -ENOMEM */
1491 if (root->root_key.objectid ==
1492 BTRFS_DATA_RELOC_TREE_OBJECTID)
1494 * Error handled later, as we must prevent
1495 * extent_clear_unlock_delalloc() in error handler
1496 * from freeing metadata of created ordered extent.
1498 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1501 extent_clear_unlock_delalloc(inode, cur_offset,
1502 cur_offset + num_bytes - 1, end,
1503 locked_page, EXTENT_LOCKED |
1505 EXTENT_CLEAR_DATA_RESV,
1506 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1508 if (!nolock && nocow)
1509 btrfs_end_write_no_snapshoting(root);
1510 cur_offset = extent_end;
1513 * btrfs_reloc_clone_csums() error, now we're OK to call error
1514 * handler, as metadata for created ordered extent will only
1515 * be freed by btrfs_finish_ordered_io().
1519 if (cur_offset > end)
1522 btrfs_release_path(path);
1524 if (cur_offset <= end && cow_start == (u64)-1) {
1525 cow_start = cur_offset;
1529 if (cow_start != (u64)-1) {
1530 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1531 page_started, nr_written, 1, NULL);
1537 if (ret && cur_offset < end)
1538 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1539 locked_page, EXTENT_LOCKED |
1540 EXTENT_DELALLOC | EXTENT_DEFRAG |
1541 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1543 PAGE_SET_WRITEBACK |
1544 PAGE_END_WRITEBACK);
1545 btrfs_free_path(path);
1549 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1552 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1553 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1557 * @defrag_bytes is a hint value, no spinlock held here,
1558 * if is not zero, it means the file is defragging.
1559 * Force cow if given extent needs to be defragged.
1561 if (BTRFS_I(inode)->defrag_bytes &&
1562 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1563 EXTENT_DEFRAG, 0, NULL))
1570 * extent_io.c call back to do delayed allocation processing
1572 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1573 u64 start, u64 end, int *page_started,
1574 unsigned long *nr_written)
1577 int force_cow = need_force_cow(inode, start, end);
1579 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1580 ret = run_delalloc_nocow(inode, locked_page, start, end,
1581 page_started, 1, nr_written);
1582 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1583 ret = run_delalloc_nocow(inode, locked_page, start, end,
1584 page_started, 0, nr_written);
1585 } else if (!inode_need_compress(inode)) {
1586 ret = cow_file_range(inode, locked_page, start, end, end,
1587 page_started, nr_written, 1, NULL);
1589 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1590 &BTRFS_I(inode)->runtime_flags);
1591 ret = cow_file_range_async(inode, locked_page, start, end,
1592 page_started, nr_written);
1595 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1599 static void btrfs_split_extent_hook(struct inode *inode,
1600 struct extent_state *orig, u64 split)
1604 /* not delalloc, ignore it */
1605 if (!(orig->state & EXTENT_DELALLOC))
1608 size = orig->end - orig->start + 1;
1609 if (size > BTRFS_MAX_EXTENT_SIZE) {
1614 * See the explanation in btrfs_merge_extent_hook, the same
1615 * applies here, just in reverse.
1617 new_size = orig->end - split + 1;
1618 num_extents = count_max_extents(new_size);
1619 new_size = split - orig->start;
1620 num_extents += count_max_extents(new_size);
1621 if (count_max_extents(size) >= num_extents)
1625 spin_lock(&BTRFS_I(inode)->lock);
1626 BTRFS_I(inode)->outstanding_extents++;
1627 spin_unlock(&BTRFS_I(inode)->lock);
1631 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1632 * extents so we can keep track of new extents that are just merged onto old
1633 * extents, such as when we are doing sequential writes, so we can properly
1634 * account for the metadata space we'll need.
1636 static void btrfs_merge_extent_hook(struct inode *inode,
1637 struct extent_state *new,
1638 struct extent_state *other)
1640 u64 new_size, old_size;
1643 /* not delalloc, ignore it */
1644 if (!(other->state & EXTENT_DELALLOC))
1647 if (new->start > other->start)
1648 new_size = new->end - other->start + 1;
1650 new_size = other->end - new->start + 1;
1652 /* we're not bigger than the max, unreserve the space and go */
1653 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1654 spin_lock(&BTRFS_I(inode)->lock);
1655 BTRFS_I(inode)->outstanding_extents--;
1656 spin_unlock(&BTRFS_I(inode)->lock);
1661 * We have to add up either side to figure out how many extents were
1662 * accounted for before we merged into one big extent. If the number of
1663 * extents we accounted for is <= the amount we need for the new range
1664 * then we can return, otherwise drop. Think of it like this
1668 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1669 * need 2 outstanding extents, on one side we have 1 and the other side
1670 * we have 1 so they are == and we can return. But in this case
1672 * [MAX_SIZE+4k][MAX_SIZE+4k]
1674 * Each range on their own accounts for 2 extents, but merged together
1675 * they are only 3 extents worth of accounting, so we need to drop in
1678 old_size = other->end - other->start + 1;
1679 num_extents = count_max_extents(old_size);
1680 old_size = new->end - new->start + 1;
1681 num_extents += count_max_extents(old_size);
1682 if (count_max_extents(new_size) >= num_extents)
1685 spin_lock(&BTRFS_I(inode)->lock);
1686 BTRFS_I(inode)->outstanding_extents--;
1687 spin_unlock(&BTRFS_I(inode)->lock);
1690 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1691 struct inode *inode)
1693 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1695 spin_lock(&root->delalloc_lock);
1696 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1697 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1698 &root->delalloc_inodes);
1699 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1700 &BTRFS_I(inode)->runtime_flags);
1701 root->nr_delalloc_inodes++;
1702 if (root->nr_delalloc_inodes == 1) {
1703 spin_lock(&fs_info->delalloc_root_lock);
1704 BUG_ON(!list_empty(&root->delalloc_root));
1705 list_add_tail(&root->delalloc_root,
1706 &fs_info->delalloc_roots);
1707 spin_unlock(&fs_info->delalloc_root_lock);
1710 spin_unlock(&root->delalloc_lock);
1713 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1714 struct btrfs_inode *inode)
1716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1718 spin_lock(&root->delalloc_lock);
1719 if (!list_empty(&inode->delalloc_inodes)) {
1720 list_del_init(&inode->delalloc_inodes);
1721 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1722 &inode->runtime_flags);
1723 root->nr_delalloc_inodes--;
1724 if (!root->nr_delalloc_inodes) {
1725 spin_lock(&fs_info->delalloc_root_lock);
1726 BUG_ON(list_empty(&root->delalloc_root));
1727 list_del_init(&root->delalloc_root);
1728 spin_unlock(&fs_info->delalloc_root_lock);
1731 spin_unlock(&root->delalloc_lock);
1735 * extent_io.c set_bit_hook, used to track delayed allocation
1736 * bytes in this file, and to maintain the list of inodes that
1737 * have pending delalloc work to be done.
1739 static void btrfs_set_bit_hook(struct inode *inode,
1740 struct extent_state *state, unsigned *bits)
1743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1745 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1748 * set_bit and clear bit hooks normally require _irqsave/restore
1749 * but in this case, we are only testing for the DELALLOC
1750 * bit, which is only set or cleared with irqs on
1752 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1753 struct btrfs_root *root = BTRFS_I(inode)->root;
1754 u64 len = state->end + 1 - state->start;
1755 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1757 if (*bits & EXTENT_FIRST_DELALLOC) {
1758 *bits &= ~EXTENT_FIRST_DELALLOC;
1760 spin_lock(&BTRFS_I(inode)->lock);
1761 BTRFS_I(inode)->outstanding_extents++;
1762 spin_unlock(&BTRFS_I(inode)->lock);
1765 /* For sanity tests */
1766 if (btrfs_is_testing(fs_info))
1769 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1770 fs_info->delalloc_batch);
1771 spin_lock(&BTRFS_I(inode)->lock);
1772 BTRFS_I(inode)->delalloc_bytes += len;
1773 if (*bits & EXTENT_DEFRAG)
1774 BTRFS_I(inode)->defrag_bytes += len;
1775 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1776 &BTRFS_I(inode)->runtime_flags))
1777 btrfs_add_delalloc_inodes(root, inode);
1778 spin_unlock(&BTRFS_I(inode)->lock);
1781 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1782 (*bits & EXTENT_DELALLOC_NEW)) {
1783 spin_lock(&BTRFS_I(inode)->lock);
1784 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1786 spin_unlock(&BTRFS_I(inode)->lock);
1791 * extent_io.c clear_bit_hook, see set_bit_hook for why
1793 static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
1794 struct extent_state *state,
1797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1798 u64 len = state->end + 1 - state->start;
1799 u32 num_extents = count_max_extents(len);
1801 spin_lock(&inode->lock);
1802 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1803 inode->defrag_bytes -= len;
1804 spin_unlock(&inode->lock);
1807 * set_bit and clear bit hooks normally require _irqsave/restore
1808 * but in this case, we are only testing for the DELALLOC
1809 * bit, which is only set or cleared with irqs on
1811 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1812 struct btrfs_root *root = inode->root;
1813 bool do_list = !btrfs_is_free_space_inode(inode);
1815 if (*bits & EXTENT_FIRST_DELALLOC) {
1816 *bits &= ~EXTENT_FIRST_DELALLOC;
1817 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1818 spin_lock(&inode->lock);
1819 inode->outstanding_extents -= num_extents;
1820 spin_unlock(&inode->lock);
1824 * We don't reserve metadata space for space cache inodes so we
1825 * don't need to call dellalloc_release_metadata if there is an
1828 if (*bits & EXTENT_CLEAR_META_RESV &&
1829 root != fs_info->tree_root)
1830 btrfs_delalloc_release_metadata(inode, len);
1832 /* For sanity tests. */
1833 if (btrfs_is_testing(fs_info))
1836 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1837 do_list && !(state->state & EXTENT_NORESERVE) &&
1838 (*bits & EXTENT_CLEAR_DATA_RESV))
1839 btrfs_free_reserved_data_space_noquota(
1843 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1844 fs_info->delalloc_batch);
1845 spin_lock(&inode->lock);
1846 inode->delalloc_bytes -= len;
1847 if (do_list && inode->delalloc_bytes == 0 &&
1848 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1849 &inode->runtime_flags))
1850 btrfs_del_delalloc_inode(root, inode);
1851 spin_unlock(&inode->lock);
1854 if ((state->state & EXTENT_DELALLOC_NEW) &&
1855 (*bits & EXTENT_DELALLOC_NEW)) {
1856 spin_lock(&inode->lock);
1857 ASSERT(inode->new_delalloc_bytes >= len);
1858 inode->new_delalloc_bytes -= len;
1859 spin_unlock(&inode->lock);
1864 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1865 * we don't create bios that span stripes or chunks
1867 * return 1 if page cannot be merged to bio
1868 * return 0 if page can be merged to bio
1869 * return error otherwise
1871 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1872 size_t size, struct bio *bio,
1873 unsigned long bio_flags)
1875 struct inode *inode = page->mapping->host;
1876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1877 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1882 if (bio_flags & EXTENT_BIO_COMPRESSED)
1885 length = bio->bi_iter.bi_size;
1886 map_length = length;
1887 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1891 if (map_length < length + size)
1897 * in order to insert checksums into the metadata in large chunks,
1898 * we wait until bio submission time. All the pages in the bio are
1899 * checksummed and sums are attached onto the ordered extent record.
1901 * At IO completion time the cums attached on the ordered extent record
1902 * are inserted into the btree
1904 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1905 int mirror_num, unsigned long bio_flags,
1910 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1911 BUG_ON(ret); /* -ENOMEM */
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1923 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1924 int mirror_num, unsigned long bio_flags,
1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1930 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1932 bio->bi_error = ret;
1939 * extent_io.c submission hook. This does the right thing for csum calculation
1940 * on write, or reading the csums from the tree before a read
1942 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1943 int mirror_num, unsigned long bio_flags,
1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1947 struct btrfs_root *root = BTRFS_I(inode)->root;
1948 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1951 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1953 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1955 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1956 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1958 if (bio_op(bio) != REQ_OP_WRITE) {
1959 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1963 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1964 ret = btrfs_submit_compressed_read(inode, bio,
1968 } else if (!skip_sum) {
1969 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1974 } else if (async && !skip_sum) {
1975 /* csum items have already been cloned */
1976 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1978 /* we're doing a write, do the async checksumming */
1979 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1980 bio_flags, bio_offset,
1981 __btrfs_submit_bio_start,
1982 __btrfs_submit_bio_done);
1984 } else if (!skip_sum) {
1985 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1991 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1995 bio->bi_error = ret;
2002 * given a list of ordered sums record them in the inode. This happens
2003 * at IO completion time based on sums calculated at bio submission time.
2005 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2006 struct inode *inode, struct list_head *list)
2008 struct btrfs_ordered_sum *sum;
2010 list_for_each_entry(sum, list, list) {
2011 trans->adding_csums = 1;
2012 btrfs_csum_file_blocks(trans,
2013 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2014 trans->adding_csums = 0;
2019 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2020 struct extent_state **cached_state, int dedupe)
2022 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2023 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2027 /* see btrfs_writepage_start_hook for details on why this is required */
2028 struct btrfs_writepage_fixup {
2030 struct btrfs_work work;
2033 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2035 struct btrfs_writepage_fixup *fixup;
2036 struct btrfs_ordered_extent *ordered;
2037 struct extent_state *cached_state = NULL;
2039 struct inode *inode;
2044 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2048 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2049 ClearPageChecked(page);
2053 inode = page->mapping->host;
2054 page_start = page_offset(page);
2055 page_end = page_offset(page) + PAGE_SIZE - 1;
2057 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2060 /* already ordered? We're done */
2061 if (PagePrivate2(page))
2064 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2067 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2068 page_end, &cached_state, GFP_NOFS);
2070 btrfs_start_ordered_extent(inode, ordered, 1);
2071 btrfs_put_ordered_extent(ordered);
2075 ret = btrfs_delalloc_reserve_space(inode, page_start,
2078 mapping_set_error(page->mapping, ret);
2079 end_extent_writepage(page, ret, page_start, page_end);
2080 ClearPageChecked(page);
2084 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2086 ClearPageChecked(page);
2087 set_page_dirty(page);
2089 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2090 &cached_state, GFP_NOFS);
2098 * There are a few paths in the higher layers of the kernel that directly
2099 * set the page dirty bit without asking the filesystem if it is a
2100 * good idea. This causes problems because we want to make sure COW
2101 * properly happens and the data=ordered rules are followed.
2103 * In our case any range that doesn't have the ORDERED bit set
2104 * hasn't been properly setup for IO. We kick off an async process
2105 * to fix it up. The async helper will wait for ordered extents, set
2106 * the delalloc bit and make it safe to write the page.
2108 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2110 struct inode *inode = page->mapping->host;
2111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2112 struct btrfs_writepage_fixup *fixup;
2114 /* this page is properly in the ordered list */
2115 if (TestClearPagePrivate2(page))
2118 if (PageChecked(page))
2121 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2125 SetPageChecked(page);
2127 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2128 btrfs_writepage_fixup_worker, NULL, NULL);
2130 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2134 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2135 struct inode *inode, u64 file_pos,
2136 u64 disk_bytenr, u64 disk_num_bytes,
2137 u64 num_bytes, u64 ram_bytes,
2138 u8 compression, u8 encryption,
2139 u16 other_encoding, int extent_type)
2141 struct btrfs_root *root = BTRFS_I(inode)->root;
2142 struct btrfs_file_extent_item *fi;
2143 struct btrfs_path *path;
2144 struct extent_buffer *leaf;
2145 struct btrfs_key ins;
2146 int extent_inserted = 0;
2149 path = btrfs_alloc_path();
2154 * we may be replacing one extent in the tree with another.
2155 * The new extent is pinned in the extent map, and we don't want
2156 * to drop it from the cache until it is completely in the btree.
2158 * So, tell btrfs_drop_extents to leave this extent in the cache.
2159 * the caller is expected to unpin it and allow it to be merged
2162 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2163 file_pos + num_bytes, NULL, 0,
2164 1, sizeof(*fi), &extent_inserted);
2168 if (!extent_inserted) {
2169 ins.objectid = btrfs_ino(BTRFS_I(inode));
2170 ins.offset = file_pos;
2171 ins.type = BTRFS_EXTENT_DATA_KEY;
2173 path->leave_spinning = 1;
2174 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2179 leaf = path->nodes[0];
2180 fi = btrfs_item_ptr(leaf, path->slots[0],
2181 struct btrfs_file_extent_item);
2182 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2183 btrfs_set_file_extent_type(leaf, fi, extent_type);
2184 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2185 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2186 btrfs_set_file_extent_offset(leaf, fi, 0);
2187 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2188 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2189 btrfs_set_file_extent_compression(leaf, fi, compression);
2190 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2191 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2193 btrfs_mark_buffer_dirty(leaf);
2194 btrfs_release_path(path);
2196 inode_add_bytes(inode, num_bytes);
2198 ins.objectid = disk_bytenr;
2199 ins.offset = disk_num_bytes;
2200 ins.type = BTRFS_EXTENT_ITEM_KEY;
2201 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2202 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
2204 * Release the reserved range from inode dirty range map, as it is
2205 * already moved into delayed_ref_head
2207 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2209 btrfs_free_path(path);
2214 /* snapshot-aware defrag */
2215 struct sa_defrag_extent_backref {
2216 struct rb_node node;
2217 struct old_sa_defrag_extent *old;
2226 struct old_sa_defrag_extent {
2227 struct list_head list;
2228 struct new_sa_defrag_extent *new;
2237 struct new_sa_defrag_extent {
2238 struct rb_root root;
2239 struct list_head head;
2240 struct btrfs_path *path;
2241 struct inode *inode;
2249 static int backref_comp(struct sa_defrag_extent_backref *b1,
2250 struct sa_defrag_extent_backref *b2)
2252 if (b1->root_id < b2->root_id)
2254 else if (b1->root_id > b2->root_id)
2257 if (b1->inum < b2->inum)
2259 else if (b1->inum > b2->inum)
2262 if (b1->file_pos < b2->file_pos)
2264 else if (b1->file_pos > b2->file_pos)
2268 * [------------------------------] ===> (a range of space)
2269 * |<--->| |<---->| =============> (fs/file tree A)
2270 * |<---------------------------->| ===> (fs/file tree B)
2272 * A range of space can refer to two file extents in one tree while
2273 * refer to only one file extent in another tree.
2275 * So we may process a disk offset more than one time(two extents in A)
2276 * and locate at the same extent(one extent in B), then insert two same
2277 * backrefs(both refer to the extent in B).
2282 static void backref_insert(struct rb_root *root,
2283 struct sa_defrag_extent_backref *backref)
2285 struct rb_node **p = &root->rb_node;
2286 struct rb_node *parent = NULL;
2287 struct sa_defrag_extent_backref *entry;
2292 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2294 ret = backref_comp(backref, entry);
2298 p = &(*p)->rb_right;
2301 rb_link_node(&backref->node, parent, p);
2302 rb_insert_color(&backref->node, root);
2306 * Note the backref might has changed, and in this case we just return 0.
2308 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2311 struct btrfs_file_extent_item *extent;
2312 struct old_sa_defrag_extent *old = ctx;
2313 struct new_sa_defrag_extent *new = old->new;
2314 struct btrfs_path *path = new->path;
2315 struct btrfs_key key;
2316 struct btrfs_root *root;
2317 struct sa_defrag_extent_backref *backref;
2318 struct extent_buffer *leaf;
2319 struct inode *inode = new->inode;
2320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2326 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2327 inum == btrfs_ino(BTRFS_I(inode)))
2330 key.objectid = root_id;
2331 key.type = BTRFS_ROOT_ITEM_KEY;
2332 key.offset = (u64)-1;
2334 root = btrfs_read_fs_root_no_name(fs_info, &key);
2336 if (PTR_ERR(root) == -ENOENT)
2339 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2340 inum, offset, root_id);
2341 return PTR_ERR(root);
2344 key.objectid = inum;
2345 key.type = BTRFS_EXTENT_DATA_KEY;
2346 if (offset > (u64)-1 << 32)
2349 key.offset = offset;
2351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2352 if (WARN_ON(ret < 0))
2359 leaf = path->nodes[0];
2360 slot = path->slots[0];
2362 if (slot >= btrfs_header_nritems(leaf)) {
2363 ret = btrfs_next_leaf(root, path);
2366 } else if (ret > 0) {
2375 btrfs_item_key_to_cpu(leaf, &key, slot);
2377 if (key.objectid > inum)
2380 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2383 extent = btrfs_item_ptr(leaf, slot,
2384 struct btrfs_file_extent_item);
2386 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2390 * 'offset' refers to the exact key.offset,
2391 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2392 * (key.offset - extent_offset).
2394 if (key.offset != offset)
2397 extent_offset = btrfs_file_extent_offset(leaf, extent);
2398 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2400 if (extent_offset >= old->extent_offset + old->offset +
2401 old->len || extent_offset + num_bytes <=
2402 old->extent_offset + old->offset)
2407 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2413 backref->root_id = root_id;
2414 backref->inum = inum;
2415 backref->file_pos = offset;
2416 backref->num_bytes = num_bytes;
2417 backref->extent_offset = extent_offset;
2418 backref->generation = btrfs_file_extent_generation(leaf, extent);
2420 backref_insert(&new->root, backref);
2423 btrfs_release_path(path);
2428 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2429 struct new_sa_defrag_extent *new)
2431 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2432 struct old_sa_defrag_extent *old, *tmp;
2437 list_for_each_entry_safe(old, tmp, &new->head, list) {
2438 ret = iterate_inodes_from_logical(old->bytenr +
2439 old->extent_offset, fs_info,
2440 path, record_one_backref,
2442 if (ret < 0 && ret != -ENOENT)
2445 /* no backref to be processed for this extent */
2447 list_del(&old->list);
2452 if (list_empty(&new->head))
2458 static int relink_is_mergable(struct extent_buffer *leaf,
2459 struct btrfs_file_extent_item *fi,
2460 struct new_sa_defrag_extent *new)
2462 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2465 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2468 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2471 if (btrfs_file_extent_encryption(leaf, fi) ||
2472 btrfs_file_extent_other_encoding(leaf, fi))
2479 * Note the backref might has changed, and in this case we just return 0.
2481 static noinline int relink_extent_backref(struct btrfs_path *path,
2482 struct sa_defrag_extent_backref *prev,
2483 struct sa_defrag_extent_backref *backref)
2485 struct btrfs_file_extent_item *extent;
2486 struct btrfs_file_extent_item *item;
2487 struct btrfs_ordered_extent *ordered;
2488 struct btrfs_trans_handle *trans;
2489 struct btrfs_root *root;
2490 struct btrfs_key key;
2491 struct extent_buffer *leaf;
2492 struct old_sa_defrag_extent *old = backref->old;
2493 struct new_sa_defrag_extent *new = old->new;
2494 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2495 struct inode *inode;
2496 struct extent_state *cached = NULL;
2505 if (prev && prev->root_id == backref->root_id &&
2506 prev->inum == backref->inum &&
2507 prev->file_pos + prev->num_bytes == backref->file_pos)
2510 /* step 1: get root */
2511 key.objectid = backref->root_id;
2512 key.type = BTRFS_ROOT_ITEM_KEY;
2513 key.offset = (u64)-1;
2515 index = srcu_read_lock(&fs_info->subvol_srcu);
2517 root = btrfs_read_fs_root_no_name(fs_info, &key);
2519 srcu_read_unlock(&fs_info->subvol_srcu, index);
2520 if (PTR_ERR(root) == -ENOENT)
2522 return PTR_ERR(root);
2525 if (btrfs_root_readonly(root)) {
2526 srcu_read_unlock(&fs_info->subvol_srcu, index);
2530 /* step 2: get inode */
2531 key.objectid = backref->inum;
2532 key.type = BTRFS_INODE_ITEM_KEY;
2535 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2536 if (IS_ERR(inode)) {
2537 srcu_read_unlock(&fs_info->subvol_srcu, index);
2541 srcu_read_unlock(&fs_info->subvol_srcu, index);
2543 /* step 3: relink backref */
2544 lock_start = backref->file_pos;
2545 lock_end = backref->file_pos + backref->num_bytes - 1;
2546 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2549 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2551 btrfs_put_ordered_extent(ordered);
2555 trans = btrfs_join_transaction(root);
2556 if (IS_ERR(trans)) {
2557 ret = PTR_ERR(trans);
2561 key.objectid = backref->inum;
2562 key.type = BTRFS_EXTENT_DATA_KEY;
2563 key.offset = backref->file_pos;
2565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2568 } else if (ret > 0) {
2573 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2574 struct btrfs_file_extent_item);
2576 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2577 backref->generation)
2580 btrfs_release_path(path);
2582 start = backref->file_pos;
2583 if (backref->extent_offset < old->extent_offset + old->offset)
2584 start += old->extent_offset + old->offset -
2585 backref->extent_offset;
2587 len = min(backref->extent_offset + backref->num_bytes,
2588 old->extent_offset + old->offset + old->len);
2589 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2591 ret = btrfs_drop_extents(trans, root, inode, start,
2596 key.objectid = btrfs_ino(BTRFS_I(inode));
2597 key.type = BTRFS_EXTENT_DATA_KEY;
2600 path->leave_spinning = 1;
2602 struct btrfs_file_extent_item *fi;
2604 struct btrfs_key found_key;
2606 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2611 leaf = path->nodes[0];
2612 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2614 fi = btrfs_item_ptr(leaf, path->slots[0],
2615 struct btrfs_file_extent_item);
2616 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2618 if (extent_len + found_key.offset == start &&
2619 relink_is_mergable(leaf, fi, new)) {
2620 btrfs_set_file_extent_num_bytes(leaf, fi,
2622 btrfs_mark_buffer_dirty(leaf);
2623 inode_add_bytes(inode, len);
2629 btrfs_release_path(path);
2634 ret = btrfs_insert_empty_item(trans, root, path, &key,
2637 btrfs_abort_transaction(trans, ret);
2641 leaf = path->nodes[0];
2642 item = btrfs_item_ptr(leaf, path->slots[0],
2643 struct btrfs_file_extent_item);
2644 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2645 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2646 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2647 btrfs_set_file_extent_num_bytes(leaf, item, len);
2648 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2649 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2650 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2651 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2652 btrfs_set_file_extent_encryption(leaf, item, 0);
2653 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2655 btrfs_mark_buffer_dirty(leaf);
2656 inode_add_bytes(inode, len);
2657 btrfs_release_path(path);
2659 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2661 backref->root_id, backref->inum,
2662 new->file_pos); /* start - extent_offset */
2664 btrfs_abort_transaction(trans, ret);
2670 btrfs_release_path(path);
2671 path->leave_spinning = 0;
2672 btrfs_end_transaction(trans);
2674 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2680 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2682 struct old_sa_defrag_extent *old, *tmp;
2687 list_for_each_entry_safe(old, tmp, &new->head, list) {
2693 static void relink_file_extents(struct new_sa_defrag_extent *new)
2695 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2696 struct btrfs_path *path;
2697 struct sa_defrag_extent_backref *backref;
2698 struct sa_defrag_extent_backref *prev = NULL;
2699 struct inode *inode;
2700 struct btrfs_root *root;
2701 struct rb_node *node;
2705 root = BTRFS_I(inode)->root;
2707 path = btrfs_alloc_path();
2711 if (!record_extent_backrefs(path, new)) {
2712 btrfs_free_path(path);
2715 btrfs_release_path(path);
2718 node = rb_first(&new->root);
2721 rb_erase(node, &new->root);
2723 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2725 ret = relink_extent_backref(path, prev, backref);
2738 btrfs_free_path(path);
2740 free_sa_defrag_extent(new);
2742 atomic_dec(&fs_info->defrag_running);
2743 wake_up(&fs_info->transaction_wait);
2746 static struct new_sa_defrag_extent *
2747 record_old_file_extents(struct inode *inode,
2748 struct btrfs_ordered_extent *ordered)
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751 struct btrfs_root *root = BTRFS_I(inode)->root;
2752 struct btrfs_path *path;
2753 struct btrfs_key key;
2754 struct old_sa_defrag_extent *old;
2755 struct new_sa_defrag_extent *new;
2758 new = kmalloc(sizeof(*new), GFP_NOFS);
2763 new->file_pos = ordered->file_offset;
2764 new->len = ordered->len;
2765 new->bytenr = ordered->start;
2766 new->disk_len = ordered->disk_len;
2767 new->compress_type = ordered->compress_type;
2768 new->root = RB_ROOT;
2769 INIT_LIST_HEAD(&new->head);
2771 path = btrfs_alloc_path();
2775 key.objectid = btrfs_ino(BTRFS_I(inode));
2776 key.type = BTRFS_EXTENT_DATA_KEY;
2777 key.offset = new->file_pos;
2779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2782 if (ret > 0 && path->slots[0] > 0)
2785 /* find out all the old extents for the file range */
2787 struct btrfs_file_extent_item *extent;
2788 struct extent_buffer *l;
2797 slot = path->slots[0];
2799 if (slot >= btrfs_header_nritems(l)) {
2800 ret = btrfs_next_leaf(root, path);
2808 btrfs_item_key_to_cpu(l, &key, slot);
2810 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2812 if (key.type != BTRFS_EXTENT_DATA_KEY)
2814 if (key.offset >= new->file_pos + new->len)
2817 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2819 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2820 if (key.offset + num_bytes < new->file_pos)
2823 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2827 extent_offset = btrfs_file_extent_offset(l, extent);
2829 old = kmalloc(sizeof(*old), GFP_NOFS);
2833 offset = max(new->file_pos, key.offset);
2834 end = min(new->file_pos + new->len, key.offset + num_bytes);
2836 old->bytenr = disk_bytenr;
2837 old->extent_offset = extent_offset;
2838 old->offset = offset - key.offset;
2839 old->len = end - offset;
2842 list_add_tail(&old->list, &new->head);
2848 btrfs_free_path(path);
2849 atomic_inc(&fs_info->defrag_running);
2854 btrfs_free_path(path);
2856 free_sa_defrag_extent(new);
2860 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2863 struct btrfs_block_group_cache *cache;
2865 cache = btrfs_lookup_block_group(fs_info, start);
2868 spin_lock(&cache->lock);
2869 cache->delalloc_bytes -= len;
2870 spin_unlock(&cache->lock);
2872 btrfs_put_block_group(cache);
2875 /* as ordered data IO finishes, this gets called so we can finish
2876 * an ordered extent if the range of bytes in the file it covers are
2879 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2881 struct inode *inode = ordered_extent->inode;
2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2883 struct btrfs_root *root = BTRFS_I(inode)->root;
2884 struct btrfs_trans_handle *trans = NULL;
2885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2886 struct extent_state *cached_state = NULL;
2887 struct new_sa_defrag_extent *new = NULL;
2888 int compress_type = 0;
2890 u64 logical_len = ordered_extent->len;
2892 bool truncated = false;
2893 bool range_locked = false;
2894 bool clear_new_delalloc_bytes = false;
2896 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2897 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2898 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2899 clear_new_delalloc_bytes = true;
2901 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2903 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2908 btrfs_free_io_failure_record(BTRFS_I(inode),
2909 ordered_extent->file_offset,
2910 ordered_extent->file_offset +
2911 ordered_extent->len - 1);
2913 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2915 logical_len = ordered_extent->truncated_len;
2916 /* Truncated the entire extent, don't bother adding */
2921 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2922 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2925 * For mwrite(mmap + memset to write) case, we still reserve
2926 * space for NOCOW range.
2927 * As NOCOW won't cause a new delayed ref, just free the space
2929 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2930 ordered_extent->len);
2931 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2933 trans = btrfs_join_transaction_nolock(root);
2935 trans = btrfs_join_transaction(root);
2936 if (IS_ERR(trans)) {
2937 ret = PTR_ERR(trans);
2941 trans->block_rsv = &fs_info->delalloc_block_rsv;
2942 ret = btrfs_update_inode_fallback(trans, root, inode);
2943 if (ret) /* -ENOMEM or corruption */
2944 btrfs_abort_transaction(trans, ret);
2948 range_locked = true;
2949 lock_extent_bits(io_tree, ordered_extent->file_offset,
2950 ordered_extent->file_offset + ordered_extent->len - 1,
2953 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2954 ordered_extent->file_offset + ordered_extent->len - 1,
2955 EXTENT_DEFRAG, 1, cached_state);
2957 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2958 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2959 /* the inode is shared */
2960 new = record_old_file_extents(inode, ordered_extent);
2962 clear_extent_bit(io_tree, ordered_extent->file_offset,
2963 ordered_extent->file_offset + ordered_extent->len - 1,
2964 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2968 trans = btrfs_join_transaction_nolock(root);
2970 trans = btrfs_join_transaction(root);
2971 if (IS_ERR(trans)) {
2972 ret = PTR_ERR(trans);
2977 trans->block_rsv = &fs_info->delalloc_block_rsv;
2979 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2980 compress_type = ordered_extent->compress_type;
2981 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2982 BUG_ON(compress_type);
2983 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2984 ordered_extent->file_offset,
2985 ordered_extent->file_offset +
2988 BUG_ON(root == fs_info->tree_root);
2989 ret = insert_reserved_file_extent(trans, inode,
2990 ordered_extent->file_offset,
2991 ordered_extent->start,
2992 ordered_extent->disk_len,
2993 logical_len, logical_len,
2994 compress_type, 0, 0,
2995 BTRFS_FILE_EXTENT_REG);
2997 btrfs_release_delalloc_bytes(fs_info,
2998 ordered_extent->start,
2999 ordered_extent->disk_len);
3001 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3002 ordered_extent->file_offset, ordered_extent->len,
3005 btrfs_abort_transaction(trans, ret);
3009 add_pending_csums(trans, inode, &ordered_extent->list);
3011 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3012 ret = btrfs_update_inode_fallback(trans, root, inode);
3013 if (ret) { /* -ENOMEM or corruption */
3014 btrfs_abort_transaction(trans, ret);
3019 if (range_locked || clear_new_delalloc_bytes) {
3020 unsigned int clear_bits = 0;
3023 clear_bits |= EXTENT_LOCKED;
3024 if (clear_new_delalloc_bytes)
3025 clear_bits |= EXTENT_DELALLOC_NEW;
3026 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3027 ordered_extent->file_offset,
3028 ordered_extent->file_offset +
3029 ordered_extent->len - 1,
3031 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3032 0, &cached_state, GFP_NOFS);
3035 if (root != fs_info->tree_root)
3036 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3037 ordered_extent->len);
3039 btrfs_end_transaction(trans);
3041 if (ret || truncated) {
3045 start = ordered_extent->file_offset + logical_len;
3047 start = ordered_extent->file_offset;
3048 end = ordered_extent->file_offset + ordered_extent->len - 1;
3049 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3051 /* Drop the cache for the part of the extent we didn't write. */
3052 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3055 * If the ordered extent had an IOERR or something else went
3056 * wrong we need to return the space for this ordered extent
3057 * back to the allocator. We only free the extent in the
3058 * truncated case if we didn't write out the extent at all.
3060 if ((ret || !logical_len) &&
3061 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3062 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3063 btrfs_free_reserved_extent(fs_info,
3064 ordered_extent->start,
3065 ordered_extent->disk_len, 1);
3070 * This needs to be done to make sure anybody waiting knows we are done
3071 * updating everything for this ordered extent.
3073 btrfs_remove_ordered_extent(inode, ordered_extent);
3075 /* for snapshot-aware defrag */
3078 free_sa_defrag_extent(new);
3079 atomic_dec(&fs_info->defrag_running);
3081 relink_file_extents(new);
3086 btrfs_put_ordered_extent(ordered_extent);
3087 /* once for the tree */
3088 btrfs_put_ordered_extent(ordered_extent);
3093 static void finish_ordered_fn(struct btrfs_work *work)
3095 struct btrfs_ordered_extent *ordered_extent;
3096 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3097 btrfs_finish_ordered_io(ordered_extent);
3100 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3101 struct extent_state *state, int uptodate)
3103 struct inode *inode = page->mapping->host;
3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3105 struct btrfs_ordered_extent *ordered_extent = NULL;
3106 struct btrfs_workqueue *wq;
3107 btrfs_work_func_t func;
3109 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3111 ClearPagePrivate2(page);
3112 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3113 end - start + 1, uptodate))
3116 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3117 wq = fs_info->endio_freespace_worker;
3118 func = btrfs_freespace_write_helper;
3120 wq = fs_info->endio_write_workers;
3121 func = btrfs_endio_write_helper;
3124 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3126 btrfs_queue_work(wq, &ordered_extent->work);
3129 static int __readpage_endio_check(struct inode *inode,
3130 struct btrfs_io_bio *io_bio,
3131 int icsum, struct page *page,
3132 int pgoff, u64 start, size_t len)
3138 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3140 kaddr = kmap_atomic(page);
3141 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3142 btrfs_csum_final(csum, (u8 *)&csum);
3143 if (csum != csum_expected)
3146 kunmap_atomic(kaddr);
3149 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3150 io_bio->mirror_num);
3151 memset(kaddr + pgoff, 1, len);
3152 flush_dcache_page(page);
3153 kunmap_atomic(kaddr);
3154 if (csum_expected == 0)
3160 * when reads are done, we need to check csums to verify the data is correct
3161 * if there's a match, we allow the bio to finish. If not, the code in
3162 * extent_io.c will try to find good copies for us.
3164 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3165 u64 phy_offset, struct page *page,
3166 u64 start, u64 end, int mirror)
3168 size_t offset = start - page_offset(page);
3169 struct inode *inode = page->mapping->host;
3170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171 struct btrfs_root *root = BTRFS_I(inode)->root;
3173 if (PageChecked(page)) {
3174 ClearPageChecked(page);
3178 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3181 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3182 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3183 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3187 phy_offset >>= inode->i_sb->s_blocksize_bits;
3188 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3189 start, (size_t)(end - start + 1));
3192 void btrfs_add_delayed_iput(struct inode *inode)
3194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3195 struct btrfs_inode *binode = BTRFS_I(inode);
3197 if (atomic_add_unless(&inode->i_count, -1, 1))
3200 spin_lock(&fs_info->delayed_iput_lock);
3201 if (binode->delayed_iput_count == 0) {
3202 ASSERT(list_empty(&binode->delayed_iput));
3203 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3205 binode->delayed_iput_count++;
3207 spin_unlock(&fs_info->delayed_iput_lock);
3210 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3213 spin_lock(&fs_info->delayed_iput_lock);
3214 while (!list_empty(&fs_info->delayed_iputs)) {
3215 struct btrfs_inode *inode;
3217 inode = list_first_entry(&fs_info->delayed_iputs,
3218 struct btrfs_inode, delayed_iput);
3219 if (inode->delayed_iput_count) {
3220 inode->delayed_iput_count--;
3221 list_move_tail(&inode->delayed_iput,
3222 &fs_info->delayed_iputs);
3224 list_del_init(&inode->delayed_iput);
3226 spin_unlock(&fs_info->delayed_iput_lock);
3227 iput(&inode->vfs_inode);
3228 spin_lock(&fs_info->delayed_iput_lock);
3230 spin_unlock(&fs_info->delayed_iput_lock);
3234 * This is called in transaction commit time. If there are no orphan
3235 * files in the subvolume, it removes orphan item and frees block_rsv
3238 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *root)
3241 struct btrfs_fs_info *fs_info = root->fs_info;
3242 struct btrfs_block_rsv *block_rsv;
3245 if (atomic_read(&root->orphan_inodes) ||
3246 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3249 spin_lock(&root->orphan_lock);
3250 if (atomic_read(&root->orphan_inodes)) {
3251 spin_unlock(&root->orphan_lock);
3255 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3256 spin_unlock(&root->orphan_lock);
3260 block_rsv = root->orphan_block_rsv;
3261 root->orphan_block_rsv = NULL;
3262 spin_unlock(&root->orphan_lock);
3264 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3265 btrfs_root_refs(&root->root_item) > 0) {
3266 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3267 root->root_key.objectid);
3269 btrfs_abort_transaction(trans, ret);
3271 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3276 WARN_ON(block_rsv->size > 0);
3277 btrfs_free_block_rsv(fs_info, block_rsv);
3282 * This creates an orphan entry for the given inode in case something goes
3283 * wrong in the middle of an unlink/truncate.
3285 * NOTE: caller of this function should reserve 5 units of metadata for
3288 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3289 struct btrfs_inode *inode)
3291 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3292 struct btrfs_root *root = inode->root;
3293 struct btrfs_block_rsv *block_rsv = NULL;
3298 if (!root->orphan_block_rsv) {
3299 block_rsv = btrfs_alloc_block_rsv(fs_info,
3300 BTRFS_BLOCK_RSV_TEMP);
3305 spin_lock(&root->orphan_lock);
3306 if (!root->orphan_block_rsv) {
3307 root->orphan_block_rsv = block_rsv;
3308 } else if (block_rsv) {
3309 btrfs_free_block_rsv(fs_info, block_rsv);
3313 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3314 &inode->runtime_flags)) {
3317 * For proper ENOSPC handling, we should do orphan
3318 * cleanup when mounting. But this introduces backward
3319 * compatibility issue.
3321 if (!xchg(&root->orphan_item_inserted, 1))
3327 atomic_inc(&root->orphan_inodes);
3330 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3331 &inode->runtime_flags))
3333 spin_unlock(&root->orphan_lock);
3335 /* grab metadata reservation from transaction handle */
3337 ret = btrfs_orphan_reserve_metadata(trans, inode);
3340 atomic_dec(&root->orphan_inodes);
3341 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3342 &inode->runtime_flags);
3344 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3345 &inode->runtime_flags);
3350 /* insert an orphan item to track this unlinked/truncated file */
3352 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3354 atomic_dec(&root->orphan_inodes);
3356 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3357 &inode->runtime_flags);
3358 btrfs_orphan_release_metadata(inode);
3360 if (ret != -EEXIST) {
3361 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3362 &inode->runtime_flags);
3363 btrfs_abort_transaction(trans, ret);
3370 /* insert an orphan item to track subvolume contains orphan files */
3372 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3373 root->root_key.objectid);
3374 if (ret && ret != -EEXIST) {
3375 btrfs_abort_transaction(trans, ret);
3383 * We have done the truncate/delete so we can go ahead and remove the orphan
3384 * item for this particular inode.
3386 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3387 struct btrfs_inode *inode)
3389 struct btrfs_root *root = inode->root;
3390 int delete_item = 0;
3391 int release_rsv = 0;
3394 spin_lock(&root->orphan_lock);
3395 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3396 &inode->runtime_flags))
3399 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3400 &inode->runtime_flags))
3402 spin_unlock(&root->orphan_lock);
3405 atomic_dec(&root->orphan_inodes);
3407 ret = btrfs_del_orphan_item(trans, root,
3412 btrfs_orphan_release_metadata(inode);
3418 * this cleans up any orphans that may be left on the list from the last use
3421 int btrfs_orphan_cleanup(struct btrfs_root *root)
3423 struct btrfs_fs_info *fs_info = root->fs_info;
3424 struct btrfs_path *path;
3425 struct extent_buffer *leaf;
3426 struct btrfs_key key, found_key;
3427 struct btrfs_trans_handle *trans;
3428 struct inode *inode;
3429 u64 last_objectid = 0;
3430 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3432 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3435 path = btrfs_alloc_path();
3440 path->reada = READA_BACK;
3442 key.objectid = BTRFS_ORPHAN_OBJECTID;
3443 key.type = BTRFS_ORPHAN_ITEM_KEY;
3444 key.offset = (u64)-1;
3447 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3452 * if ret == 0 means we found what we were searching for, which
3453 * is weird, but possible, so only screw with path if we didn't
3454 * find the key and see if we have stuff that matches
3458 if (path->slots[0] == 0)
3463 /* pull out the item */
3464 leaf = path->nodes[0];
3465 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3467 /* make sure the item matches what we want */
3468 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3470 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3473 /* release the path since we're done with it */
3474 btrfs_release_path(path);
3477 * this is where we are basically btrfs_lookup, without the
3478 * crossing root thing. we store the inode number in the
3479 * offset of the orphan item.
3482 if (found_key.offset == last_objectid) {
3484 "Error removing orphan entry, stopping orphan cleanup");
3489 last_objectid = found_key.offset;
3491 found_key.objectid = found_key.offset;
3492 found_key.type = BTRFS_INODE_ITEM_KEY;
3493 found_key.offset = 0;
3494 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3495 ret = PTR_ERR_OR_ZERO(inode);
3496 if (ret && ret != -ENOENT)
3499 if (ret == -ENOENT && root == fs_info->tree_root) {
3500 struct btrfs_root *dead_root;
3501 struct btrfs_fs_info *fs_info = root->fs_info;
3502 int is_dead_root = 0;
3505 * this is an orphan in the tree root. Currently these
3506 * could come from 2 sources:
3507 * a) a snapshot deletion in progress
3508 * b) a free space cache inode
3509 * We need to distinguish those two, as the snapshot
3510 * orphan must not get deleted.
3511 * find_dead_roots already ran before us, so if this
3512 * is a snapshot deletion, we should find the root
3513 * in the dead_roots list
3515 spin_lock(&fs_info->trans_lock);
3516 list_for_each_entry(dead_root, &fs_info->dead_roots,
3518 if (dead_root->root_key.objectid ==
3519 found_key.objectid) {
3524 spin_unlock(&fs_info->trans_lock);
3526 /* prevent this orphan from being found again */
3527 key.offset = found_key.objectid - 1;
3532 * Inode is already gone but the orphan item is still there,
3533 * kill the orphan item.
3535 if (ret == -ENOENT) {
3536 trans = btrfs_start_transaction(root, 1);
3537 if (IS_ERR(trans)) {
3538 ret = PTR_ERR(trans);
3541 btrfs_debug(fs_info, "auto deleting %Lu",
3542 found_key.objectid);
3543 ret = btrfs_del_orphan_item(trans, root,
3544 found_key.objectid);
3545 btrfs_end_transaction(trans);
3552 * add this inode to the orphan list so btrfs_orphan_del does
3553 * the proper thing when we hit it
3555 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3556 &BTRFS_I(inode)->runtime_flags);
3557 atomic_inc(&root->orphan_inodes);
3559 /* if we have links, this was a truncate, lets do that */
3560 if (inode->i_nlink) {
3561 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3567 /* 1 for the orphan item deletion. */
3568 trans = btrfs_start_transaction(root, 1);
3569 if (IS_ERR(trans)) {
3571 ret = PTR_ERR(trans);
3574 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3575 btrfs_end_transaction(trans);
3581 ret = btrfs_truncate(inode);
3583 btrfs_orphan_del(NULL, BTRFS_I(inode));
3588 /* this will do delete_inode and everything for us */
3593 /* release the path since we're done with it */
3594 btrfs_release_path(path);
3596 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3598 if (root->orphan_block_rsv)
3599 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3602 if (root->orphan_block_rsv ||
3603 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3604 trans = btrfs_join_transaction(root);
3606 btrfs_end_transaction(trans);
3610 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3612 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3616 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3617 btrfs_free_path(path);
3622 * very simple check to peek ahead in the leaf looking for xattrs. If we
3623 * don't find any xattrs, we know there can't be any acls.
3625 * slot is the slot the inode is in, objectid is the objectid of the inode
3627 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3628 int slot, u64 objectid,
3629 int *first_xattr_slot)
3631 u32 nritems = btrfs_header_nritems(leaf);
3632 struct btrfs_key found_key;
3633 static u64 xattr_access = 0;
3634 static u64 xattr_default = 0;
3637 if (!xattr_access) {
3638 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3639 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3640 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3641 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3645 *first_xattr_slot = -1;
3646 while (slot < nritems) {
3647 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3649 /* we found a different objectid, there must not be acls */
3650 if (found_key.objectid != objectid)
3653 /* we found an xattr, assume we've got an acl */
3654 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3655 if (*first_xattr_slot == -1)
3656 *first_xattr_slot = slot;
3657 if (found_key.offset == xattr_access ||
3658 found_key.offset == xattr_default)
3663 * we found a key greater than an xattr key, there can't
3664 * be any acls later on
3666 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3673 * it goes inode, inode backrefs, xattrs, extents,
3674 * so if there are a ton of hard links to an inode there can
3675 * be a lot of backrefs. Don't waste time searching too hard,
3676 * this is just an optimization
3681 /* we hit the end of the leaf before we found an xattr or
3682 * something larger than an xattr. We have to assume the inode
3685 if (*first_xattr_slot == -1)
3686 *first_xattr_slot = slot;
3691 * read an inode from the btree into the in-memory inode
3693 static int btrfs_read_locked_inode(struct inode *inode)
3695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3696 struct btrfs_path *path;
3697 struct extent_buffer *leaf;
3698 struct btrfs_inode_item *inode_item;
3699 struct btrfs_root *root = BTRFS_I(inode)->root;
3700 struct btrfs_key location;
3705 bool filled = false;
3706 int first_xattr_slot;
3708 ret = btrfs_fill_inode(inode, &rdev);
3712 path = btrfs_alloc_path();
3718 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3720 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3727 leaf = path->nodes[0];
3732 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3733 struct btrfs_inode_item);
3734 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3735 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3736 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3737 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3738 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3740 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3741 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3743 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3744 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3746 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3747 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3749 BTRFS_I(inode)->i_otime.tv_sec =
3750 btrfs_timespec_sec(leaf, &inode_item->otime);
3751 BTRFS_I(inode)->i_otime.tv_nsec =
3752 btrfs_timespec_nsec(leaf, &inode_item->otime);
3754 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3755 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3756 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3758 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3759 inode->i_generation = BTRFS_I(inode)->generation;
3761 rdev = btrfs_inode_rdev(leaf, inode_item);
3763 BTRFS_I(inode)->index_cnt = (u64)-1;
3764 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3768 * If we were modified in the current generation and evicted from memory
3769 * and then re-read we need to do a full sync since we don't have any
3770 * idea about which extents were modified before we were evicted from
3773 * This is required for both inode re-read from disk and delayed inode
3774 * in delayed_nodes_tree.
3776 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3777 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3778 &BTRFS_I(inode)->runtime_flags);
3781 * We don't persist the id of the transaction where an unlink operation
3782 * against the inode was last made. So here we assume the inode might
3783 * have been evicted, and therefore the exact value of last_unlink_trans
3784 * lost, and set it to last_trans to avoid metadata inconsistencies
3785 * between the inode and its parent if the inode is fsync'ed and the log
3786 * replayed. For example, in the scenario:
3789 * ln mydir/foo mydir/bar
3792 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3793 * xfs_io -c fsync mydir/foo
3795 * mount fs, triggers fsync log replay
3797 * We must make sure that when we fsync our inode foo we also log its
3798 * parent inode, otherwise after log replay the parent still has the
3799 * dentry with the "bar" name but our inode foo has a link count of 1
3800 * and doesn't have an inode ref with the name "bar" anymore.
3802 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3803 * but it guarantees correctness at the expense of occasional full
3804 * transaction commits on fsync if our inode is a directory, or if our
3805 * inode is not a directory, logging its parent unnecessarily.
3807 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3810 if (inode->i_nlink != 1 ||
3811 path->slots[0] >= btrfs_header_nritems(leaf))
3814 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3815 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3818 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3819 if (location.type == BTRFS_INODE_REF_KEY) {
3820 struct btrfs_inode_ref *ref;
3822 ref = (struct btrfs_inode_ref *)ptr;
3823 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3824 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3825 struct btrfs_inode_extref *extref;
3827 extref = (struct btrfs_inode_extref *)ptr;
3828 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3833 * try to precache a NULL acl entry for files that don't have
3834 * any xattrs or acls
3836 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3837 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3838 if (first_xattr_slot != -1) {
3839 path->slots[0] = first_xattr_slot;
3840 ret = btrfs_load_inode_props(inode, path);
3843 "error loading props for ino %llu (root %llu): %d",
3844 btrfs_ino(BTRFS_I(inode)),
3845 root->root_key.objectid, ret);
3847 btrfs_free_path(path);
3850 cache_no_acl(inode);
3852 switch (inode->i_mode & S_IFMT) {
3854 inode->i_mapping->a_ops = &btrfs_aops;
3855 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3856 inode->i_fop = &btrfs_file_operations;
3857 inode->i_op = &btrfs_file_inode_operations;
3860 inode->i_fop = &btrfs_dir_file_operations;
3861 inode->i_op = &btrfs_dir_inode_operations;
3864 inode->i_op = &btrfs_symlink_inode_operations;
3865 inode_nohighmem(inode);
3866 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3869 inode->i_op = &btrfs_special_inode_operations;
3870 init_special_inode(inode, inode->i_mode, rdev);
3874 btrfs_update_iflags(inode);
3878 btrfs_free_path(path);
3879 make_bad_inode(inode);
3884 * given a leaf and an inode, copy the inode fields into the leaf
3886 static void fill_inode_item(struct btrfs_trans_handle *trans,
3887 struct extent_buffer *leaf,
3888 struct btrfs_inode_item *item,
3889 struct inode *inode)
3891 struct btrfs_map_token token;
3893 btrfs_init_map_token(&token);
3895 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3896 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3897 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3899 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3900 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3902 btrfs_set_token_timespec_sec(leaf, &item->atime,
3903 inode->i_atime.tv_sec, &token);
3904 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3905 inode->i_atime.tv_nsec, &token);
3907 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3908 inode->i_mtime.tv_sec, &token);
3909 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3910 inode->i_mtime.tv_nsec, &token);
3912 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3913 inode->i_ctime.tv_sec, &token);
3914 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3915 inode->i_ctime.tv_nsec, &token);
3917 btrfs_set_token_timespec_sec(leaf, &item->otime,
3918 BTRFS_I(inode)->i_otime.tv_sec, &token);
3919 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3920 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3922 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3924 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3926 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3927 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3928 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3929 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3930 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3934 * copy everything in the in-memory inode into the btree.
3936 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3937 struct btrfs_root *root, struct inode *inode)
3939 struct btrfs_inode_item *inode_item;
3940 struct btrfs_path *path;
3941 struct extent_buffer *leaf;
3944 path = btrfs_alloc_path();
3948 path->leave_spinning = 1;
3949 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3957 leaf = path->nodes[0];
3958 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3959 struct btrfs_inode_item);
3961 fill_inode_item(trans, leaf, inode_item, inode);
3962 btrfs_mark_buffer_dirty(leaf);
3963 btrfs_set_inode_last_trans(trans, inode);
3966 btrfs_free_path(path);
3971 * copy everything in the in-memory inode into the btree.
3973 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3974 struct btrfs_root *root, struct inode *inode)
3976 struct btrfs_fs_info *fs_info = root->fs_info;
3980 * If the inode is a free space inode, we can deadlock during commit
3981 * if we put it into the delayed code.
3983 * The data relocation inode should also be directly updated
3986 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3987 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3988 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3989 btrfs_update_root_times(trans, root);
3991 ret = btrfs_delayed_update_inode(trans, root, inode);
3993 btrfs_set_inode_last_trans(trans, inode);
3997 return btrfs_update_inode_item(trans, root, inode);
4000 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *root,
4002 struct inode *inode)
4006 ret = btrfs_update_inode(trans, root, inode);
4008 return btrfs_update_inode_item(trans, root, inode);
4013 * unlink helper that gets used here in inode.c and in the tree logging
4014 * recovery code. It remove a link in a directory with a given name, and
4015 * also drops the back refs in the inode to the directory
4017 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4018 struct btrfs_root *root,
4019 struct btrfs_inode *dir,
4020 struct btrfs_inode *inode,
4021 const char *name, int name_len)
4023 struct btrfs_fs_info *fs_info = root->fs_info;
4024 struct btrfs_path *path;
4026 struct extent_buffer *leaf;
4027 struct btrfs_dir_item *di;
4028 struct btrfs_key key;
4030 u64 ino = btrfs_ino(inode);
4031 u64 dir_ino = btrfs_ino(dir);
4033 path = btrfs_alloc_path();
4039 path->leave_spinning = 1;
4040 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4041 name, name_len, -1);
4050 leaf = path->nodes[0];
4051 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4052 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4055 btrfs_release_path(path);
4058 * If we don't have dir index, we have to get it by looking up
4059 * the inode ref, since we get the inode ref, remove it directly,
4060 * it is unnecessary to do delayed deletion.
4062 * But if we have dir index, needn't search inode ref to get it.
4063 * Since the inode ref is close to the inode item, it is better
4064 * that we delay to delete it, and just do this deletion when
4065 * we update the inode item.
4067 if (inode->dir_index) {
4068 ret = btrfs_delayed_delete_inode_ref(inode);
4070 index = inode->dir_index;
4075 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4079 "failed to delete reference to %.*s, inode %llu parent %llu",
4080 name_len, name, ino, dir_ino);
4081 btrfs_abort_transaction(trans, ret);
4085 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4087 btrfs_abort_transaction(trans, ret);
4091 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4093 if (ret != 0 && ret != -ENOENT) {
4094 btrfs_abort_transaction(trans, ret);
4098 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4103 btrfs_abort_transaction(trans, ret);
4105 btrfs_free_path(path);
4109 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4110 inode_inc_iversion(&inode->vfs_inode);
4111 inode_inc_iversion(&dir->vfs_inode);
4112 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4113 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4114 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4119 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *root,
4121 struct btrfs_inode *dir, struct btrfs_inode *inode,
4122 const char *name, int name_len)
4125 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4127 drop_nlink(&inode->vfs_inode);
4128 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4134 * helper to start transaction for unlink and rmdir.
4136 * unlink and rmdir are special in btrfs, they do not always free space, so
4137 * if we cannot make our reservations the normal way try and see if there is
4138 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4139 * allow the unlink to occur.
4141 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4143 struct btrfs_root *root = BTRFS_I(dir)->root;
4146 * 1 for the possible orphan item
4147 * 1 for the dir item
4148 * 1 for the dir index
4149 * 1 for the inode ref
4152 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4155 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4157 struct btrfs_root *root = BTRFS_I(dir)->root;
4158 struct btrfs_trans_handle *trans;
4159 struct inode *inode = d_inode(dentry);
4162 trans = __unlink_start_trans(dir);
4164 return PTR_ERR(trans);
4166 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4169 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4170 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4171 dentry->d_name.len);
4175 if (inode->i_nlink == 0) {
4176 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4182 btrfs_end_transaction(trans);
4183 btrfs_btree_balance_dirty(root->fs_info);
4187 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4188 struct btrfs_root *root,
4189 struct inode *dir, u64 objectid,
4190 const char *name, int name_len)
4192 struct btrfs_fs_info *fs_info = root->fs_info;
4193 struct btrfs_path *path;
4194 struct extent_buffer *leaf;
4195 struct btrfs_dir_item *di;
4196 struct btrfs_key key;
4199 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4201 path = btrfs_alloc_path();
4205 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4206 name, name_len, -1);
4207 if (IS_ERR_OR_NULL(di)) {
4215 leaf = path->nodes[0];
4216 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4217 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4218 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4220 btrfs_abort_transaction(trans, ret);
4223 btrfs_release_path(path);
4225 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4226 root->root_key.objectid, dir_ino,
4227 &index, name, name_len);
4229 if (ret != -ENOENT) {
4230 btrfs_abort_transaction(trans, ret);
4233 di = btrfs_search_dir_index_item(root, path, dir_ino,
4235 if (IS_ERR_OR_NULL(di)) {
4240 btrfs_abort_transaction(trans, ret);
4244 leaf = path->nodes[0];
4245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4246 btrfs_release_path(path);
4249 btrfs_release_path(path);
4251 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4253 btrfs_abort_transaction(trans, ret);
4257 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4258 inode_inc_iversion(dir);
4259 dir->i_mtime = dir->i_ctime = current_time(dir);
4260 ret = btrfs_update_inode_fallback(trans, root, dir);
4262 btrfs_abort_transaction(trans, ret);
4264 btrfs_free_path(path);
4268 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4270 struct inode *inode = d_inode(dentry);
4272 struct btrfs_root *root = BTRFS_I(dir)->root;
4273 struct btrfs_trans_handle *trans;
4274 u64 last_unlink_trans;
4276 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4278 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4281 trans = __unlink_start_trans(dir);
4283 return PTR_ERR(trans);
4285 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4286 err = btrfs_unlink_subvol(trans, root, dir,
4287 BTRFS_I(inode)->location.objectid,
4288 dentry->d_name.name,
4289 dentry->d_name.len);
4293 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4297 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4299 /* now the directory is empty */
4300 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4301 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4302 dentry->d_name.len);
4304 btrfs_i_size_write(BTRFS_I(inode), 0);
4306 * Propagate the last_unlink_trans value of the deleted dir to
4307 * its parent directory. This is to prevent an unrecoverable
4308 * log tree in the case we do something like this:
4310 * 2) create snapshot under dir foo
4311 * 3) delete the snapshot
4314 * 6) fsync foo or some file inside foo
4316 if (last_unlink_trans >= trans->transid)
4317 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4320 btrfs_end_transaction(trans);
4321 btrfs_btree_balance_dirty(root->fs_info);
4326 static int truncate_space_check(struct btrfs_trans_handle *trans,
4327 struct btrfs_root *root,
4330 struct btrfs_fs_info *fs_info = root->fs_info;
4334 * This is only used to apply pressure to the enospc system, we don't
4335 * intend to use this reservation at all.
4337 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4338 bytes_deleted *= fs_info->nodesize;
4339 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4340 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4342 trace_btrfs_space_reservation(fs_info, "transaction",
4345 trans->bytes_reserved += bytes_deleted;
4351 static int truncate_inline_extent(struct inode *inode,
4352 struct btrfs_path *path,
4353 struct btrfs_key *found_key,
4357 struct extent_buffer *leaf = path->nodes[0];
4358 int slot = path->slots[0];
4359 struct btrfs_file_extent_item *fi;
4360 u32 size = (u32)(new_size - found_key->offset);
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4363 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4365 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4366 loff_t offset = new_size;
4367 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4370 * Zero out the remaining of the last page of our inline extent,
4371 * instead of directly truncating our inline extent here - that
4372 * would be much more complex (decompressing all the data, then
4373 * compressing the truncated data, which might be bigger than
4374 * the size of the inline extent, resize the extent, etc).
4375 * We release the path because to get the page we might need to
4376 * read the extent item from disk (data not in the page cache).
4378 btrfs_release_path(path);
4379 return btrfs_truncate_block(inode, offset, page_end - offset,
4383 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4384 size = btrfs_file_extent_calc_inline_size(size);
4385 btrfs_truncate_item(root->fs_info, path, size, 1);
4387 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4388 inode_sub_bytes(inode, item_end + 1 - new_size);
4394 * this can truncate away extent items, csum items and directory items.
4395 * It starts at a high offset and removes keys until it can't find
4396 * any higher than new_size
4398 * csum items that cross the new i_size are truncated to the new size
4401 * min_type is the minimum key type to truncate down to. If set to 0, this
4402 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4404 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4405 struct btrfs_root *root,
4406 struct inode *inode,
4407 u64 new_size, u32 min_type)
4409 struct btrfs_fs_info *fs_info = root->fs_info;
4410 struct btrfs_path *path;
4411 struct extent_buffer *leaf;
4412 struct btrfs_file_extent_item *fi;
4413 struct btrfs_key key;
4414 struct btrfs_key found_key;
4415 u64 extent_start = 0;
4416 u64 extent_num_bytes = 0;
4417 u64 extent_offset = 0;
4419 u64 last_size = new_size;
4420 u32 found_type = (u8)-1;
4423 int pending_del_nr = 0;
4424 int pending_del_slot = 0;
4425 int extent_type = -1;
4428 u64 ino = btrfs_ino(BTRFS_I(inode));
4429 u64 bytes_deleted = 0;
4431 bool should_throttle = 0;
4432 bool should_end = 0;
4434 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4437 * for non-free space inodes and ref cows, we want to back off from
4440 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4441 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4444 path = btrfs_alloc_path();
4447 path->reada = READA_BACK;
4450 * We want to drop from the next block forward in case this new size is
4451 * not block aligned since we will be keeping the last block of the
4452 * extent just the way it is.
4454 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4455 root == fs_info->tree_root)
4456 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4457 fs_info->sectorsize),
4461 * This function is also used to drop the items in the log tree before
4462 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4463 * it is used to drop the loged items. So we shouldn't kill the delayed
4466 if (min_type == 0 && root == BTRFS_I(inode)->root)
4467 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4470 key.offset = (u64)-1;
4475 * with a 16K leaf size and 128MB extents, you can actually queue
4476 * up a huge file in a single leaf. Most of the time that
4477 * bytes_deleted is > 0, it will be huge by the time we get here
4479 if (be_nice && bytes_deleted > SZ_32M) {
4480 if (btrfs_should_end_transaction(trans)) {
4487 path->leave_spinning = 1;
4488 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4495 /* there are no items in the tree for us to truncate, we're
4498 if (path->slots[0] == 0)
4505 leaf = path->nodes[0];
4506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4507 found_type = found_key.type;
4509 if (found_key.objectid != ino)
4512 if (found_type < min_type)
4515 item_end = found_key.offset;
4516 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4517 fi = btrfs_item_ptr(leaf, path->slots[0],
4518 struct btrfs_file_extent_item);
4519 extent_type = btrfs_file_extent_type(leaf, fi);
4520 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4522 btrfs_file_extent_num_bytes(leaf, fi);
4524 trace_btrfs_truncate_show_fi_regular(
4525 BTRFS_I(inode), leaf, fi,
4527 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4528 item_end += btrfs_file_extent_inline_len(leaf,
4529 path->slots[0], fi);
4531 trace_btrfs_truncate_show_fi_inline(
4532 BTRFS_I(inode), leaf, fi, path->slots[0],
4537 if (found_type > min_type) {
4540 if (item_end < new_size)
4542 if (found_key.offset >= new_size)
4548 /* FIXME, shrink the extent if the ref count is only 1 */
4549 if (found_type != BTRFS_EXTENT_DATA_KEY)
4553 last_size = found_key.offset;
4555 last_size = new_size;
4557 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4559 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4561 u64 orig_num_bytes =
4562 btrfs_file_extent_num_bytes(leaf, fi);
4563 extent_num_bytes = ALIGN(new_size -
4565 fs_info->sectorsize);
4566 btrfs_set_file_extent_num_bytes(leaf, fi,
4568 num_dec = (orig_num_bytes -
4570 if (test_bit(BTRFS_ROOT_REF_COWS,
4573 inode_sub_bytes(inode, num_dec);
4574 btrfs_mark_buffer_dirty(leaf);
4577 btrfs_file_extent_disk_num_bytes(leaf,
4579 extent_offset = found_key.offset -
4580 btrfs_file_extent_offset(leaf, fi);
4582 /* FIXME blocksize != 4096 */
4583 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4584 if (extent_start != 0) {
4586 if (test_bit(BTRFS_ROOT_REF_COWS,
4588 inode_sub_bytes(inode, num_dec);
4591 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4593 * we can't truncate inline items that have had
4597 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4598 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4601 * Need to release path in order to truncate a
4602 * compressed extent. So delete any accumulated
4603 * extent items so far.
4605 if (btrfs_file_extent_compression(leaf, fi) !=
4606 BTRFS_COMPRESS_NONE && pending_del_nr) {
4607 err = btrfs_del_items(trans, root, path,
4611 btrfs_abort_transaction(trans,
4618 err = truncate_inline_extent(inode, path,
4623 btrfs_abort_transaction(trans, err);
4626 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4628 inode_sub_bytes(inode, item_end + 1 - new_size);
4633 if (!pending_del_nr) {
4634 /* no pending yet, add ourselves */
4635 pending_del_slot = path->slots[0];
4637 } else if (pending_del_nr &&
4638 path->slots[0] + 1 == pending_del_slot) {
4639 /* hop on the pending chunk */
4641 pending_del_slot = path->slots[0];
4648 should_throttle = 0;
4651 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4652 root == fs_info->tree_root)) {
4653 btrfs_set_path_blocking(path);
4654 bytes_deleted += extent_num_bytes;
4655 ret = btrfs_free_extent(trans, fs_info, extent_start,
4656 extent_num_bytes, 0,
4657 btrfs_header_owner(leaf),
4658 ino, extent_offset);
4660 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4661 btrfs_async_run_delayed_refs(fs_info,
4662 trans->delayed_ref_updates * 2,
4665 if (truncate_space_check(trans, root,
4666 extent_num_bytes)) {
4669 if (btrfs_should_throttle_delayed_refs(trans,
4671 should_throttle = 1;
4675 if (found_type == BTRFS_INODE_ITEM_KEY)
4678 if (path->slots[0] == 0 ||
4679 path->slots[0] != pending_del_slot ||
4680 should_throttle || should_end) {
4681 if (pending_del_nr) {
4682 ret = btrfs_del_items(trans, root, path,
4686 btrfs_abort_transaction(trans, ret);
4691 btrfs_release_path(path);
4692 if (should_throttle) {
4693 unsigned long updates = trans->delayed_ref_updates;
4695 trans->delayed_ref_updates = 0;
4696 ret = btrfs_run_delayed_refs(trans,
4704 * if we failed to refill our space rsv, bail out
4705 * and let the transaction restart
4717 if (pending_del_nr) {
4718 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4721 btrfs_abort_transaction(trans, ret);
4724 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4725 ASSERT(last_size >= new_size);
4726 if (!err && last_size > new_size)
4727 last_size = new_size;
4728 btrfs_ordered_update_i_size(inode, last_size, NULL);
4731 btrfs_free_path(path);
4733 if (be_nice && bytes_deleted > SZ_32M) {
4734 unsigned long updates = trans->delayed_ref_updates;
4736 trans->delayed_ref_updates = 0;
4737 ret = btrfs_run_delayed_refs(trans, fs_info,
4747 * btrfs_truncate_block - read, zero a chunk and write a block
4748 * @inode - inode that we're zeroing
4749 * @from - the offset to start zeroing
4750 * @len - the length to zero, 0 to zero the entire range respective to the
4752 * @front - zero up to the offset instead of from the offset on
4754 * This will find the block for the "from" offset and cow the block and zero the
4755 * part we want to zero. This is used with truncate and hole punching.
4757 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4761 struct address_space *mapping = inode->i_mapping;
4762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4763 struct btrfs_ordered_extent *ordered;
4764 struct extent_state *cached_state = NULL;
4766 u32 blocksize = fs_info->sectorsize;
4767 pgoff_t index = from >> PAGE_SHIFT;
4768 unsigned offset = from & (blocksize - 1);
4770 gfp_t mask = btrfs_alloc_write_mask(mapping);
4775 if ((offset & (blocksize - 1)) == 0 &&
4776 (!len || ((len & (blocksize - 1)) == 0)))
4779 ret = btrfs_delalloc_reserve_space(inode,
4780 round_down(from, blocksize), blocksize);
4785 page = find_or_create_page(mapping, index, mask);
4787 btrfs_delalloc_release_space(inode,
4788 round_down(from, blocksize),
4794 block_start = round_down(from, blocksize);
4795 block_end = block_start + blocksize - 1;
4797 if (!PageUptodate(page)) {
4798 ret = btrfs_readpage(NULL, page);
4800 if (page->mapping != mapping) {
4805 if (!PageUptodate(page)) {
4810 wait_on_page_writeback(page);
4812 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4813 set_page_extent_mapped(page);
4815 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4817 unlock_extent_cached(io_tree, block_start, block_end,
4818 &cached_state, GFP_NOFS);
4821 btrfs_start_ordered_extent(inode, ordered, 1);
4822 btrfs_put_ordered_extent(ordered);
4826 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4827 EXTENT_DIRTY | EXTENT_DELALLOC |
4828 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4829 0, 0, &cached_state, GFP_NOFS);
4831 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4834 unlock_extent_cached(io_tree, block_start, block_end,
4835 &cached_state, GFP_NOFS);
4839 if (offset != blocksize) {
4841 len = blocksize - offset;
4844 memset(kaddr + (block_start - page_offset(page)),
4847 memset(kaddr + (block_start - page_offset(page)) + offset,
4849 flush_dcache_page(page);
4852 ClearPageChecked(page);
4853 set_page_dirty(page);
4854 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4859 btrfs_delalloc_release_space(inode, block_start,
4867 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4868 u64 offset, u64 len)
4870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4871 struct btrfs_trans_handle *trans;
4875 * Still need to make sure the inode looks like it's been updated so
4876 * that any holes get logged if we fsync.
4878 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4879 BTRFS_I(inode)->last_trans = fs_info->generation;
4880 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4881 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4886 * 1 - for the one we're dropping
4887 * 1 - for the one we're adding
4888 * 1 - for updating the inode.
4890 trans = btrfs_start_transaction(root, 3);
4892 return PTR_ERR(trans);
4894 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4896 btrfs_abort_transaction(trans, ret);
4897 btrfs_end_transaction(trans);
4901 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4902 offset, 0, 0, len, 0, len, 0, 0, 0);
4904 btrfs_abort_transaction(trans, ret);
4906 btrfs_update_inode(trans, root, inode);
4907 btrfs_end_transaction(trans);
4912 * This function puts in dummy file extents for the area we're creating a hole
4913 * for. So if we are truncating this file to a larger size we need to insert
4914 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4915 * the range between oldsize and size
4917 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4920 struct btrfs_root *root = BTRFS_I(inode)->root;
4921 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4922 struct extent_map *em = NULL;
4923 struct extent_state *cached_state = NULL;
4924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4925 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4926 u64 block_end = ALIGN(size, fs_info->sectorsize);
4933 * If our size started in the middle of a block we need to zero out the
4934 * rest of the block before we expand the i_size, otherwise we could
4935 * expose stale data.
4937 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4941 if (size <= hole_start)
4945 struct btrfs_ordered_extent *ordered;
4947 lock_extent_bits(io_tree, hole_start, block_end - 1,
4949 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4950 block_end - hole_start);
4953 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4954 &cached_state, GFP_NOFS);
4955 btrfs_start_ordered_extent(inode, ordered, 1);
4956 btrfs_put_ordered_extent(ordered);
4959 cur_offset = hole_start;
4961 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4962 block_end - cur_offset, 0);
4968 last_byte = min(extent_map_end(em), block_end);
4969 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4970 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4971 struct extent_map *hole_em;
4972 hole_size = last_byte - cur_offset;
4974 err = maybe_insert_hole(root, inode, cur_offset,
4978 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4979 cur_offset + hole_size - 1, 0);
4980 hole_em = alloc_extent_map();
4982 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4983 &BTRFS_I(inode)->runtime_flags);
4986 hole_em->start = cur_offset;
4987 hole_em->len = hole_size;
4988 hole_em->orig_start = cur_offset;
4990 hole_em->block_start = EXTENT_MAP_HOLE;
4991 hole_em->block_len = 0;
4992 hole_em->orig_block_len = 0;
4993 hole_em->ram_bytes = hole_size;
4994 hole_em->bdev = fs_info->fs_devices->latest_bdev;
4995 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4996 hole_em->generation = fs_info->generation;
4999 write_lock(&em_tree->lock);
5000 err = add_extent_mapping(em_tree, hole_em, 1);
5001 write_unlock(&em_tree->lock);
5004 btrfs_drop_extent_cache(BTRFS_I(inode),
5009 free_extent_map(hole_em);
5012 free_extent_map(em);
5014 cur_offset = last_byte;
5015 if (cur_offset >= block_end)
5018 free_extent_map(em);
5019 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5024 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5026 struct btrfs_root *root = BTRFS_I(inode)->root;
5027 struct btrfs_trans_handle *trans;
5028 loff_t oldsize = i_size_read(inode);
5029 loff_t newsize = attr->ia_size;
5030 int mask = attr->ia_valid;
5034 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5035 * special case where we need to update the times despite not having
5036 * these flags set. For all other operations the VFS set these flags
5037 * explicitly if it wants a timestamp update.
5039 if (newsize != oldsize) {
5040 inode_inc_iversion(inode);
5041 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5042 inode->i_ctime = inode->i_mtime =
5043 current_time(inode);
5046 if (newsize > oldsize) {
5048 * Don't do an expanding truncate while snapshoting is ongoing.
5049 * This is to ensure the snapshot captures a fully consistent
5050 * state of this file - if the snapshot captures this expanding
5051 * truncation, it must capture all writes that happened before
5054 btrfs_wait_for_snapshot_creation(root);
5055 ret = btrfs_cont_expand(inode, oldsize, newsize);
5057 btrfs_end_write_no_snapshoting(root);
5061 trans = btrfs_start_transaction(root, 1);
5062 if (IS_ERR(trans)) {
5063 btrfs_end_write_no_snapshoting(root);
5064 return PTR_ERR(trans);
5067 i_size_write(inode, newsize);
5068 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5069 pagecache_isize_extended(inode, oldsize, newsize);
5070 ret = btrfs_update_inode(trans, root, inode);
5071 btrfs_end_write_no_snapshoting(root);
5072 btrfs_end_transaction(trans);
5076 * We're truncating a file that used to have good data down to
5077 * zero. Make sure it gets into the ordered flush list so that
5078 * any new writes get down to disk quickly.
5081 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5082 &BTRFS_I(inode)->runtime_flags);
5085 * 1 for the orphan item we're going to add
5086 * 1 for the orphan item deletion.
5088 trans = btrfs_start_transaction(root, 2);
5090 return PTR_ERR(trans);
5093 * We need to do this in case we fail at _any_ point during the
5094 * actual truncate. Once we do the truncate_setsize we could
5095 * invalidate pages which forces any outstanding ordered io to
5096 * be instantly completed which will give us extents that need
5097 * to be truncated. If we fail to get an orphan inode down we
5098 * could have left over extents that were never meant to live,
5099 * so we need to guarantee from this point on that everything
5100 * will be consistent.
5102 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5103 btrfs_end_transaction(trans);
5107 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5108 truncate_setsize(inode, newsize);
5110 /* Disable nonlocked read DIO to avoid the end less truncate */
5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5112 inode_dio_wait(inode);
5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5115 ret = btrfs_truncate(inode);
5116 if (ret && inode->i_nlink) {
5119 /* To get a stable disk_i_size */
5120 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5122 btrfs_orphan_del(NULL, BTRFS_I(inode));
5127 * failed to truncate, disk_i_size is only adjusted down
5128 * as we remove extents, so it should represent the true
5129 * size of the inode, so reset the in memory size and
5130 * delete our orphan entry.
5132 trans = btrfs_join_transaction(root);
5133 if (IS_ERR(trans)) {
5134 btrfs_orphan_del(NULL, BTRFS_I(inode));
5137 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5138 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5140 btrfs_abort_transaction(trans, err);
5141 btrfs_end_transaction(trans);
5148 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5150 struct inode *inode = d_inode(dentry);
5151 struct btrfs_root *root = BTRFS_I(inode)->root;
5154 if (btrfs_root_readonly(root))
5157 err = setattr_prepare(dentry, attr);
5161 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5162 err = btrfs_setsize(inode, attr);
5167 if (attr->ia_valid) {
5168 setattr_copy(inode, attr);
5169 inode_inc_iversion(inode);
5170 err = btrfs_dirty_inode(inode);
5172 if (!err && attr->ia_valid & ATTR_MODE)
5173 err = posix_acl_chmod(inode, inode->i_mode);
5180 * While truncating the inode pages during eviction, we get the VFS calling
5181 * btrfs_invalidatepage() against each page of the inode. This is slow because
5182 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5183 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5184 * extent_state structures over and over, wasting lots of time.
5186 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5187 * those expensive operations on a per page basis and do only the ordered io
5188 * finishing, while we release here the extent_map and extent_state structures,
5189 * without the excessive merging and splitting.
5191 static void evict_inode_truncate_pages(struct inode *inode)
5193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5194 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5195 struct rb_node *node;
5197 ASSERT(inode->i_state & I_FREEING);
5198 truncate_inode_pages_final(&inode->i_data);
5200 write_lock(&map_tree->lock);
5201 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5202 struct extent_map *em;
5204 node = rb_first(&map_tree->map);
5205 em = rb_entry(node, struct extent_map, rb_node);
5206 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5207 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5208 remove_extent_mapping(map_tree, em);
5209 free_extent_map(em);
5210 if (need_resched()) {
5211 write_unlock(&map_tree->lock);
5213 write_lock(&map_tree->lock);
5216 write_unlock(&map_tree->lock);
5219 * Keep looping until we have no more ranges in the io tree.
5220 * We can have ongoing bios started by readpages (called from readahead)
5221 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5222 * still in progress (unlocked the pages in the bio but did not yet
5223 * unlocked the ranges in the io tree). Therefore this means some
5224 * ranges can still be locked and eviction started because before
5225 * submitting those bios, which are executed by a separate task (work
5226 * queue kthread), inode references (inode->i_count) were not taken
5227 * (which would be dropped in the end io callback of each bio).
5228 * Therefore here we effectively end up waiting for those bios and
5229 * anyone else holding locked ranges without having bumped the inode's
5230 * reference count - if we don't do it, when they access the inode's
5231 * io_tree to unlock a range it may be too late, leading to an
5232 * use-after-free issue.
5234 spin_lock(&io_tree->lock);
5235 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5236 struct extent_state *state;
5237 struct extent_state *cached_state = NULL;
5241 node = rb_first(&io_tree->state);
5242 state = rb_entry(node, struct extent_state, rb_node);
5243 start = state->start;
5245 spin_unlock(&io_tree->lock);
5247 lock_extent_bits(io_tree, start, end, &cached_state);
5250 * If still has DELALLOC flag, the extent didn't reach disk,
5251 * and its reserved space won't be freed by delayed_ref.
5252 * So we need to free its reserved space here.
5253 * (Refer to comment in btrfs_invalidatepage, case 2)
5255 * Note, end is the bytenr of last byte, so we need + 1 here.
5257 if (state->state & EXTENT_DELALLOC)
5258 btrfs_qgroup_free_data(inode, start, end - start + 1);
5260 clear_extent_bit(io_tree, start, end,
5261 EXTENT_LOCKED | EXTENT_DIRTY |
5262 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5263 EXTENT_DEFRAG, 1, 1,
5264 &cached_state, GFP_NOFS);
5267 spin_lock(&io_tree->lock);
5269 spin_unlock(&io_tree->lock);
5272 void btrfs_evict_inode(struct inode *inode)
5274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5275 struct btrfs_trans_handle *trans;
5276 struct btrfs_root *root = BTRFS_I(inode)->root;
5277 struct btrfs_block_rsv *rsv, *global_rsv;
5278 int steal_from_global = 0;
5282 trace_btrfs_inode_evict(inode);
5285 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5289 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5291 evict_inode_truncate_pages(inode);
5293 if (inode->i_nlink &&
5294 ((btrfs_root_refs(&root->root_item) != 0 &&
5295 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5296 btrfs_is_free_space_inode(BTRFS_I(inode))))
5299 if (is_bad_inode(inode)) {
5300 btrfs_orphan_del(NULL, BTRFS_I(inode));
5303 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5304 if (!special_file(inode->i_mode))
5305 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5307 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5309 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5310 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5311 &BTRFS_I(inode)->runtime_flags));
5315 if (inode->i_nlink > 0) {
5316 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5317 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5321 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5323 btrfs_orphan_del(NULL, BTRFS_I(inode));
5327 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5329 btrfs_orphan_del(NULL, BTRFS_I(inode));
5332 rsv->size = min_size;
5334 global_rsv = &fs_info->global_block_rsv;
5336 btrfs_i_size_write(BTRFS_I(inode), 0);
5339 * This is a bit simpler than btrfs_truncate since we've already
5340 * reserved our space for our orphan item in the unlink, so we just
5341 * need to reserve some slack space in case we add bytes and update
5342 * inode item when doing the truncate.
5345 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5346 BTRFS_RESERVE_FLUSH_LIMIT);
5349 * Try and steal from the global reserve since we will
5350 * likely not use this space anyway, we want to try as
5351 * hard as possible to get this to work.
5354 steal_from_global++;
5356 steal_from_global = 0;
5360 * steal_from_global == 0: we reserved stuff, hooray!
5361 * steal_from_global == 1: we didn't reserve stuff, boo!
5362 * steal_from_global == 2: we've committed, still not a lot of
5363 * room but maybe we'll have room in the global reserve this
5365 * steal_from_global == 3: abandon all hope!
5367 if (steal_from_global > 2) {
5369 "Could not get space for a delete, will truncate on mount %d",
5371 btrfs_orphan_del(NULL, BTRFS_I(inode));
5372 btrfs_free_block_rsv(fs_info, rsv);
5376 trans = btrfs_join_transaction(root);
5377 if (IS_ERR(trans)) {
5378 btrfs_orphan_del(NULL, BTRFS_I(inode));
5379 btrfs_free_block_rsv(fs_info, rsv);
5384 * We can't just steal from the global reserve, we need to make
5385 * sure there is room to do it, if not we need to commit and try
5388 if (steal_from_global) {
5389 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5390 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5397 * Couldn't steal from the global reserve, we have too much
5398 * pending stuff built up, commit the transaction and try it
5402 ret = btrfs_commit_transaction(trans);
5404 btrfs_orphan_del(NULL, BTRFS_I(inode));
5405 btrfs_free_block_rsv(fs_info, rsv);
5410 steal_from_global = 0;
5413 trans->block_rsv = rsv;
5415 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5416 if (ret != -ENOSPC && ret != -EAGAIN)
5419 trans->block_rsv = &fs_info->trans_block_rsv;
5420 btrfs_end_transaction(trans);
5422 btrfs_btree_balance_dirty(fs_info);
5425 btrfs_free_block_rsv(fs_info, rsv);
5428 * Errors here aren't a big deal, it just means we leave orphan items
5429 * in the tree. They will be cleaned up on the next mount.
5432 trans->block_rsv = root->orphan_block_rsv;
5433 btrfs_orphan_del(trans, BTRFS_I(inode));
5435 btrfs_orphan_del(NULL, BTRFS_I(inode));
5438 trans->block_rsv = &fs_info->trans_block_rsv;
5439 if (!(root == fs_info->tree_root ||
5440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5441 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5443 btrfs_end_transaction(trans);
5444 btrfs_btree_balance_dirty(fs_info);
5446 btrfs_remove_delayed_node(BTRFS_I(inode));
5451 * this returns the key found in the dir entry in the location pointer.
5452 * If no dir entries were found, location->objectid is 0.
5454 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5455 struct btrfs_key *location)
5457 const char *name = dentry->d_name.name;
5458 int namelen = dentry->d_name.len;
5459 struct btrfs_dir_item *di;
5460 struct btrfs_path *path;
5461 struct btrfs_root *root = BTRFS_I(dir)->root;
5464 path = btrfs_alloc_path();
5468 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5473 if (IS_ERR_OR_NULL(di))
5476 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5478 btrfs_free_path(path);
5481 location->objectid = 0;
5486 * when we hit a tree root in a directory, the btrfs part of the inode
5487 * needs to be changed to reflect the root directory of the tree root. This
5488 * is kind of like crossing a mount point.
5490 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5492 struct dentry *dentry,
5493 struct btrfs_key *location,
5494 struct btrfs_root **sub_root)
5496 struct btrfs_path *path;
5497 struct btrfs_root *new_root;
5498 struct btrfs_root_ref *ref;
5499 struct extent_buffer *leaf;
5500 struct btrfs_key key;
5504 path = btrfs_alloc_path();
5511 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5512 key.type = BTRFS_ROOT_REF_KEY;
5513 key.offset = location->objectid;
5515 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5522 leaf = path->nodes[0];
5523 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5524 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5525 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5528 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5529 (unsigned long)(ref + 1),
5530 dentry->d_name.len);
5534 btrfs_release_path(path);
5536 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5537 if (IS_ERR(new_root)) {
5538 err = PTR_ERR(new_root);
5542 *sub_root = new_root;
5543 location->objectid = btrfs_root_dirid(&new_root->root_item);
5544 location->type = BTRFS_INODE_ITEM_KEY;
5545 location->offset = 0;
5548 btrfs_free_path(path);
5552 static void inode_tree_add(struct inode *inode)
5554 struct btrfs_root *root = BTRFS_I(inode)->root;
5555 struct btrfs_inode *entry;
5557 struct rb_node *parent;
5558 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5559 u64 ino = btrfs_ino(BTRFS_I(inode));
5561 if (inode_unhashed(inode))
5564 spin_lock(&root->inode_lock);
5565 p = &root->inode_tree.rb_node;
5568 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5570 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5571 p = &parent->rb_left;
5572 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5573 p = &parent->rb_right;
5575 WARN_ON(!(entry->vfs_inode.i_state &
5576 (I_WILL_FREE | I_FREEING)));
5577 rb_replace_node(parent, new, &root->inode_tree);
5578 RB_CLEAR_NODE(parent);
5579 spin_unlock(&root->inode_lock);
5583 rb_link_node(new, parent, p);
5584 rb_insert_color(new, &root->inode_tree);
5585 spin_unlock(&root->inode_lock);
5588 static void inode_tree_del(struct inode *inode)
5590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5591 struct btrfs_root *root = BTRFS_I(inode)->root;
5594 spin_lock(&root->inode_lock);
5595 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5596 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5597 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5598 empty = RB_EMPTY_ROOT(&root->inode_tree);
5600 spin_unlock(&root->inode_lock);
5602 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5603 synchronize_srcu(&fs_info->subvol_srcu);
5604 spin_lock(&root->inode_lock);
5605 empty = RB_EMPTY_ROOT(&root->inode_tree);
5606 spin_unlock(&root->inode_lock);
5608 btrfs_add_dead_root(root);
5612 void btrfs_invalidate_inodes(struct btrfs_root *root)
5614 struct btrfs_fs_info *fs_info = root->fs_info;
5615 struct rb_node *node;
5616 struct rb_node *prev;
5617 struct btrfs_inode *entry;
5618 struct inode *inode;
5621 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5622 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5624 spin_lock(&root->inode_lock);
5626 node = root->inode_tree.rb_node;
5630 entry = rb_entry(node, struct btrfs_inode, rb_node);
5632 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5633 node = node->rb_left;
5634 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5635 node = node->rb_right;
5641 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5642 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5646 prev = rb_next(prev);
5650 entry = rb_entry(node, struct btrfs_inode, rb_node);
5651 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5652 inode = igrab(&entry->vfs_inode);
5654 spin_unlock(&root->inode_lock);
5655 if (atomic_read(&inode->i_count) > 1)
5656 d_prune_aliases(inode);
5658 * btrfs_drop_inode will have it removed from
5659 * the inode cache when its usage count
5664 spin_lock(&root->inode_lock);
5668 if (cond_resched_lock(&root->inode_lock))
5671 node = rb_next(node);
5673 spin_unlock(&root->inode_lock);
5676 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5678 struct btrfs_iget_args *args = p;
5679 inode->i_ino = args->location->objectid;
5680 memcpy(&BTRFS_I(inode)->location, args->location,
5681 sizeof(*args->location));
5682 BTRFS_I(inode)->root = args->root;
5686 static int btrfs_find_actor(struct inode *inode, void *opaque)
5688 struct btrfs_iget_args *args = opaque;
5689 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5690 args->root == BTRFS_I(inode)->root;
5693 static struct inode *btrfs_iget_locked(struct super_block *s,
5694 struct btrfs_key *location,
5695 struct btrfs_root *root)
5697 struct inode *inode;
5698 struct btrfs_iget_args args;
5699 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5701 args.location = location;
5704 inode = iget5_locked(s, hashval, btrfs_find_actor,
5705 btrfs_init_locked_inode,
5710 /* Get an inode object given its location and corresponding root.
5711 * Returns in *is_new if the inode was read from disk
5713 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5714 struct btrfs_root *root, int *new)
5716 struct inode *inode;
5718 inode = btrfs_iget_locked(s, location, root);
5720 return ERR_PTR(-ENOMEM);
5722 if (inode->i_state & I_NEW) {
5725 ret = btrfs_read_locked_inode(inode);
5726 if (!is_bad_inode(inode)) {
5727 inode_tree_add(inode);
5728 unlock_new_inode(inode);
5732 unlock_new_inode(inode);
5735 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5742 static struct inode *new_simple_dir(struct super_block *s,
5743 struct btrfs_key *key,
5744 struct btrfs_root *root)
5746 struct inode *inode = new_inode(s);
5749 return ERR_PTR(-ENOMEM);
5751 BTRFS_I(inode)->root = root;
5752 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5753 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5755 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5756 inode->i_op = &btrfs_dir_ro_inode_operations;
5757 inode->i_opflags &= ~IOP_XATTR;
5758 inode->i_fop = &simple_dir_operations;
5759 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5760 inode->i_mtime = current_time(inode);
5761 inode->i_atime = inode->i_mtime;
5762 inode->i_ctime = inode->i_mtime;
5763 BTRFS_I(inode)->i_otime = inode->i_mtime;
5768 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5771 struct inode *inode;
5772 struct btrfs_root *root = BTRFS_I(dir)->root;
5773 struct btrfs_root *sub_root = root;
5774 struct btrfs_key location;
5778 if (dentry->d_name.len > BTRFS_NAME_LEN)
5779 return ERR_PTR(-ENAMETOOLONG);
5781 ret = btrfs_inode_by_name(dir, dentry, &location);
5783 return ERR_PTR(ret);
5785 if (location.objectid == 0)
5786 return ERR_PTR(-ENOENT);
5788 if (location.type == BTRFS_INODE_ITEM_KEY) {
5789 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5793 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5795 index = srcu_read_lock(&fs_info->subvol_srcu);
5796 ret = fixup_tree_root_location(fs_info, dir, dentry,
5797 &location, &sub_root);
5800 inode = ERR_PTR(ret);
5802 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5804 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5806 srcu_read_unlock(&fs_info->subvol_srcu, index);
5808 if (!IS_ERR(inode) && root != sub_root) {
5809 down_read(&fs_info->cleanup_work_sem);
5810 if (!(inode->i_sb->s_flags & MS_RDONLY))
5811 ret = btrfs_orphan_cleanup(sub_root);
5812 up_read(&fs_info->cleanup_work_sem);
5815 inode = ERR_PTR(ret);
5822 static int btrfs_dentry_delete(const struct dentry *dentry)
5824 struct btrfs_root *root;
5825 struct inode *inode = d_inode(dentry);
5827 if (!inode && !IS_ROOT(dentry))
5828 inode = d_inode(dentry->d_parent);
5831 root = BTRFS_I(inode)->root;
5832 if (btrfs_root_refs(&root->root_item) == 0)
5835 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5841 static void btrfs_dentry_release(struct dentry *dentry)
5843 kfree(dentry->d_fsdata);
5846 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5849 struct inode *inode;
5851 inode = btrfs_lookup_dentry(dir, dentry);
5852 if (IS_ERR(inode)) {
5853 if (PTR_ERR(inode) == -ENOENT)
5856 return ERR_CAST(inode);
5859 return d_splice_alias(inode, dentry);
5862 unsigned char btrfs_filetype_table[] = {
5863 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5866 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5868 struct inode *inode = file_inode(file);
5869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5870 struct btrfs_root *root = BTRFS_I(inode)->root;
5871 struct btrfs_item *item;
5872 struct btrfs_dir_item *di;
5873 struct btrfs_key key;
5874 struct btrfs_key found_key;
5875 struct btrfs_path *path;
5876 struct list_head ins_list;
5877 struct list_head del_list;
5879 struct extent_buffer *leaf;
5881 unsigned char d_type;
5887 struct btrfs_key location;
5889 if (!dir_emit_dots(file, ctx))
5892 path = btrfs_alloc_path();
5896 path->reada = READA_FORWARD;
5898 INIT_LIST_HEAD(&ins_list);
5899 INIT_LIST_HEAD(&del_list);
5900 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5902 key.type = BTRFS_DIR_INDEX_KEY;
5903 key.offset = ctx->pos;
5904 key.objectid = btrfs_ino(BTRFS_I(inode));
5906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5911 leaf = path->nodes[0];
5912 slot = path->slots[0];
5913 if (slot >= btrfs_header_nritems(leaf)) {
5914 ret = btrfs_next_leaf(root, path);
5922 item = btrfs_item_nr(slot);
5923 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5925 if (found_key.objectid != key.objectid)
5927 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5929 if (found_key.offset < ctx->pos)
5931 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5934 ctx->pos = found_key.offset;
5936 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5937 if (verify_dir_item(fs_info, leaf, di))
5940 name_len = btrfs_dir_name_len(leaf, di);
5941 if (name_len <= sizeof(tmp_name)) {
5942 name_ptr = tmp_name;
5944 name_ptr = kmalloc(name_len, GFP_KERNEL);
5950 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5953 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5954 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5956 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5959 if (name_ptr != tmp_name)
5969 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5974 * Stop new entries from being returned after we return the last
5977 * New directory entries are assigned a strictly increasing
5978 * offset. This means that new entries created during readdir
5979 * are *guaranteed* to be seen in the future by that readdir.
5980 * This has broken buggy programs which operate on names as
5981 * they're returned by readdir. Until we re-use freed offsets
5982 * we have this hack to stop new entries from being returned
5983 * under the assumption that they'll never reach this huge
5986 * This is being careful not to overflow 32bit loff_t unless the
5987 * last entry requires it because doing so has broken 32bit apps
5990 if (ctx->pos >= INT_MAX)
5991 ctx->pos = LLONG_MAX;
5998 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5999 btrfs_free_path(path);
6003 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6005 struct btrfs_root *root = BTRFS_I(inode)->root;
6006 struct btrfs_trans_handle *trans;
6008 bool nolock = false;
6010 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6013 if (btrfs_fs_closing(root->fs_info) &&
6014 btrfs_is_free_space_inode(BTRFS_I(inode)))
6017 if (wbc->sync_mode == WB_SYNC_ALL) {
6019 trans = btrfs_join_transaction_nolock(root);
6021 trans = btrfs_join_transaction(root);
6023 return PTR_ERR(trans);
6024 ret = btrfs_commit_transaction(trans);
6030 * This is somewhat expensive, updating the tree every time the
6031 * inode changes. But, it is most likely to find the inode in cache.
6032 * FIXME, needs more benchmarking...there are no reasons other than performance
6033 * to keep or drop this code.
6035 static int btrfs_dirty_inode(struct inode *inode)
6037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6038 struct btrfs_root *root = BTRFS_I(inode)->root;
6039 struct btrfs_trans_handle *trans;
6042 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6045 trans = btrfs_join_transaction(root);
6047 return PTR_ERR(trans);
6049 ret = btrfs_update_inode(trans, root, inode);
6050 if (ret && ret == -ENOSPC) {
6051 /* whoops, lets try again with the full transaction */
6052 btrfs_end_transaction(trans);
6053 trans = btrfs_start_transaction(root, 1);
6055 return PTR_ERR(trans);
6057 ret = btrfs_update_inode(trans, root, inode);
6059 btrfs_end_transaction(trans);
6060 if (BTRFS_I(inode)->delayed_node)
6061 btrfs_balance_delayed_items(fs_info);
6067 * This is a copy of file_update_time. We need this so we can return error on
6068 * ENOSPC for updating the inode in the case of file write and mmap writes.
6070 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6073 struct btrfs_root *root = BTRFS_I(inode)->root;
6075 if (btrfs_root_readonly(root))
6078 if (flags & S_VERSION)
6079 inode_inc_iversion(inode);
6080 if (flags & S_CTIME)
6081 inode->i_ctime = *now;
6082 if (flags & S_MTIME)
6083 inode->i_mtime = *now;
6084 if (flags & S_ATIME)
6085 inode->i_atime = *now;
6086 return btrfs_dirty_inode(inode);
6090 * find the highest existing sequence number in a directory
6091 * and then set the in-memory index_cnt variable to reflect
6092 * free sequence numbers
6094 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6096 struct btrfs_root *root = inode->root;
6097 struct btrfs_key key, found_key;
6098 struct btrfs_path *path;
6099 struct extent_buffer *leaf;
6102 key.objectid = btrfs_ino(inode);
6103 key.type = BTRFS_DIR_INDEX_KEY;
6104 key.offset = (u64)-1;
6106 path = btrfs_alloc_path();
6110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6113 /* FIXME: we should be able to handle this */
6119 * MAGIC NUMBER EXPLANATION:
6120 * since we search a directory based on f_pos we have to start at 2
6121 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6122 * else has to start at 2
6124 if (path->slots[0] == 0) {
6125 inode->index_cnt = 2;
6131 leaf = path->nodes[0];
6132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6134 if (found_key.objectid != btrfs_ino(inode) ||
6135 found_key.type != BTRFS_DIR_INDEX_KEY) {
6136 inode->index_cnt = 2;
6140 inode->index_cnt = found_key.offset + 1;
6142 btrfs_free_path(path);
6147 * helper to find a free sequence number in a given directory. This current
6148 * code is very simple, later versions will do smarter things in the btree
6150 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6154 if (dir->index_cnt == (u64)-1) {
6155 ret = btrfs_inode_delayed_dir_index_count(dir);
6157 ret = btrfs_set_inode_index_count(dir);
6163 *index = dir->index_cnt;
6169 static int btrfs_insert_inode_locked(struct inode *inode)
6171 struct btrfs_iget_args args;
6172 args.location = &BTRFS_I(inode)->location;
6173 args.root = BTRFS_I(inode)->root;
6175 return insert_inode_locked4(inode,
6176 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6177 btrfs_find_actor, &args);
6180 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6181 struct btrfs_root *root,
6183 const char *name, int name_len,
6184 u64 ref_objectid, u64 objectid,
6185 umode_t mode, u64 *index)
6187 struct btrfs_fs_info *fs_info = root->fs_info;
6188 struct inode *inode;
6189 struct btrfs_inode_item *inode_item;
6190 struct btrfs_key *location;
6191 struct btrfs_path *path;
6192 struct btrfs_inode_ref *ref;
6193 struct btrfs_key key[2];
6195 int nitems = name ? 2 : 1;
6199 path = btrfs_alloc_path();
6201 return ERR_PTR(-ENOMEM);
6203 inode = new_inode(fs_info->sb);
6205 btrfs_free_path(path);
6206 return ERR_PTR(-ENOMEM);
6210 * O_TMPFILE, set link count to 0, so that after this point,
6211 * we fill in an inode item with the correct link count.
6214 set_nlink(inode, 0);
6217 * we have to initialize this early, so we can reclaim the inode
6218 * number if we fail afterwards in this function.
6220 inode->i_ino = objectid;
6223 trace_btrfs_inode_request(dir);
6225 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6227 btrfs_free_path(path);
6229 return ERR_PTR(ret);
6235 * index_cnt is ignored for everything but a dir,
6236 * btrfs_get_inode_index_count has an explanation for the magic
6239 BTRFS_I(inode)->index_cnt = 2;
6240 BTRFS_I(inode)->dir_index = *index;
6241 BTRFS_I(inode)->root = root;
6242 BTRFS_I(inode)->generation = trans->transid;
6243 inode->i_generation = BTRFS_I(inode)->generation;
6246 * We could have gotten an inode number from somebody who was fsynced
6247 * and then removed in this same transaction, so let's just set full
6248 * sync since it will be a full sync anyway and this will blow away the
6249 * old info in the log.
6251 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6253 key[0].objectid = objectid;
6254 key[0].type = BTRFS_INODE_ITEM_KEY;
6257 sizes[0] = sizeof(struct btrfs_inode_item);
6261 * Start new inodes with an inode_ref. This is slightly more
6262 * efficient for small numbers of hard links since they will
6263 * be packed into one item. Extended refs will kick in if we
6264 * add more hard links than can fit in the ref item.
6266 key[1].objectid = objectid;
6267 key[1].type = BTRFS_INODE_REF_KEY;
6268 key[1].offset = ref_objectid;
6270 sizes[1] = name_len + sizeof(*ref);
6273 location = &BTRFS_I(inode)->location;
6274 location->objectid = objectid;
6275 location->offset = 0;
6276 location->type = BTRFS_INODE_ITEM_KEY;
6278 ret = btrfs_insert_inode_locked(inode);
6282 path->leave_spinning = 1;
6283 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6287 inode_init_owner(inode, dir, mode);
6288 inode_set_bytes(inode, 0);
6290 inode->i_mtime = current_time(inode);
6291 inode->i_atime = inode->i_mtime;
6292 inode->i_ctime = inode->i_mtime;
6293 BTRFS_I(inode)->i_otime = inode->i_mtime;
6295 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6296 struct btrfs_inode_item);
6297 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6298 sizeof(*inode_item));
6299 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6302 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6303 struct btrfs_inode_ref);
6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6305 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6306 ptr = (unsigned long)(ref + 1);
6307 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6310 btrfs_mark_buffer_dirty(path->nodes[0]);
6311 btrfs_free_path(path);
6313 btrfs_inherit_iflags(inode, dir);
6315 if (S_ISREG(mode)) {
6316 if (btrfs_test_opt(fs_info, NODATASUM))
6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6318 if (btrfs_test_opt(fs_info, NODATACOW))
6319 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6320 BTRFS_INODE_NODATASUM;
6323 inode_tree_add(inode);
6325 trace_btrfs_inode_new(inode);
6326 btrfs_set_inode_last_trans(trans, inode);
6328 btrfs_update_root_times(trans, root);
6330 ret = btrfs_inode_inherit_props(trans, inode, dir);
6333 "error inheriting props for ino %llu (root %llu): %d",
6334 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6339 unlock_new_inode(inode);
6342 BTRFS_I(dir)->index_cnt--;
6343 btrfs_free_path(path);
6345 return ERR_PTR(ret);
6348 static inline u8 btrfs_inode_type(struct inode *inode)
6350 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6354 * utility function to add 'inode' into 'parent_inode' with
6355 * a give name and a given sequence number.
6356 * if 'add_backref' is true, also insert a backref from the
6357 * inode to the parent directory.
6359 int btrfs_add_link(struct btrfs_trans_handle *trans,
6360 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6361 const char *name, int name_len, int add_backref, u64 index)
6363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6365 struct btrfs_key key;
6366 struct btrfs_root *root = parent_inode->root;
6367 u64 ino = btrfs_ino(inode);
6368 u64 parent_ino = btrfs_ino(parent_inode);
6370 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6371 memcpy(&key, &inode->root->root_key, sizeof(key));
6374 key.type = BTRFS_INODE_ITEM_KEY;
6378 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6379 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6380 root->root_key.objectid, parent_ino,
6381 index, name, name_len);
6382 } else if (add_backref) {
6383 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6387 /* Nothing to clean up yet */
6391 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6393 btrfs_inode_type(&inode->vfs_inode), index);
6394 if (ret == -EEXIST || ret == -EOVERFLOW)
6397 btrfs_abort_transaction(trans, ret);
6401 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6403 inode_inc_iversion(&parent_inode->vfs_inode);
6404 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6405 current_time(&parent_inode->vfs_inode);
6406 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6408 btrfs_abort_transaction(trans, ret);
6412 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6415 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6416 root->root_key.objectid, parent_ino,
6417 &local_index, name, name_len);
6419 } else if (add_backref) {
6423 err = btrfs_del_inode_ref(trans, root, name, name_len,
6424 ino, parent_ino, &local_index);
6429 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6430 struct btrfs_inode *dir, struct dentry *dentry,
6431 struct btrfs_inode *inode, int backref, u64 index)
6433 int err = btrfs_add_link(trans, dir, inode,
6434 dentry->d_name.name, dentry->d_name.len,
6441 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6442 umode_t mode, dev_t rdev)
6444 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6445 struct btrfs_trans_handle *trans;
6446 struct btrfs_root *root = BTRFS_I(dir)->root;
6447 struct inode *inode = NULL;
6454 * 2 for inode item and ref
6456 * 1 for xattr if selinux is on
6458 trans = btrfs_start_transaction(root, 5);
6460 return PTR_ERR(trans);
6462 err = btrfs_find_free_ino(root, &objectid);
6466 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6467 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6469 if (IS_ERR(inode)) {
6470 err = PTR_ERR(inode);
6475 * If the active LSM wants to access the inode during
6476 * d_instantiate it needs these. Smack checks to see
6477 * if the filesystem supports xattrs by looking at the
6480 inode->i_op = &btrfs_special_inode_operations;
6481 init_special_inode(inode, inode->i_mode, rdev);
6483 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6485 goto out_unlock_inode;
6487 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6490 goto out_unlock_inode;
6492 btrfs_update_inode(trans, root, inode);
6493 unlock_new_inode(inode);
6494 d_instantiate(dentry, inode);
6498 btrfs_end_transaction(trans);
6499 btrfs_balance_delayed_items(fs_info);
6500 btrfs_btree_balance_dirty(fs_info);
6502 inode_dec_link_count(inode);
6509 unlock_new_inode(inode);
6514 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6515 umode_t mode, bool excl)
6517 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6518 struct btrfs_trans_handle *trans;
6519 struct btrfs_root *root = BTRFS_I(dir)->root;
6520 struct inode *inode = NULL;
6521 int drop_inode_on_err = 0;
6527 * 2 for inode item and ref
6529 * 1 for xattr if selinux is on
6531 trans = btrfs_start_transaction(root, 5);
6533 return PTR_ERR(trans);
6535 err = btrfs_find_free_ino(root, &objectid);
6539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6540 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6542 if (IS_ERR(inode)) {
6543 err = PTR_ERR(inode);
6546 drop_inode_on_err = 1;
6548 * If the active LSM wants to access the inode during
6549 * d_instantiate it needs these. Smack checks to see
6550 * if the filesystem supports xattrs by looking at the
6553 inode->i_fop = &btrfs_file_operations;
6554 inode->i_op = &btrfs_file_inode_operations;
6555 inode->i_mapping->a_ops = &btrfs_aops;
6557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6559 goto out_unlock_inode;
6561 err = btrfs_update_inode(trans, root, inode);
6563 goto out_unlock_inode;
6565 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6568 goto out_unlock_inode;
6570 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6571 unlock_new_inode(inode);
6572 d_instantiate(dentry, inode);
6575 btrfs_end_transaction(trans);
6576 if (err && drop_inode_on_err) {
6577 inode_dec_link_count(inode);
6580 btrfs_balance_delayed_items(fs_info);
6581 btrfs_btree_balance_dirty(fs_info);
6585 unlock_new_inode(inode);
6590 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6591 struct dentry *dentry)
6593 struct btrfs_trans_handle *trans = NULL;
6594 struct btrfs_root *root = BTRFS_I(dir)->root;
6595 struct inode *inode = d_inode(old_dentry);
6596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6601 /* do not allow sys_link's with other subvols of the same device */
6602 if (root->objectid != BTRFS_I(inode)->root->objectid)
6605 if (inode->i_nlink >= BTRFS_LINK_MAX)
6608 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6613 * 2 items for inode and inode ref
6614 * 2 items for dir items
6615 * 1 item for parent inode
6617 trans = btrfs_start_transaction(root, 5);
6618 if (IS_ERR(trans)) {
6619 err = PTR_ERR(trans);
6624 /* There are several dir indexes for this inode, clear the cache. */
6625 BTRFS_I(inode)->dir_index = 0ULL;
6627 inode_inc_iversion(inode);
6628 inode->i_ctime = current_time(inode);
6630 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6632 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6638 struct dentry *parent = dentry->d_parent;
6639 err = btrfs_update_inode(trans, root, inode);
6642 if (inode->i_nlink == 1) {
6644 * If new hard link count is 1, it's a file created
6645 * with open(2) O_TMPFILE flag.
6647 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6651 d_instantiate(dentry, inode);
6652 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6655 btrfs_balance_delayed_items(fs_info);
6658 btrfs_end_transaction(trans);
6660 inode_dec_link_count(inode);
6663 btrfs_btree_balance_dirty(fs_info);
6667 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6669 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6670 struct inode *inode = NULL;
6671 struct btrfs_trans_handle *trans;
6672 struct btrfs_root *root = BTRFS_I(dir)->root;
6674 int drop_on_err = 0;
6679 * 2 items for inode and ref
6680 * 2 items for dir items
6681 * 1 for xattr if selinux is on
6683 trans = btrfs_start_transaction(root, 5);
6685 return PTR_ERR(trans);
6687 err = btrfs_find_free_ino(root, &objectid);
6691 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6692 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6693 S_IFDIR | mode, &index);
6694 if (IS_ERR(inode)) {
6695 err = PTR_ERR(inode);
6700 /* these must be set before we unlock the inode */
6701 inode->i_op = &btrfs_dir_inode_operations;
6702 inode->i_fop = &btrfs_dir_file_operations;
6704 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6706 goto out_fail_inode;
6708 btrfs_i_size_write(BTRFS_I(inode), 0);
6709 err = btrfs_update_inode(trans, root, inode);
6711 goto out_fail_inode;
6713 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6714 dentry->d_name.name,
6715 dentry->d_name.len, 0, index);
6717 goto out_fail_inode;
6719 d_instantiate(dentry, inode);
6721 * mkdir is special. We're unlocking after we call d_instantiate
6722 * to avoid a race with nfsd calling d_instantiate.
6724 unlock_new_inode(inode);
6728 btrfs_end_transaction(trans);
6730 inode_dec_link_count(inode);
6733 btrfs_balance_delayed_items(fs_info);
6734 btrfs_btree_balance_dirty(fs_info);
6738 unlock_new_inode(inode);
6742 /* Find next extent map of a given extent map, caller needs to ensure locks */
6743 static struct extent_map *next_extent_map(struct extent_map *em)
6745 struct rb_node *next;
6747 next = rb_next(&em->rb_node);
6750 return container_of(next, struct extent_map, rb_node);
6753 static struct extent_map *prev_extent_map(struct extent_map *em)
6755 struct rb_node *prev;
6757 prev = rb_prev(&em->rb_node);
6760 return container_of(prev, struct extent_map, rb_node);
6763 /* helper for btfs_get_extent. Given an existing extent in the tree,
6764 * the existing extent is the nearest extent to map_start,
6765 * and an extent that you want to insert, deal with overlap and insert
6766 * the best fitted new extent into the tree.
6768 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6769 struct extent_map *existing,
6770 struct extent_map *em,
6773 struct extent_map *prev;
6774 struct extent_map *next;
6779 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6781 if (existing->start > map_start) {
6783 prev = prev_extent_map(next);
6786 next = next_extent_map(prev);
6789 start = prev ? extent_map_end(prev) : em->start;
6790 start = max_t(u64, start, em->start);
6791 end = next ? next->start : extent_map_end(em);
6792 end = min_t(u64, end, extent_map_end(em));
6793 start_diff = start - em->start;
6795 em->len = end - start;
6796 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6797 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6798 em->block_start += start_diff;
6799 em->block_len -= start_diff;
6801 return add_extent_mapping(em_tree, em, 0);
6804 static noinline int uncompress_inline(struct btrfs_path *path,
6806 size_t pg_offset, u64 extent_offset,
6807 struct btrfs_file_extent_item *item)
6810 struct extent_buffer *leaf = path->nodes[0];
6813 unsigned long inline_size;
6817 WARN_ON(pg_offset != 0);
6818 compress_type = btrfs_file_extent_compression(leaf, item);
6819 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6820 inline_size = btrfs_file_extent_inline_item_len(leaf,
6821 btrfs_item_nr(path->slots[0]));
6822 tmp = kmalloc(inline_size, GFP_NOFS);
6825 ptr = btrfs_file_extent_inline_start(item);
6827 read_extent_buffer(leaf, tmp, ptr, inline_size);
6829 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6830 ret = btrfs_decompress(compress_type, tmp, page,
6831 extent_offset, inline_size, max_size);
6834 * decompression code contains a memset to fill in any space between the end
6835 * of the uncompressed data and the end of max_size in case the decompressed
6836 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6837 * the end of an inline extent and the beginning of the next block, so we
6838 * cover that region here.
6841 if (max_size + pg_offset < PAGE_SIZE) {
6842 char *map = kmap(page);
6843 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6851 * a bit scary, this does extent mapping from logical file offset to the disk.
6852 * the ugly parts come from merging extents from the disk with the in-ram
6853 * representation. This gets more complex because of the data=ordered code,
6854 * where the in-ram extents might be locked pending data=ordered completion.
6856 * This also copies inline extents directly into the page.
6858 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6860 size_t pg_offset, u64 start, u64 len,
6863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6866 u64 extent_start = 0;
6868 u64 objectid = btrfs_ino(inode);
6870 struct btrfs_path *path = NULL;
6871 struct btrfs_root *root = inode->root;
6872 struct btrfs_file_extent_item *item;
6873 struct extent_buffer *leaf;
6874 struct btrfs_key found_key;
6875 struct extent_map *em = NULL;
6876 struct extent_map_tree *em_tree = &inode->extent_tree;
6877 struct extent_io_tree *io_tree = &inode->io_tree;
6878 struct btrfs_trans_handle *trans = NULL;
6879 const bool new_inline = !page || create;
6882 read_lock(&em_tree->lock);
6883 em = lookup_extent_mapping(em_tree, start, len);
6885 em->bdev = fs_info->fs_devices->latest_bdev;
6886 read_unlock(&em_tree->lock);
6889 if (em->start > start || em->start + em->len <= start)
6890 free_extent_map(em);
6891 else if (em->block_start == EXTENT_MAP_INLINE && page)
6892 free_extent_map(em);
6896 em = alloc_extent_map();
6901 em->bdev = fs_info->fs_devices->latest_bdev;
6902 em->start = EXTENT_MAP_HOLE;
6903 em->orig_start = EXTENT_MAP_HOLE;
6905 em->block_len = (u64)-1;
6908 path = btrfs_alloc_path();
6914 * Chances are we'll be called again, so go ahead and do
6917 path->reada = READA_FORWARD;
6920 ret = btrfs_lookup_file_extent(trans, root, path,
6921 objectid, start, trans != NULL);
6928 if (path->slots[0] == 0)
6933 leaf = path->nodes[0];
6934 item = btrfs_item_ptr(leaf, path->slots[0],
6935 struct btrfs_file_extent_item);
6936 /* are we inside the extent that was found? */
6937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6938 found_type = found_key.type;
6939 if (found_key.objectid != objectid ||
6940 found_type != BTRFS_EXTENT_DATA_KEY) {
6942 * If we backup past the first extent we want to move forward
6943 * and see if there is an extent in front of us, otherwise we'll
6944 * say there is a hole for our whole search range which can
6951 found_type = btrfs_file_extent_type(leaf, item);
6952 extent_start = found_key.offset;
6953 if (found_type == BTRFS_FILE_EXTENT_REG ||
6954 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6955 extent_end = extent_start +
6956 btrfs_file_extent_num_bytes(leaf, item);
6958 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6960 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6962 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6963 extent_end = ALIGN(extent_start + size,
6964 fs_info->sectorsize);
6966 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6971 if (start >= extent_end) {
6973 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6974 ret = btrfs_next_leaf(root, path);
6981 leaf = path->nodes[0];
6983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6984 if (found_key.objectid != objectid ||
6985 found_key.type != BTRFS_EXTENT_DATA_KEY)
6987 if (start + len <= found_key.offset)
6989 if (start > found_key.offset)
6992 em->orig_start = start;
6993 em->len = found_key.offset - start;
6997 btrfs_extent_item_to_extent_map(inode, path, item,
7000 if (found_type == BTRFS_FILE_EXTENT_REG ||
7001 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7003 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7007 size_t extent_offset;
7013 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7014 extent_offset = page_offset(page) + pg_offset - extent_start;
7015 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7016 size - extent_offset);
7017 em->start = extent_start + extent_offset;
7018 em->len = ALIGN(copy_size, fs_info->sectorsize);
7019 em->orig_block_len = em->len;
7020 em->orig_start = em->start;
7021 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7022 if (create == 0 && !PageUptodate(page)) {
7023 if (btrfs_file_extent_compression(leaf, item) !=
7024 BTRFS_COMPRESS_NONE) {
7025 ret = uncompress_inline(path, page, pg_offset,
7026 extent_offset, item);
7033 read_extent_buffer(leaf, map + pg_offset, ptr,
7035 if (pg_offset + copy_size < PAGE_SIZE) {
7036 memset(map + pg_offset + copy_size, 0,
7037 PAGE_SIZE - pg_offset -
7042 flush_dcache_page(page);
7043 } else if (create && PageUptodate(page)) {
7047 free_extent_map(em);
7050 btrfs_release_path(path);
7051 trans = btrfs_join_transaction(root);
7054 return ERR_CAST(trans);
7058 write_extent_buffer(leaf, map + pg_offset, ptr,
7061 btrfs_mark_buffer_dirty(leaf);
7063 set_extent_uptodate(io_tree, em->start,
7064 extent_map_end(em) - 1, NULL, GFP_NOFS);
7069 em->orig_start = start;
7072 em->block_start = EXTENT_MAP_HOLE;
7073 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7075 btrfs_release_path(path);
7076 if (em->start > start || extent_map_end(em) <= start) {
7078 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 em->start, em->len, start, len);
7085 write_lock(&em_tree->lock);
7086 ret = add_extent_mapping(em_tree, em, 0);
7087 /* it is possible that someone inserted the extent into the tree
7088 * while we had the lock dropped. It is also possible that
7089 * an overlapping map exists in the tree
7091 if (ret == -EEXIST) {
7092 struct extent_map *existing;
7096 existing = search_extent_mapping(em_tree, start, len);
7098 * existing will always be non-NULL, since there must be
7099 * extent causing the -EEXIST.
7101 if (existing->start == em->start &&
7102 extent_map_end(existing) >= extent_map_end(em) &&
7103 em->block_start == existing->block_start) {
7105 * The existing extent map already encompasses the
7106 * entire extent map we tried to add.
7108 free_extent_map(em);
7112 } else if (start >= extent_map_end(existing) ||
7113 start <= existing->start) {
7115 * The existing extent map is the one nearest to
7116 * the [start, start + len) range which overlaps
7118 err = merge_extent_mapping(em_tree, existing,
7120 free_extent_map(existing);
7122 free_extent_map(em);
7126 free_extent_map(em);
7131 write_unlock(&em_tree->lock);
7134 trace_btrfs_get_extent(root, inode, em);
7136 btrfs_free_path(path);
7138 ret = btrfs_end_transaction(trans);
7143 free_extent_map(em);
7144 return ERR_PTR(err);
7146 BUG_ON(!em); /* Error is always set */
7150 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7152 size_t pg_offset, u64 start, u64 len,
7155 struct extent_map *em;
7156 struct extent_map *hole_em = NULL;
7157 u64 range_start = start;
7163 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7167 * If our em maps to:
7169 * - a pre-alloc extent,
7170 * there might actually be delalloc bytes behind it.
7172 if (em->block_start != EXTENT_MAP_HOLE &&
7173 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7178 /* check to see if we've wrapped (len == -1 or similar) */
7187 /* ok, we didn't find anything, lets look for delalloc */
7188 found = count_range_bits(&inode->io_tree, &range_start,
7189 end, len, EXTENT_DELALLOC, 1);
7190 found_end = range_start + found;
7191 if (found_end < range_start)
7192 found_end = (u64)-1;
7195 * we didn't find anything useful, return
7196 * the original results from get_extent()
7198 if (range_start > end || found_end <= start) {
7204 /* adjust the range_start to make sure it doesn't
7205 * go backwards from the start they passed in
7207 range_start = max(start, range_start);
7208 found = found_end - range_start;
7211 u64 hole_start = start;
7214 em = alloc_extent_map();
7220 * when btrfs_get_extent can't find anything it
7221 * returns one huge hole
7223 * make sure what it found really fits our range, and
7224 * adjust to make sure it is based on the start from
7228 u64 calc_end = extent_map_end(hole_em);
7230 if (calc_end <= start || (hole_em->start > end)) {
7231 free_extent_map(hole_em);
7234 hole_start = max(hole_em->start, start);
7235 hole_len = calc_end - hole_start;
7239 if (hole_em && range_start > hole_start) {
7240 /* our hole starts before our delalloc, so we
7241 * have to return just the parts of the hole
7242 * that go until the delalloc starts
7244 em->len = min(hole_len,
7245 range_start - hole_start);
7246 em->start = hole_start;
7247 em->orig_start = hole_start;
7249 * don't adjust block start at all,
7250 * it is fixed at EXTENT_MAP_HOLE
7252 em->block_start = hole_em->block_start;
7253 em->block_len = hole_len;
7254 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7255 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7257 em->start = range_start;
7259 em->orig_start = range_start;
7260 em->block_start = EXTENT_MAP_DELALLOC;
7261 em->block_len = found;
7263 } else if (hole_em) {
7268 free_extent_map(hole_em);
7270 free_extent_map(em);
7271 return ERR_PTR(err);
7276 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7279 const u64 orig_start,
7280 const u64 block_start,
7281 const u64 block_len,
7282 const u64 orig_block_len,
7283 const u64 ram_bytes,
7286 struct extent_map *em = NULL;
7289 if (type != BTRFS_ORDERED_NOCOW) {
7290 em = create_io_em(inode, start, len, orig_start,
7291 block_start, block_len, orig_block_len,
7293 BTRFS_COMPRESS_NONE, /* compress_type */
7298 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7299 len, block_len, type);
7302 free_extent_map(em);
7303 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7304 start + len - 1, 0);
7313 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7317 struct btrfs_root *root = BTRFS_I(inode)->root;
7318 struct extent_map *em;
7319 struct btrfs_key ins;
7323 alloc_hint = get_extent_allocation_hint(inode, start, len);
7324 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7325 0, alloc_hint, &ins, 1, 1);
7327 return ERR_PTR(ret);
7329 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7330 ins.objectid, ins.offset, ins.offset,
7331 ins.offset, BTRFS_ORDERED_REGULAR);
7332 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7334 btrfs_free_reserved_extent(fs_info, ins.objectid,
7341 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7342 * block must be cow'd
7344 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7345 u64 *orig_start, u64 *orig_block_len,
7348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7349 struct btrfs_path *path;
7351 struct extent_buffer *leaf;
7352 struct btrfs_root *root = BTRFS_I(inode)->root;
7353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7354 struct btrfs_file_extent_item *fi;
7355 struct btrfs_key key;
7362 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7364 path = btrfs_alloc_path();
7368 ret = btrfs_lookup_file_extent(NULL, root, path,
7369 btrfs_ino(BTRFS_I(inode)), offset, 0);
7373 slot = path->slots[0];
7376 /* can't find the item, must cow */
7383 leaf = path->nodes[0];
7384 btrfs_item_key_to_cpu(leaf, &key, slot);
7385 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7386 key.type != BTRFS_EXTENT_DATA_KEY) {
7387 /* not our file or wrong item type, must cow */
7391 if (key.offset > offset) {
7392 /* Wrong offset, must cow */
7396 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7397 found_type = btrfs_file_extent_type(leaf, fi);
7398 if (found_type != BTRFS_FILE_EXTENT_REG &&
7399 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7400 /* not a regular extent, must cow */
7404 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7407 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7408 if (extent_end <= offset)
7411 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7412 if (disk_bytenr == 0)
7415 if (btrfs_file_extent_compression(leaf, fi) ||
7416 btrfs_file_extent_encryption(leaf, fi) ||
7417 btrfs_file_extent_other_encoding(leaf, fi))
7420 backref_offset = btrfs_file_extent_offset(leaf, fi);
7423 *orig_start = key.offset - backref_offset;
7424 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7425 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7428 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7431 num_bytes = min(offset + *len, extent_end) - offset;
7432 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7435 range_end = round_up(offset + num_bytes,
7436 root->fs_info->sectorsize) - 1;
7437 ret = test_range_bit(io_tree, offset, range_end,
7438 EXTENT_DELALLOC, 0, NULL);
7445 btrfs_release_path(path);
7448 * look for other files referencing this extent, if we
7449 * find any we must cow
7452 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7453 key.offset - backref_offset, disk_bytenr);
7460 * adjust disk_bytenr and num_bytes to cover just the bytes
7461 * in this extent we are about to write. If there
7462 * are any csums in that range we have to cow in order
7463 * to keep the csums correct
7465 disk_bytenr += backref_offset;
7466 disk_bytenr += offset - key.offset;
7467 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7470 * all of the above have passed, it is safe to overwrite this extent
7476 btrfs_free_path(path);
7480 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7482 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7484 void **pagep = NULL;
7485 struct page *page = NULL;
7486 unsigned long start_idx;
7487 unsigned long end_idx;
7489 start_idx = start >> PAGE_SHIFT;
7492 * end is the last byte in the last page. end == start is legal
7494 end_idx = end >> PAGE_SHIFT;
7498 /* Most of the code in this while loop is lifted from
7499 * find_get_page. It's been modified to begin searching from a
7500 * page and return just the first page found in that range. If the
7501 * found idx is less than or equal to the end idx then we know that
7502 * a page exists. If no pages are found or if those pages are
7503 * outside of the range then we're fine (yay!) */
7504 while (page == NULL &&
7505 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7506 page = radix_tree_deref_slot(pagep);
7507 if (unlikely(!page))
7510 if (radix_tree_exception(page)) {
7511 if (radix_tree_deref_retry(page)) {
7516 * Otherwise, shmem/tmpfs must be storing a swap entry
7517 * here as an exceptional entry: so return it without
7518 * attempting to raise page count.
7521 break; /* TODO: Is this relevant for this use case? */
7524 if (!page_cache_get_speculative(page)) {
7530 * Has the page moved?
7531 * This is part of the lockless pagecache protocol. See
7532 * include/linux/pagemap.h for details.
7534 if (unlikely(page != *pagep)) {
7541 if (page->index <= end_idx)
7550 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7551 struct extent_state **cached_state, int writing)
7553 struct btrfs_ordered_extent *ordered;
7557 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7560 * We're concerned with the entire range that we're going to be
7561 * doing DIO to, so we need to make sure there's no ordered
7562 * extents in this range.
7564 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7565 lockend - lockstart + 1);
7568 * We need to make sure there are no buffered pages in this
7569 * range either, we could have raced between the invalidate in
7570 * generic_file_direct_write and locking the extent. The
7571 * invalidate needs to happen so that reads after a write do not
7576 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7580 cached_state, GFP_NOFS);
7584 * If we are doing a DIO read and the ordered extent we
7585 * found is for a buffered write, we can not wait for it
7586 * to complete and retry, because if we do so we can
7587 * deadlock with concurrent buffered writes on page
7588 * locks. This happens only if our DIO read covers more
7589 * than one extent map, if at this point has already
7590 * created an ordered extent for a previous extent map
7591 * and locked its range in the inode's io tree, and a
7592 * concurrent write against that previous extent map's
7593 * range and this range started (we unlock the ranges
7594 * in the io tree only when the bios complete and
7595 * buffered writes always lock pages before attempting
7596 * to lock range in the io tree).
7599 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7600 btrfs_start_ordered_extent(inode, ordered, 1);
7603 btrfs_put_ordered_extent(ordered);
7606 * We could trigger writeback for this range (and wait
7607 * for it to complete) and then invalidate the pages for
7608 * this range (through invalidate_inode_pages2_range()),
7609 * but that can lead us to a deadlock with a concurrent
7610 * call to readpages() (a buffered read or a defrag call
7611 * triggered a readahead) on a page lock due to an
7612 * ordered dio extent we created before but did not have
7613 * yet a corresponding bio submitted (whence it can not
7614 * complete), which makes readpages() wait for that
7615 * ordered extent to complete while holding a lock on
7630 /* The callers of this must take lock_extent() */
7631 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7632 u64 orig_start, u64 block_start,
7633 u64 block_len, u64 orig_block_len,
7634 u64 ram_bytes, int compress_type,
7637 struct extent_map_tree *em_tree;
7638 struct extent_map *em;
7639 struct btrfs_root *root = BTRFS_I(inode)->root;
7642 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7643 type == BTRFS_ORDERED_COMPRESSED ||
7644 type == BTRFS_ORDERED_NOCOW ||
7645 type == BTRFS_ORDERED_REGULAR);
7647 em_tree = &BTRFS_I(inode)->extent_tree;
7648 em = alloc_extent_map();
7650 return ERR_PTR(-ENOMEM);
7653 em->orig_start = orig_start;
7655 em->block_len = block_len;
7656 em->block_start = block_start;
7657 em->bdev = root->fs_info->fs_devices->latest_bdev;
7658 em->orig_block_len = orig_block_len;
7659 em->ram_bytes = ram_bytes;
7660 em->generation = -1;
7661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7662 if (type == BTRFS_ORDERED_PREALLOC) {
7663 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7664 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7665 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7666 em->compress_type = compress_type;
7670 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7671 em->start + em->len - 1, 0);
7672 write_lock(&em_tree->lock);
7673 ret = add_extent_mapping(em_tree, em, 1);
7674 write_unlock(&em_tree->lock);
7676 * The caller has taken lock_extent(), who could race with us
7679 } while (ret == -EEXIST);
7682 free_extent_map(em);
7683 return ERR_PTR(ret);
7686 /* em got 2 refs now, callers needs to do free_extent_map once. */
7690 static void adjust_dio_outstanding_extents(struct inode *inode,
7691 struct btrfs_dio_data *dio_data,
7694 unsigned num_extents = count_max_extents(len);
7697 * If we have an outstanding_extents count still set then we're
7698 * within our reservation, otherwise we need to adjust our inode
7699 * counter appropriately.
7701 if (dio_data->outstanding_extents >= num_extents) {
7702 dio_data->outstanding_extents -= num_extents;
7705 * If dio write length has been split due to no large enough
7706 * contiguous space, we need to compensate our inode counter
7709 u64 num_needed = num_extents - dio_data->outstanding_extents;
7711 spin_lock(&BTRFS_I(inode)->lock);
7712 BTRFS_I(inode)->outstanding_extents += num_needed;
7713 spin_unlock(&BTRFS_I(inode)->lock);
7717 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7718 struct buffer_head *bh_result, int create)
7720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7721 struct extent_map *em;
7722 struct extent_state *cached_state = NULL;
7723 struct btrfs_dio_data *dio_data = NULL;
7724 u64 start = iblock << inode->i_blkbits;
7725 u64 lockstart, lockend;
7726 u64 len = bh_result->b_size;
7727 int unlock_bits = EXTENT_LOCKED;
7731 unlock_bits |= EXTENT_DIRTY;
7733 len = min_t(u64, len, fs_info->sectorsize);
7736 lockend = start + len - 1;
7738 if (current->journal_info) {
7740 * Need to pull our outstanding extents and set journal_info to NULL so
7741 * that anything that needs to check if there's a transaction doesn't get
7744 dio_data = current->journal_info;
7745 current->journal_info = NULL;
7749 * If this errors out it's because we couldn't invalidate pagecache for
7750 * this range and we need to fallback to buffered.
7752 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7758 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7765 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7766 * io. INLINE is special, and we could probably kludge it in here, but
7767 * it's still buffered so for safety lets just fall back to the generic
7770 * For COMPRESSED we _have_ to read the entire extent in so we can
7771 * decompress it, so there will be buffering required no matter what we
7772 * do, so go ahead and fallback to buffered.
7774 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7775 * to buffered IO. Don't blame me, this is the price we pay for using
7778 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7779 em->block_start == EXTENT_MAP_INLINE) {
7780 free_extent_map(em);
7785 /* Just a good old fashioned hole, return */
7786 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7787 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7788 free_extent_map(em);
7793 * We don't allocate a new extent in the following cases
7795 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7797 * 2) The extent is marked as PREALLOC. We're good to go here and can
7798 * just use the extent.
7802 len = min(len, em->len - (start - em->start));
7803 lockstart = start + len;
7807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7808 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7809 em->block_start != EXTENT_MAP_HOLE)) {
7811 u64 block_start, orig_start, orig_block_len, ram_bytes;
7813 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7814 type = BTRFS_ORDERED_PREALLOC;
7816 type = BTRFS_ORDERED_NOCOW;
7817 len = min(len, em->len - (start - em->start));
7818 block_start = em->block_start + (start - em->start);
7820 if (can_nocow_extent(inode, start, &len, &orig_start,
7821 &orig_block_len, &ram_bytes) == 1 &&
7822 btrfs_inc_nocow_writers(fs_info, block_start)) {
7823 struct extent_map *em2;
7825 em2 = btrfs_create_dio_extent(inode, start, len,
7826 orig_start, block_start,
7827 len, orig_block_len,
7829 btrfs_dec_nocow_writers(fs_info, block_start);
7830 if (type == BTRFS_ORDERED_PREALLOC) {
7831 free_extent_map(em);
7834 if (em2 && IS_ERR(em2)) {
7839 * For inode marked NODATACOW or extent marked PREALLOC,
7840 * use the existing or preallocated extent, so does not
7841 * need to adjust btrfs_space_info's bytes_may_use.
7843 btrfs_free_reserved_data_space_noquota(inode,
7850 * this will cow the extent, reset the len in case we changed
7853 len = bh_result->b_size;
7854 free_extent_map(em);
7855 em = btrfs_new_extent_direct(inode, start, len);
7860 len = min(len, em->len - (start - em->start));
7862 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7864 bh_result->b_size = len;
7865 bh_result->b_bdev = em->bdev;
7866 set_buffer_mapped(bh_result);
7868 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7869 set_buffer_new(bh_result);
7872 * Need to update the i_size under the extent lock so buffered
7873 * readers will get the updated i_size when we unlock.
7875 if (!dio_data->overwrite && start + len > i_size_read(inode))
7876 i_size_write(inode, start + len);
7878 adjust_dio_outstanding_extents(inode, dio_data, len);
7879 WARN_ON(dio_data->reserve < len);
7880 dio_data->reserve -= len;
7881 dio_data->unsubmitted_oe_range_end = start + len;
7882 current->journal_info = dio_data;
7886 * In the case of write we need to clear and unlock the entire range,
7887 * in the case of read we need to unlock only the end area that we
7888 * aren't using if there is any left over space.
7890 if (lockstart < lockend) {
7891 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7892 lockend, unlock_bits, 1, 0,
7893 &cached_state, GFP_NOFS);
7895 free_extent_state(cached_state);
7898 free_extent_map(em);
7903 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7904 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7907 current->journal_info = dio_data;
7909 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7910 * write less data then expected, so that we don't underflow our inode's
7911 * outstanding extents counter.
7913 if (create && dio_data)
7914 adjust_dio_outstanding_extents(inode, dio_data, len);
7919 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7925 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7929 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7933 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7939 static int btrfs_check_dio_repairable(struct inode *inode,
7940 struct bio *failed_bio,
7941 struct io_failure_record *failrec,
7944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7947 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7948 if (num_copies == 1) {
7950 * we only have a single copy of the data, so don't bother with
7951 * all the retry and error correction code that follows. no
7952 * matter what the error is, it is very likely to persist.
7954 btrfs_debug(fs_info,
7955 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7956 num_copies, failrec->this_mirror, failed_mirror);
7960 failrec->failed_mirror = failed_mirror;
7961 failrec->this_mirror++;
7962 if (failrec->this_mirror == failed_mirror)
7963 failrec->this_mirror++;
7965 if (failrec->this_mirror > num_copies) {
7966 btrfs_debug(fs_info,
7967 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7968 num_copies, failrec->this_mirror, failed_mirror);
7975 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7976 struct page *page, unsigned int pgoff,
7977 u64 start, u64 end, int failed_mirror,
7978 bio_end_io_t *repair_endio, void *repair_arg)
7980 struct io_failure_record *failrec;
7986 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7988 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7992 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7995 free_io_failure(BTRFS_I(inode), failrec);
7999 if ((failed_bio->bi_vcnt > 1)
8000 || (failed_bio->bi_io_vec->bv_len
8001 > btrfs_inode_sectorsize(inode)))
8002 read_mode |= REQ_FAILFAST_DEV;
8004 isector = start - btrfs_io_bio(failed_bio)->logical;
8005 isector >>= inode->i_sb->s_blocksize_bits;
8006 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8007 pgoff, isector, repair_endio, repair_arg);
8009 free_io_failure(BTRFS_I(inode), failrec);
8012 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8014 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8015 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8016 read_mode, failrec->this_mirror, failrec->in_validation);
8018 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8020 free_io_failure(BTRFS_I(inode), failrec);
8027 struct btrfs_retry_complete {
8028 struct completion done;
8029 struct inode *inode;
8034 static void btrfs_retry_endio_nocsum(struct bio *bio)
8036 struct btrfs_retry_complete *done = bio->bi_private;
8037 struct bio_vec *bvec;
8043 ASSERT(bio->bi_vcnt == 1);
8044 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8047 bio_for_each_segment_all(bvec, bio, i)
8048 clean_io_failure(BTRFS_I(done->inode), done->start,
8051 complete(&done->done);
8055 static int __btrfs_correct_data_nocsum(struct inode *inode,
8056 struct btrfs_io_bio *io_bio)
8058 struct btrfs_fs_info *fs_info;
8059 struct bio_vec *bvec;
8060 struct btrfs_retry_complete done;
8068 fs_info = BTRFS_I(inode)->root->fs_info;
8069 sectorsize = fs_info->sectorsize;
8071 start = io_bio->logical;
8074 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8075 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8076 pgoff = bvec->bv_offset;
8078 next_block_or_try_again:
8081 init_completion(&done.done);
8083 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8084 pgoff, start, start + sectorsize - 1,
8086 btrfs_retry_endio_nocsum, &done);
8090 wait_for_completion(&done.done);
8092 if (!done.uptodate) {
8093 /* We might have another mirror, so try again */
8094 goto next_block_or_try_again;
8097 start += sectorsize;
8101 pgoff += sectorsize;
8102 ASSERT(pgoff < PAGE_SIZE);
8103 goto next_block_or_try_again;
8110 static void btrfs_retry_endio(struct bio *bio)
8112 struct btrfs_retry_complete *done = bio->bi_private;
8113 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8114 struct bio_vec *bvec;
8124 ASSERT(bio->bi_vcnt == 1);
8125 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8127 bio_for_each_segment_all(bvec, bio, i) {
8128 ret = __readpage_endio_check(done->inode, io_bio, i,
8129 bvec->bv_page, bvec->bv_offset,
8130 done->start, bvec->bv_len);
8132 clean_io_failure(BTRFS_I(done->inode), done->start,
8133 bvec->bv_page, bvec->bv_offset);
8138 done->uptodate = uptodate;
8140 complete(&done->done);
8144 static int __btrfs_subio_endio_read(struct inode *inode,
8145 struct btrfs_io_bio *io_bio, int err)
8147 struct btrfs_fs_info *fs_info;
8148 struct bio_vec *bvec;
8149 struct btrfs_retry_complete done;
8159 fs_info = BTRFS_I(inode)->root->fs_info;
8160 sectorsize = fs_info->sectorsize;
8163 start = io_bio->logical;
8166 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8167 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8169 pgoff = bvec->bv_offset;
8171 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8172 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8173 bvec->bv_page, pgoff, start,
8180 init_completion(&done.done);
8182 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8183 pgoff, start, start + sectorsize - 1,
8185 btrfs_retry_endio, &done);
8191 wait_for_completion(&done.done);
8193 if (!done.uptodate) {
8194 /* We might have another mirror, so try again */
8198 offset += sectorsize;
8199 start += sectorsize;
8205 pgoff += sectorsize;
8206 ASSERT(pgoff < PAGE_SIZE);
8214 static int btrfs_subio_endio_read(struct inode *inode,
8215 struct btrfs_io_bio *io_bio, int err)
8217 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8221 return __btrfs_correct_data_nocsum(inode, io_bio);
8225 return __btrfs_subio_endio_read(inode, io_bio, err);
8229 static void btrfs_endio_direct_read(struct bio *bio)
8231 struct btrfs_dio_private *dip = bio->bi_private;
8232 struct inode *inode = dip->inode;
8233 struct bio *dio_bio;
8234 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8235 int err = bio->bi_error;
8237 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8238 err = btrfs_subio_endio_read(inode, io_bio, err);
8240 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8241 dip->logical_offset + dip->bytes - 1);
8242 dio_bio = dip->dio_bio;
8246 dio_bio->bi_error = bio->bi_error;
8247 dio_end_io(dio_bio, bio->bi_error);
8250 io_bio->end_io(io_bio, err);
8254 static void __endio_write_update_ordered(struct inode *inode,
8255 const u64 offset, const u64 bytes,
8256 const bool uptodate)
8258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8259 struct btrfs_ordered_extent *ordered = NULL;
8260 struct btrfs_workqueue *wq;
8261 btrfs_work_func_t func;
8262 u64 ordered_offset = offset;
8263 u64 ordered_bytes = bytes;
8266 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8267 wq = fs_info->endio_freespace_worker;
8268 func = btrfs_freespace_write_helper;
8270 wq = fs_info->endio_write_workers;
8271 func = btrfs_endio_write_helper;
8275 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8282 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8283 btrfs_queue_work(wq, &ordered->work);
8286 * our bio might span multiple ordered extents. If we haven't
8287 * completed the accounting for the whole dio, go back and try again
8289 if (ordered_offset < offset + bytes) {
8290 ordered_bytes = offset + bytes - ordered_offset;
8296 static void btrfs_endio_direct_write(struct bio *bio)
8298 struct btrfs_dio_private *dip = bio->bi_private;
8299 struct bio *dio_bio = dip->dio_bio;
8301 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8302 dip->bytes, !bio->bi_error);
8306 dio_bio->bi_error = bio->bi_error;
8307 dio_end_io(dio_bio, bio->bi_error);
8311 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8312 struct bio *bio, int mirror_num,
8313 unsigned long bio_flags, u64 offset)
8316 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8317 BUG_ON(ret); /* -ENOMEM */
8321 static void btrfs_end_dio_bio(struct bio *bio)
8323 struct btrfs_dio_private *dip = bio->bi_private;
8324 int err = bio->bi_error;
8327 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8328 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8329 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8331 (unsigned long long)bio->bi_iter.bi_sector,
8332 bio->bi_iter.bi_size, err);
8334 if (dip->subio_endio)
8335 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8341 * before atomic variable goto zero, we must make sure
8342 * dip->errors is perceived to be set.
8344 smp_mb__before_atomic();
8347 /* if there are more bios still pending for this dio, just exit */
8348 if (!atomic_dec_and_test(&dip->pending_bios))
8352 bio_io_error(dip->orig_bio);
8354 dip->dio_bio->bi_error = 0;
8355 bio_endio(dip->orig_bio);
8361 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8362 u64 first_sector, gfp_t gfp_flags)
8365 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8367 bio_associate_current(bio);
8371 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8372 struct btrfs_dio_private *dip,
8376 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8377 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8381 * We load all the csum data we need when we submit
8382 * the first bio to reduce the csum tree search and
8385 if (dip->logical_offset == file_offset) {
8386 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8392 if (bio == dip->orig_bio)
8395 file_offset -= dip->logical_offset;
8396 file_offset >>= inode->i_sb->s_blocksize_bits;
8397 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8402 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8403 u64 file_offset, int skip_sum,
8406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8407 struct btrfs_dio_private *dip = bio->bi_private;
8408 bool write = bio_op(bio) == REQ_OP_WRITE;
8412 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8417 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8425 if (write && async_submit) {
8426 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8428 __btrfs_submit_bio_start_direct_io,
8429 __btrfs_submit_bio_done);
8433 * If we aren't doing async submit, calculate the csum of the
8436 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8440 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8446 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8452 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8455 struct inode *inode = dip->inode;
8456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8457 struct btrfs_root *root = BTRFS_I(inode)->root;
8459 struct bio *orig_bio = dip->orig_bio;
8460 struct bio_vec *bvec;
8461 u64 start_sector = orig_bio->bi_iter.bi_sector;
8462 u64 file_offset = dip->logical_offset;
8465 u32 blocksize = fs_info->sectorsize;
8466 int async_submit = 0;
8471 map_length = orig_bio->bi_iter.bi_size;
8472 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8473 &map_length, NULL, 0);
8477 if (map_length >= orig_bio->bi_iter.bi_size) {
8479 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8483 /* async crcs make it difficult to collect full stripe writes. */
8484 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8489 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8493 bio->bi_opf = orig_bio->bi_opf;
8494 bio->bi_private = dip;
8495 bio->bi_end_io = btrfs_end_dio_bio;
8496 btrfs_io_bio(bio)->logical = file_offset;
8497 atomic_inc(&dip->pending_bios);
8499 bio_for_each_segment_all(bvec, orig_bio, j) {
8500 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8503 if (unlikely(map_length < submit_len + blocksize ||
8504 bio_add_page(bio, bvec->bv_page, blocksize,
8505 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8507 * inc the count before we submit the bio so
8508 * we know the end IO handler won't happen before
8509 * we inc the count. Otherwise, the dip might get freed
8510 * before we're done setting it up
8512 atomic_inc(&dip->pending_bios);
8513 ret = __btrfs_submit_dio_bio(bio, inode,
8514 file_offset, skip_sum,
8518 atomic_dec(&dip->pending_bios);
8522 start_sector += submit_len >> 9;
8523 file_offset += submit_len;
8527 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8528 start_sector, GFP_NOFS);
8531 bio->bi_opf = orig_bio->bi_opf;
8532 bio->bi_private = dip;
8533 bio->bi_end_io = btrfs_end_dio_bio;
8534 btrfs_io_bio(bio)->logical = file_offset;
8536 map_length = orig_bio->bi_iter.bi_size;
8537 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8539 &map_length, NULL, 0);
8547 submit_len += blocksize;
8556 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8565 * before atomic variable goto zero, we must
8566 * make sure dip->errors is perceived to be set.
8568 smp_mb__before_atomic();
8569 if (atomic_dec_and_test(&dip->pending_bios))
8570 bio_io_error(dip->orig_bio);
8572 /* bio_end_io() will handle error, so we needn't return it */
8576 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8579 struct btrfs_dio_private *dip = NULL;
8580 struct bio *io_bio = NULL;
8581 struct btrfs_io_bio *btrfs_bio;
8583 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8586 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8588 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8594 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8600 dip->private = dio_bio->bi_private;
8602 dip->logical_offset = file_offset;
8603 dip->bytes = dio_bio->bi_iter.bi_size;
8604 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8605 io_bio->bi_private = dip;
8606 dip->orig_bio = io_bio;
8607 dip->dio_bio = dio_bio;
8608 atomic_set(&dip->pending_bios, 0);
8609 btrfs_bio = btrfs_io_bio(io_bio);
8610 btrfs_bio->logical = file_offset;
8613 io_bio->bi_end_io = btrfs_endio_direct_write;
8615 io_bio->bi_end_io = btrfs_endio_direct_read;
8616 dip->subio_endio = btrfs_subio_endio_read;
8620 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8621 * even if we fail to submit a bio, because in such case we do the
8622 * corresponding error handling below and it must not be done a second
8623 * time by btrfs_direct_IO().
8626 struct btrfs_dio_data *dio_data = current->journal_info;
8628 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8630 dio_data->unsubmitted_oe_range_start =
8631 dio_data->unsubmitted_oe_range_end;
8634 ret = btrfs_submit_direct_hook(dip, skip_sum);
8638 if (btrfs_bio->end_io)
8639 btrfs_bio->end_io(btrfs_bio, ret);
8643 * If we arrived here it means either we failed to submit the dip
8644 * or we either failed to clone the dio_bio or failed to allocate the
8645 * dip. If we cloned the dio_bio and allocated the dip, we can just
8646 * call bio_endio against our io_bio so that we get proper resource
8647 * cleanup if we fail to submit the dip, otherwise, we must do the
8648 * same as btrfs_endio_direct_[write|read] because we can't call these
8649 * callbacks - they require an allocated dip and a clone of dio_bio.
8651 if (io_bio && dip) {
8652 io_bio->bi_error = -EIO;
8655 * The end io callbacks free our dip, do the final put on io_bio
8656 * and all the cleanup and final put for dio_bio (through
8663 __endio_write_update_ordered(inode,
8665 dio_bio->bi_iter.bi_size,
8668 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8669 file_offset + dio_bio->bi_iter.bi_size - 1);
8671 dio_bio->bi_error = -EIO;
8673 * Releases and cleans up our dio_bio, no need to bio_put()
8674 * nor bio_endio()/bio_io_error() against dio_bio.
8676 dio_end_io(dio_bio, ret);
8683 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8685 const struct iov_iter *iter, loff_t offset)
8689 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8690 ssize_t retval = -EINVAL;
8692 if (offset & blocksize_mask)
8695 if (iov_iter_alignment(iter) & blocksize_mask)
8698 /* If this is a write we don't need to check anymore */
8699 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8702 * Check to make sure we don't have duplicate iov_base's in this
8703 * iovec, if so return EINVAL, otherwise we'll get csum errors
8704 * when reading back.
8706 for (seg = 0; seg < iter->nr_segs; seg++) {
8707 for (i = seg + 1; i < iter->nr_segs; i++) {
8708 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8717 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8719 struct file *file = iocb->ki_filp;
8720 struct inode *inode = file->f_mapping->host;
8721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8722 struct btrfs_dio_data dio_data = { 0 };
8723 loff_t offset = iocb->ki_pos;
8727 bool relock = false;
8730 if (check_direct_IO(fs_info, iocb, iter, offset))
8733 inode_dio_begin(inode);
8734 smp_mb__after_atomic();
8737 * The generic stuff only does filemap_write_and_wait_range, which
8738 * isn't enough if we've written compressed pages to this area, so
8739 * we need to flush the dirty pages again to make absolutely sure
8740 * that any outstanding dirty pages are on disk.
8742 count = iov_iter_count(iter);
8743 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8744 &BTRFS_I(inode)->runtime_flags))
8745 filemap_fdatawrite_range(inode->i_mapping, offset,
8746 offset + count - 1);
8748 if (iov_iter_rw(iter) == WRITE) {
8750 * If the write DIO is beyond the EOF, we need update
8751 * the isize, but it is protected by i_mutex. So we can
8752 * not unlock the i_mutex at this case.
8754 if (offset + count <= inode->i_size) {
8755 dio_data.overwrite = 1;
8756 inode_unlock(inode);
8759 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8762 dio_data.outstanding_extents = count_max_extents(count);
8765 * We need to know how many extents we reserved so that we can
8766 * do the accounting properly if we go over the number we
8767 * originally calculated. Abuse current->journal_info for this.
8769 dio_data.reserve = round_up(count,
8770 fs_info->sectorsize);
8771 dio_data.unsubmitted_oe_range_start = (u64)offset;
8772 dio_data.unsubmitted_oe_range_end = (u64)offset;
8773 current->journal_info = &dio_data;
8774 down_read(&BTRFS_I(inode)->dio_sem);
8775 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8776 &BTRFS_I(inode)->runtime_flags)) {
8777 inode_dio_end(inode);
8778 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8782 ret = __blockdev_direct_IO(iocb, inode,
8783 fs_info->fs_devices->latest_bdev,
8784 iter, btrfs_get_blocks_direct, NULL,
8785 btrfs_submit_direct, flags);
8786 if (iov_iter_rw(iter) == WRITE) {
8787 up_read(&BTRFS_I(inode)->dio_sem);
8788 current->journal_info = NULL;
8789 if (ret < 0 && ret != -EIOCBQUEUED) {
8790 if (dio_data.reserve)
8791 btrfs_delalloc_release_space(inode, offset,
8794 * On error we might have left some ordered extents
8795 * without submitting corresponding bios for them, so
8796 * cleanup them up to avoid other tasks getting them
8797 * and waiting for them to complete forever.
8799 if (dio_data.unsubmitted_oe_range_start <
8800 dio_data.unsubmitted_oe_range_end)
8801 __endio_write_update_ordered(inode,
8802 dio_data.unsubmitted_oe_range_start,
8803 dio_data.unsubmitted_oe_range_end -
8804 dio_data.unsubmitted_oe_range_start,
8806 } else if (ret >= 0 && (size_t)ret < count)
8807 btrfs_delalloc_release_space(inode, offset,
8808 count - (size_t)ret);
8812 inode_dio_end(inode);
8819 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8821 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8822 __u64 start, __u64 len)
8826 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8830 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8833 int btrfs_readpage(struct file *file, struct page *page)
8835 struct extent_io_tree *tree;
8836 tree = &BTRFS_I(page->mapping->host)->io_tree;
8837 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8840 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8842 struct extent_io_tree *tree;
8843 struct inode *inode = page->mapping->host;
8846 if (current->flags & PF_MEMALLOC) {
8847 redirty_page_for_writepage(wbc, page);
8853 * If we are under memory pressure we will call this directly from the
8854 * VM, we need to make sure we have the inode referenced for the ordered
8855 * extent. If not just return like we didn't do anything.
8857 if (!igrab(inode)) {
8858 redirty_page_for_writepage(wbc, page);
8859 return AOP_WRITEPAGE_ACTIVATE;
8861 tree = &BTRFS_I(page->mapping->host)->io_tree;
8862 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8863 btrfs_add_delayed_iput(inode);
8867 static int btrfs_writepages(struct address_space *mapping,
8868 struct writeback_control *wbc)
8870 struct extent_io_tree *tree;
8872 tree = &BTRFS_I(mapping->host)->io_tree;
8873 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8877 btrfs_readpages(struct file *file, struct address_space *mapping,
8878 struct list_head *pages, unsigned nr_pages)
8880 struct extent_io_tree *tree;
8881 tree = &BTRFS_I(mapping->host)->io_tree;
8882 return extent_readpages(tree, mapping, pages, nr_pages,
8885 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8887 struct extent_io_tree *tree;
8888 struct extent_map_tree *map;
8891 tree = &BTRFS_I(page->mapping->host)->io_tree;
8892 map = &BTRFS_I(page->mapping->host)->extent_tree;
8893 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8895 ClearPagePrivate(page);
8896 set_page_private(page, 0);
8902 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8904 if (PageWriteback(page) || PageDirty(page))
8906 return __btrfs_releasepage(page, gfp_flags);
8909 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8910 unsigned int length)
8912 struct inode *inode = page->mapping->host;
8913 struct extent_io_tree *tree;
8914 struct btrfs_ordered_extent *ordered;
8915 struct extent_state *cached_state = NULL;
8916 u64 page_start = page_offset(page);
8917 u64 page_end = page_start + PAGE_SIZE - 1;
8920 int inode_evicting = inode->i_state & I_FREEING;
8923 * we have the page locked, so new writeback can't start,
8924 * and the dirty bit won't be cleared while we are here.
8926 * Wait for IO on this page so that we can safely clear
8927 * the PagePrivate2 bit and do ordered accounting
8929 wait_on_page_writeback(page);
8931 tree = &BTRFS_I(inode)->io_tree;
8933 btrfs_releasepage(page, GFP_NOFS);
8937 if (!inode_evicting)
8938 lock_extent_bits(tree, page_start, page_end, &cached_state);
8941 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8942 page_end - start + 1);
8944 end = min(page_end, ordered->file_offset + ordered->len - 1);
8946 * IO on this page will never be started, so we need
8947 * to account for any ordered extents now
8949 if (!inode_evicting)
8950 clear_extent_bit(tree, start, end,
8951 EXTENT_DIRTY | EXTENT_DELALLOC |
8952 EXTENT_DELALLOC_NEW |
8953 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8954 EXTENT_DEFRAG, 1, 0, &cached_state,
8957 * whoever cleared the private bit is responsible
8958 * for the finish_ordered_io
8960 if (TestClearPagePrivate2(page)) {
8961 struct btrfs_ordered_inode_tree *tree;
8964 tree = &BTRFS_I(inode)->ordered_tree;
8966 spin_lock_irq(&tree->lock);
8967 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8968 new_len = start - ordered->file_offset;
8969 if (new_len < ordered->truncated_len)
8970 ordered->truncated_len = new_len;
8971 spin_unlock_irq(&tree->lock);
8973 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8975 end - start + 1, 1))
8976 btrfs_finish_ordered_io(ordered);
8978 btrfs_put_ordered_extent(ordered);
8979 if (!inode_evicting) {
8980 cached_state = NULL;
8981 lock_extent_bits(tree, start, end,
8986 if (start < page_end)
8991 * Qgroup reserved space handler
8992 * Page here will be either
8993 * 1) Already written to disk
8994 * In this case, its reserved space is released from data rsv map
8995 * and will be freed by delayed_ref handler finally.
8996 * So even we call qgroup_free_data(), it won't decrease reserved
8998 * 2) Not written to disk
8999 * This means the reserved space should be freed here. However,
9000 * if a truncate invalidates the page (by clearing PageDirty)
9001 * and the page is accounted for while allocating extent
9002 * in btrfs_check_data_free_space() we let delayed_ref to
9003 * free the entire extent.
9005 if (PageDirty(page))
9006 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
9007 if (!inode_evicting) {
9008 clear_extent_bit(tree, page_start, page_end,
9009 EXTENT_LOCKED | EXTENT_DIRTY |
9010 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9011 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9012 &cached_state, GFP_NOFS);
9014 __btrfs_releasepage(page, GFP_NOFS);
9017 ClearPageChecked(page);
9018 if (PagePrivate(page)) {
9019 ClearPagePrivate(page);
9020 set_page_private(page, 0);
9026 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9027 * called from a page fault handler when a page is first dirtied. Hence we must
9028 * be careful to check for EOF conditions here. We set the page up correctly
9029 * for a written page which means we get ENOSPC checking when writing into
9030 * holes and correct delalloc and unwritten extent mapping on filesystems that
9031 * support these features.
9033 * We are not allowed to take the i_mutex here so we have to play games to
9034 * protect against truncate races as the page could now be beyond EOF. Because
9035 * vmtruncate() writes the inode size before removing pages, once we have the
9036 * page lock we can determine safely if the page is beyond EOF. If it is not
9037 * beyond EOF, then the page is guaranteed safe against truncation until we
9040 int btrfs_page_mkwrite(struct vm_fault *vmf)
9042 struct page *page = vmf->page;
9043 struct inode *inode = file_inode(vmf->vma->vm_file);
9044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9046 struct btrfs_ordered_extent *ordered;
9047 struct extent_state *cached_state = NULL;
9049 unsigned long zero_start;
9058 reserved_space = PAGE_SIZE;
9060 sb_start_pagefault(inode->i_sb);
9061 page_start = page_offset(page);
9062 page_end = page_start + PAGE_SIZE - 1;
9066 * Reserving delalloc space after obtaining the page lock can lead to
9067 * deadlock. For example, if a dirty page is locked by this function
9068 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9069 * dirty page write out, then the btrfs_writepage() function could
9070 * end up waiting indefinitely to get a lock on the page currently
9071 * being processed by btrfs_page_mkwrite() function.
9073 ret = btrfs_delalloc_reserve_space(inode, page_start,
9076 ret = file_update_time(vmf->vma->vm_file);
9082 else /* -ENOSPC, -EIO, etc */
9083 ret = VM_FAULT_SIGBUS;
9089 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9092 size = i_size_read(inode);
9094 if ((page->mapping != inode->i_mapping) ||
9095 (page_start >= size)) {
9096 /* page got truncated out from underneath us */
9099 wait_on_page_writeback(page);
9101 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9102 set_page_extent_mapped(page);
9105 * we can't set the delalloc bits if there are pending ordered
9106 * extents. Drop our locks and wait for them to finish
9108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9111 unlock_extent_cached(io_tree, page_start, page_end,
9112 &cached_state, GFP_NOFS);
9114 btrfs_start_ordered_extent(inode, ordered, 1);
9115 btrfs_put_ordered_extent(ordered);
9119 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9120 reserved_space = round_up(size - page_start,
9121 fs_info->sectorsize);
9122 if (reserved_space < PAGE_SIZE) {
9123 end = page_start + reserved_space - 1;
9124 spin_lock(&BTRFS_I(inode)->lock);
9125 BTRFS_I(inode)->outstanding_extents++;
9126 spin_unlock(&BTRFS_I(inode)->lock);
9127 btrfs_delalloc_release_space(inode, page_start,
9128 PAGE_SIZE - reserved_space);
9133 * page_mkwrite gets called when the page is firstly dirtied after it's
9134 * faulted in, but write(2) could also dirty a page and set delalloc
9135 * bits, thus in this case for space account reason, we still need to
9136 * clear any delalloc bits within this page range since we have to
9137 * reserve data&meta space before lock_page() (see above comments).
9139 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9140 EXTENT_DIRTY | EXTENT_DELALLOC |
9141 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9142 0, 0, &cached_state, GFP_NOFS);
9144 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9147 unlock_extent_cached(io_tree, page_start, page_end,
9148 &cached_state, GFP_NOFS);
9149 ret = VM_FAULT_SIGBUS;
9154 /* page is wholly or partially inside EOF */
9155 if (page_start + PAGE_SIZE > size)
9156 zero_start = size & ~PAGE_MASK;
9158 zero_start = PAGE_SIZE;
9160 if (zero_start != PAGE_SIZE) {
9162 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9163 flush_dcache_page(page);
9166 ClearPageChecked(page);
9167 set_page_dirty(page);
9168 SetPageUptodate(page);
9170 BTRFS_I(inode)->last_trans = fs_info->generation;
9171 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9172 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9174 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9178 sb_end_pagefault(inode->i_sb);
9179 return VM_FAULT_LOCKED;
9183 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9185 sb_end_pagefault(inode->i_sb);
9189 static int btrfs_truncate(struct inode *inode)
9191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9192 struct btrfs_root *root = BTRFS_I(inode)->root;
9193 struct btrfs_block_rsv *rsv;
9196 struct btrfs_trans_handle *trans;
9197 u64 mask = fs_info->sectorsize - 1;
9198 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9200 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9206 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9207 * 3 things going on here
9209 * 1) We need to reserve space for our orphan item and the space to
9210 * delete our orphan item. Lord knows we don't want to have a dangling
9211 * orphan item because we didn't reserve space to remove it.
9213 * 2) We need to reserve space to update our inode.
9215 * 3) We need to have something to cache all the space that is going to
9216 * be free'd up by the truncate operation, but also have some slack
9217 * space reserved in case it uses space during the truncate (thank you
9218 * very much snapshotting).
9220 * And we need these to all be separate. The fact is we can use a lot of
9221 * space doing the truncate, and we have no earthly idea how much space
9222 * we will use, so we need the truncate reservation to be separate so it
9223 * doesn't end up using space reserved for updating the inode or
9224 * removing the orphan item. We also need to be able to stop the
9225 * transaction and start a new one, which means we need to be able to
9226 * update the inode several times, and we have no idea of knowing how
9227 * many times that will be, so we can't just reserve 1 item for the
9228 * entirety of the operation, so that has to be done separately as well.
9229 * Then there is the orphan item, which does indeed need to be held on
9230 * to for the whole operation, and we need nobody to touch this reserved
9231 * space except the orphan code.
9233 * So that leaves us with
9235 * 1) root->orphan_block_rsv - for the orphan deletion.
9236 * 2) rsv - for the truncate reservation, which we will steal from the
9237 * transaction reservation.
9238 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9239 * updating the inode.
9241 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9244 rsv->size = min_size;
9248 * 1 for the truncate slack space
9249 * 1 for updating the inode.
9251 trans = btrfs_start_transaction(root, 2);
9252 if (IS_ERR(trans)) {
9253 err = PTR_ERR(trans);
9257 /* Migrate the slack space for the truncate to our reserve */
9258 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9263 * So if we truncate and then write and fsync we normally would just
9264 * write the extents that changed, which is a problem if we need to
9265 * first truncate that entire inode. So set this flag so we write out
9266 * all of the extents in the inode to the sync log so we're completely
9269 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9270 trans->block_rsv = rsv;
9273 ret = btrfs_truncate_inode_items(trans, root, inode,
9275 BTRFS_EXTENT_DATA_KEY);
9276 if (ret != -ENOSPC && ret != -EAGAIN) {
9281 trans->block_rsv = &fs_info->trans_block_rsv;
9282 ret = btrfs_update_inode(trans, root, inode);
9288 btrfs_end_transaction(trans);
9289 btrfs_btree_balance_dirty(fs_info);
9291 trans = btrfs_start_transaction(root, 2);
9292 if (IS_ERR(trans)) {
9293 ret = err = PTR_ERR(trans);
9298 btrfs_block_rsv_release(fs_info, rsv, -1);
9299 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9301 BUG_ON(ret); /* shouldn't happen */
9302 trans->block_rsv = rsv;
9305 if (ret == 0 && inode->i_nlink > 0) {
9306 trans->block_rsv = root->orphan_block_rsv;
9307 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9313 trans->block_rsv = &fs_info->trans_block_rsv;
9314 ret = btrfs_update_inode(trans, root, inode);
9318 ret = btrfs_end_transaction(trans);
9319 btrfs_btree_balance_dirty(fs_info);
9322 btrfs_free_block_rsv(fs_info, rsv);
9331 * create a new subvolume directory/inode (helper for the ioctl).
9333 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9334 struct btrfs_root *new_root,
9335 struct btrfs_root *parent_root,
9338 struct inode *inode;
9342 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9343 new_dirid, new_dirid,
9344 S_IFDIR | (~current_umask() & S_IRWXUGO),
9347 return PTR_ERR(inode);
9348 inode->i_op = &btrfs_dir_inode_operations;
9349 inode->i_fop = &btrfs_dir_file_operations;
9351 set_nlink(inode, 1);
9352 btrfs_i_size_write(BTRFS_I(inode), 0);
9353 unlock_new_inode(inode);
9355 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9357 btrfs_err(new_root->fs_info,
9358 "error inheriting subvolume %llu properties: %d",
9359 new_root->root_key.objectid, err);
9361 err = btrfs_update_inode(trans, new_root, inode);
9367 struct inode *btrfs_alloc_inode(struct super_block *sb)
9369 struct btrfs_inode *ei;
9370 struct inode *inode;
9372 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9379 ei->last_sub_trans = 0;
9380 ei->logged_trans = 0;
9381 ei->delalloc_bytes = 0;
9382 ei->new_delalloc_bytes = 0;
9383 ei->defrag_bytes = 0;
9384 ei->disk_i_size = 0;
9387 ei->index_cnt = (u64)-1;
9389 ei->last_unlink_trans = 0;
9390 ei->last_log_commit = 0;
9391 ei->delayed_iput_count = 0;
9393 spin_lock_init(&ei->lock);
9394 ei->outstanding_extents = 0;
9395 ei->reserved_extents = 0;
9397 ei->runtime_flags = 0;
9398 ei->force_compress = BTRFS_COMPRESS_NONE;
9400 ei->delayed_node = NULL;
9402 ei->i_otime.tv_sec = 0;
9403 ei->i_otime.tv_nsec = 0;
9405 inode = &ei->vfs_inode;
9406 extent_map_tree_init(&ei->extent_tree);
9407 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9408 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9409 ei->io_tree.track_uptodate = 1;
9410 ei->io_failure_tree.track_uptodate = 1;
9411 atomic_set(&ei->sync_writers, 0);
9412 mutex_init(&ei->log_mutex);
9413 mutex_init(&ei->delalloc_mutex);
9414 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9415 INIT_LIST_HEAD(&ei->delalloc_inodes);
9416 INIT_LIST_HEAD(&ei->delayed_iput);
9417 RB_CLEAR_NODE(&ei->rb_node);
9418 init_rwsem(&ei->dio_sem);
9423 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9424 void btrfs_test_destroy_inode(struct inode *inode)
9426 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9427 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9431 static void btrfs_i_callback(struct rcu_head *head)
9433 struct inode *inode = container_of(head, struct inode, i_rcu);
9434 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9437 void btrfs_destroy_inode(struct inode *inode)
9439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9440 struct btrfs_ordered_extent *ordered;
9441 struct btrfs_root *root = BTRFS_I(inode)->root;
9443 WARN_ON(!hlist_empty(&inode->i_dentry));
9444 WARN_ON(inode->i_data.nrpages);
9445 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9446 WARN_ON(BTRFS_I(inode)->reserved_extents);
9447 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9448 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9449 WARN_ON(BTRFS_I(inode)->csum_bytes);
9450 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9453 * This can happen where we create an inode, but somebody else also
9454 * created the same inode and we need to destroy the one we already
9460 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9461 &BTRFS_I(inode)->runtime_flags)) {
9462 btrfs_info(fs_info, "inode %llu still on the orphan list",
9463 btrfs_ino(BTRFS_I(inode)));
9464 atomic_dec(&root->orphan_inodes);
9468 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9473 "found ordered extent %llu %llu on inode cleanup",
9474 ordered->file_offset, ordered->len);
9475 btrfs_remove_ordered_extent(inode, ordered);
9476 btrfs_put_ordered_extent(ordered);
9477 btrfs_put_ordered_extent(ordered);
9480 btrfs_qgroup_check_reserved_leak(inode);
9481 inode_tree_del(inode);
9482 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9484 call_rcu(&inode->i_rcu, btrfs_i_callback);
9487 int btrfs_drop_inode(struct inode *inode)
9489 struct btrfs_root *root = BTRFS_I(inode)->root;
9494 /* the snap/subvol tree is on deleting */
9495 if (btrfs_root_refs(&root->root_item) == 0)
9498 return generic_drop_inode(inode);
9501 static void init_once(void *foo)
9503 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9505 inode_init_once(&ei->vfs_inode);
9508 void btrfs_destroy_cachep(void)
9511 * Make sure all delayed rcu free inodes are flushed before we
9515 kmem_cache_destroy(btrfs_inode_cachep);
9516 kmem_cache_destroy(btrfs_trans_handle_cachep);
9517 kmem_cache_destroy(btrfs_transaction_cachep);
9518 kmem_cache_destroy(btrfs_path_cachep);
9519 kmem_cache_destroy(btrfs_free_space_cachep);
9522 int btrfs_init_cachep(void)
9524 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9525 sizeof(struct btrfs_inode), 0,
9526 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9528 if (!btrfs_inode_cachep)
9531 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9532 sizeof(struct btrfs_trans_handle), 0,
9533 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9534 if (!btrfs_trans_handle_cachep)
9537 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9538 sizeof(struct btrfs_transaction), 0,
9539 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9540 if (!btrfs_transaction_cachep)
9543 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9544 sizeof(struct btrfs_path), 0,
9545 SLAB_MEM_SPREAD, NULL);
9546 if (!btrfs_path_cachep)
9549 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9550 sizeof(struct btrfs_free_space), 0,
9551 SLAB_MEM_SPREAD, NULL);
9552 if (!btrfs_free_space_cachep)
9557 btrfs_destroy_cachep();
9561 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9562 u32 request_mask, unsigned int flags)
9565 struct inode *inode = d_inode(path->dentry);
9566 u32 blocksize = inode->i_sb->s_blocksize;
9568 generic_fillattr(inode, stat);
9569 stat->dev = BTRFS_I(inode)->root->anon_dev;
9571 spin_lock(&BTRFS_I(inode)->lock);
9572 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9573 spin_unlock(&BTRFS_I(inode)->lock);
9574 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9575 ALIGN(delalloc_bytes, blocksize)) >> 9;
9579 static int btrfs_rename_exchange(struct inode *old_dir,
9580 struct dentry *old_dentry,
9581 struct inode *new_dir,
9582 struct dentry *new_dentry)
9584 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9585 struct btrfs_trans_handle *trans;
9586 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9587 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9588 struct inode *new_inode = new_dentry->d_inode;
9589 struct inode *old_inode = old_dentry->d_inode;
9590 struct timespec ctime = current_time(old_inode);
9591 struct dentry *parent;
9592 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9593 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9598 bool root_log_pinned = false;
9599 bool dest_log_pinned = false;
9601 /* we only allow rename subvolume link between subvolumes */
9602 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9605 /* close the race window with snapshot create/destroy ioctl */
9606 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9607 down_read(&fs_info->subvol_sem);
9608 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9609 down_read(&fs_info->subvol_sem);
9612 * We want to reserve the absolute worst case amount of items. So if
9613 * both inodes are subvols and we need to unlink them then that would
9614 * require 4 item modifications, but if they are both normal inodes it
9615 * would require 5 item modifications, so we'll assume their normal
9616 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9617 * should cover the worst case number of items we'll modify.
9619 trans = btrfs_start_transaction(root, 12);
9620 if (IS_ERR(trans)) {
9621 ret = PTR_ERR(trans);
9626 * We need to find a free sequence number both in the source and
9627 * in the destination directory for the exchange.
9629 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9632 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9636 BTRFS_I(old_inode)->dir_index = 0ULL;
9637 BTRFS_I(new_inode)->dir_index = 0ULL;
9639 /* Reference for the source. */
9640 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9641 /* force full log commit if subvolume involved. */
9642 btrfs_set_log_full_commit(fs_info, trans);
9644 btrfs_pin_log_trans(root);
9645 root_log_pinned = true;
9646 ret = btrfs_insert_inode_ref(trans, dest,
9647 new_dentry->d_name.name,
9648 new_dentry->d_name.len,
9650 btrfs_ino(BTRFS_I(new_dir)),
9656 /* And now for the dest. */
9657 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9658 /* force full log commit if subvolume involved. */
9659 btrfs_set_log_full_commit(fs_info, trans);
9661 btrfs_pin_log_trans(dest);
9662 dest_log_pinned = true;
9663 ret = btrfs_insert_inode_ref(trans, root,
9664 old_dentry->d_name.name,
9665 old_dentry->d_name.len,
9667 btrfs_ino(BTRFS_I(old_dir)),
9673 /* Update inode version and ctime/mtime. */
9674 inode_inc_iversion(old_dir);
9675 inode_inc_iversion(new_dir);
9676 inode_inc_iversion(old_inode);
9677 inode_inc_iversion(new_inode);
9678 old_dir->i_ctime = old_dir->i_mtime = ctime;
9679 new_dir->i_ctime = new_dir->i_mtime = ctime;
9680 old_inode->i_ctime = ctime;
9681 new_inode->i_ctime = ctime;
9683 if (old_dentry->d_parent != new_dentry->d_parent) {
9684 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9685 BTRFS_I(old_inode), 1);
9686 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9687 BTRFS_I(new_inode), 1);
9690 /* src is a subvolume */
9691 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9692 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9693 ret = btrfs_unlink_subvol(trans, root, old_dir,
9695 old_dentry->d_name.name,
9696 old_dentry->d_name.len);
9697 } else { /* src is an inode */
9698 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9699 BTRFS_I(old_dentry->d_inode),
9700 old_dentry->d_name.name,
9701 old_dentry->d_name.len);
9703 ret = btrfs_update_inode(trans, root, old_inode);
9706 btrfs_abort_transaction(trans, ret);
9710 /* dest is a subvolume */
9711 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9712 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9713 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9715 new_dentry->d_name.name,
9716 new_dentry->d_name.len);
9717 } else { /* dest is an inode */
9718 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9719 BTRFS_I(new_dentry->d_inode),
9720 new_dentry->d_name.name,
9721 new_dentry->d_name.len);
9723 ret = btrfs_update_inode(trans, dest, new_inode);
9726 btrfs_abort_transaction(trans, ret);
9730 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9731 new_dentry->d_name.name,
9732 new_dentry->d_name.len, 0, old_idx);
9734 btrfs_abort_transaction(trans, ret);
9738 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9739 old_dentry->d_name.name,
9740 old_dentry->d_name.len, 0, new_idx);
9742 btrfs_abort_transaction(trans, ret);
9746 if (old_inode->i_nlink == 1)
9747 BTRFS_I(old_inode)->dir_index = old_idx;
9748 if (new_inode->i_nlink == 1)
9749 BTRFS_I(new_inode)->dir_index = new_idx;
9751 if (root_log_pinned) {
9752 parent = new_dentry->d_parent;
9753 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9755 btrfs_end_log_trans(root);
9756 root_log_pinned = false;
9758 if (dest_log_pinned) {
9759 parent = old_dentry->d_parent;
9760 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9762 btrfs_end_log_trans(dest);
9763 dest_log_pinned = false;
9767 * If we have pinned a log and an error happened, we unpin tasks
9768 * trying to sync the log and force them to fallback to a transaction
9769 * commit if the log currently contains any of the inodes involved in
9770 * this rename operation (to ensure we do not persist a log with an
9771 * inconsistent state for any of these inodes or leading to any
9772 * inconsistencies when replayed). If the transaction was aborted, the
9773 * abortion reason is propagated to userspace when attempting to commit
9774 * the transaction. If the log does not contain any of these inodes, we
9775 * allow the tasks to sync it.
9777 if (ret && (root_log_pinned || dest_log_pinned)) {
9778 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9779 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9780 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9782 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9783 btrfs_set_log_full_commit(fs_info, trans);
9785 if (root_log_pinned) {
9786 btrfs_end_log_trans(root);
9787 root_log_pinned = false;
9789 if (dest_log_pinned) {
9790 btrfs_end_log_trans(dest);
9791 dest_log_pinned = false;
9794 ret = btrfs_end_transaction(trans);
9796 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9797 up_read(&fs_info->subvol_sem);
9798 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9799 up_read(&fs_info->subvol_sem);
9804 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9805 struct btrfs_root *root,
9807 struct dentry *dentry)
9810 struct inode *inode;
9814 ret = btrfs_find_free_ino(root, &objectid);
9818 inode = btrfs_new_inode(trans, root, dir,
9819 dentry->d_name.name,
9821 btrfs_ino(BTRFS_I(dir)),
9823 S_IFCHR | WHITEOUT_MODE,
9826 if (IS_ERR(inode)) {
9827 ret = PTR_ERR(inode);
9831 inode->i_op = &btrfs_special_inode_operations;
9832 init_special_inode(inode, inode->i_mode,
9835 ret = btrfs_init_inode_security(trans, inode, dir,
9840 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9841 BTRFS_I(inode), 0, index);
9845 ret = btrfs_update_inode(trans, root, inode);
9847 unlock_new_inode(inode);
9849 inode_dec_link_count(inode);
9855 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9856 struct inode *new_dir, struct dentry *new_dentry,
9859 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9860 struct btrfs_trans_handle *trans;
9861 unsigned int trans_num_items;
9862 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9863 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9864 struct inode *new_inode = d_inode(new_dentry);
9865 struct inode *old_inode = d_inode(old_dentry);
9869 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9870 bool log_pinned = false;
9872 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9875 /* we only allow rename subvolume link between subvolumes */
9876 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9879 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9880 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9883 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9884 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9888 /* check for collisions, even if the name isn't there */
9889 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9890 new_dentry->d_name.name,
9891 new_dentry->d_name.len);
9894 if (ret == -EEXIST) {
9896 * eexist without a new_inode */
9897 if (WARN_ON(!new_inode)) {
9901 /* maybe -EOVERFLOW */
9908 * we're using rename to replace one file with another. Start IO on it
9909 * now so we don't add too much work to the end of the transaction
9911 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9912 filemap_flush(old_inode->i_mapping);
9914 /* close the racy window with snapshot create/destroy ioctl */
9915 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9916 down_read(&fs_info->subvol_sem);
9918 * We want to reserve the absolute worst case amount of items. So if
9919 * both inodes are subvols and we need to unlink them then that would
9920 * require 4 item modifications, but if they are both normal inodes it
9921 * would require 5 item modifications, so we'll assume they are normal
9922 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9923 * should cover the worst case number of items we'll modify.
9924 * If our rename has the whiteout flag, we need more 5 units for the
9925 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9926 * when selinux is enabled).
9928 trans_num_items = 11;
9929 if (flags & RENAME_WHITEOUT)
9930 trans_num_items += 5;
9931 trans = btrfs_start_transaction(root, trans_num_items);
9932 if (IS_ERR(trans)) {
9933 ret = PTR_ERR(trans);
9938 btrfs_record_root_in_trans(trans, dest);
9940 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9944 BTRFS_I(old_inode)->dir_index = 0ULL;
9945 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9946 /* force full log commit if subvolume involved. */
9947 btrfs_set_log_full_commit(fs_info, trans);
9949 btrfs_pin_log_trans(root);
9951 ret = btrfs_insert_inode_ref(trans, dest,
9952 new_dentry->d_name.name,
9953 new_dentry->d_name.len,
9955 btrfs_ino(BTRFS_I(new_dir)), index);
9960 inode_inc_iversion(old_dir);
9961 inode_inc_iversion(new_dir);
9962 inode_inc_iversion(old_inode);
9963 old_dir->i_ctime = old_dir->i_mtime =
9964 new_dir->i_ctime = new_dir->i_mtime =
9965 old_inode->i_ctime = current_time(old_dir);
9967 if (old_dentry->d_parent != new_dentry->d_parent)
9968 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9969 BTRFS_I(old_inode), 1);
9971 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9972 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9973 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9974 old_dentry->d_name.name,
9975 old_dentry->d_name.len);
9977 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9978 BTRFS_I(d_inode(old_dentry)),
9979 old_dentry->d_name.name,
9980 old_dentry->d_name.len);
9982 ret = btrfs_update_inode(trans, root, old_inode);
9985 btrfs_abort_transaction(trans, ret);
9990 inode_inc_iversion(new_inode);
9991 new_inode->i_ctime = current_time(new_inode);
9992 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9993 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9994 root_objectid = BTRFS_I(new_inode)->location.objectid;
9995 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9997 new_dentry->d_name.name,
9998 new_dentry->d_name.len);
9999 BUG_ON(new_inode->i_nlink == 0);
10001 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10002 BTRFS_I(d_inode(new_dentry)),
10003 new_dentry->d_name.name,
10004 new_dentry->d_name.len);
10006 if (!ret && new_inode->i_nlink == 0)
10007 ret = btrfs_orphan_add(trans,
10008 BTRFS_I(d_inode(new_dentry)));
10010 btrfs_abort_transaction(trans, ret);
10015 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10016 new_dentry->d_name.name,
10017 new_dentry->d_name.len, 0, index);
10019 btrfs_abort_transaction(trans, ret);
10023 if (old_inode->i_nlink == 1)
10024 BTRFS_I(old_inode)->dir_index = index;
10027 struct dentry *parent = new_dentry->d_parent;
10029 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10031 btrfs_end_log_trans(root);
10032 log_pinned = false;
10035 if (flags & RENAME_WHITEOUT) {
10036 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10040 btrfs_abort_transaction(trans, ret);
10046 * If we have pinned the log and an error happened, we unpin tasks
10047 * trying to sync the log and force them to fallback to a transaction
10048 * commit if the log currently contains any of the inodes involved in
10049 * this rename operation (to ensure we do not persist a log with an
10050 * inconsistent state for any of these inodes or leading to any
10051 * inconsistencies when replayed). If the transaction was aborted, the
10052 * abortion reason is propagated to userspace when attempting to commit
10053 * the transaction. If the log does not contain any of these inodes, we
10054 * allow the tasks to sync it.
10056 if (ret && log_pinned) {
10057 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10058 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10059 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10061 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10062 btrfs_set_log_full_commit(fs_info, trans);
10064 btrfs_end_log_trans(root);
10065 log_pinned = false;
10067 btrfs_end_transaction(trans);
10069 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10070 up_read(&fs_info->subvol_sem);
10075 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10076 struct inode *new_dir, struct dentry *new_dentry,
10077 unsigned int flags)
10079 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10082 if (flags & RENAME_EXCHANGE)
10083 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10086 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10089 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10091 struct btrfs_delalloc_work *delalloc_work;
10092 struct inode *inode;
10094 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10096 inode = delalloc_work->inode;
10097 filemap_flush(inode->i_mapping);
10098 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10099 &BTRFS_I(inode)->runtime_flags))
10100 filemap_flush(inode->i_mapping);
10102 if (delalloc_work->delay_iput)
10103 btrfs_add_delayed_iput(inode);
10106 complete(&delalloc_work->completion);
10109 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10112 struct btrfs_delalloc_work *work;
10114 work = kmalloc(sizeof(*work), GFP_NOFS);
10118 init_completion(&work->completion);
10119 INIT_LIST_HEAD(&work->list);
10120 work->inode = inode;
10121 work->delay_iput = delay_iput;
10122 WARN_ON_ONCE(!inode);
10123 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10124 btrfs_run_delalloc_work, NULL, NULL);
10129 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10131 wait_for_completion(&work->completion);
10136 * some fairly slow code that needs optimization. This walks the list
10137 * of all the inodes with pending delalloc and forces them to disk.
10139 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10142 struct btrfs_inode *binode;
10143 struct inode *inode;
10144 struct btrfs_delalloc_work *work, *next;
10145 struct list_head works;
10146 struct list_head splice;
10149 INIT_LIST_HEAD(&works);
10150 INIT_LIST_HEAD(&splice);
10152 mutex_lock(&root->delalloc_mutex);
10153 spin_lock(&root->delalloc_lock);
10154 list_splice_init(&root->delalloc_inodes, &splice);
10155 while (!list_empty(&splice)) {
10156 binode = list_entry(splice.next, struct btrfs_inode,
10159 list_move_tail(&binode->delalloc_inodes,
10160 &root->delalloc_inodes);
10161 inode = igrab(&binode->vfs_inode);
10163 cond_resched_lock(&root->delalloc_lock);
10166 spin_unlock(&root->delalloc_lock);
10168 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10171 btrfs_add_delayed_iput(inode);
10177 list_add_tail(&work->list, &works);
10178 btrfs_queue_work(root->fs_info->flush_workers,
10181 if (nr != -1 && ret >= nr)
10184 spin_lock(&root->delalloc_lock);
10186 spin_unlock(&root->delalloc_lock);
10189 list_for_each_entry_safe(work, next, &works, list) {
10190 list_del_init(&work->list);
10191 btrfs_wait_and_free_delalloc_work(work);
10194 if (!list_empty_careful(&splice)) {
10195 spin_lock(&root->delalloc_lock);
10196 list_splice_tail(&splice, &root->delalloc_inodes);
10197 spin_unlock(&root->delalloc_lock);
10199 mutex_unlock(&root->delalloc_mutex);
10203 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10205 struct btrfs_fs_info *fs_info = root->fs_info;
10208 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10211 ret = __start_delalloc_inodes(root, delay_iput, -1);
10215 * the filemap_flush will queue IO into the worker threads, but
10216 * we have to make sure the IO is actually started and that
10217 * ordered extents get created before we return
10219 atomic_inc(&fs_info->async_submit_draining);
10220 while (atomic_read(&fs_info->nr_async_submits) ||
10221 atomic_read(&fs_info->async_delalloc_pages)) {
10222 wait_event(fs_info->async_submit_wait,
10223 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10224 atomic_read(&fs_info->async_delalloc_pages) == 0));
10226 atomic_dec(&fs_info->async_submit_draining);
10230 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10233 struct btrfs_root *root;
10234 struct list_head splice;
10237 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10240 INIT_LIST_HEAD(&splice);
10242 mutex_lock(&fs_info->delalloc_root_mutex);
10243 spin_lock(&fs_info->delalloc_root_lock);
10244 list_splice_init(&fs_info->delalloc_roots, &splice);
10245 while (!list_empty(&splice) && nr) {
10246 root = list_first_entry(&splice, struct btrfs_root,
10248 root = btrfs_grab_fs_root(root);
10250 list_move_tail(&root->delalloc_root,
10251 &fs_info->delalloc_roots);
10252 spin_unlock(&fs_info->delalloc_root_lock);
10254 ret = __start_delalloc_inodes(root, delay_iput, nr);
10255 btrfs_put_fs_root(root);
10263 spin_lock(&fs_info->delalloc_root_lock);
10265 spin_unlock(&fs_info->delalloc_root_lock);
10268 atomic_inc(&fs_info->async_submit_draining);
10269 while (atomic_read(&fs_info->nr_async_submits) ||
10270 atomic_read(&fs_info->async_delalloc_pages)) {
10271 wait_event(fs_info->async_submit_wait,
10272 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10273 atomic_read(&fs_info->async_delalloc_pages) == 0));
10275 atomic_dec(&fs_info->async_submit_draining);
10277 if (!list_empty_careful(&splice)) {
10278 spin_lock(&fs_info->delalloc_root_lock);
10279 list_splice_tail(&splice, &fs_info->delalloc_roots);
10280 spin_unlock(&fs_info->delalloc_root_lock);
10282 mutex_unlock(&fs_info->delalloc_root_mutex);
10286 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10287 const char *symname)
10289 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10290 struct btrfs_trans_handle *trans;
10291 struct btrfs_root *root = BTRFS_I(dir)->root;
10292 struct btrfs_path *path;
10293 struct btrfs_key key;
10294 struct inode *inode = NULL;
10296 int drop_inode = 0;
10302 struct btrfs_file_extent_item *ei;
10303 struct extent_buffer *leaf;
10305 name_len = strlen(symname);
10306 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10307 return -ENAMETOOLONG;
10310 * 2 items for inode item and ref
10311 * 2 items for dir items
10312 * 1 item for updating parent inode item
10313 * 1 item for the inline extent item
10314 * 1 item for xattr if selinux is on
10316 trans = btrfs_start_transaction(root, 7);
10318 return PTR_ERR(trans);
10320 err = btrfs_find_free_ino(root, &objectid);
10324 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10325 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10326 objectid, S_IFLNK|S_IRWXUGO, &index);
10327 if (IS_ERR(inode)) {
10328 err = PTR_ERR(inode);
10333 * If the active LSM wants to access the inode during
10334 * d_instantiate it needs these. Smack checks to see
10335 * if the filesystem supports xattrs by looking at the
10338 inode->i_fop = &btrfs_file_operations;
10339 inode->i_op = &btrfs_file_inode_operations;
10340 inode->i_mapping->a_ops = &btrfs_aops;
10341 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10343 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10345 goto out_unlock_inode;
10347 path = btrfs_alloc_path();
10350 goto out_unlock_inode;
10352 key.objectid = btrfs_ino(BTRFS_I(inode));
10354 key.type = BTRFS_EXTENT_DATA_KEY;
10355 datasize = btrfs_file_extent_calc_inline_size(name_len);
10356 err = btrfs_insert_empty_item(trans, root, path, &key,
10359 btrfs_free_path(path);
10360 goto out_unlock_inode;
10362 leaf = path->nodes[0];
10363 ei = btrfs_item_ptr(leaf, path->slots[0],
10364 struct btrfs_file_extent_item);
10365 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10366 btrfs_set_file_extent_type(leaf, ei,
10367 BTRFS_FILE_EXTENT_INLINE);
10368 btrfs_set_file_extent_encryption(leaf, ei, 0);
10369 btrfs_set_file_extent_compression(leaf, ei, 0);
10370 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10371 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10373 ptr = btrfs_file_extent_inline_start(ei);
10374 write_extent_buffer(leaf, symname, ptr, name_len);
10375 btrfs_mark_buffer_dirty(leaf);
10376 btrfs_free_path(path);
10378 inode->i_op = &btrfs_symlink_inode_operations;
10379 inode_nohighmem(inode);
10380 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10381 inode_set_bytes(inode, name_len);
10382 btrfs_i_size_write(BTRFS_I(inode), name_len);
10383 err = btrfs_update_inode(trans, root, inode);
10385 * Last step, add directory indexes for our symlink inode. This is the
10386 * last step to avoid extra cleanup of these indexes if an error happens
10390 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10391 BTRFS_I(inode), 0, index);
10394 goto out_unlock_inode;
10397 unlock_new_inode(inode);
10398 d_instantiate(dentry, inode);
10401 btrfs_end_transaction(trans);
10403 inode_dec_link_count(inode);
10406 btrfs_btree_balance_dirty(fs_info);
10411 unlock_new_inode(inode);
10415 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10416 u64 start, u64 num_bytes, u64 min_size,
10417 loff_t actual_len, u64 *alloc_hint,
10418 struct btrfs_trans_handle *trans)
10420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10421 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10422 struct extent_map *em;
10423 struct btrfs_root *root = BTRFS_I(inode)->root;
10424 struct btrfs_key ins;
10425 u64 cur_offset = start;
10428 u64 last_alloc = (u64)-1;
10430 bool own_trans = true;
10431 u64 end = start + num_bytes - 1;
10435 while (num_bytes > 0) {
10437 trans = btrfs_start_transaction(root, 3);
10438 if (IS_ERR(trans)) {
10439 ret = PTR_ERR(trans);
10444 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10445 cur_bytes = max(cur_bytes, min_size);
10447 * If we are severely fragmented we could end up with really
10448 * small allocations, so if the allocator is returning small
10449 * chunks lets make its job easier by only searching for those
10452 cur_bytes = min(cur_bytes, last_alloc);
10453 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10454 min_size, 0, *alloc_hint, &ins, 1, 0);
10457 btrfs_end_transaction(trans);
10460 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10462 last_alloc = ins.offset;
10463 ret = insert_reserved_file_extent(trans, inode,
10464 cur_offset, ins.objectid,
10465 ins.offset, ins.offset,
10466 ins.offset, 0, 0, 0,
10467 BTRFS_FILE_EXTENT_PREALLOC);
10469 btrfs_free_reserved_extent(fs_info, ins.objectid,
10471 btrfs_abort_transaction(trans, ret);
10473 btrfs_end_transaction(trans);
10477 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10478 cur_offset + ins.offset -1, 0);
10480 em = alloc_extent_map();
10482 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10483 &BTRFS_I(inode)->runtime_flags);
10487 em->start = cur_offset;
10488 em->orig_start = cur_offset;
10489 em->len = ins.offset;
10490 em->block_start = ins.objectid;
10491 em->block_len = ins.offset;
10492 em->orig_block_len = ins.offset;
10493 em->ram_bytes = ins.offset;
10494 em->bdev = fs_info->fs_devices->latest_bdev;
10495 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10496 em->generation = trans->transid;
10499 write_lock(&em_tree->lock);
10500 ret = add_extent_mapping(em_tree, em, 1);
10501 write_unlock(&em_tree->lock);
10502 if (ret != -EEXIST)
10504 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10505 cur_offset + ins.offset - 1,
10508 free_extent_map(em);
10510 num_bytes -= ins.offset;
10511 cur_offset += ins.offset;
10512 *alloc_hint = ins.objectid + ins.offset;
10514 inode_inc_iversion(inode);
10515 inode->i_ctime = current_time(inode);
10516 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10517 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10518 (actual_len > inode->i_size) &&
10519 (cur_offset > inode->i_size)) {
10520 if (cur_offset > actual_len)
10521 i_size = actual_len;
10523 i_size = cur_offset;
10524 i_size_write(inode, i_size);
10525 btrfs_ordered_update_i_size(inode, i_size, NULL);
10528 ret = btrfs_update_inode(trans, root, inode);
10531 btrfs_abort_transaction(trans, ret);
10533 btrfs_end_transaction(trans);
10538 btrfs_end_transaction(trans);
10540 if (cur_offset < end)
10541 btrfs_free_reserved_data_space(inode, cur_offset,
10542 end - cur_offset + 1);
10546 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10547 u64 start, u64 num_bytes, u64 min_size,
10548 loff_t actual_len, u64 *alloc_hint)
10550 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10551 min_size, actual_len, alloc_hint,
10555 int btrfs_prealloc_file_range_trans(struct inode *inode,
10556 struct btrfs_trans_handle *trans, int mode,
10557 u64 start, u64 num_bytes, u64 min_size,
10558 loff_t actual_len, u64 *alloc_hint)
10560 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10561 min_size, actual_len, alloc_hint, trans);
10564 static int btrfs_set_page_dirty(struct page *page)
10566 return __set_page_dirty_nobuffers(page);
10569 static int btrfs_permission(struct inode *inode, int mask)
10571 struct btrfs_root *root = BTRFS_I(inode)->root;
10572 umode_t mode = inode->i_mode;
10574 if (mask & MAY_WRITE &&
10575 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10576 if (btrfs_root_readonly(root))
10578 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10581 return generic_permission(inode, mask);
10584 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10586 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10587 struct btrfs_trans_handle *trans;
10588 struct btrfs_root *root = BTRFS_I(dir)->root;
10589 struct inode *inode = NULL;
10595 * 5 units required for adding orphan entry
10597 trans = btrfs_start_transaction(root, 5);
10599 return PTR_ERR(trans);
10601 ret = btrfs_find_free_ino(root, &objectid);
10605 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10606 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10607 if (IS_ERR(inode)) {
10608 ret = PTR_ERR(inode);
10613 inode->i_fop = &btrfs_file_operations;
10614 inode->i_op = &btrfs_file_inode_operations;
10616 inode->i_mapping->a_ops = &btrfs_aops;
10617 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10619 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10623 ret = btrfs_update_inode(trans, root, inode);
10626 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10631 * We set number of links to 0 in btrfs_new_inode(), and here we set
10632 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10635 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10637 set_nlink(inode, 1);
10638 unlock_new_inode(inode);
10639 d_tmpfile(dentry, inode);
10640 mark_inode_dirty(inode);
10643 btrfs_end_transaction(trans);
10646 btrfs_balance_delayed_items(fs_info);
10647 btrfs_btree_balance_dirty(fs_info);
10651 unlock_new_inode(inode);
10656 __attribute__((const))
10657 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10662 static const struct inode_operations btrfs_dir_inode_operations = {
10663 .getattr = btrfs_getattr,
10664 .lookup = btrfs_lookup,
10665 .create = btrfs_create,
10666 .unlink = btrfs_unlink,
10667 .link = btrfs_link,
10668 .mkdir = btrfs_mkdir,
10669 .rmdir = btrfs_rmdir,
10670 .rename = btrfs_rename2,
10671 .symlink = btrfs_symlink,
10672 .setattr = btrfs_setattr,
10673 .mknod = btrfs_mknod,
10674 .listxattr = btrfs_listxattr,
10675 .permission = btrfs_permission,
10676 .get_acl = btrfs_get_acl,
10677 .set_acl = btrfs_set_acl,
10678 .update_time = btrfs_update_time,
10679 .tmpfile = btrfs_tmpfile,
10681 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10682 .lookup = btrfs_lookup,
10683 .permission = btrfs_permission,
10684 .update_time = btrfs_update_time,
10687 static const struct file_operations btrfs_dir_file_operations = {
10688 .llseek = generic_file_llseek,
10689 .read = generic_read_dir,
10690 .iterate_shared = btrfs_real_readdir,
10691 .unlocked_ioctl = btrfs_ioctl,
10692 #ifdef CONFIG_COMPAT
10693 .compat_ioctl = btrfs_compat_ioctl,
10695 .release = btrfs_release_file,
10696 .fsync = btrfs_sync_file,
10699 static const struct extent_io_ops btrfs_extent_io_ops = {
10700 /* mandatory callbacks */
10701 .submit_bio_hook = btrfs_submit_bio_hook,
10702 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10703 .merge_bio_hook = btrfs_merge_bio_hook,
10704 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10706 /* optional callbacks */
10707 .fill_delalloc = run_delalloc_range,
10708 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10709 .writepage_start_hook = btrfs_writepage_start_hook,
10710 .set_bit_hook = btrfs_set_bit_hook,
10711 .clear_bit_hook = btrfs_clear_bit_hook,
10712 .merge_extent_hook = btrfs_merge_extent_hook,
10713 .split_extent_hook = btrfs_split_extent_hook,
10717 * btrfs doesn't support the bmap operation because swapfiles
10718 * use bmap to make a mapping of extents in the file. They assume
10719 * these extents won't change over the life of the file and they
10720 * use the bmap result to do IO directly to the drive.
10722 * the btrfs bmap call would return logical addresses that aren't
10723 * suitable for IO and they also will change frequently as COW
10724 * operations happen. So, swapfile + btrfs == corruption.
10726 * For now we're avoiding this by dropping bmap.
10728 static const struct address_space_operations btrfs_aops = {
10729 .readpage = btrfs_readpage,
10730 .writepage = btrfs_writepage,
10731 .writepages = btrfs_writepages,
10732 .readpages = btrfs_readpages,
10733 .direct_IO = btrfs_direct_IO,
10734 .invalidatepage = btrfs_invalidatepage,
10735 .releasepage = btrfs_releasepage,
10736 .set_page_dirty = btrfs_set_page_dirty,
10737 .error_remove_page = generic_error_remove_page,
10740 static const struct address_space_operations btrfs_symlink_aops = {
10741 .readpage = btrfs_readpage,
10742 .writepage = btrfs_writepage,
10743 .invalidatepage = btrfs_invalidatepage,
10744 .releasepage = btrfs_releasepage,
10747 static const struct inode_operations btrfs_file_inode_operations = {
10748 .getattr = btrfs_getattr,
10749 .setattr = btrfs_setattr,
10750 .listxattr = btrfs_listxattr,
10751 .permission = btrfs_permission,
10752 .fiemap = btrfs_fiemap,
10753 .get_acl = btrfs_get_acl,
10754 .set_acl = btrfs_set_acl,
10755 .update_time = btrfs_update_time,
10757 static const struct inode_operations btrfs_special_inode_operations = {
10758 .getattr = btrfs_getattr,
10759 .setattr = btrfs_setattr,
10760 .permission = btrfs_permission,
10761 .listxattr = btrfs_listxattr,
10762 .get_acl = btrfs_get_acl,
10763 .set_acl = btrfs_set_acl,
10764 .update_time = btrfs_update_time,
10766 static const struct inode_operations btrfs_symlink_inode_operations = {
10767 .get_link = page_get_link,
10768 .getattr = btrfs_getattr,
10769 .setattr = btrfs_setattr,
10770 .permission = btrfs_permission,
10771 .listxattr = btrfs_listxattr,
10772 .update_time = btrfs_update_time,
10775 const struct dentry_operations btrfs_dentry_operations = {
10776 .d_delete = btrfs_dentry_delete,
10777 .d_release = btrfs_dentry_release,