2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
22 #include "kvm_cache_regs.h"
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
31 #include <linux/hugetlb.h>
32 #include <linux/compiler.h>
33 #include <linux/srcu.h>
34 #include <linux/slab.h>
37 #include <asm/cmpxchg.h>
42 * When setting this variable to true it enables Two-Dimensional-Paging
43 * where the hardware walks 2 page tables:
44 * 1. the guest-virtual to guest-physical
45 * 2. while doing 1. it walks guest-physical to host-physical
46 * If the hardware supports that we don't need to do shadow paging.
48 bool tdp_enabled = false;
55 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
57 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
62 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
63 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
67 #define pgprintk(x...) do { } while (0)
68 #define rmap_printk(x...) do { } while (0)
72 #if defined(MMU_DEBUG) || defined(AUDIT)
74 module_param(dbg, bool, 0644);
77 static int oos_shadow = 1;
78 module_param(oos_shadow, bool, 0644);
81 #define ASSERT(x) do { } while (0)
85 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
86 __FILE__, __LINE__, #x); \
90 #define PT_FIRST_AVAIL_BITS_SHIFT 9
91 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
93 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
95 #define PT64_LEVEL_BITS 9
97 #define PT64_LEVEL_SHIFT(level) \
98 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100 #define PT64_LEVEL_MASK(level) \
101 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
103 #define PT64_INDEX(address, level)\
104 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
107 #define PT32_LEVEL_BITS 10
109 #define PT32_LEVEL_SHIFT(level) \
110 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
112 #define PT32_LEVEL_MASK(level) \
113 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
114 #define PT32_LVL_OFFSET_MASK(level) \
115 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT32_LEVEL_BITS))) - 1))
118 #define PT32_INDEX(address, level)\
119 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
122 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
123 #define PT64_DIR_BASE_ADDR_MASK \
124 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
125 #define PT64_LVL_ADDR_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
128 #define PT64_LVL_OFFSET_MASK(level) \
129 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT64_LEVEL_BITS))) - 1))
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137 * PT32_LEVEL_BITS))) - 1))
139 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
144 #define ACC_EXEC_MASK 1
145 #define ACC_WRITE_MASK PT_WRITABLE_MASK
146 #define ACC_USER_MASK PT_USER_MASK
147 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
149 #include <trace/events/kvm.h>
151 #define CREATE_TRACE_POINTS
152 #include "mmutrace.h"
154 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
156 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
158 struct kvm_rmap_desc {
159 u64 *sptes[RMAP_EXT];
160 struct kvm_rmap_desc *more;
163 struct kvm_shadow_walk_iterator {
171 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
172 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
173 shadow_walk_okay(&(_walker)); \
174 shadow_walk_next(&(_walker)))
176 typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
178 static struct kmem_cache *pte_chain_cache;
179 static struct kmem_cache *rmap_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
182 static u64 __read_mostly shadow_trap_nonpresent_pte;
183 static u64 __read_mostly shadow_notrap_nonpresent_pte;
184 static u64 __read_mostly shadow_base_present_pte;
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
191 static inline u64 rsvd_bits(int s, int e)
193 return ((1ULL << (e - s + 1)) - 1) << s;
196 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
198 shadow_trap_nonpresent_pte = trap_pte;
199 shadow_notrap_nonpresent_pte = notrap_pte;
201 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
203 void kvm_mmu_set_base_ptes(u64 base_pte)
205 shadow_base_present_pte = base_pte;
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210 u64 dirty_mask, u64 nx_mask, u64 x_mask)
212 shadow_user_mask = user_mask;
213 shadow_accessed_mask = accessed_mask;
214 shadow_dirty_mask = dirty_mask;
215 shadow_nx_mask = nx_mask;
216 shadow_x_mask = x_mask;
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
220 static bool is_write_protection(struct kvm_vcpu *vcpu)
222 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
225 static int is_cpuid_PSE36(void)
230 static int is_nx(struct kvm_vcpu *vcpu)
232 return vcpu->arch.efer & EFER_NX;
235 static int is_shadow_present_pte(u64 pte)
237 return pte != shadow_trap_nonpresent_pte
238 && pte != shadow_notrap_nonpresent_pte;
241 static int is_large_pte(u64 pte)
243 return pte & PT_PAGE_SIZE_MASK;
246 static int is_writable_pte(unsigned long pte)
248 return pte & PT_WRITABLE_MASK;
251 static int is_dirty_gpte(unsigned long pte)
253 return pte & PT_DIRTY_MASK;
256 static int is_rmap_spte(u64 pte)
258 return is_shadow_present_pte(pte);
261 static int is_last_spte(u64 pte, int level)
263 if (level == PT_PAGE_TABLE_LEVEL)
265 if (is_large_pte(pte))
270 static pfn_t spte_to_pfn(u64 pte)
272 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
275 static gfn_t pse36_gfn_delta(u32 gpte)
277 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
279 return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 static void __set_spte(u64 *sptep, u64 spte)
285 set_64bit((unsigned long *)sptep, spte);
287 set_64bit((unsigned long long *)sptep, spte);
291 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
292 struct kmem_cache *base_cache, int min)
296 if (cache->nobjs >= min)
298 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
299 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
302 cache->objects[cache->nobjs++] = obj;
307 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
310 kfree(mc->objects[--mc->nobjs]);
313 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
318 if (cache->nobjs >= min)
320 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
321 page = alloc_page(GFP_KERNEL);
324 cache->objects[cache->nobjs++] = page_address(page);
329 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
332 free_page((unsigned long)mc->objects[--mc->nobjs]);
335 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
339 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
343 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
347 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
350 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
351 mmu_page_header_cache, 4);
356 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
358 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
359 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
360 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
361 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
364 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
370 p = mc->objects[--mc->nobjs];
374 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
376 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
377 sizeof(struct kvm_pte_chain));
380 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
385 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
387 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
388 sizeof(struct kvm_rmap_desc));
391 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
397 * Return the pointer to the largepage write count for a given
398 * gfn, handling slots that are not large page aligned.
400 static int *slot_largepage_idx(gfn_t gfn,
401 struct kvm_memory_slot *slot,
406 idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
407 (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
408 return &slot->lpage_info[level - 2][idx].write_count;
411 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
413 struct kvm_memory_slot *slot;
417 gfn = unalias_gfn(kvm, gfn);
419 slot = gfn_to_memslot_unaliased(kvm, gfn);
420 for (i = PT_DIRECTORY_LEVEL;
421 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
422 write_count = slot_largepage_idx(gfn, slot, i);
427 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
429 struct kvm_memory_slot *slot;
433 gfn = unalias_gfn(kvm, gfn);
434 slot = gfn_to_memslot_unaliased(kvm, gfn);
435 for (i = PT_DIRECTORY_LEVEL;
436 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
437 write_count = slot_largepage_idx(gfn, slot, i);
439 WARN_ON(*write_count < 0);
443 static int has_wrprotected_page(struct kvm *kvm,
447 struct kvm_memory_slot *slot;
450 gfn = unalias_gfn(kvm, gfn);
451 slot = gfn_to_memslot_unaliased(kvm, gfn);
453 largepage_idx = slot_largepage_idx(gfn, slot, level);
454 return *largepage_idx;
460 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
462 unsigned long page_size;
465 page_size = kvm_host_page_size(kvm, gfn);
467 for (i = PT_PAGE_TABLE_LEVEL;
468 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
469 if (page_size >= KVM_HPAGE_SIZE(i))
478 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
480 struct kvm_memory_slot *slot;
481 int host_level, level, max_level;
483 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
484 if (slot && slot->dirty_bitmap)
485 return PT_PAGE_TABLE_LEVEL;
487 host_level = host_mapping_level(vcpu->kvm, large_gfn);
489 if (host_level == PT_PAGE_TABLE_LEVEL)
492 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
493 kvm_x86_ops->get_lpage_level() : host_level;
495 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
496 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
503 * Take gfn and return the reverse mapping to it.
504 * Note: gfn must be unaliased before this function get called
507 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
509 struct kvm_memory_slot *slot;
512 slot = gfn_to_memslot(kvm, gfn);
513 if (likely(level == PT_PAGE_TABLE_LEVEL))
514 return &slot->rmap[gfn - slot->base_gfn];
516 idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
517 (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
519 return &slot->lpage_info[level - 2][idx].rmap_pde;
523 * Reverse mapping data structures:
525 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
526 * that points to page_address(page).
528 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
529 * containing more mappings.
531 * Returns the number of rmap entries before the spte was added or zero if
532 * the spte was not added.
535 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
537 struct kvm_mmu_page *sp;
538 struct kvm_rmap_desc *desc;
539 unsigned long *rmapp;
542 if (!is_rmap_spte(*spte))
544 gfn = unalias_gfn(vcpu->kvm, gfn);
545 sp = page_header(__pa(spte));
546 sp->gfns[spte - sp->spt] = gfn;
547 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
549 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
550 *rmapp = (unsigned long)spte;
551 } else if (!(*rmapp & 1)) {
552 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
553 desc = mmu_alloc_rmap_desc(vcpu);
554 desc->sptes[0] = (u64 *)*rmapp;
555 desc->sptes[1] = spte;
556 *rmapp = (unsigned long)desc | 1;
558 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
559 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
560 while (desc->sptes[RMAP_EXT-1] && desc->more) {
564 if (desc->sptes[RMAP_EXT-1]) {
565 desc->more = mmu_alloc_rmap_desc(vcpu);
568 for (i = 0; desc->sptes[i]; ++i)
570 desc->sptes[i] = spte;
575 static void rmap_desc_remove_entry(unsigned long *rmapp,
576 struct kvm_rmap_desc *desc,
578 struct kvm_rmap_desc *prev_desc)
582 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
584 desc->sptes[i] = desc->sptes[j];
585 desc->sptes[j] = NULL;
588 if (!prev_desc && !desc->more)
589 *rmapp = (unsigned long)desc->sptes[0];
592 prev_desc->more = desc->more;
594 *rmapp = (unsigned long)desc->more | 1;
595 mmu_free_rmap_desc(desc);
598 static void rmap_remove(struct kvm *kvm, u64 *spte)
600 struct kvm_rmap_desc *desc;
601 struct kvm_rmap_desc *prev_desc;
602 struct kvm_mmu_page *sp;
604 unsigned long *rmapp;
607 if (!is_rmap_spte(*spte))
609 sp = page_header(__pa(spte));
610 pfn = spte_to_pfn(*spte);
611 if (*spte & shadow_accessed_mask)
612 kvm_set_pfn_accessed(pfn);
613 if (is_writable_pte(*spte))
614 kvm_set_pfn_dirty(pfn);
615 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
617 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
619 } else if (!(*rmapp & 1)) {
620 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
621 if ((u64 *)*rmapp != spte) {
622 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
628 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
629 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
632 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
633 if (desc->sptes[i] == spte) {
634 rmap_desc_remove_entry(rmapp,
642 pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
647 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
649 struct kvm_rmap_desc *desc;
655 else if (!(*rmapp & 1)) {
657 return (u64 *)*rmapp;
660 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
663 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
664 if (prev_spte == spte)
665 return desc->sptes[i];
666 prev_spte = desc->sptes[i];
673 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
675 unsigned long *rmapp;
677 int i, write_protected = 0;
679 gfn = unalias_gfn(kvm, gfn);
680 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
682 spte = rmap_next(kvm, rmapp, NULL);
685 BUG_ON(!(*spte & PT_PRESENT_MASK));
686 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
687 if (is_writable_pte(*spte)) {
688 __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
691 spte = rmap_next(kvm, rmapp, spte);
693 if (write_protected) {
696 spte = rmap_next(kvm, rmapp, NULL);
697 pfn = spte_to_pfn(*spte);
698 kvm_set_pfn_dirty(pfn);
701 /* check for huge page mappings */
702 for (i = PT_DIRECTORY_LEVEL;
703 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
704 rmapp = gfn_to_rmap(kvm, gfn, i);
705 spte = rmap_next(kvm, rmapp, NULL);
708 BUG_ON(!(*spte & PT_PRESENT_MASK));
709 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
710 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
711 if (is_writable_pte(*spte)) {
712 rmap_remove(kvm, spte);
714 __set_spte(spte, shadow_trap_nonpresent_pte);
718 spte = rmap_next(kvm, rmapp, spte);
722 return write_protected;
725 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
729 int need_tlb_flush = 0;
731 while ((spte = rmap_next(kvm, rmapp, NULL))) {
732 BUG_ON(!(*spte & PT_PRESENT_MASK));
733 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
734 rmap_remove(kvm, spte);
735 __set_spte(spte, shadow_trap_nonpresent_pte);
738 return need_tlb_flush;
741 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
746 pte_t *ptep = (pte_t *)data;
749 WARN_ON(pte_huge(*ptep));
750 new_pfn = pte_pfn(*ptep);
751 spte = rmap_next(kvm, rmapp, NULL);
753 BUG_ON(!is_shadow_present_pte(*spte));
754 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
756 if (pte_write(*ptep)) {
757 rmap_remove(kvm, spte);
758 __set_spte(spte, shadow_trap_nonpresent_pte);
759 spte = rmap_next(kvm, rmapp, NULL);
761 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
762 new_spte |= (u64)new_pfn << PAGE_SHIFT;
764 new_spte &= ~PT_WRITABLE_MASK;
765 new_spte &= ~SPTE_HOST_WRITEABLE;
766 if (is_writable_pte(*spte))
767 kvm_set_pfn_dirty(spte_to_pfn(*spte));
768 __set_spte(spte, new_spte);
769 spte = rmap_next(kvm, rmapp, spte);
773 kvm_flush_remote_tlbs(kvm);
778 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
780 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
786 struct kvm_memslots *slots;
788 slots = kvm_memslots(kvm);
790 for (i = 0; i < slots->nmemslots; i++) {
791 struct kvm_memory_slot *memslot = &slots->memslots[i];
792 unsigned long start = memslot->userspace_addr;
795 end = start + (memslot->npages << PAGE_SHIFT);
796 if (hva >= start && hva < end) {
797 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
799 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
801 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
802 int idx = gfn_offset;
803 idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
805 &memslot->lpage_info[j][idx].rmap_pde,
808 trace_kvm_age_page(hva, memslot, ret);
816 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
818 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
821 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
823 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
826 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
833 * Emulate the accessed bit for EPT, by checking if this page has
834 * an EPT mapping, and clearing it if it does. On the next access,
835 * a new EPT mapping will be established.
836 * This has some overhead, but not as much as the cost of swapping
837 * out actively used pages or breaking up actively used hugepages.
839 if (!shadow_accessed_mask)
840 return kvm_unmap_rmapp(kvm, rmapp, data);
842 spte = rmap_next(kvm, rmapp, NULL);
846 BUG_ON(!(_spte & PT_PRESENT_MASK));
847 _young = _spte & PT_ACCESSED_MASK;
850 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
852 spte = rmap_next(kvm, rmapp, spte);
857 #define RMAP_RECYCLE_THRESHOLD 1000
859 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
861 unsigned long *rmapp;
862 struct kvm_mmu_page *sp;
864 sp = page_header(__pa(spte));
866 gfn = unalias_gfn(vcpu->kvm, gfn);
867 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
869 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
870 kvm_flush_remote_tlbs(vcpu->kvm);
873 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
875 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
879 static int is_empty_shadow_page(u64 *spt)
884 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
885 if (is_shadow_present_pte(*pos)) {
886 printk(KERN_ERR "%s: %p %llx\n", __func__,
894 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
896 ASSERT(is_empty_shadow_page(sp->spt));
898 __free_page(virt_to_page(sp->spt));
899 __free_page(virt_to_page(sp->gfns));
901 ++kvm->arch.n_free_mmu_pages;
904 static unsigned kvm_page_table_hashfn(gfn_t gfn)
906 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
909 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
912 struct kvm_mmu_page *sp;
914 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
915 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
916 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
917 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
918 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
919 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
921 sp->parent_pte = parent_pte;
922 --vcpu->kvm->arch.n_free_mmu_pages;
926 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
927 struct kvm_mmu_page *sp, u64 *parent_pte)
929 struct kvm_pte_chain *pte_chain;
930 struct hlist_node *node;
935 if (!sp->multimapped) {
936 u64 *old = sp->parent_pte;
939 sp->parent_pte = parent_pte;
943 pte_chain = mmu_alloc_pte_chain(vcpu);
944 INIT_HLIST_HEAD(&sp->parent_ptes);
945 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
946 pte_chain->parent_ptes[0] = old;
948 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
949 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
951 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
952 if (!pte_chain->parent_ptes[i]) {
953 pte_chain->parent_ptes[i] = parent_pte;
957 pte_chain = mmu_alloc_pte_chain(vcpu);
959 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
960 pte_chain->parent_ptes[0] = parent_pte;
963 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
966 struct kvm_pte_chain *pte_chain;
967 struct hlist_node *node;
970 if (!sp->multimapped) {
971 BUG_ON(sp->parent_pte != parent_pte);
972 sp->parent_pte = NULL;
975 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
976 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
977 if (!pte_chain->parent_ptes[i])
979 if (pte_chain->parent_ptes[i] != parent_pte)
981 while (i + 1 < NR_PTE_CHAIN_ENTRIES
982 && pte_chain->parent_ptes[i + 1]) {
983 pte_chain->parent_ptes[i]
984 = pte_chain->parent_ptes[i + 1];
987 pte_chain->parent_ptes[i] = NULL;
989 hlist_del(&pte_chain->link);
990 mmu_free_pte_chain(pte_chain);
991 if (hlist_empty(&sp->parent_ptes)) {
993 sp->parent_pte = NULL;
1002 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1004 struct kvm_pte_chain *pte_chain;
1005 struct hlist_node *node;
1006 struct kvm_mmu_page *parent_sp;
1009 if (!sp->multimapped && sp->parent_pte) {
1010 parent_sp = page_header(__pa(sp->parent_pte));
1012 mmu_parent_walk(parent_sp, fn);
1015 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1016 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1017 if (!pte_chain->parent_ptes[i])
1019 parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
1021 mmu_parent_walk(parent_sp, fn);
1025 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
1028 struct kvm_mmu_page *sp = page_header(__pa(spte));
1030 index = spte - sp->spt;
1031 if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
1032 sp->unsync_children++;
1033 WARN_ON(!sp->unsync_children);
1036 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
1038 struct kvm_pte_chain *pte_chain;
1039 struct hlist_node *node;
1042 if (!sp->parent_pte)
1045 if (!sp->multimapped) {
1046 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
1050 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1051 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1052 if (!pte_chain->parent_ptes[i])
1054 kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
1058 static int unsync_walk_fn(struct kvm_mmu_page *sp)
1060 kvm_mmu_update_parents_unsync(sp);
1064 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1066 mmu_parent_walk(sp, unsync_walk_fn);
1067 kvm_mmu_update_parents_unsync(sp);
1070 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1071 struct kvm_mmu_page *sp)
1075 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1076 sp->spt[i] = shadow_trap_nonpresent_pte;
1079 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1080 struct kvm_mmu_page *sp)
1085 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1089 #define KVM_PAGE_ARRAY_NR 16
1091 struct kvm_mmu_pages {
1092 struct mmu_page_and_offset {
1093 struct kvm_mmu_page *sp;
1095 } page[KVM_PAGE_ARRAY_NR];
1099 #define for_each_unsync_children(bitmap, idx) \
1100 for (idx = find_first_bit(bitmap, 512); \
1102 idx = find_next_bit(bitmap, 512, idx+1))
1104 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1110 for (i=0; i < pvec->nr; i++)
1111 if (pvec->page[i].sp == sp)
1114 pvec->page[pvec->nr].sp = sp;
1115 pvec->page[pvec->nr].idx = idx;
1117 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1120 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1121 struct kvm_mmu_pages *pvec)
1123 int i, ret, nr_unsync_leaf = 0;
1125 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1126 u64 ent = sp->spt[i];
1128 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1129 struct kvm_mmu_page *child;
1130 child = page_header(ent & PT64_BASE_ADDR_MASK);
1132 if (child->unsync_children) {
1133 if (mmu_pages_add(pvec, child, i))
1136 ret = __mmu_unsync_walk(child, pvec);
1138 __clear_bit(i, sp->unsync_child_bitmap);
1140 nr_unsync_leaf += ret;
1145 if (child->unsync) {
1147 if (mmu_pages_add(pvec, child, i))
1153 if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1154 sp->unsync_children = 0;
1156 return nr_unsync_leaf;
1159 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1160 struct kvm_mmu_pages *pvec)
1162 if (!sp->unsync_children)
1165 mmu_pages_add(pvec, sp, 0);
1166 return __mmu_unsync_walk(sp, pvec);
1169 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1172 struct hlist_head *bucket;
1173 struct kvm_mmu_page *sp;
1174 struct hlist_node *node;
1176 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1177 index = kvm_page_table_hashfn(gfn);
1178 bucket = &kvm->arch.mmu_page_hash[index];
1179 hlist_for_each_entry(sp, node, bucket, hash_link)
1180 if (sp->gfn == gfn && !sp->role.direct
1181 && !sp->role.invalid) {
1182 pgprintk("%s: found role %x\n",
1183 __func__, sp->role.word);
1189 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1191 WARN_ON(!sp->unsync);
1192 trace_kvm_mmu_sync_page(sp);
1194 --kvm->stat.mmu_unsync;
1197 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1199 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1201 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1202 kvm_mmu_zap_page(vcpu->kvm, sp);
1206 if (rmap_write_protect(vcpu->kvm, sp->gfn))
1207 kvm_flush_remote_tlbs(vcpu->kvm);
1208 kvm_unlink_unsync_page(vcpu->kvm, sp);
1209 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1210 kvm_mmu_zap_page(vcpu->kvm, sp);
1214 kvm_mmu_flush_tlb(vcpu);
1218 struct mmu_page_path {
1219 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1220 unsigned int idx[PT64_ROOT_LEVEL-1];
1223 #define for_each_sp(pvec, sp, parents, i) \
1224 for (i = mmu_pages_next(&pvec, &parents, -1), \
1225 sp = pvec.page[i].sp; \
1226 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1227 i = mmu_pages_next(&pvec, &parents, i))
1229 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1230 struct mmu_page_path *parents,
1235 for (n = i+1; n < pvec->nr; n++) {
1236 struct kvm_mmu_page *sp = pvec->page[n].sp;
1238 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1239 parents->idx[0] = pvec->page[n].idx;
1243 parents->parent[sp->role.level-2] = sp;
1244 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1250 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1252 struct kvm_mmu_page *sp;
1253 unsigned int level = 0;
1256 unsigned int idx = parents->idx[level];
1258 sp = parents->parent[level];
1262 --sp->unsync_children;
1263 WARN_ON((int)sp->unsync_children < 0);
1264 __clear_bit(idx, sp->unsync_child_bitmap);
1266 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1269 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1270 struct mmu_page_path *parents,
1271 struct kvm_mmu_pages *pvec)
1273 parents->parent[parent->role.level-1] = NULL;
1277 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1278 struct kvm_mmu_page *parent)
1281 struct kvm_mmu_page *sp;
1282 struct mmu_page_path parents;
1283 struct kvm_mmu_pages pages;
1285 kvm_mmu_pages_init(parent, &parents, &pages);
1286 while (mmu_unsync_walk(parent, &pages)) {
1289 for_each_sp(pages, sp, parents, i)
1290 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1293 kvm_flush_remote_tlbs(vcpu->kvm);
1295 for_each_sp(pages, sp, parents, i) {
1296 kvm_sync_page(vcpu, sp);
1297 mmu_pages_clear_parents(&parents);
1299 cond_resched_lock(&vcpu->kvm->mmu_lock);
1300 kvm_mmu_pages_init(parent, &parents, &pages);
1304 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1312 union kvm_mmu_page_role role;
1315 struct hlist_head *bucket;
1316 struct kvm_mmu_page *sp;
1317 struct hlist_node *node, *tmp;
1319 role = vcpu->arch.mmu.base_role;
1321 role.direct = direct;
1324 role.access = access;
1325 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1326 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1327 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1328 role.quadrant = quadrant;
1330 index = kvm_page_table_hashfn(gfn);
1331 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1332 hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1333 if (sp->gfn == gfn) {
1335 if (kvm_sync_page(vcpu, sp))
1338 if (sp->role.word != role.word)
1341 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1342 if (sp->unsync_children) {
1343 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1344 kvm_mmu_mark_parents_unsync(sp);
1346 trace_kvm_mmu_get_page(sp, false);
1349 ++vcpu->kvm->stat.mmu_cache_miss;
1350 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1355 hlist_add_head(&sp->hash_link, bucket);
1357 if (rmap_write_protect(vcpu->kvm, gfn))
1358 kvm_flush_remote_tlbs(vcpu->kvm);
1359 account_shadowed(vcpu->kvm, gfn);
1361 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1362 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1364 nonpaging_prefetch_page(vcpu, sp);
1365 trace_kvm_mmu_get_page(sp, true);
1369 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1370 struct kvm_vcpu *vcpu, u64 addr)
1372 iterator->addr = addr;
1373 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1374 iterator->level = vcpu->arch.mmu.shadow_root_level;
1375 if (iterator->level == PT32E_ROOT_LEVEL) {
1376 iterator->shadow_addr
1377 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1378 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1380 if (!iterator->shadow_addr)
1381 iterator->level = 0;
1385 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1387 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1390 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1391 if (is_large_pte(*iterator->sptep))
1394 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1395 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1399 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1401 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1405 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1406 struct kvm_mmu_page *sp)
1414 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1417 if (is_shadow_present_pte(ent)) {
1418 if (!is_last_spte(ent, sp->role.level)) {
1419 ent &= PT64_BASE_ADDR_MASK;
1420 mmu_page_remove_parent_pte(page_header(ent),
1423 if (is_large_pte(ent))
1425 rmap_remove(kvm, &pt[i]);
1428 pt[i] = shadow_trap_nonpresent_pte;
1432 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1434 mmu_page_remove_parent_pte(sp, parent_pte);
1437 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1440 struct kvm_vcpu *vcpu;
1442 kvm_for_each_vcpu(i, vcpu, kvm)
1443 vcpu->arch.last_pte_updated = NULL;
1446 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1450 while (sp->multimapped || sp->parent_pte) {
1451 if (!sp->multimapped)
1452 parent_pte = sp->parent_pte;
1454 struct kvm_pte_chain *chain;
1456 chain = container_of(sp->parent_ptes.first,
1457 struct kvm_pte_chain, link);
1458 parent_pte = chain->parent_ptes[0];
1460 BUG_ON(!parent_pte);
1461 kvm_mmu_put_page(sp, parent_pte);
1462 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1466 static int mmu_zap_unsync_children(struct kvm *kvm,
1467 struct kvm_mmu_page *parent)
1470 struct mmu_page_path parents;
1471 struct kvm_mmu_pages pages;
1473 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1476 kvm_mmu_pages_init(parent, &parents, &pages);
1477 while (mmu_unsync_walk(parent, &pages)) {
1478 struct kvm_mmu_page *sp;
1480 for_each_sp(pages, sp, parents, i) {
1481 kvm_mmu_zap_page(kvm, sp);
1482 mmu_pages_clear_parents(&parents);
1485 kvm_mmu_pages_init(parent, &parents, &pages);
1491 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1495 trace_kvm_mmu_zap_page(sp);
1496 ++kvm->stat.mmu_shadow_zapped;
1497 ret = mmu_zap_unsync_children(kvm, sp);
1498 kvm_mmu_page_unlink_children(kvm, sp);
1499 kvm_mmu_unlink_parents(kvm, sp);
1500 kvm_flush_remote_tlbs(kvm);
1501 if (!sp->role.invalid && !sp->role.direct)
1502 unaccount_shadowed(kvm, sp->gfn);
1504 kvm_unlink_unsync_page(kvm, sp);
1505 if (!sp->root_count) {
1506 hlist_del(&sp->hash_link);
1507 kvm_mmu_free_page(kvm, sp);
1509 sp->role.invalid = 1;
1510 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1511 kvm_reload_remote_mmus(kvm);
1513 kvm_mmu_reset_last_pte_updated(kvm);
1518 * Changing the number of mmu pages allocated to the vm
1519 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1521 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1525 used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1526 used_pages = max(0, used_pages);
1529 * If we set the number of mmu pages to be smaller be than the
1530 * number of actived pages , we must to free some mmu pages before we
1534 if (used_pages > kvm_nr_mmu_pages) {
1535 while (used_pages > kvm_nr_mmu_pages &&
1536 !list_empty(&kvm->arch.active_mmu_pages)) {
1537 struct kvm_mmu_page *page;
1539 page = container_of(kvm->arch.active_mmu_pages.prev,
1540 struct kvm_mmu_page, link);
1541 used_pages -= kvm_mmu_zap_page(kvm, page);
1544 kvm_nr_mmu_pages = used_pages;
1545 kvm->arch.n_free_mmu_pages = 0;
1548 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1549 - kvm->arch.n_alloc_mmu_pages;
1551 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1554 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1557 struct hlist_head *bucket;
1558 struct kvm_mmu_page *sp;
1559 struct hlist_node *node, *n;
1562 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1564 index = kvm_page_table_hashfn(gfn);
1565 bucket = &kvm->arch.mmu_page_hash[index];
1567 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1568 if (sp->gfn == gfn && !sp->role.direct) {
1569 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1572 if (kvm_mmu_zap_page(kvm, sp))
1578 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1581 struct hlist_head *bucket;
1582 struct kvm_mmu_page *sp;
1583 struct hlist_node *node, *nn;
1585 index = kvm_page_table_hashfn(gfn);
1586 bucket = &kvm->arch.mmu_page_hash[index];
1588 hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
1589 if (sp->gfn == gfn && !sp->role.direct
1590 && !sp->role.invalid) {
1591 pgprintk("%s: zap %lx %x\n",
1592 __func__, gfn, sp->role.word);
1593 if (kvm_mmu_zap_page(kvm, sp))
1599 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1601 int slot = memslot_id(kvm, gfn);
1602 struct kvm_mmu_page *sp = page_header(__pa(pte));
1604 __set_bit(slot, sp->slot_bitmap);
1607 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1612 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1615 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1616 if (pt[i] == shadow_notrap_nonpresent_pte)
1617 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1622 * The function is based on mtrr_type_lookup() in
1623 * arch/x86/kernel/cpu/mtrr/generic.c
1625 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1630 u8 prev_match, curr_match;
1631 int num_var_ranges = KVM_NR_VAR_MTRR;
1633 if (!mtrr_state->enabled)
1636 /* Make end inclusive end, instead of exclusive */
1639 /* Look in fixed ranges. Just return the type as per start */
1640 if (mtrr_state->have_fixed && (start < 0x100000)) {
1643 if (start < 0x80000) {
1645 idx += (start >> 16);
1646 return mtrr_state->fixed_ranges[idx];
1647 } else if (start < 0xC0000) {
1649 idx += ((start - 0x80000) >> 14);
1650 return mtrr_state->fixed_ranges[idx];
1651 } else if (start < 0x1000000) {
1653 idx += ((start - 0xC0000) >> 12);
1654 return mtrr_state->fixed_ranges[idx];
1659 * Look in variable ranges
1660 * Look of multiple ranges matching this address and pick type
1661 * as per MTRR precedence
1663 if (!(mtrr_state->enabled & 2))
1664 return mtrr_state->def_type;
1667 for (i = 0; i < num_var_ranges; ++i) {
1668 unsigned short start_state, end_state;
1670 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1673 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1674 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1675 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1676 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1678 start_state = ((start & mask) == (base & mask));
1679 end_state = ((end & mask) == (base & mask));
1680 if (start_state != end_state)
1683 if ((start & mask) != (base & mask))
1686 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1687 if (prev_match == 0xFF) {
1688 prev_match = curr_match;
1692 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1693 curr_match == MTRR_TYPE_UNCACHABLE)
1694 return MTRR_TYPE_UNCACHABLE;
1696 if ((prev_match == MTRR_TYPE_WRBACK &&
1697 curr_match == MTRR_TYPE_WRTHROUGH) ||
1698 (prev_match == MTRR_TYPE_WRTHROUGH &&
1699 curr_match == MTRR_TYPE_WRBACK)) {
1700 prev_match = MTRR_TYPE_WRTHROUGH;
1701 curr_match = MTRR_TYPE_WRTHROUGH;
1704 if (prev_match != curr_match)
1705 return MTRR_TYPE_UNCACHABLE;
1708 if (prev_match != 0xFF)
1711 return mtrr_state->def_type;
1714 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1718 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1719 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1720 if (mtrr == 0xfe || mtrr == 0xff)
1721 mtrr = MTRR_TYPE_WRBACK;
1724 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1726 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1729 struct hlist_head *bucket;
1730 struct kvm_mmu_page *s;
1731 struct hlist_node *node, *n;
1733 index = kvm_page_table_hashfn(sp->gfn);
1734 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1735 /* don't unsync if pagetable is shadowed with multiple roles */
1736 hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1737 if (s->gfn != sp->gfn || s->role.direct)
1739 if (s->role.word != sp->role.word)
1742 trace_kvm_mmu_unsync_page(sp);
1743 ++vcpu->kvm->stat.mmu_unsync;
1746 kvm_mmu_mark_parents_unsync(sp);
1748 mmu_convert_notrap(sp);
1752 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1755 struct kvm_mmu_page *shadow;
1757 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1759 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1763 if (can_unsync && oos_shadow)
1764 return kvm_unsync_page(vcpu, shadow);
1770 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1771 unsigned pte_access, int user_fault,
1772 int write_fault, int dirty, int level,
1773 gfn_t gfn, pfn_t pfn, bool speculative,
1774 bool can_unsync, bool reset_host_protection)
1780 * We don't set the accessed bit, since we sometimes want to see
1781 * whether the guest actually used the pte (in order to detect
1784 spte = shadow_base_present_pte | shadow_dirty_mask;
1786 spte |= shadow_accessed_mask;
1788 pte_access &= ~ACC_WRITE_MASK;
1789 if (pte_access & ACC_EXEC_MASK)
1790 spte |= shadow_x_mask;
1792 spte |= shadow_nx_mask;
1793 if (pte_access & ACC_USER_MASK)
1794 spte |= shadow_user_mask;
1795 if (level > PT_PAGE_TABLE_LEVEL)
1796 spte |= PT_PAGE_SIZE_MASK;
1798 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1799 kvm_is_mmio_pfn(pfn));
1801 if (reset_host_protection)
1802 spte |= SPTE_HOST_WRITEABLE;
1804 spte |= (u64)pfn << PAGE_SHIFT;
1806 if ((pte_access & ACC_WRITE_MASK)
1807 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1809 if (level > PT_PAGE_TABLE_LEVEL &&
1810 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1812 spte = shadow_trap_nonpresent_pte;
1816 spte |= PT_WRITABLE_MASK;
1818 if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
1819 spte &= ~PT_USER_MASK;
1822 * Optimization: for pte sync, if spte was writable the hash
1823 * lookup is unnecessary (and expensive). Write protection
1824 * is responsibility of mmu_get_page / kvm_sync_page.
1825 * Same reasoning can be applied to dirty page accounting.
1827 if (!can_unsync && is_writable_pte(*sptep))
1830 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1831 pgprintk("%s: found shadow page for %lx, marking ro\n",
1834 pte_access &= ~ACC_WRITE_MASK;
1835 if (is_writable_pte(spte))
1836 spte &= ~PT_WRITABLE_MASK;
1840 if (pte_access & ACC_WRITE_MASK)
1841 mark_page_dirty(vcpu->kvm, gfn);
1844 __set_spte(sptep, spte);
1848 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1849 unsigned pt_access, unsigned pte_access,
1850 int user_fault, int write_fault, int dirty,
1851 int *ptwrite, int level, gfn_t gfn,
1852 pfn_t pfn, bool speculative,
1853 bool reset_host_protection)
1855 int was_rmapped = 0;
1856 int was_writable = is_writable_pte(*sptep);
1859 pgprintk("%s: spte %llx access %x write_fault %d"
1860 " user_fault %d gfn %lx\n",
1861 __func__, *sptep, pt_access,
1862 write_fault, user_fault, gfn);
1864 if (is_rmap_spte(*sptep)) {
1866 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1867 * the parent of the now unreachable PTE.
1869 if (level > PT_PAGE_TABLE_LEVEL &&
1870 !is_large_pte(*sptep)) {
1871 struct kvm_mmu_page *child;
1874 child = page_header(pte & PT64_BASE_ADDR_MASK);
1875 mmu_page_remove_parent_pte(child, sptep);
1876 __set_spte(sptep, shadow_trap_nonpresent_pte);
1877 kvm_flush_remote_tlbs(vcpu->kvm);
1878 } else if (pfn != spte_to_pfn(*sptep)) {
1879 pgprintk("hfn old %lx new %lx\n",
1880 spte_to_pfn(*sptep), pfn);
1881 rmap_remove(vcpu->kvm, sptep);
1882 __set_spte(sptep, shadow_trap_nonpresent_pte);
1883 kvm_flush_remote_tlbs(vcpu->kvm);
1888 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
1889 dirty, level, gfn, pfn, speculative, true,
1890 reset_host_protection)) {
1893 kvm_x86_ops->tlb_flush(vcpu);
1896 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
1897 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1898 is_large_pte(*sptep)? "2MB" : "4kB",
1899 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
1901 if (!was_rmapped && is_large_pte(*sptep))
1902 ++vcpu->kvm->stat.lpages;
1904 page_header_update_slot(vcpu->kvm, sptep, gfn);
1906 rmap_count = rmap_add(vcpu, sptep, gfn);
1907 kvm_release_pfn_clean(pfn);
1908 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
1909 rmap_recycle(vcpu, sptep, gfn);
1912 kvm_release_pfn_dirty(pfn);
1914 kvm_release_pfn_clean(pfn);
1917 vcpu->arch.last_pte_updated = sptep;
1918 vcpu->arch.last_pte_gfn = gfn;
1922 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1926 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1927 int level, gfn_t gfn, pfn_t pfn)
1929 struct kvm_shadow_walk_iterator iterator;
1930 struct kvm_mmu_page *sp;
1934 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1935 if (iterator.level == level) {
1936 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1937 0, write, 1, &pt_write,
1938 level, gfn, pfn, false, true);
1939 ++vcpu->stat.pf_fixed;
1943 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
1944 pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1945 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
1947 1, ACC_ALL, iterator.sptep);
1949 pgprintk("nonpaging_map: ENOMEM\n");
1950 kvm_release_pfn_clean(pfn);
1954 __set_spte(iterator.sptep,
1956 | PT_PRESENT_MASK | PT_WRITABLE_MASK
1957 | shadow_user_mask | shadow_x_mask);
1963 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1968 unsigned long mmu_seq;
1970 level = mapping_level(vcpu, gfn);
1973 * This path builds a PAE pagetable - so we can map 2mb pages at
1974 * maximum. Therefore check if the level is larger than that.
1976 if (level > PT_DIRECTORY_LEVEL)
1977 level = PT_DIRECTORY_LEVEL;
1979 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
1981 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1983 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1986 if (is_error_pfn(pfn)) {
1987 kvm_release_pfn_clean(pfn);
1991 spin_lock(&vcpu->kvm->mmu_lock);
1992 if (mmu_notifier_retry(vcpu, mmu_seq))
1994 kvm_mmu_free_some_pages(vcpu);
1995 r = __direct_map(vcpu, v, write, level, gfn, pfn);
1996 spin_unlock(&vcpu->kvm->mmu_lock);
2002 spin_unlock(&vcpu->kvm->mmu_lock);
2003 kvm_release_pfn_clean(pfn);
2008 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2011 struct kvm_mmu_page *sp;
2013 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2015 spin_lock(&vcpu->kvm->mmu_lock);
2016 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2017 hpa_t root = vcpu->arch.mmu.root_hpa;
2019 sp = page_header(root);
2021 if (!sp->root_count && sp->role.invalid)
2022 kvm_mmu_zap_page(vcpu->kvm, sp);
2023 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2024 spin_unlock(&vcpu->kvm->mmu_lock);
2027 for (i = 0; i < 4; ++i) {
2028 hpa_t root = vcpu->arch.mmu.pae_root[i];
2031 root &= PT64_BASE_ADDR_MASK;
2032 sp = page_header(root);
2034 if (!sp->root_count && sp->role.invalid)
2035 kvm_mmu_zap_page(vcpu->kvm, sp);
2037 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2039 spin_unlock(&vcpu->kvm->mmu_lock);
2040 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2043 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2047 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2048 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2055 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2059 struct kvm_mmu_page *sp;
2063 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
2065 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2066 hpa_t root = vcpu->arch.mmu.root_hpa;
2068 ASSERT(!VALID_PAGE(root));
2069 if (mmu_check_root(vcpu, root_gfn))
2075 spin_lock(&vcpu->kvm->mmu_lock);
2076 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
2077 PT64_ROOT_LEVEL, direct,
2079 root = __pa(sp->spt);
2081 spin_unlock(&vcpu->kvm->mmu_lock);
2082 vcpu->arch.mmu.root_hpa = root;
2085 direct = !is_paging(vcpu);
2086 for (i = 0; i < 4; ++i) {
2087 hpa_t root = vcpu->arch.mmu.pae_root[i];
2089 ASSERT(!VALID_PAGE(root));
2090 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2091 pdptr = kvm_pdptr_read(vcpu, i);
2092 if (!is_present_gpte(pdptr)) {
2093 vcpu->arch.mmu.pae_root[i] = 0;
2096 root_gfn = pdptr >> PAGE_SHIFT;
2097 } else if (vcpu->arch.mmu.root_level == 0)
2099 if (mmu_check_root(vcpu, root_gfn))
2105 spin_lock(&vcpu->kvm->mmu_lock);
2106 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2107 PT32_ROOT_LEVEL, direct,
2109 root = __pa(sp->spt);
2111 spin_unlock(&vcpu->kvm->mmu_lock);
2113 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2115 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2119 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2122 struct kvm_mmu_page *sp;
2124 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2126 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2127 hpa_t root = vcpu->arch.mmu.root_hpa;
2128 sp = page_header(root);
2129 mmu_sync_children(vcpu, sp);
2132 for (i = 0; i < 4; ++i) {
2133 hpa_t root = vcpu->arch.mmu.pae_root[i];
2135 if (root && VALID_PAGE(root)) {
2136 root &= PT64_BASE_ADDR_MASK;
2137 sp = page_header(root);
2138 mmu_sync_children(vcpu, sp);
2143 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2145 spin_lock(&vcpu->kvm->mmu_lock);
2146 mmu_sync_roots(vcpu);
2147 spin_unlock(&vcpu->kvm->mmu_lock);
2150 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2151 u32 access, u32 *error)
2158 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2164 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2165 r = mmu_topup_memory_caches(vcpu);
2170 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2172 gfn = gva >> PAGE_SHIFT;
2174 return nonpaging_map(vcpu, gva & PAGE_MASK,
2175 error_code & PFERR_WRITE_MASK, gfn);
2178 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2184 gfn_t gfn = gpa >> PAGE_SHIFT;
2185 unsigned long mmu_seq;
2188 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2190 r = mmu_topup_memory_caches(vcpu);
2194 level = mapping_level(vcpu, gfn);
2196 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2198 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2200 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2201 if (is_error_pfn(pfn)) {
2202 kvm_release_pfn_clean(pfn);
2205 spin_lock(&vcpu->kvm->mmu_lock);
2206 if (mmu_notifier_retry(vcpu, mmu_seq))
2208 kvm_mmu_free_some_pages(vcpu);
2209 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2211 spin_unlock(&vcpu->kvm->mmu_lock);
2216 spin_unlock(&vcpu->kvm->mmu_lock);
2217 kvm_release_pfn_clean(pfn);
2221 static void nonpaging_free(struct kvm_vcpu *vcpu)
2223 mmu_free_roots(vcpu);
2226 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2228 struct kvm_mmu *context = &vcpu->arch.mmu;
2230 context->new_cr3 = nonpaging_new_cr3;
2231 context->page_fault = nonpaging_page_fault;
2232 context->gva_to_gpa = nonpaging_gva_to_gpa;
2233 context->free = nonpaging_free;
2234 context->prefetch_page = nonpaging_prefetch_page;
2235 context->sync_page = nonpaging_sync_page;
2236 context->invlpg = nonpaging_invlpg;
2237 context->root_level = 0;
2238 context->shadow_root_level = PT32E_ROOT_LEVEL;
2239 context->root_hpa = INVALID_PAGE;
2243 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2245 ++vcpu->stat.tlb_flush;
2246 kvm_x86_ops->tlb_flush(vcpu);
2249 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2251 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2252 mmu_free_roots(vcpu);
2255 static void inject_page_fault(struct kvm_vcpu *vcpu,
2259 kvm_inject_page_fault(vcpu, addr, err_code);
2262 static void paging_free(struct kvm_vcpu *vcpu)
2264 nonpaging_free(vcpu);
2267 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2271 bit7 = (gpte >> 7) & 1;
2272 return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2276 #include "paging_tmpl.h"
2280 #include "paging_tmpl.h"
2283 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2285 struct kvm_mmu *context = &vcpu->arch.mmu;
2286 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2287 u64 exb_bit_rsvd = 0;
2290 exb_bit_rsvd = rsvd_bits(63, 63);
2292 case PT32_ROOT_LEVEL:
2293 /* no rsvd bits for 2 level 4K page table entries */
2294 context->rsvd_bits_mask[0][1] = 0;
2295 context->rsvd_bits_mask[0][0] = 0;
2296 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2298 if (!is_pse(vcpu)) {
2299 context->rsvd_bits_mask[1][1] = 0;
2303 if (is_cpuid_PSE36())
2304 /* 36bits PSE 4MB page */
2305 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2307 /* 32 bits PSE 4MB page */
2308 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2310 case PT32E_ROOT_LEVEL:
2311 context->rsvd_bits_mask[0][2] =
2312 rsvd_bits(maxphyaddr, 63) |
2313 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2314 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2315 rsvd_bits(maxphyaddr, 62); /* PDE */
2316 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2317 rsvd_bits(maxphyaddr, 62); /* PTE */
2318 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2319 rsvd_bits(maxphyaddr, 62) |
2320 rsvd_bits(13, 20); /* large page */
2321 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2323 case PT64_ROOT_LEVEL:
2324 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2325 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2326 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2327 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2328 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2329 rsvd_bits(maxphyaddr, 51);
2330 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2331 rsvd_bits(maxphyaddr, 51);
2332 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2333 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2334 rsvd_bits(maxphyaddr, 51) |
2336 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2337 rsvd_bits(maxphyaddr, 51) |
2338 rsvd_bits(13, 20); /* large page */
2339 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2344 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2346 struct kvm_mmu *context = &vcpu->arch.mmu;
2348 ASSERT(is_pae(vcpu));
2349 context->new_cr3 = paging_new_cr3;
2350 context->page_fault = paging64_page_fault;
2351 context->gva_to_gpa = paging64_gva_to_gpa;
2352 context->prefetch_page = paging64_prefetch_page;
2353 context->sync_page = paging64_sync_page;
2354 context->invlpg = paging64_invlpg;
2355 context->free = paging_free;
2356 context->root_level = level;
2357 context->shadow_root_level = level;
2358 context->root_hpa = INVALID_PAGE;
2362 static int paging64_init_context(struct kvm_vcpu *vcpu)
2364 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2365 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2368 static int paging32_init_context(struct kvm_vcpu *vcpu)
2370 struct kvm_mmu *context = &vcpu->arch.mmu;
2372 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2373 context->new_cr3 = paging_new_cr3;
2374 context->page_fault = paging32_page_fault;
2375 context->gva_to_gpa = paging32_gva_to_gpa;
2376 context->free = paging_free;
2377 context->prefetch_page = paging32_prefetch_page;
2378 context->sync_page = paging32_sync_page;
2379 context->invlpg = paging32_invlpg;
2380 context->root_level = PT32_ROOT_LEVEL;
2381 context->shadow_root_level = PT32E_ROOT_LEVEL;
2382 context->root_hpa = INVALID_PAGE;
2386 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2388 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2389 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2392 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2394 struct kvm_mmu *context = &vcpu->arch.mmu;
2396 context->new_cr3 = nonpaging_new_cr3;
2397 context->page_fault = tdp_page_fault;
2398 context->free = nonpaging_free;
2399 context->prefetch_page = nonpaging_prefetch_page;
2400 context->sync_page = nonpaging_sync_page;
2401 context->invlpg = nonpaging_invlpg;
2402 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2403 context->root_hpa = INVALID_PAGE;
2405 if (!is_paging(vcpu)) {
2406 context->gva_to_gpa = nonpaging_gva_to_gpa;
2407 context->root_level = 0;
2408 } else if (is_long_mode(vcpu)) {
2409 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2410 context->gva_to_gpa = paging64_gva_to_gpa;
2411 context->root_level = PT64_ROOT_LEVEL;
2412 } else if (is_pae(vcpu)) {
2413 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2414 context->gva_to_gpa = paging64_gva_to_gpa;
2415 context->root_level = PT32E_ROOT_LEVEL;
2417 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2418 context->gva_to_gpa = paging32_gva_to_gpa;
2419 context->root_level = PT32_ROOT_LEVEL;
2425 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2430 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2432 if (!is_paging(vcpu))
2433 r = nonpaging_init_context(vcpu);
2434 else if (is_long_mode(vcpu))
2435 r = paging64_init_context(vcpu);
2436 else if (is_pae(vcpu))
2437 r = paging32E_init_context(vcpu);
2439 r = paging32_init_context(vcpu);
2441 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2442 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2447 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2449 vcpu->arch.update_pte.pfn = bad_pfn;
2452 return init_kvm_tdp_mmu(vcpu);
2454 return init_kvm_softmmu(vcpu);
2457 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2460 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2461 vcpu->arch.mmu.free(vcpu);
2462 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2466 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2468 destroy_kvm_mmu(vcpu);
2469 return init_kvm_mmu(vcpu);
2471 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2473 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2477 r = mmu_topup_memory_caches(vcpu);
2480 spin_lock(&vcpu->kvm->mmu_lock);
2481 kvm_mmu_free_some_pages(vcpu);
2482 spin_unlock(&vcpu->kvm->mmu_lock);
2483 r = mmu_alloc_roots(vcpu);
2484 spin_lock(&vcpu->kvm->mmu_lock);
2485 mmu_sync_roots(vcpu);
2486 spin_unlock(&vcpu->kvm->mmu_lock);
2489 /* set_cr3() should ensure TLB has been flushed */
2490 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2494 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2496 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2498 mmu_free_roots(vcpu);
2501 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2502 struct kvm_mmu_page *sp,
2506 struct kvm_mmu_page *child;
2509 if (is_shadow_present_pte(pte)) {
2510 if (is_last_spte(pte, sp->role.level))
2511 rmap_remove(vcpu->kvm, spte);
2513 child = page_header(pte & PT64_BASE_ADDR_MASK);
2514 mmu_page_remove_parent_pte(child, spte);
2517 __set_spte(spte, shadow_trap_nonpresent_pte);
2518 if (is_large_pte(pte))
2519 --vcpu->kvm->stat.lpages;
2522 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2523 struct kvm_mmu_page *sp,
2527 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2528 ++vcpu->kvm->stat.mmu_pde_zapped;
2532 ++vcpu->kvm->stat.mmu_pte_updated;
2533 if (!sp->role.cr4_pae)
2534 paging32_update_pte(vcpu, sp, spte, new);
2536 paging64_update_pte(vcpu, sp, spte, new);
2539 static bool need_remote_flush(u64 old, u64 new)
2541 if (!is_shadow_present_pte(old))
2543 if (!is_shadow_present_pte(new))
2545 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2547 old ^= PT64_NX_MASK;
2548 new ^= PT64_NX_MASK;
2549 return (old & ~new & PT64_PERM_MASK) != 0;
2552 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2554 if (need_remote_flush(old, new))
2555 kvm_flush_remote_tlbs(vcpu->kvm);
2557 kvm_mmu_flush_tlb(vcpu);
2560 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2562 u64 *spte = vcpu->arch.last_pte_updated;
2564 return !!(spte && (*spte & shadow_accessed_mask));
2567 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2573 if (!is_present_gpte(gpte))
2575 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2577 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2579 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2581 if (is_error_pfn(pfn)) {
2582 kvm_release_pfn_clean(pfn);
2585 vcpu->arch.update_pte.gfn = gfn;
2586 vcpu->arch.update_pte.pfn = pfn;
2589 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2591 u64 *spte = vcpu->arch.last_pte_updated;
2594 && vcpu->arch.last_pte_gfn == gfn
2595 && shadow_accessed_mask
2596 && !(*spte & shadow_accessed_mask)
2597 && is_shadow_present_pte(*spte))
2598 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2601 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2602 const u8 *new, int bytes,
2603 bool guest_initiated)
2605 gfn_t gfn = gpa >> PAGE_SHIFT;
2606 struct kvm_mmu_page *sp;
2607 struct hlist_node *node, *n;
2608 struct hlist_head *bucket;
2612 unsigned offset = offset_in_page(gpa);
2614 unsigned page_offset;
2615 unsigned misaligned;
2623 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2625 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
2628 * Assume that the pte write on a page table of the same type
2629 * as the current vcpu paging mode. This is nearly always true
2630 * (might be false while changing modes). Note it is verified later
2633 if ((is_pae(vcpu) && bytes == 4) || !new) {
2634 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2639 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
2642 new = (const u8 *)&gentry;
2647 gentry = *(const u32 *)new;
2650 gentry = *(const u64 *)new;
2657 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
2658 spin_lock(&vcpu->kvm->mmu_lock);
2659 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
2661 kvm_mmu_access_page(vcpu, gfn);
2662 kvm_mmu_free_some_pages(vcpu);
2663 ++vcpu->kvm->stat.mmu_pte_write;
2664 kvm_mmu_audit(vcpu, "pre pte write");
2665 if (guest_initiated) {
2666 if (gfn == vcpu->arch.last_pt_write_gfn
2667 && !last_updated_pte_accessed(vcpu)) {
2668 ++vcpu->arch.last_pt_write_count;
2669 if (vcpu->arch.last_pt_write_count >= 3)
2672 vcpu->arch.last_pt_write_gfn = gfn;
2673 vcpu->arch.last_pt_write_count = 1;
2674 vcpu->arch.last_pte_updated = NULL;
2677 index = kvm_page_table_hashfn(gfn);
2678 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2681 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2682 if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
2684 pte_size = sp->role.cr4_pae ? 8 : 4;
2685 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2686 misaligned |= bytes < 4;
2687 if (misaligned || flooded) {
2689 * Misaligned accesses are too much trouble to fix
2690 * up; also, they usually indicate a page is not used
2693 * If we're seeing too many writes to a page,
2694 * it may no longer be a page table, or we may be
2695 * forking, in which case it is better to unmap the
2698 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2699 gpa, bytes, sp->role.word);
2700 if (kvm_mmu_zap_page(vcpu->kvm, sp))
2702 ++vcpu->kvm->stat.mmu_flooded;
2705 page_offset = offset;
2706 level = sp->role.level;
2708 if (!sp->role.cr4_pae) {
2709 page_offset <<= 1; /* 32->64 */
2711 * A 32-bit pde maps 4MB while the shadow pdes map
2712 * only 2MB. So we need to double the offset again
2713 * and zap two pdes instead of one.
2715 if (level == PT32_ROOT_LEVEL) {
2716 page_offset &= ~7; /* kill rounding error */
2720 quadrant = page_offset >> PAGE_SHIFT;
2721 page_offset &= ~PAGE_MASK;
2722 if (quadrant != sp->role.quadrant)
2725 spte = &sp->spt[page_offset / sizeof(*spte)];
2728 mmu_pte_write_zap_pte(vcpu, sp, spte);
2730 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
2731 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2735 kvm_mmu_audit(vcpu, "post pte write");
2736 spin_unlock(&vcpu->kvm->mmu_lock);
2737 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2738 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2739 vcpu->arch.update_pte.pfn = bad_pfn;
2743 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2751 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2753 spin_lock(&vcpu->kvm->mmu_lock);
2754 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2755 spin_unlock(&vcpu->kvm->mmu_lock);
2758 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2760 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2762 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
2763 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2764 struct kvm_mmu_page *sp;
2766 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2767 struct kvm_mmu_page, link);
2768 kvm_mmu_zap_page(vcpu->kvm, sp);
2769 ++vcpu->kvm->stat.mmu_recycled;
2773 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2776 enum emulation_result er;
2778 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2787 r = mmu_topup_memory_caches(vcpu);
2791 er = emulate_instruction(vcpu, cr2, error_code, 0);
2796 case EMULATE_DO_MMIO:
2797 ++vcpu->stat.mmio_exits;
2800 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2801 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2802 vcpu->run->internal.ndata = 0;
2810 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2812 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2814 vcpu->arch.mmu.invlpg(vcpu, gva);
2815 kvm_mmu_flush_tlb(vcpu);
2816 ++vcpu->stat.invlpg;
2818 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2820 void kvm_enable_tdp(void)
2824 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2826 void kvm_disable_tdp(void)
2828 tdp_enabled = false;
2830 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2832 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2834 free_page((unsigned long)vcpu->arch.mmu.pae_root);
2837 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2845 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2846 * Therefore we need to allocate shadow page tables in the first
2847 * 4GB of memory, which happens to fit the DMA32 zone.
2849 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2853 vcpu->arch.mmu.pae_root = page_address(page);
2854 for (i = 0; i < 4; ++i)
2855 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2860 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2863 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2865 return alloc_mmu_pages(vcpu);
2868 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2871 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2873 return init_kvm_mmu(vcpu);
2876 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2880 destroy_kvm_mmu(vcpu);
2881 free_mmu_pages(vcpu);
2882 mmu_free_memory_caches(vcpu);
2885 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2887 struct kvm_mmu_page *sp;
2889 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2893 if (!test_bit(slot, sp->slot_bitmap))
2897 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2899 if (pt[i] & PT_WRITABLE_MASK)
2900 pt[i] &= ~PT_WRITABLE_MASK;
2902 kvm_flush_remote_tlbs(kvm);
2905 void kvm_mmu_zap_all(struct kvm *kvm)
2907 struct kvm_mmu_page *sp, *node;
2909 spin_lock(&kvm->mmu_lock);
2911 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2912 if (kvm_mmu_zap_page(kvm, sp))
2915 spin_unlock(&kvm->mmu_lock);
2917 kvm_flush_remote_tlbs(kvm);
2920 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm)
2922 struct kvm_mmu_page *page;
2924 page = container_of(kvm->arch.active_mmu_pages.prev,
2925 struct kvm_mmu_page, link);
2926 return kvm_mmu_zap_page(kvm, page) + 1;
2929 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2932 struct kvm *kvm_freed = NULL;
2933 int cache_count = 0;
2935 spin_lock(&kvm_lock);
2937 list_for_each_entry(kvm, &vm_list, vm_list) {
2938 int npages, idx, freed_pages;
2940 idx = srcu_read_lock(&kvm->srcu);
2941 spin_lock(&kvm->mmu_lock);
2942 npages = kvm->arch.n_alloc_mmu_pages -
2943 kvm->arch.n_free_mmu_pages;
2944 cache_count += npages;
2945 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2946 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm);
2947 cache_count -= freed_pages;
2952 spin_unlock(&kvm->mmu_lock);
2953 srcu_read_unlock(&kvm->srcu, idx);
2956 list_move_tail(&kvm_freed->vm_list, &vm_list);
2958 spin_unlock(&kvm_lock);
2963 static struct shrinker mmu_shrinker = {
2964 .shrink = mmu_shrink,
2965 .seeks = DEFAULT_SEEKS * 10,
2968 static void mmu_destroy_caches(void)
2970 if (pte_chain_cache)
2971 kmem_cache_destroy(pte_chain_cache);
2972 if (rmap_desc_cache)
2973 kmem_cache_destroy(rmap_desc_cache);
2974 if (mmu_page_header_cache)
2975 kmem_cache_destroy(mmu_page_header_cache);
2978 void kvm_mmu_module_exit(void)
2980 mmu_destroy_caches();
2981 unregister_shrinker(&mmu_shrinker);
2984 int kvm_mmu_module_init(void)
2986 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2987 sizeof(struct kvm_pte_chain),
2989 if (!pte_chain_cache)
2991 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2992 sizeof(struct kvm_rmap_desc),
2994 if (!rmap_desc_cache)
2997 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2998 sizeof(struct kvm_mmu_page),
3000 if (!mmu_page_header_cache)
3003 register_shrinker(&mmu_shrinker);
3008 mmu_destroy_caches();
3013 * Caculate mmu pages needed for kvm.
3015 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3018 unsigned int nr_mmu_pages;
3019 unsigned int nr_pages = 0;
3020 struct kvm_memslots *slots;
3022 slots = kvm_memslots(kvm);
3024 for (i = 0; i < slots->nmemslots; i++)
3025 nr_pages += slots->memslots[i].npages;
3027 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3028 nr_mmu_pages = max(nr_mmu_pages,
3029 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3031 return nr_mmu_pages;
3034 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3037 if (len > buffer->len)
3042 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3047 ret = pv_mmu_peek_buffer(buffer, len);
3052 buffer->processed += len;
3056 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3057 gpa_t addr, gpa_t value)
3062 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3065 r = mmu_topup_memory_caches(vcpu);
3069 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3075 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3077 kvm_set_cr3(vcpu, vcpu->arch.cr3);
3081 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3083 spin_lock(&vcpu->kvm->mmu_lock);
3084 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3085 spin_unlock(&vcpu->kvm->mmu_lock);
3089 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3090 struct kvm_pv_mmu_op_buffer *buffer)
3092 struct kvm_mmu_op_header *header;
3094 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3097 switch (header->op) {
3098 case KVM_MMU_OP_WRITE_PTE: {
3099 struct kvm_mmu_op_write_pte *wpte;
3101 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3104 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3107 case KVM_MMU_OP_FLUSH_TLB: {
3108 struct kvm_mmu_op_flush_tlb *ftlb;
3110 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3113 return kvm_pv_mmu_flush_tlb(vcpu);
3115 case KVM_MMU_OP_RELEASE_PT: {
3116 struct kvm_mmu_op_release_pt *rpt;
3118 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3121 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3127 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3128 gpa_t addr, unsigned long *ret)
3131 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3133 buffer->ptr = buffer->buf;
3134 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3135 buffer->processed = 0;
3137 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3141 while (buffer->len) {
3142 r = kvm_pv_mmu_op_one(vcpu, buffer);
3151 *ret = buffer->processed;
3155 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3157 struct kvm_shadow_walk_iterator iterator;
3160 spin_lock(&vcpu->kvm->mmu_lock);
3161 for_each_shadow_entry(vcpu, addr, iterator) {
3162 sptes[iterator.level-1] = *iterator.sptep;
3164 if (!is_shadow_present_pte(*iterator.sptep))
3167 spin_unlock(&vcpu->kvm->mmu_lock);
3171 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3175 static const char *audit_msg;
3177 static gva_t canonicalize(gva_t gva)
3179 #ifdef CONFIG_X86_64
3180 gva = (long long)(gva << 16) >> 16;
3186 typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
3188 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3193 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3194 u64 ent = sp->spt[i];
3196 if (is_shadow_present_pte(ent)) {
3197 if (!is_last_spte(ent, sp->role.level)) {
3198 struct kvm_mmu_page *child;
3199 child = page_header(ent & PT64_BASE_ADDR_MASK);
3200 __mmu_spte_walk(kvm, child, fn);
3202 fn(kvm, &sp->spt[i]);
3207 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3210 struct kvm_mmu_page *sp;
3212 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3214 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3215 hpa_t root = vcpu->arch.mmu.root_hpa;
3216 sp = page_header(root);
3217 __mmu_spte_walk(vcpu->kvm, sp, fn);
3220 for (i = 0; i < 4; ++i) {
3221 hpa_t root = vcpu->arch.mmu.pae_root[i];
3223 if (root && VALID_PAGE(root)) {
3224 root &= PT64_BASE_ADDR_MASK;
3225 sp = page_header(root);
3226 __mmu_spte_walk(vcpu->kvm, sp, fn);
3232 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3233 gva_t va, int level)
3235 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3237 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3239 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3242 if (ent == shadow_trap_nonpresent_pte)
3245 va = canonicalize(va);
3246 if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
3247 audit_mappings_page(vcpu, ent, va, level - 1);
3249 gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
3250 gfn_t gfn = gpa >> PAGE_SHIFT;
3251 pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3252 hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3254 if (is_error_pfn(pfn)) {
3255 kvm_release_pfn_clean(pfn);
3259 if (is_shadow_present_pte(ent)
3260 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3261 printk(KERN_ERR "xx audit error: (%s) levels %d"
3262 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3263 audit_msg, vcpu->arch.mmu.root_level,
3265 is_shadow_present_pte(ent));
3266 else if (ent == shadow_notrap_nonpresent_pte
3267 && !is_error_hpa(hpa))
3268 printk(KERN_ERR "audit: (%s) notrap shadow,"
3269 " valid guest gva %lx\n", audit_msg, va);
3270 kvm_release_pfn_clean(pfn);
3276 static void audit_mappings(struct kvm_vcpu *vcpu)
3280 if (vcpu->arch.mmu.root_level == 4)
3281 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3283 for (i = 0; i < 4; ++i)
3284 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3285 audit_mappings_page(vcpu,
3286 vcpu->arch.mmu.pae_root[i],
3291 static int count_rmaps(struct kvm_vcpu *vcpu)
3293 struct kvm *kvm = vcpu->kvm;
3294 struct kvm_memslots *slots;
3298 idx = srcu_read_lock(&kvm->srcu);
3299 slots = kvm_memslots(kvm);
3300 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3301 struct kvm_memory_slot *m = &slots->memslots[i];
3302 struct kvm_rmap_desc *d;
3304 for (j = 0; j < m->npages; ++j) {
3305 unsigned long *rmapp = &m->rmap[j];
3309 if (!(*rmapp & 1)) {
3313 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3315 for (k = 0; k < RMAP_EXT; ++k)
3324 srcu_read_unlock(&kvm->srcu, idx);
3328 void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
3330 unsigned long *rmapp;
3331 struct kvm_mmu_page *rev_sp;
3334 if (*sptep & PT_WRITABLE_MASK) {
3335 rev_sp = page_header(__pa(sptep));
3336 gfn = rev_sp->gfns[sptep - rev_sp->spt];
3338 if (!gfn_to_memslot(kvm, gfn)) {
3339 if (!printk_ratelimit())
3341 printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3343 printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3344 audit_msg, (long int)(sptep - rev_sp->spt),
3350 rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
3351 rev_sp->role.level);
3353 if (!printk_ratelimit())
3355 printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3363 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3365 mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3368 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3370 struct kvm_mmu_page *sp;
3373 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3376 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3379 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3382 if (!(ent & PT_PRESENT_MASK))
3384 if (!(ent & PT_WRITABLE_MASK))
3386 inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
3392 static void audit_rmap(struct kvm_vcpu *vcpu)
3394 check_writable_mappings_rmap(vcpu);
3398 static void audit_write_protection(struct kvm_vcpu *vcpu)
3400 struct kvm_mmu_page *sp;
3401 struct kvm_memory_slot *slot;
3402 unsigned long *rmapp;
3406 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3407 if (sp->role.direct)
3412 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3413 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3414 rmapp = &slot->rmap[gfn - slot->base_gfn];
3416 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3418 if (*spte & PT_WRITABLE_MASK)
3419 printk(KERN_ERR "%s: (%s) shadow page has "
3420 "writable mappings: gfn %lx role %x\n",
3421 __func__, audit_msg, sp->gfn,
3423 spte = rmap_next(vcpu->kvm, rmapp, spte);
3428 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3435 audit_write_protection(vcpu);
3436 if (strcmp("pre pte write", audit_msg) != 0)
3437 audit_mappings(vcpu);
3438 audit_writable_sptes_have_rmaps(vcpu);