1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
7 int sched_rr_timeslice = RR_TIMESLICE;
8 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
9 /* More than 4 hours if BW_SHIFT equals 20. */
10 static const u64 max_rt_runtime = MAX_BW;
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 struct rt_bandwidth def_rt_bandwidth;
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 raw_spin_lock(&rt_b->rt_runtime_lock);
25 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 raw_spin_unlock(&rt_b->rt_runtime_lock);
30 idle = do_sched_rt_period_timer(rt_b, overrun);
31 raw_spin_lock(&rt_b->rt_runtime_lock);
34 rt_b->rt_period_active = 0;
35 raw_spin_unlock(&rt_b->rt_runtime_lock);
37 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
40 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 rt_b->rt_period = ns_to_ktime(period);
43 rt_b->rt_runtime = runtime;
45 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
48 HRTIMER_MODE_REL_HARD);
49 rt_b->rt_period_timer.function = sched_rt_period_timer;
52 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 raw_spin_lock(&rt_b->rt_runtime_lock);
55 if (!rt_b->rt_period_active) {
56 rt_b->rt_period_active = 1;
58 * SCHED_DEADLINE updates the bandwidth, as a run away
59 * RT task with a DL task could hog a CPU. But DL does
60 * not reset the period. If a deadline task was running
61 * without an RT task running, it can cause RT tasks to
62 * throttle when they start up. Kick the timer right away
63 * to update the period.
65 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
66 hrtimer_start_expires(&rt_b->rt_period_timer,
67 HRTIMER_MODE_ABS_PINNED_HARD);
69 raw_spin_unlock(&rt_b->rt_runtime_lock);
72 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
74 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
77 do_start_rt_bandwidth(rt_b);
80 void init_rt_rq(struct rt_rq *rt_rq)
82 struct rt_prio_array *array;
85 array = &rt_rq->active;
86 for (i = 0; i < MAX_RT_PRIO; i++) {
87 INIT_LIST_HEAD(array->queue + i);
88 __clear_bit(i, array->bitmap);
90 /* delimiter for bitsearch: */
91 __set_bit(MAX_RT_PRIO, array->bitmap);
93 #if defined CONFIG_SMP
94 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
95 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
96 rt_rq->rt_nr_migratory = 0;
97 rt_rq->overloaded = 0;
98 plist_head_init(&rt_rq->pushable_tasks);
99 #endif /* CONFIG_SMP */
100 /* We start is dequeued state, because no RT tasks are queued */
101 rt_rq->rt_queued = 0;
104 rt_rq->rt_throttled = 0;
105 rt_rq->rt_runtime = 0;
106 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
112 hrtimer_cancel(&rt_b->rt_period_timer);
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
119 #ifdef CONFIG_SCHED_DEBUG
120 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
122 return container_of(rt_se, struct task_struct, rt);
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
137 struct rt_rq *rt_rq = rt_se->rt_rq;
142 void unregister_rt_sched_group(struct task_group *tg)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
149 void free_rt_sched_group(struct task_group *tg)
153 for_each_possible_cpu(i) {
164 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
165 struct sched_rt_entity *rt_se, int cpu,
166 struct sched_rt_entity *parent)
168 struct rq *rq = cpu_rq(cpu);
170 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
171 rt_rq->rt_nr_boosted = 0;
175 tg->rt_rq[cpu] = rt_rq;
176 tg->rt_se[cpu] = rt_se;
182 rt_se->rt_rq = &rq->rt;
184 rt_se->rt_rq = parent->my_q;
187 rt_se->parent = parent;
188 INIT_LIST_HEAD(&rt_se->run_list);
191 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194 struct sched_rt_entity *rt_se;
197 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
200 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204 init_rt_bandwidth(&tg->rt_bandwidth,
205 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
207 for_each_possible_cpu(i) {
208 rt_rq = kzalloc_node(sizeof(struct rt_rq),
209 GFP_KERNEL, cpu_to_node(i));
213 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
214 GFP_KERNEL, cpu_to_node(i));
219 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
220 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
231 #else /* CONFIG_RT_GROUP_SCHED */
233 #define rt_entity_is_task(rt_se) (1)
235 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
237 return container_of(rt_se, struct task_struct, rt);
240 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
242 return container_of(rt_rq, struct rq, rt);
245 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
247 struct task_struct *p = rt_task_of(rt_se);
252 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
254 struct rq *rq = rq_of_rt_se(rt_se);
259 void unregister_rt_sched_group(struct task_group *tg) { }
261 void free_rt_sched_group(struct task_group *tg) { }
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
267 #endif /* CONFIG_RT_GROUP_SCHED */
271 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
273 /* Try to pull RT tasks here if we lower this rq's prio */
274 return rq->online && rq->rt.highest_prio.curr > prev->prio;
277 static inline int rt_overloaded(struct rq *rq)
279 return atomic_read(&rq->rd->rto_count);
282 static inline void rt_set_overload(struct rq *rq)
287 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
289 * Make sure the mask is visible before we set
290 * the overload count. That is checked to determine
291 * if we should look at the mask. It would be a shame
292 * if we looked at the mask, but the mask was not
295 * Matched by the barrier in pull_rt_task().
298 atomic_inc(&rq->rd->rto_count);
301 static inline void rt_clear_overload(struct rq *rq)
306 /* the order here really doesn't matter */
307 atomic_dec(&rq->rd->rto_count);
308 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
311 static void update_rt_migration(struct rt_rq *rt_rq)
313 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
314 if (!rt_rq->overloaded) {
315 rt_set_overload(rq_of_rt_rq(rt_rq));
316 rt_rq->overloaded = 1;
318 } else if (rt_rq->overloaded) {
319 rt_clear_overload(rq_of_rt_rq(rt_rq));
320 rt_rq->overloaded = 0;
324 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
326 struct task_struct *p;
328 if (!rt_entity_is_task(rt_se))
331 p = rt_task_of(rt_se);
332 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
334 rt_rq->rt_nr_total++;
335 if (p->nr_cpus_allowed > 1)
336 rt_rq->rt_nr_migratory++;
338 update_rt_migration(rt_rq);
341 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
343 struct task_struct *p;
345 if (!rt_entity_is_task(rt_se))
348 p = rt_task_of(rt_se);
349 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
351 rt_rq->rt_nr_total--;
352 if (p->nr_cpus_allowed > 1)
353 rt_rq->rt_nr_migratory--;
355 update_rt_migration(rt_rq);
358 static inline int has_pushable_tasks(struct rq *rq)
360 return !plist_head_empty(&rq->rt.pushable_tasks);
363 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
364 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
366 static void push_rt_tasks(struct rq *);
367 static void pull_rt_task(struct rq *);
369 static inline void rt_queue_push_tasks(struct rq *rq)
371 if (!has_pushable_tasks(rq))
374 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 static inline void rt_queue_pull_task(struct rq *rq)
379 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
384 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385 plist_node_init(&p->pushable_tasks, p->prio);
386 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 /* Update the highest prio pushable task */
389 if (p->prio < rq->rt.highest_prio.next)
390 rq->rt.highest_prio.next = p->prio;
393 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
395 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
397 /* Update the new highest prio pushable task */
398 if (has_pushable_tasks(rq)) {
399 p = plist_first_entry(&rq->rt.pushable_tasks,
400 struct task_struct, pushable_tasks);
401 rq->rt.highest_prio.next = p->prio;
403 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
427 static inline void rt_queue_push_tasks(struct rq *rq)
430 #endif /* CONFIG_SMP */
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 #ifdef CONFIG_UCLAMP_TASK
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
461 /* Only heterogeneous systems can benefit from this check */
462 if (!static_branch_unlikely(&sched_asym_cpucapacity))
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
468 cpu_cap = capacity_orig_of(cpu);
470 return cpu_cap >= min(min_cap, max_cap);
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
479 #ifdef CONFIG_RT_GROUP_SCHED
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486 return rt_rq->rt_runtime;
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
494 typedef struct task_group *rt_rq_iter_t;
496 static inline struct task_group *next_task_group(struct task_group *tg)
499 tg = list_entry_rcu(tg->list.next,
500 typeof(struct task_group), list);
501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
503 if (&tg->list == &task_groups)
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for (iter = container_of(&task_groups, typeof(*iter), list); \
511 (iter = next_task_group(iter)) && \
512 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
514 #define for_each_sched_rt_entity(rt_se) \
515 for (; rt_se; rt_se = rt_se->parent)
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 struct rq *rq = rq_of_rt_rq(rt_rq);
529 struct sched_rt_entity *rt_se;
531 int cpu = cpu_of(rq);
533 rt_se = rt_rq->tg->rt_se[cpu];
535 if (rt_rq->rt_nr_running) {
537 enqueue_top_rt_rq(rt_rq);
538 else if (!on_rt_rq(rt_se))
539 enqueue_rt_entity(rt_se, 0);
541 if (rt_rq->highest_prio.curr < curr->prio)
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
548 struct sched_rt_entity *rt_se;
549 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
551 rt_se = rt_rq->tg->rt_se[cpu];
554 dequeue_top_rt_rq(rt_rq);
555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
558 else if (on_rt_rq(rt_se))
559 dequeue_rt_entity(rt_se, 0);
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
569 struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 struct task_struct *p;
573 return !!rt_rq->rt_nr_boosted;
575 p = rt_task_of(rt_se);
576 return p->prio != p->normal_prio;
580 static inline const struct cpumask *sched_rt_period_mask(void)
582 return this_rq()->rd->span;
585 static inline const struct cpumask *sched_rt_period_mask(void)
587 return cpu_online_mask;
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
599 return &rt_rq->tg->rt_bandwidth;
602 #else /* !CONFIG_RT_GROUP_SCHED */
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
606 return rt_rq->rt_runtime;
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
611 return ktime_to_ns(def_rt_bandwidth.rt_period);
614 typedef struct rt_rq *rt_rq_iter_t;
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
619 #define for_each_sched_rt_entity(rt_se) \
620 for (; rt_se; rt_se = NULL)
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
629 struct rq *rq = rq_of_rt_rq(rt_rq);
631 if (!rt_rq->rt_nr_running)
634 enqueue_top_rt_rq(rt_rq);
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
640 dequeue_top_rt_rq(rt_rq);
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
645 return rt_rq->rt_throttled;
648 static inline const struct cpumask *sched_rt_period_mask(void)
650 return cpu_online_mask;
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
656 return &cpu_rq(cpu)->rt;
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
661 return &def_rt_bandwidth;
664 #endif /* CONFIG_RT_GROUP_SCHED */
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
670 return (hrtimer_active(&rt_b->rt_period_timer) ||
671 rt_rq->rt_time < rt_b->rt_runtime);
676 * We ran out of runtime, see if we can borrow some from our neighbours.
678 static void do_balance_runtime(struct rt_rq *rt_rq)
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
685 weight = cpumask_weight(rd->span);
687 raw_spin_lock(&rt_b->rt_runtime_lock);
688 rt_period = ktime_to_ns(rt_b->rt_period);
689 for_each_cpu(i, rd->span) {
690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
696 raw_spin_lock(&iter->rt_runtime_lock);
698 * Either all rqs have inf runtime and there's nothing to steal
699 * or __disable_runtime() below sets a specific rq to inf to
700 * indicate its been disabled and disallow stealing.
702 if (iter->rt_runtime == RUNTIME_INF)
706 * From runqueues with spare time, take 1/n part of their
707 * spare time, but no more than our period.
709 diff = iter->rt_runtime - iter->rt_time;
711 diff = div_u64((u64)diff, weight);
712 if (rt_rq->rt_runtime + diff > rt_period)
713 diff = rt_period - rt_rq->rt_runtime;
714 iter->rt_runtime -= diff;
715 rt_rq->rt_runtime += diff;
716 if (rt_rq->rt_runtime == rt_period) {
717 raw_spin_unlock(&iter->rt_runtime_lock);
722 raw_spin_unlock(&iter->rt_runtime_lock);
724 raw_spin_unlock(&rt_b->rt_runtime_lock);
728 * Ensure this RQ takes back all the runtime it lend to its neighbours.
730 static void __disable_runtime(struct rq *rq)
732 struct root_domain *rd = rq->rd;
736 if (unlikely(!scheduler_running))
739 for_each_rt_rq(rt_rq, iter, rq) {
740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
744 raw_spin_lock(&rt_b->rt_runtime_lock);
745 raw_spin_lock(&rt_rq->rt_runtime_lock);
747 * Either we're all inf and nobody needs to borrow, or we're
748 * already disabled and thus have nothing to do, or we have
749 * exactly the right amount of runtime to take out.
751 if (rt_rq->rt_runtime == RUNTIME_INF ||
752 rt_rq->rt_runtime == rt_b->rt_runtime)
754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
757 * Calculate the difference between what we started out with
758 * and what we current have, that's the amount of runtime
759 * we lend and now have to reclaim.
761 want = rt_b->rt_runtime - rt_rq->rt_runtime;
764 * Greedy reclaim, take back as much as we can.
766 for_each_cpu(i, rd->span) {
767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
771 * Can't reclaim from ourselves or disabled runqueues.
773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
776 raw_spin_lock(&iter->rt_runtime_lock);
778 diff = min_t(s64, iter->rt_runtime, want);
779 iter->rt_runtime -= diff;
782 iter->rt_runtime -= want;
785 raw_spin_unlock(&iter->rt_runtime_lock);
791 raw_spin_lock(&rt_rq->rt_runtime_lock);
793 * We cannot be left wanting - that would mean some runtime
794 * leaked out of the system.
799 * Disable all the borrow logic by pretending we have inf
800 * runtime - in which case borrowing doesn't make sense.
802 rt_rq->rt_runtime = RUNTIME_INF;
803 rt_rq->rt_throttled = 0;
804 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 raw_spin_unlock(&rt_b->rt_runtime_lock);
807 /* Make rt_rq available for pick_next_task() */
808 sched_rt_rq_enqueue(rt_rq);
812 static void __enable_runtime(struct rq *rq)
817 if (unlikely(!scheduler_running))
821 * Reset each runqueue's bandwidth settings
823 for_each_rt_rq(rt_rq, iter, rq) {
824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
826 raw_spin_lock(&rt_b->rt_runtime_lock);
827 raw_spin_lock(&rt_rq->rt_runtime_lock);
828 rt_rq->rt_runtime = rt_b->rt_runtime;
830 rt_rq->rt_throttled = 0;
831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 raw_spin_unlock(&rt_b->rt_runtime_lock);
836 static void balance_runtime(struct rt_rq *rt_rq)
838 if (!sched_feat(RT_RUNTIME_SHARE))
841 if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 do_balance_runtime(rt_rq);
844 raw_spin_lock(&rt_rq->rt_runtime_lock);
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
853 int i, idle = 1, throttled = 0;
854 const struct cpumask *span;
856 span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
859 * FIXME: isolated CPUs should really leave the root task group,
860 * whether they are isolcpus or were isolated via cpusets, lest
861 * the timer run on a CPU which does not service all runqueues,
862 * potentially leaving other CPUs indefinitely throttled. If
863 * isolation is really required, the user will turn the throttle
864 * off to kill the perturbations it causes anyway. Meanwhile,
865 * this maintains functionality for boot and/or troubleshooting.
867 if (rt_b == &root_task_group.rt_bandwidth)
868 span = cpu_online_mask;
870 for_each_cpu(i, span) {
872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 struct rq *rq = rq_of_rt_rq(rt_rq);
877 * When span == cpu_online_mask, taking each rq->lock
878 * can be time-consuming. Try to avoid it when possible.
880 raw_spin_lock(&rt_rq->rt_runtime_lock);
881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 rt_rq->rt_runtime = rt_b->rt_runtime;
883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 raw_spin_unlock(&rt_rq->rt_runtime_lock);
888 raw_spin_rq_lock(rq);
891 if (rt_rq->rt_time) {
894 raw_spin_lock(&rt_rq->rt_runtime_lock);
895 if (rt_rq->rt_throttled)
896 balance_runtime(rt_rq);
897 runtime = rt_rq->rt_runtime;
898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 rt_rq->rt_throttled = 0;
904 * When we're idle and a woken (rt) task is
905 * throttled check_preempt_curr() will set
906 * skip_update and the time between the wakeup
907 * and this unthrottle will get accounted as
910 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 rq_clock_cancel_skipupdate(rq);
913 if (rt_rq->rt_time || rt_rq->rt_nr_running)
915 raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 } else if (rt_rq->rt_nr_running) {
918 if (!rt_rq_throttled(rt_rq))
921 if (rt_rq->rt_throttled)
925 sched_rt_rq_enqueue(rt_rq);
926 raw_spin_rq_unlock(rq);
929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
937 #ifdef CONFIG_RT_GROUP_SCHED
938 struct rt_rq *rt_rq = group_rt_rq(rt_se);
941 return rt_rq->highest_prio.curr;
944 return rt_task_of(rt_se)->prio;
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
949 u64 runtime = sched_rt_runtime(rt_rq);
951 if (rt_rq->rt_throttled)
952 return rt_rq_throttled(rt_rq);
954 if (runtime >= sched_rt_period(rt_rq))
957 balance_runtime(rt_rq);
958 runtime = sched_rt_runtime(rt_rq);
959 if (runtime == RUNTIME_INF)
962 if (rt_rq->rt_time > runtime) {
963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
966 * Don't actually throttle groups that have no runtime assigned
967 * but accrue some time due to boosting.
969 if (likely(rt_b->rt_runtime)) {
970 rt_rq->rt_throttled = 1;
971 printk_deferred_once("sched: RT throttling activated\n");
974 * In case we did anyway, make it go away,
975 * replenishment is a joke, since it will replenish us
981 if (rt_rq_throttled(rt_rq)) {
982 sched_rt_rq_dequeue(rt_rq);
991 * Update the current task's runtime statistics. Skip current tasks that
992 * are not in our scheduling class.
994 static void update_curr_rt(struct rq *rq)
996 struct task_struct *curr = rq->curr;
997 struct sched_rt_entity *rt_se = &curr->rt;
1001 if (curr->sched_class != &rt_sched_class)
1004 now = rq_clock_task(rq);
1005 delta_exec = now - curr->se.exec_start;
1006 if (unlikely((s64)delta_exec <= 0))
1009 schedstat_set(curr->stats.exec_max,
1010 max(curr->stats.exec_max, delta_exec));
1012 trace_sched_stat_runtime(curr, delta_exec, 0);
1014 curr->se.sum_exec_runtime += delta_exec;
1015 account_group_exec_runtime(curr, delta_exec);
1017 curr->se.exec_start = now;
1018 cgroup_account_cputime(curr, delta_exec);
1020 if (!rt_bandwidth_enabled())
1023 for_each_sched_rt_entity(rt_se) {
1024 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1027 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1028 raw_spin_lock(&rt_rq->rt_runtime_lock);
1029 rt_rq->rt_time += delta_exec;
1030 exceeded = sched_rt_runtime_exceeded(rt_rq);
1033 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1035 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1041 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1043 struct rq *rq = rq_of_rt_rq(rt_rq);
1045 BUG_ON(&rq->rt != rt_rq);
1047 if (!rt_rq->rt_queued)
1050 BUG_ON(!rq->nr_running);
1052 sub_nr_running(rq, rt_rq->rt_nr_running);
1053 rt_rq->rt_queued = 0;
1058 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1060 struct rq *rq = rq_of_rt_rq(rt_rq);
1062 BUG_ON(&rq->rt != rt_rq);
1064 if (rt_rq->rt_queued)
1067 if (rt_rq_throttled(rt_rq))
1070 if (rt_rq->rt_nr_running) {
1071 add_nr_running(rq, rt_rq->rt_nr_running);
1072 rt_rq->rt_queued = 1;
1075 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1076 cpufreq_update_util(rq, 0);
1079 #if defined CONFIG_SMP
1082 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 struct rq *rq = rq_of_rt_rq(rt_rq);
1086 #ifdef CONFIG_RT_GROUP_SCHED
1088 * Change rq's cpupri only if rt_rq is the top queue.
1090 if (&rq->rt != rt_rq)
1093 if (rq->online && prio < prev_prio)
1094 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1098 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1100 struct rq *rq = rq_of_rt_rq(rt_rq);
1102 #ifdef CONFIG_RT_GROUP_SCHED
1104 * Change rq's cpupri only if rt_rq is the top queue.
1106 if (&rq->rt != rt_rq)
1109 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1110 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1113 #else /* CONFIG_SMP */
1116 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1118 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1120 #endif /* CONFIG_SMP */
1122 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1124 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1126 int prev_prio = rt_rq->highest_prio.curr;
1128 if (prio < prev_prio)
1129 rt_rq->highest_prio.curr = prio;
1131 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1135 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1137 int prev_prio = rt_rq->highest_prio.curr;
1139 if (rt_rq->rt_nr_running) {
1141 WARN_ON(prio < prev_prio);
1144 * This may have been our highest task, and therefore
1145 * we may have some recomputation to do
1147 if (prio == prev_prio) {
1148 struct rt_prio_array *array = &rt_rq->active;
1150 rt_rq->highest_prio.curr =
1151 sched_find_first_bit(array->bitmap);
1155 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1158 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1163 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1164 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1166 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1168 #ifdef CONFIG_RT_GROUP_SCHED
1171 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1173 if (rt_se_boosted(rt_se))
1174 rt_rq->rt_nr_boosted++;
1177 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1181 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1183 if (rt_se_boosted(rt_se))
1184 rt_rq->rt_nr_boosted--;
1186 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1189 #else /* CONFIG_RT_GROUP_SCHED */
1192 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1194 start_rt_bandwidth(&def_rt_bandwidth);
1198 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1200 #endif /* CONFIG_RT_GROUP_SCHED */
1203 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1205 struct rt_rq *group_rq = group_rt_rq(rt_se);
1208 return group_rq->rt_nr_running;
1214 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1216 struct rt_rq *group_rq = group_rt_rq(rt_se);
1217 struct task_struct *tsk;
1220 return group_rq->rr_nr_running;
1222 tsk = rt_task_of(rt_se);
1224 return (tsk->policy == SCHED_RR) ? 1 : 0;
1228 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1230 int prio = rt_se_prio(rt_se);
1232 WARN_ON(!rt_prio(prio));
1233 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1234 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1236 inc_rt_prio(rt_rq, prio);
1237 inc_rt_migration(rt_se, rt_rq);
1238 inc_rt_group(rt_se, rt_rq);
1242 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1245 WARN_ON(!rt_rq->rt_nr_running);
1246 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1247 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1249 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1250 dec_rt_migration(rt_se, rt_rq);
1251 dec_rt_group(rt_se, rt_rq);
1255 * Change rt_se->run_list location unless SAVE && !MOVE
1257 * assumes ENQUEUE/DEQUEUE flags match
1259 static inline bool move_entity(unsigned int flags)
1261 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1267 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1269 list_del_init(&rt_se->run_list);
1271 if (list_empty(array->queue + rt_se_prio(rt_se)))
1272 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1277 static inline struct sched_statistics *
1278 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1280 #ifdef CONFIG_RT_GROUP_SCHED
1281 /* schedstats is not supported for rt group. */
1282 if (!rt_entity_is_task(rt_se))
1286 return &rt_task_of(rt_se)->stats;
1290 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292 struct sched_statistics *stats;
1293 struct task_struct *p = NULL;
1295 if (!schedstat_enabled())
1298 if (rt_entity_is_task(rt_se))
1299 p = rt_task_of(rt_se);
1301 stats = __schedstats_from_rt_se(rt_se);
1305 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1309 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1311 struct sched_statistics *stats;
1312 struct task_struct *p = NULL;
1314 if (!schedstat_enabled())
1317 if (rt_entity_is_task(rt_se))
1318 p = rt_task_of(rt_se);
1320 stats = __schedstats_from_rt_se(rt_se);
1324 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1328 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1331 if (!schedstat_enabled())
1334 if (flags & ENQUEUE_WAKEUP)
1335 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1339 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1341 struct sched_statistics *stats;
1342 struct task_struct *p = NULL;
1344 if (!schedstat_enabled())
1347 if (rt_entity_is_task(rt_se))
1348 p = rt_task_of(rt_se);
1350 stats = __schedstats_from_rt_se(rt_se);
1354 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1358 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1361 struct task_struct *p = NULL;
1363 if (!schedstat_enabled())
1366 if (rt_entity_is_task(rt_se))
1367 p = rt_task_of(rt_se);
1369 if ((flags & DEQUEUE_SLEEP) && p) {
1372 state = READ_ONCE(p->__state);
1373 if (state & TASK_INTERRUPTIBLE)
1374 __schedstat_set(p->stats.sleep_start,
1375 rq_clock(rq_of_rt_rq(rt_rq)));
1377 if (state & TASK_UNINTERRUPTIBLE)
1378 __schedstat_set(p->stats.block_start,
1379 rq_clock(rq_of_rt_rq(rt_rq)));
1383 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1385 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1386 struct rt_prio_array *array = &rt_rq->active;
1387 struct rt_rq *group_rq = group_rt_rq(rt_se);
1388 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1391 * Don't enqueue the group if its throttled, or when empty.
1392 * The latter is a consequence of the former when a child group
1393 * get throttled and the current group doesn't have any other
1396 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1398 __delist_rt_entity(rt_se, array);
1402 if (move_entity(flags)) {
1403 WARN_ON_ONCE(rt_se->on_list);
1404 if (flags & ENQUEUE_HEAD)
1405 list_add(&rt_se->run_list, queue);
1407 list_add_tail(&rt_se->run_list, queue);
1409 __set_bit(rt_se_prio(rt_se), array->bitmap);
1414 inc_rt_tasks(rt_se, rt_rq);
1417 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1419 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1420 struct rt_prio_array *array = &rt_rq->active;
1422 if (move_entity(flags)) {
1423 WARN_ON_ONCE(!rt_se->on_list);
1424 __delist_rt_entity(rt_se, array);
1428 dec_rt_tasks(rt_se, rt_rq);
1432 * Because the prio of an upper entry depends on the lower
1433 * entries, we must remove entries top - down.
1435 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1437 struct sched_rt_entity *back = NULL;
1439 for_each_sched_rt_entity(rt_se) {
1444 dequeue_top_rt_rq(rt_rq_of_se(back));
1446 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1447 if (on_rt_rq(rt_se))
1448 __dequeue_rt_entity(rt_se, flags);
1452 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1454 struct rq *rq = rq_of_rt_se(rt_se);
1456 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1458 dequeue_rt_stack(rt_se, flags);
1459 for_each_sched_rt_entity(rt_se)
1460 __enqueue_rt_entity(rt_se, flags);
1461 enqueue_top_rt_rq(&rq->rt);
1464 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1466 struct rq *rq = rq_of_rt_se(rt_se);
1468 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1470 dequeue_rt_stack(rt_se, flags);
1472 for_each_sched_rt_entity(rt_se) {
1473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1475 if (rt_rq && rt_rq->rt_nr_running)
1476 __enqueue_rt_entity(rt_se, flags);
1478 enqueue_top_rt_rq(&rq->rt);
1482 * Adding/removing a task to/from a priority array:
1485 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1487 struct sched_rt_entity *rt_se = &p->rt;
1489 if (flags & ENQUEUE_WAKEUP)
1492 check_schedstat_required();
1493 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1495 enqueue_rt_entity(rt_se, flags);
1497 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1498 enqueue_pushable_task(rq, p);
1501 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1503 struct sched_rt_entity *rt_se = &p->rt;
1506 dequeue_rt_entity(rt_se, flags);
1508 dequeue_pushable_task(rq, p);
1512 * Put task to the head or the end of the run list without the overhead of
1513 * dequeue followed by enqueue.
1516 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1518 if (on_rt_rq(rt_se)) {
1519 struct rt_prio_array *array = &rt_rq->active;
1520 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1523 list_move(&rt_se->run_list, queue);
1525 list_move_tail(&rt_se->run_list, queue);
1529 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1531 struct sched_rt_entity *rt_se = &p->rt;
1532 struct rt_rq *rt_rq;
1534 for_each_sched_rt_entity(rt_se) {
1535 rt_rq = rt_rq_of_se(rt_se);
1536 requeue_rt_entity(rt_rq, rt_se, head);
1540 static void yield_task_rt(struct rq *rq)
1542 requeue_task_rt(rq, rq->curr, 0);
1546 static int find_lowest_rq(struct task_struct *task);
1549 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1551 struct task_struct *curr;
1555 /* For anything but wake ups, just return the task_cpu */
1556 if (!(flags & (WF_TTWU | WF_FORK)))
1562 curr = READ_ONCE(rq->curr); /* unlocked access */
1565 * If the current task on @p's runqueue is an RT task, then
1566 * try to see if we can wake this RT task up on another
1567 * runqueue. Otherwise simply start this RT task
1568 * on its current runqueue.
1570 * We want to avoid overloading runqueues. If the woken
1571 * task is a higher priority, then it will stay on this CPU
1572 * and the lower prio task should be moved to another CPU.
1573 * Even though this will probably make the lower prio task
1574 * lose its cache, we do not want to bounce a higher task
1575 * around just because it gave up its CPU, perhaps for a
1578 * For equal prio tasks, we just let the scheduler sort it out.
1580 * Otherwise, just let it ride on the affined RQ and the
1581 * post-schedule router will push the preempted task away
1583 * This test is optimistic, if we get it wrong the load-balancer
1584 * will have to sort it out.
1586 * We take into account the capacity of the CPU to ensure it fits the
1587 * requirement of the task - which is only important on heterogeneous
1588 * systems like big.LITTLE.
1591 unlikely(rt_task(curr)) &&
1592 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1594 if (test || !rt_task_fits_capacity(p, cpu)) {
1595 int target = find_lowest_rq(p);
1598 * Bail out if we were forcing a migration to find a better
1599 * fitting CPU but our search failed.
1601 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1605 * Don't bother moving it if the destination CPU is
1606 * not running a lower priority task.
1609 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1620 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1623 * Current can't be migrated, useless to reschedule,
1624 * let's hope p can move out.
1626 if (rq->curr->nr_cpus_allowed == 1 ||
1627 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1631 * p is migratable, so let's not schedule it and
1632 * see if it is pushed or pulled somewhere else.
1634 if (p->nr_cpus_allowed != 1 &&
1635 cpupri_find(&rq->rd->cpupri, p, NULL))
1639 * There appear to be other CPUs that can accept
1640 * the current task but none can run 'p', so lets reschedule
1641 * to try and push the current task away:
1643 requeue_task_rt(rq, p, 1);
1647 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1649 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1651 * This is OK, because current is on_cpu, which avoids it being
1652 * picked for load-balance and preemption/IRQs are still
1653 * disabled avoiding further scheduler activity on it and we've
1654 * not yet started the picking loop.
1656 rq_unpin_lock(rq, rf);
1658 rq_repin_lock(rq, rf);
1661 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1663 #endif /* CONFIG_SMP */
1666 * Preempt the current task with a newly woken task if needed:
1668 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1670 if (p->prio < rq->curr->prio) {
1679 * - the newly woken task is of equal priority to the current task
1680 * - the newly woken task is non-migratable while current is migratable
1681 * - current will be preempted on the next reschedule
1683 * we should check to see if current can readily move to a different
1684 * cpu. If so, we will reschedule to allow the push logic to try
1685 * to move current somewhere else, making room for our non-migratable
1688 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1689 check_preempt_equal_prio(rq, p);
1693 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1695 struct sched_rt_entity *rt_se = &p->rt;
1696 struct rt_rq *rt_rq = &rq->rt;
1698 p->se.exec_start = rq_clock_task(rq);
1699 if (on_rt_rq(&p->rt))
1700 update_stats_wait_end_rt(rt_rq, rt_se);
1702 /* The running task is never eligible for pushing */
1703 dequeue_pushable_task(rq, p);
1709 * If prev task was rt, put_prev_task() has already updated the
1710 * utilization. We only care of the case where we start to schedule a
1713 if (rq->curr->sched_class != &rt_sched_class)
1714 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1716 rt_queue_push_tasks(rq);
1719 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1721 struct rt_prio_array *array = &rt_rq->active;
1722 struct sched_rt_entity *next = NULL;
1723 struct list_head *queue;
1726 idx = sched_find_first_bit(array->bitmap);
1727 BUG_ON(idx >= MAX_RT_PRIO);
1729 queue = array->queue + idx;
1730 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1735 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1737 struct sched_rt_entity *rt_se;
1738 struct rt_rq *rt_rq = &rq->rt;
1741 rt_se = pick_next_rt_entity(rt_rq);
1743 rt_rq = group_rt_rq(rt_se);
1746 return rt_task_of(rt_se);
1749 static struct task_struct *pick_task_rt(struct rq *rq)
1751 struct task_struct *p;
1753 if (!sched_rt_runnable(rq))
1756 p = _pick_next_task_rt(rq);
1761 static struct task_struct *pick_next_task_rt(struct rq *rq)
1763 struct task_struct *p = pick_task_rt(rq);
1766 set_next_task_rt(rq, p, true);
1771 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1773 struct sched_rt_entity *rt_se = &p->rt;
1774 struct rt_rq *rt_rq = &rq->rt;
1776 if (on_rt_rq(&p->rt))
1777 update_stats_wait_start_rt(rt_rq, rt_se);
1781 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1784 * The previous task needs to be made eligible for pushing
1785 * if it is still active
1787 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1788 enqueue_pushable_task(rq, p);
1793 /* Only try algorithms three times */
1794 #define RT_MAX_TRIES 3
1796 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1798 if (!task_running(rq, p) &&
1799 cpumask_test_cpu(cpu, &p->cpus_mask))
1806 * Return the highest pushable rq's task, which is suitable to be executed
1807 * on the CPU, NULL otherwise
1809 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1811 struct plist_head *head = &rq->rt.pushable_tasks;
1812 struct task_struct *p;
1814 if (!has_pushable_tasks(rq))
1817 plist_for_each_entry(p, head, pushable_tasks) {
1818 if (pick_rt_task(rq, p, cpu))
1825 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1827 static int find_lowest_rq(struct task_struct *task)
1829 struct sched_domain *sd;
1830 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1831 int this_cpu = smp_processor_id();
1832 int cpu = task_cpu(task);
1835 /* Make sure the mask is initialized first */
1836 if (unlikely(!lowest_mask))
1839 if (task->nr_cpus_allowed == 1)
1840 return -1; /* No other targets possible */
1843 * If we're on asym system ensure we consider the different capacities
1844 * of the CPUs when searching for the lowest_mask.
1846 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1848 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1850 rt_task_fits_capacity);
1853 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1858 return -1; /* No targets found */
1861 * At this point we have built a mask of CPUs representing the
1862 * lowest priority tasks in the system. Now we want to elect
1863 * the best one based on our affinity and topology.
1865 * We prioritize the last CPU that the task executed on since
1866 * it is most likely cache-hot in that location.
1868 if (cpumask_test_cpu(cpu, lowest_mask))
1872 * Otherwise, we consult the sched_domains span maps to figure
1873 * out which CPU is logically closest to our hot cache data.
1875 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1876 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1879 for_each_domain(cpu, sd) {
1880 if (sd->flags & SD_WAKE_AFFINE) {
1884 * "this_cpu" is cheaper to preempt than a
1887 if (this_cpu != -1 &&
1888 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1893 best_cpu = cpumask_any_and_distribute(lowest_mask,
1894 sched_domain_span(sd));
1895 if (best_cpu < nr_cpu_ids) {
1904 * And finally, if there were no matches within the domains
1905 * just give the caller *something* to work with from the compatible
1911 cpu = cpumask_any_distribute(lowest_mask);
1912 if (cpu < nr_cpu_ids)
1918 /* Will lock the rq it finds */
1919 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1921 struct rq *lowest_rq = NULL;
1925 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1926 cpu = find_lowest_rq(task);
1928 if ((cpu == -1) || (cpu == rq->cpu))
1931 lowest_rq = cpu_rq(cpu);
1933 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1935 * Target rq has tasks of equal or higher priority,
1936 * retrying does not release any lock and is unlikely
1937 * to yield a different result.
1943 /* if the prio of this runqueue changed, try again */
1944 if (double_lock_balance(rq, lowest_rq)) {
1946 * We had to unlock the run queue. In
1947 * the mean time, task could have
1948 * migrated already or had its affinity changed.
1949 * Also make sure that it wasn't scheduled on its rq.
1951 if (unlikely(task_rq(task) != rq ||
1952 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1953 task_running(rq, task) ||
1955 !task_on_rq_queued(task))) {
1957 double_unlock_balance(rq, lowest_rq);
1963 /* If this rq is still suitable use it. */
1964 if (lowest_rq->rt.highest_prio.curr > task->prio)
1968 double_unlock_balance(rq, lowest_rq);
1975 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1977 struct task_struct *p;
1979 if (!has_pushable_tasks(rq))
1982 p = plist_first_entry(&rq->rt.pushable_tasks,
1983 struct task_struct, pushable_tasks);
1985 BUG_ON(rq->cpu != task_cpu(p));
1986 BUG_ON(task_current(rq, p));
1987 BUG_ON(p->nr_cpus_allowed <= 1);
1989 BUG_ON(!task_on_rq_queued(p));
1990 BUG_ON(!rt_task(p));
1996 * If the current CPU has more than one RT task, see if the non
1997 * running task can migrate over to a CPU that is running a task
1998 * of lesser priority.
2000 static int push_rt_task(struct rq *rq, bool pull)
2002 struct task_struct *next_task;
2003 struct rq *lowest_rq;
2006 if (!rq->rt.overloaded)
2009 next_task = pick_next_pushable_task(rq);
2015 * It's possible that the next_task slipped in of
2016 * higher priority than current. If that's the case
2017 * just reschedule current.
2019 if (unlikely(next_task->prio < rq->curr->prio)) {
2024 if (is_migration_disabled(next_task)) {
2025 struct task_struct *push_task = NULL;
2028 if (!pull || rq->push_busy)
2032 * Invoking find_lowest_rq() on anything but an RT task doesn't
2033 * make sense. Per the above priority check, curr has to
2034 * be of higher priority than next_task, so no need to
2035 * reschedule when bailing out.
2037 * Note that the stoppers are masqueraded as SCHED_FIFO
2038 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2040 if (rq->curr->sched_class != &rt_sched_class)
2043 cpu = find_lowest_rq(rq->curr);
2044 if (cpu == -1 || cpu == rq->cpu)
2048 * Given we found a CPU with lower priority than @next_task,
2049 * therefore it should be running. However we cannot migrate it
2050 * to this other CPU, instead attempt to push the current
2051 * running task on this CPU away.
2053 push_task = get_push_task(rq);
2055 raw_spin_rq_unlock(rq);
2056 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2057 push_task, &rq->push_work);
2058 raw_spin_rq_lock(rq);
2064 if (WARN_ON(next_task == rq->curr))
2067 /* We might release rq lock */
2068 get_task_struct(next_task);
2070 /* find_lock_lowest_rq locks the rq if found */
2071 lowest_rq = find_lock_lowest_rq(next_task, rq);
2073 struct task_struct *task;
2075 * find_lock_lowest_rq releases rq->lock
2076 * so it is possible that next_task has migrated.
2078 * We need to make sure that the task is still on the same
2079 * run-queue and is also still the next task eligible for
2082 task = pick_next_pushable_task(rq);
2083 if (task == next_task) {
2085 * The task hasn't migrated, and is still the next
2086 * eligible task, but we failed to find a run-queue
2087 * to push it to. Do not retry in this case, since
2088 * other CPUs will pull from us when ready.
2094 /* No more tasks, just exit */
2098 * Something has shifted, try again.
2100 put_task_struct(next_task);
2105 deactivate_task(rq, next_task, 0);
2106 set_task_cpu(next_task, lowest_rq->cpu);
2107 activate_task(lowest_rq, next_task, 0);
2108 resched_curr(lowest_rq);
2111 double_unlock_balance(rq, lowest_rq);
2113 put_task_struct(next_task);
2118 static void push_rt_tasks(struct rq *rq)
2120 /* push_rt_task will return true if it moved an RT */
2121 while (push_rt_task(rq, false))
2125 #ifdef HAVE_RT_PUSH_IPI
2128 * When a high priority task schedules out from a CPU and a lower priority
2129 * task is scheduled in, a check is made to see if there's any RT tasks
2130 * on other CPUs that are waiting to run because a higher priority RT task
2131 * is currently running on its CPU. In this case, the CPU with multiple RT
2132 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2133 * up that may be able to run one of its non-running queued RT tasks.
2135 * All CPUs with overloaded RT tasks need to be notified as there is currently
2136 * no way to know which of these CPUs have the highest priority task waiting
2137 * to run. Instead of trying to take a spinlock on each of these CPUs,
2138 * which has shown to cause large latency when done on machines with many
2139 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2140 * RT tasks waiting to run.
2142 * Just sending an IPI to each of the CPUs is also an issue, as on large
2143 * count CPU machines, this can cause an IPI storm on a CPU, especially
2144 * if its the only CPU with multiple RT tasks queued, and a large number
2145 * of CPUs scheduling a lower priority task at the same time.
2147 * Each root domain has its own irq work function that can iterate over
2148 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2149 * task must be checked if there's one or many CPUs that are lowering
2150 * their priority, there's a single irq work iterator that will try to
2151 * push off RT tasks that are waiting to run.
2153 * When a CPU schedules a lower priority task, it will kick off the
2154 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2155 * As it only takes the first CPU that schedules a lower priority task
2156 * to start the process, the rto_start variable is incremented and if
2157 * the atomic result is one, then that CPU will try to take the rto_lock.
2158 * This prevents high contention on the lock as the process handles all
2159 * CPUs scheduling lower priority tasks.
2161 * All CPUs that are scheduling a lower priority task will increment the
2162 * rt_loop_next variable. This will make sure that the irq work iterator
2163 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2164 * priority task, even if the iterator is in the middle of a scan. Incrementing
2165 * the rt_loop_next will cause the iterator to perform another scan.
2168 static int rto_next_cpu(struct root_domain *rd)
2174 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2175 * rt_next_cpu() will simply return the first CPU found in
2178 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2179 * will return the next CPU found in the rto_mask.
2181 * If there are no more CPUs left in the rto_mask, then a check is made
2182 * against rto_loop and rto_loop_next. rto_loop is only updated with
2183 * the rto_lock held, but any CPU may increment the rto_loop_next
2184 * without any locking.
2188 /* When rto_cpu is -1 this acts like cpumask_first() */
2189 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2193 if (cpu < nr_cpu_ids)
2199 * ACQUIRE ensures we see the @rto_mask changes
2200 * made prior to the @next value observed.
2202 * Matches WMB in rt_set_overload().
2204 next = atomic_read_acquire(&rd->rto_loop_next);
2206 if (rd->rto_loop == next)
2209 rd->rto_loop = next;
2215 static inline bool rto_start_trylock(atomic_t *v)
2217 return !atomic_cmpxchg_acquire(v, 0, 1);
2220 static inline void rto_start_unlock(atomic_t *v)
2222 atomic_set_release(v, 0);
2225 static void tell_cpu_to_push(struct rq *rq)
2229 /* Keep the loop going if the IPI is currently active */
2230 atomic_inc(&rq->rd->rto_loop_next);
2232 /* Only one CPU can initiate a loop at a time */
2233 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2236 raw_spin_lock(&rq->rd->rto_lock);
2239 * The rto_cpu is updated under the lock, if it has a valid CPU
2240 * then the IPI is still running and will continue due to the
2241 * update to loop_next, and nothing needs to be done here.
2242 * Otherwise it is finishing up and an ipi needs to be sent.
2244 if (rq->rd->rto_cpu < 0)
2245 cpu = rto_next_cpu(rq->rd);
2247 raw_spin_unlock(&rq->rd->rto_lock);
2249 rto_start_unlock(&rq->rd->rto_loop_start);
2252 /* Make sure the rd does not get freed while pushing */
2253 sched_get_rd(rq->rd);
2254 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2258 /* Called from hardirq context */
2259 void rto_push_irq_work_func(struct irq_work *work)
2261 struct root_domain *rd =
2262 container_of(work, struct root_domain, rto_push_work);
2269 * We do not need to grab the lock to check for has_pushable_tasks.
2270 * When it gets updated, a check is made if a push is possible.
2272 if (has_pushable_tasks(rq)) {
2273 raw_spin_rq_lock(rq);
2274 while (push_rt_task(rq, true))
2276 raw_spin_rq_unlock(rq);
2279 raw_spin_lock(&rd->rto_lock);
2281 /* Pass the IPI to the next rt overloaded queue */
2282 cpu = rto_next_cpu(rd);
2284 raw_spin_unlock(&rd->rto_lock);
2291 /* Try the next RT overloaded CPU */
2292 irq_work_queue_on(&rd->rto_push_work, cpu);
2294 #endif /* HAVE_RT_PUSH_IPI */
2296 static void pull_rt_task(struct rq *this_rq)
2298 int this_cpu = this_rq->cpu, cpu;
2299 bool resched = false;
2300 struct task_struct *p, *push_task;
2302 int rt_overload_count = rt_overloaded(this_rq);
2304 if (likely(!rt_overload_count))
2308 * Match the barrier from rt_set_overloaded; this guarantees that if we
2309 * see overloaded we must also see the rto_mask bit.
2313 /* If we are the only overloaded CPU do nothing */
2314 if (rt_overload_count == 1 &&
2315 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2318 #ifdef HAVE_RT_PUSH_IPI
2319 if (sched_feat(RT_PUSH_IPI)) {
2320 tell_cpu_to_push(this_rq);
2325 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2326 if (this_cpu == cpu)
2329 src_rq = cpu_rq(cpu);
2332 * Don't bother taking the src_rq->lock if the next highest
2333 * task is known to be lower-priority than our current task.
2334 * This may look racy, but if this value is about to go
2335 * logically higher, the src_rq will push this task away.
2336 * And if its going logically lower, we do not care
2338 if (src_rq->rt.highest_prio.next >=
2339 this_rq->rt.highest_prio.curr)
2343 * We can potentially drop this_rq's lock in
2344 * double_lock_balance, and another CPU could
2348 double_lock_balance(this_rq, src_rq);
2351 * We can pull only a task, which is pushable
2352 * on its rq, and no others.
2354 p = pick_highest_pushable_task(src_rq, this_cpu);
2357 * Do we have an RT task that preempts
2358 * the to-be-scheduled task?
2360 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2361 WARN_ON(p == src_rq->curr);
2362 WARN_ON(!task_on_rq_queued(p));
2365 * There's a chance that p is higher in priority
2366 * than what's currently running on its CPU.
2367 * This is just that p is waking up and hasn't
2368 * had a chance to schedule. We only pull
2369 * p if it is lower in priority than the
2370 * current task on the run queue
2372 if (p->prio < src_rq->curr->prio)
2375 if (is_migration_disabled(p)) {
2376 push_task = get_push_task(src_rq);
2378 deactivate_task(src_rq, p, 0);
2379 set_task_cpu(p, this_cpu);
2380 activate_task(this_rq, p, 0);
2384 * We continue with the search, just in
2385 * case there's an even higher prio task
2386 * in another runqueue. (low likelihood
2391 double_unlock_balance(this_rq, src_rq);
2394 raw_spin_rq_unlock(this_rq);
2395 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2396 push_task, &src_rq->push_work);
2397 raw_spin_rq_lock(this_rq);
2402 resched_curr(this_rq);
2406 * If we are not running and we are not going to reschedule soon, we should
2407 * try to push tasks away now
2409 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2411 bool need_to_push = !task_running(rq, p) &&
2412 !test_tsk_need_resched(rq->curr) &&
2413 p->nr_cpus_allowed > 1 &&
2414 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2415 (rq->curr->nr_cpus_allowed < 2 ||
2416 rq->curr->prio <= p->prio);
2422 /* Assumes rq->lock is held */
2423 static void rq_online_rt(struct rq *rq)
2425 if (rq->rt.overloaded)
2426 rt_set_overload(rq);
2428 __enable_runtime(rq);
2430 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2433 /* Assumes rq->lock is held */
2434 static void rq_offline_rt(struct rq *rq)
2436 if (rq->rt.overloaded)
2437 rt_clear_overload(rq);
2439 __disable_runtime(rq);
2441 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2445 * When switch from the rt queue, we bring ourselves to a position
2446 * that we might want to pull RT tasks from other runqueues.
2448 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2451 * If there are other RT tasks then we will reschedule
2452 * and the scheduling of the other RT tasks will handle
2453 * the balancing. But if we are the last RT task
2454 * we may need to handle the pulling of RT tasks
2457 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2460 rt_queue_pull_task(rq);
2463 void __init init_sched_rt_class(void)
2467 for_each_possible_cpu(i) {
2468 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2469 GFP_KERNEL, cpu_to_node(i));
2472 #endif /* CONFIG_SMP */
2475 * When switching a task to RT, we may overload the runqueue
2476 * with RT tasks. In this case we try to push them off to
2479 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2482 * If we are running, update the avg_rt tracking, as the running time
2483 * will now on be accounted into the latter.
2485 if (task_current(rq, p)) {
2486 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2491 * If we are not running we may need to preempt the current
2492 * running task. If that current running task is also an RT task
2493 * then see if we can move to another run queue.
2495 if (task_on_rq_queued(p)) {
2497 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2498 rt_queue_push_tasks(rq);
2499 #endif /* CONFIG_SMP */
2500 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2506 * Priority of the task has changed. This may cause
2507 * us to initiate a push or pull.
2510 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2512 if (!task_on_rq_queued(p))
2515 if (task_current(rq, p)) {
2518 * If our priority decreases while running, we
2519 * may need to pull tasks to this runqueue.
2521 if (oldprio < p->prio)
2522 rt_queue_pull_task(rq);
2525 * If there's a higher priority task waiting to run
2528 if (p->prio > rq->rt.highest_prio.curr)
2531 /* For UP simply resched on drop of prio */
2532 if (oldprio < p->prio)
2534 #endif /* CONFIG_SMP */
2537 * This task is not running, but if it is
2538 * greater than the current running task
2541 if (p->prio < rq->curr->prio)
2546 #ifdef CONFIG_POSIX_TIMERS
2547 static void watchdog(struct rq *rq, struct task_struct *p)
2549 unsigned long soft, hard;
2551 /* max may change after cur was read, this will be fixed next tick */
2552 soft = task_rlimit(p, RLIMIT_RTTIME);
2553 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2555 if (soft != RLIM_INFINITY) {
2558 if (p->rt.watchdog_stamp != jiffies) {
2560 p->rt.watchdog_stamp = jiffies;
2563 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2564 if (p->rt.timeout > next) {
2565 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2566 p->se.sum_exec_runtime);
2571 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2575 * scheduler tick hitting a task of our scheduling class.
2577 * NOTE: This function can be called remotely by the tick offload that
2578 * goes along full dynticks. Therefore no local assumption can be made
2579 * and everything must be accessed through the @rq and @curr passed in
2582 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2584 struct sched_rt_entity *rt_se = &p->rt;
2587 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2592 * RR tasks need a special form of timeslice management.
2593 * FIFO tasks have no timeslices.
2595 if (p->policy != SCHED_RR)
2598 if (--p->rt.time_slice)
2601 p->rt.time_slice = sched_rr_timeslice;
2604 * Requeue to the end of queue if we (and all of our ancestors) are not
2605 * the only element on the queue
2607 for_each_sched_rt_entity(rt_se) {
2608 if (rt_se->run_list.prev != rt_se->run_list.next) {
2609 requeue_task_rt(rq, p, 0);
2616 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2619 * Time slice is 0 for SCHED_FIFO tasks
2621 if (task->policy == SCHED_RR)
2622 return sched_rr_timeslice;
2627 DEFINE_SCHED_CLASS(rt) = {
2629 .enqueue_task = enqueue_task_rt,
2630 .dequeue_task = dequeue_task_rt,
2631 .yield_task = yield_task_rt,
2633 .check_preempt_curr = check_preempt_curr_rt,
2635 .pick_next_task = pick_next_task_rt,
2636 .put_prev_task = put_prev_task_rt,
2637 .set_next_task = set_next_task_rt,
2640 .balance = balance_rt,
2641 .pick_task = pick_task_rt,
2642 .select_task_rq = select_task_rq_rt,
2643 .set_cpus_allowed = set_cpus_allowed_common,
2644 .rq_online = rq_online_rt,
2645 .rq_offline = rq_offline_rt,
2646 .task_woken = task_woken_rt,
2647 .switched_from = switched_from_rt,
2648 .find_lock_rq = find_lock_lowest_rq,
2651 .task_tick = task_tick_rt,
2653 .get_rr_interval = get_rr_interval_rt,
2655 .prio_changed = prio_changed_rt,
2656 .switched_to = switched_to_rt,
2658 .update_curr = update_curr_rt,
2660 #ifdef CONFIG_UCLAMP_TASK
2661 .uclamp_enabled = 1,
2665 #ifdef CONFIG_RT_GROUP_SCHED
2667 * Ensure that the real time constraints are schedulable.
2669 static DEFINE_MUTEX(rt_constraints_mutex);
2671 static inline int tg_has_rt_tasks(struct task_group *tg)
2673 struct task_struct *task;
2674 struct css_task_iter it;
2678 * Autogroups do not have RT tasks; see autogroup_create().
2680 if (task_group_is_autogroup(tg))
2683 css_task_iter_start(&tg->css, 0, &it);
2684 while (!ret && (task = css_task_iter_next(&it)))
2685 ret |= rt_task(task);
2686 css_task_iter_end(&it);
2691 struct rt_schedulable_data {
2692 struct task_group *tg;
2697 static int tg_rt_schedulable(struct task_group *tg, void *data)
2699 struct rt_schedulable_data *d = data;
2700 struct task_group *child;
2701 unsigned long total, sum = 0;
2702 u64 period, runtime;
2704 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2705 runtime = tg->rt_bandwidth.rt_runtime;
2708 period = d->rt_period;
2709 runtime = d->rt_runtime;
2713 * Cannot have more runtime than the period.
2715 if (runtime > period && runtime != RUNTIME_INF)
2719 * Ensure we don't starve existing RT tasks if runtime turns zero.
2721 if (rt_bandwidth_enabled() && !runtime &&
2722 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2725 total = to_ratio(period, runtime);
2728 * Nobody can have more than the global setting allows.
2730 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2734 * The sum of our children's runtime should not exceed our own.
2736 list_for_each_entry_rcu(child, &tg->children, siblings) {
2737 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2738 runtime = child->rt_bandwidth.rt_runtime;
2740 if (child == d->tg) {
2741 period = d->rt_period;
2742 runtime = d->rt_runtime;
2745 sum += to_ratio(period, runtime);
2754 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2758 struct rt_schedulable_data data = {
2760 .rt_period = period,
2761 .rt_runtime = runtime,
2765 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2771 static int tg_set_rt_bandwidth(struct task_group *tg,
2772 u64 rt_period, u64 rt_runtime)
2777 * Disallowing the root group RT runtime is BAD, it would disallow the
2778 * kernel creating (and or operating) RT threads.
2780 if (tg == &root_task_group && rt_runtime == 0)
2783 /* No period doesn't make any sense. */
2788 * Bound quota to defend quota against overflow during bandwidth shift.
2790 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2793 mutex_lock(&rt_constraints_mutex);
2794 err = __rt_schedulable(tg, rt_period, rt_runtime);
2798 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2799 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2800 tg->rt_bandwidth.rt_runtime = rt_runtime;
2802 for_each_possible_cpu(i) {
2803 struct rt_rq *rt_rq = tg->rt_rq[i];
2805 raw_spin_lock(&rt_rq->rt_runtime_lock);
2806 rt_rq->rt_runtime = rt_runtime;
2807 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2809 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2811 mutex_unlock(&rt_constraints_mutex);
2816 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2818 u64 rt_runtime, rt_period;
2820 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2821 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2822 if (rt_runtime_us < 0)
2823 rt_runtime = RUNTIME_INF;
2824 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2827 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2830 long sched_group_rt_runtime(struct task_group *tg)
2834 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2837 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2838 do_div(rt_runtime_us, NSEC_PER_USEC);
2839 return rt_runtime_us;
2842 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2844 u64 rt_runtime, rt_period;
2846 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2849 rt_period = rt_period_us * NSEC_PER_USEC;
2850 rt_runtime = tg->rt_bandwidth.rt_runtime;
2852 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2855 long sched_group_rt_period(struct task_group *tg)
2859 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2860 do_div(rt_period_us, NSEC_PER_USEC);
2861 return rt_period_us;
2864 static int sched_rt_global_constraints(void)
2868 mutex_lock(&rt_constraints_mutex);
2869 ret = __rt_schedulable(NULL, 0, 0);
2870 mutex_unlock(&rt_constraints_mutex);
2875 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2877 /* Don't accept realtime tasks when there is no way for them to run */
2878 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2884 #else /* !CONFIG_RT_GROUP_SCHED */
2885 static int sched_rt_global_constraints(void)
2887 unsigned long flags;
2890 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2891 for_each_possible_cpu(i) {
2892 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2894 raw_spin_lock(&rt_rq->rt_runtime_lock);
2895 rt_rq->rt_runtime = global_rt_runtime();
2896 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2898 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2902 #endif /* CONFIG_RT_GROUP_SCHED */
2904 static int sched_rt_global_validate(void)
2906 if (sysctl_sched_rt_period <= 0)
2909 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2910 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2911 ((u64)sysctl_sched_rt_runtime *
2912 NSEC_PER_USEC > max_rt_runtime)))
2918 static void sched_rt_do_global(void)
2920 unsigned long flags;
2922 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2923 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2924 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2925 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2929 size_t *lenp, loff_t *ppos)
2931 int old_period, old_runtime;
2932 static DEFINE_MUTEX(mutex);
2936 old_period = sysctl_sched_rt_period;
2937 old_runtime = sysctl_sched_rt_runtime;
2939 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2941 if (!ret && write) {
2942 ret = sched_rt_global_validate();
2946 ret = sched_dl_global_validate();
2950 ret = sched_rt_global_constraints();
2954 sched_rt_do_global();
2955 sched_dl_do_global();
2959 sysctl_sched_rt_period = old_period;
2960 sysctl_sched_rt_runtime = old_runtime;
2962 mutex_unlock(&mutex);
2967 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2968 size_t *lenp, loff_t *ppos)
2971 static DEFINE_MUTEX(mutex);
2974 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2976 * Make sure that internally we keep jiffies.
2977 * Also, writing zero resets the timeslice to default:
2979 if (!ret && write) {
2980 sched_rr_timeslice =
2981 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2982 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2984 mutex_unlock(&mutex);
2989 #ifdef CONFIG_SCHED_DEBUG
2990 void print_rt_stats(struct seq_file *m, int cpu)
2993 struct rt_rq *rt_rq;
2996 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2997 print_rt_rq(m, cpu, rt_rq);
3000 #endif /* CONFIG_SCHED_DEBUG */