drm/i915/gvt: remove enum hypervisor_type
[linux.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
9 /* More than 4 hours if BW_SHIFT equals 20. */
10 static const u64 max_rt_runtime = MAX_BW;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18         struct rt_bandwidth *rt_b =
19                 container_of(timer, struct rt_bandwidth, rt_period_timer);
20         int idle = 0;
21         int overrun;
22
23         raw_spin_lock(&rt_b->rt_runtime_lock);
24         for (;;) {
25                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
26                 if (!overrun)
27                         break;
28
29                 raw_spin_unlock(&rt_b->rt_runtime_lock);
30                 idle = do_sched_rt_period_timer(rt_b, overrun);
31                 raw_spin_lock(&rt_b->rt_runtime_lock);
32         }
33         if (idle)
34                 rt_b->rt_period_active = 0;
35         raw_spin_unlock(&rt_b->rt_runtime_lock);
36
37         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
38 }
39
40 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
41 {
42         rt_b->rt_period = ns_to_ktime(period);
43         rt_b->rt_runtime = runtime;
44
45         raw_spin_lock_init(&rt_b->rt_runtime_lock);
46
47         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
48                      HRTIMER_MODE_REL_HARD);
49         rt_b->rt_period_timer.function = sched_rt_period_timer;
50 }
51
52 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
53 {
54         raw_spin_lock(&rt_b->rt_runtime_lock);
55         if (!rt_b->rt_period_active) {
56                 rt_b->rt_period_active = 1;
57                 /*
58                  * SCHED_DEADLINE updates the bandwidth, as a run away
59                  * RT task with a DL task could hog a CPU. But DL does
60                  * not reset the period. If a deadline task was running
61                  * without an RT task running, it can cause RT tasks to
62                  * throttle when they start up. Kick the timer right away
63                  * to update the period.
64                  */
65                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
66                 hrtimer_start_expires(&rt_b->rt_period_timer,
67                                       HRTIMER_MODE_ABS_PINNED_HARD);
68         }
69         raw_spin_unlock(&rt_b->rt_runtime_lock);
70 }
71
72 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
73 {
74         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
75                 return;
76
77         do_start_rt_bandwidth(rt_b);
78 }
79
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82         struct rt_prio_array *array;
83         int i;
84
85         array = &rt_rq->active;
86         for (i = 0; i < MAX_RT_PRIO; i++) {
87                 INIT_LIST_HEAD(array->queue + i);
88                 __clear_bit(i, array->bitmap);
89         }
90         /* delimiter for bitsearch: */
91         __set_bit(MAX_RT_PRIO, array->bitmap);
92
93 #if defined CONFIG_SMP
94         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
95         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
96         rt_rq->rt_nr_migratory = 0;
97         rt_rq->overloaded = 0;
98         plist_head_init(&rt_rq->pushable_tasks);
99 #endif /* CONFIG_SMP */
100         /* We start is dequeued state, because no RT tasks are queued */
101         rt_rq->rt_queued = 0;
102
103         rt_rq->rt_time = 0;
104         rt_rq->rt_throttled = 0;
105         rt_rq->rt_runtime = 0;
106         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112         hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122         return container_of(rt_se, struct task_struct, rt);
123 }
124
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127         return rt_rq->rq;
128 }
129
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132         return rt_se->rt_rq;
133 }
134
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137         struct rt_rq *rt_rq = rt_se->rt_rq;
138
139         return rt_rq->rq;
140 }
141
142 void unregister_rt_sched_group(struct task_group *tg)
143 {
144         if (tg->rt_se)
145                 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147 }
148
149 void free_rt_sched_group(struct task_group *tg)
150 {
151         int i;
152
153         for_each_possible_cpu(i) {
154                 if (tg->rt_rq)
155                         kfree(tg->rt_rq[i]);
156                 if (tg->rt_se)
157                         kfree(tg->rt_se[i]);
158         }
159
160         kfree(tg->rt_rq);
161         kfree(tg->rt_se);
162 }
163
164 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
165                 struct sched_rt_entity *rt_se, int cpu,
166                 struct sched_rt_entity *parent)
167 {
168         struct rq *rq = cpu_rq(cpu);
169
170         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
171         rt_rq->rt_nr_boosted = 0;
172         rt_rq->rq = rq;
173         rt_rq->tg = tg;
174
175         tg->rt_rq[cpu] = rt_rq;
176         tg->rt_se[cpu] = rt_se;
177
178         if (!rt_se)
179                 return;
180
181         if (!parent)
182                 rt_se->rt_rq = &rq->rt;
183         else
184                 rt_se->rt_rq = parent->my_q;
185
186         rt_se->my_q = rt_rq;
187         rt_se->parent = parent;
188         INIT_LIST_HEAD(&rt_se->run_list);
189 }
190
191 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
192 {
193         struct rt_rq *rt_rq;
194         struct sched_rt_entity *rt_se;
195         int i;
196
197         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
198         if (!tg->rt_rq)
199                 goto err;
200         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
201         if (!tg->rt_se)
202                 goto err;
203
204         init_rt_bandwidth(&tg->rt_bandwidth,
205                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
206
207         for_each_possible_cpu(i) {
208                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
209                                      GFP_KERNEL, cpu_to_node(i));
210                 if (!rt_rq)
211                         goto err;
212
213                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
214                                      GFP_KERNEL, cpu_to_node(i));
215                 if (!rt_se)
216                         goto err_free_rq;
217
218                 init_rt_rq(rt_rq);
219                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
220                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
221         }
222
223         return 1;
224
225 err_free_rq:
226         kfree(rt_rq);
227 err:
228         return 0;
229 }
230
231 #else /* CONFIG_RT_GROUP_SCHED */
232
233 #define rt_entity_is_task(rt_se) (1)
234
235 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
236 {
237         return container_of(rt_se, struct task_struct, rt);
238 }
239
240 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
241 {
242         return container_of(rt_rq, struct rq, rt);
243 }
244
245 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
246 {
247         struct task_struct *p = rt_task_of(rt_se);
248
249         return task_rq(p);
250 }
251
252 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
253 {
254         struct rq *rq = rq_of_rt_se(rt_se);
255
256         return &rq->rt;
257 }
258
259 void unregister_rt_sched_group(struct task_group *tg) { }
260
261 void free_rt_sched_group(struct task_group *tg) { }
262
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265         return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268
269 #ifdef CONFIG_SMP
270
271 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
272 {
273         /* Try to pull RT tasks here if we lower this rq's prio */
274         return rq->online && rq->rt.highest_prio.curr > prev->prio;
275 }
276
277 static inline int rt_overloaded(struct rq *rq)
278 {
279         return atomic_read(&rq->rd->rto_count);
280 }
281
282 static inline void rt_set_overload(struct rq *rq)
283 {
284         if (!rq->online)
285                 return;
286
287         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
288         /*
289          * Make sure the mask is visible before we set
290          * the overload count. That is checked to determine
291          * if we should look at the mask. It would be a shame
292          * if we looked at the mask, but the mask was not
293          * updated yet.
294          *
295          * Matched by the barrier in pull_rt_task().
296          */
297         smp_wmb();
298         atomic_inc(&rq->rd->rto_count);
299 }
300
301 static inline void rt_clear_overload(struct rq *rq)
302 {
303         if (!rq->online)
304                 return;
305
306         /* the order here really doesn't matter */
307         atomic_dec(&rq->rd->rto_count);
308         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
309 }
310
311 static void update_rt_migration(struct rt_rq *rt_rq)
312 {
313         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
314                 if (!rt_rq->overloaded) {
315                         rt_set_overload(rq_of_rt_rq(rt_rq));
316                         rt_rq->overloaded = 1;
317                 }
318         } else if (rt_rq->overloaded) {
319                 rt_clear_overload(rq_of_rt_rq(rt_rq));
320                 rt_rq->overloaded = 0;
321         }
322 }
323
324 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
325 {
326         struct task_struct *p;
327
328         if (!rt_entity_is_task(rt_se))
329                 return;
330
331         p = rt_task_of(rt_se);
332         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
333
334         rt_rq->rt_nr_total++;
335         if (p->nr_cpus_allowed > 1)
336                 rt_rq->rt_nr_migratory++;
337
338         update_rt_migration(rt_rq);
339 }
340
341 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
342 {
343         struct task_struct *p;
344
345         if (!rt_entity_is_task(rt_se))
346                 return;
347
348         p = rt_task_of(rt_se);
349         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
350
351         rt_rq->rt_nr_total--;
352         if (p->nr_cpus_allowed > 1)
353                 rt_rq->rt_nr_migratory--;
354
355         update_rt_migration(rt_rq);
356 }
357
358 static inline int has_pushable_tasks(struct rq *rq)
359 {
360         return !plist_head_empty(&rq->rt.pushable_tasks);
361 }
362
363 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
364 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
365
366 static void push_rt_tasks(struct rq *);
367 static void pull_rt_task(struct rq *);
368
369 static inline void rt_queue_push_tasks(struct rq *rq)
370 {
371         if (!has_pushable_tasks(rq))
372                 return;
373
374         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
375 }
376
377 static inline void rt_queue_pull_task(struct rq *rq)
378 {
379         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
380 }
381
382 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
383 {
384         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385         plist_node_init(&p->pushable_tasks, p->prio);
386         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
387
388         /* Update the highest prio pushable task */
389         if (p->prio < rq->rt.highest_prio.next)
390                 rq->rt.highest_prio.next = p->prio;
391 }
392
393 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
394 {
395         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
396
397         /* Update the new highest prio pushable task */
398         if (has_pushable_tasks(rq)) {
399                 p = plist_first_entry(&rq->rt.pushable_tasks,
400                                       struct task_struct, pushable_tasks);
401                 rq->rt.highest_prio.next = p->prio;
402         } else {
403                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
404         }
405 }
406
407 #else
408
409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412
413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416
417 static inline
418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline
423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437         return rt_se->on_rq;
438 }
439
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443  * settings.
444  *
445  * This check is only important for heterogeneous systems where uclamp_min value
446  * is higher than the capacity of a @cpu. For non-heterogeneous system this
447  * function will always return true.
448  *
449  * The function will return true if the capacity of the @cpu is >= the
450  * uclamp_min and false otherwise.
451  *
452  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453  * > uclamp_max.
454  */
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457         unsigned int min_cap;
458         unsigned int max_cap;
459         unsigned int cpu_cap;
460
461         /* Only heterogeneous systems can benefit from this check */
462         if (!static_branch_unlikely(&sched_asym_cpucapacity))
463                 return true;
464
465         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468         cpu_cap = capacity_orig_of(cpu);
469
470         return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475         return true;
476 }
477 #endif
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483         if (!rt_rq->tg)
484                 return RUNTIME_INF;
485
486         return rt_rq->rt_runtime;
487 }
488
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493
494 typedef struct task_group *rt_rq_iter_t;
495
496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498         do {
499                 tg = list_entry_rcu(tg->list.next,
500                         typeof(struct task_group), list);
501         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502
503         if (&tg->list == &task_groups)
504                 tg = NULL;
505
506         return tg;
507 }
508
509 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
510         for (iter = container_of(&task_groups, typeof(*iter), list);    \
511                 (iter = next_task_group(iter)) &&                       \
512                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
513
514 #define for_each_sched_rt_entity(rt_se) \
515         for (; rt_se; rt_se = rt_se->parent)
516
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519         return rt_se->my_q;
520 }
521
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528         struct rq *rq = rq_of_rt_rq(rt_rq);
529         struct sched_rt_entity *rt_se;
530
531         int cpu = cpu_of(rq);
532
533         rt_se = rt_rq->tg->rt_se[cpu];
534
535         if (rt_rq->rt_nr_running) {
536                 if (!rt_se)
537                         enqueue_top_rt_rq(rt_rq);
538                 else if (!on_rt_rq(rt_se))
539                         enqueue_rt_entity(rt_se, 0);
540
541                 if (rt_rq->highest_prio.curr < curr->prio)
542                         resched_curr(rq);
543         }
544 }
545
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548         struct sched_rt_entity *rt_se;
549         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550
551         rt_se = rt_rq->tg->rt_se[cpu];
552
553         if (!rt_se) {
554                 dequeue_top_rt_rq(rt_rq);
555                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557         }
558         else if (on_rt_rq(rt_se))
559                 dequeue_rt_entity(rt_se, 0);
560 }
561
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569         struct rt_rq *rt_rq = group_rt_rq(rt_se);
570         struct task_struct *p;
571
572         if (rt_rq)
573                 return !!rt_rq->rt_nr_boosted;
574
575         p = rt_task_of(rt_se);
576         return p->prio != p->normal_prio;
577 }
578
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582         return this_rq()->rd->span;
583 }
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587         return cpu_online_mask;
588 }
589 #endif
590
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599         return &rt_rq->tg->rt_bandwidth;
600 }
601
602 #else /* !CONFIG_RT_GROUP_SCHED */
603
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606         return rt_rq->rt_runtime;
607 }
608
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611         return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613
614 typedef struct rt_rq *rt_rq_iter_t;
615
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618
619 #define for_each_sched_rt_entity(rt_se) \
620         for (; rt_se; rt_se = NULL)
621
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624         return NULL;
625 }
626
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629         struct rq *rq = rq_of_rt_rq(rt_rq);
630
631         if (!rt_rq->rt_nr_running)
632                 return;
633
634         enqueue_top_rt_rq(rt_rq);
635         resched_curr(rq);
636 }
637
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640         dequeue_top_rt_rq(rt_rq);
641 }
642
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645         return rt_rq->rt_throttled;
646 }
647
648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650         return cpu_online_mask;
651 }
652
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656         return &cpu_rq(cpu)->rt;
657 }
658
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661         return &def_rt_bandwidth;
662 }
663
664 #endif /* CONFIG_RT_GROUP_SCHED */
665
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669
670         return (hrtimer_active(&rt_b->rt_period_timer) ||
671                 rt_rq->rt_time < rt_b->rt_runtime);
672 }
673
674 #ifdef CONFIG_SMP
675 /*
676  * We ran out of runtime, see if we can borrow some from our neighbours.
677  */
678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682         int i, weight;
683         u64 rt_period;
684
685         weight = cpumask_weight(rd->span);
686
687         raw_spin_lock(&rt_b->rt_runtime_lock);
688         rt_period = ktime_to_ns(rt_b->rt_period);
689         for_each_cpu(i, rd->span) {
690                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691                 s64 diff;
692
693                 if (iter == rt_rq)
694                         continue;
695
696                 raw_spin_lock(&iter->rt_runtime_lock);
697                 /*
698                  * Either all rqs have inf runtime and there's nothing to steal
699                  * or __disable_runtime() below sets a specific rq to inf to
700                  * indicate its been disabled and disallow stealing.
701                  */
702                 if (iter->rt_runtime == RUNTIME_INF)
703                         goto next;
704
705                 /*
706                  * From runqueues with spare time, take 1/n part of their
707                  * spare time, but no more than our period.
708                  */
709                 diff = iter->rt_runtime - iter->rt_time;
710                 if (diff > 0) {
711                         diff = div_u64((u64)diff, weight);
712                         if (rt_rq->rt_runtime + diff > rt_period)
713                                 diff = rt_period - rt_rq->rt_runtime;
714                         iter->rt_runtime -= diff;
715                         rt_rq->rt_runtime += diff;
716                         if (rt_rq->rt_runtime == rt_period) {
717                                 raw_spin_unlock(&iter->rt_runtime_lock);
718                                 break;
719                         }
720                 }
721 next:
722                 raw_spin_unlock(&iter->rt_runtime_lock);
723         }
724         raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726
727 /*
728  * Ensure this RQ takes back all the runtime it lend to its neighbours.
729  */
730 static void __disable_runtime(struct rq *rq)
731 {
732         struct root_domain *rd = rq->rd;
733         rt_rq_iter_t iter;
734         struct rt_rq *rt_rq;
735
736         if (unlikely(!scheduler_running))
737                 return;
738
739         for_each_rt_rq(rt_rq, iter, rq) {
740                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741                 s64 want;
742                 int i;
743
744                 raw_spin_lock(&rt_b->rt_runtime_lock);
745                 raw_spin_lock(&rt_rq->rt_runtime_lock);
746                 /*
747                  * Either we're all inf and nobody needs to borrow, or we're
748                  * already disabled and thus have nothing to do, or we have
749                  * exactly the right amount of runtime to take out.
750                  */
751                 if (rt_rq->rt_runtime == RUNTIME_INF ||
752                                 rt_rq->rt_runtime == rt_b->rt_runtime)
753                         goto balanced;
754                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
755
756                 /*
757                  * Calculate the difference between what we started out with
758                  * and what we current have, that's the amount of runtime
759                  * we lend and now have to reclaim.
760                  */
761                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
762
763                 /*
764                  * Greedy reclaim, take back as much as we can.
765                  */
766                 for_each_cpu(i, rd->span) {
767                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768                         s64 diff;
769
770                         /*
771                          * Can't reclaim from ourselves or disabled runqueues.
772                          */
773                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774                                 continue;
775
776                         raw_spin_lock(&iter->rt_runtime_lock);
777                         if (want > 0) {
778                                 diff = min_t(s64, iter->rt_runtime, want);
779                                 iter->rt_runtime -= diff;
780                                 want -= diff;
781                         } else {
782                                 iter->rt_runtime -= want;
783                                 want -= want;
784                         }
785                         raw_spin_unlock(&iter->rt_runtime_lock);
786
787                         if (!want)
788                                 break;
789                 }
790
791                 raw_spin_lock(&rt_rq->rt_runtime_lock);
792                 /*
793                  * We cannot be left wanting - that would mean some runtime
794                  * leaked out of the system.
795                  */
796                 BUG_ON(want);
797 balanced:
798                 /*
799                  * Disable all the borrow logic by pretending we have inf
800                  * runtime - in which case borrowing doesn't make sense.
801                  */
802                 rt_rq->rt_runtime = RUNTIME_INF;
803                 rt_rq->rt_throttled = 0;
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805                 raw_spin_unlock(&rt_b->rt_runtime_lock);
806
807                 /* Make rt_rq available for pick_next_task() */
808                 sched_rt_rq_enqueue(rt_rq);
809         }
810 }
811
812 static void __enable_runtime(struct rq *rq)
813 {
814         rt_rq_iter_t iter;
815         struct rt_rq *rt_rq;
816
817         if (unlikely(!scheduler_running))
818                 return;
819
820         /*
821          * Reset each runqueue's bandwidth settings
822          */
823         for_each_rt_rq(rt_rq, iter, rq) {
824                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825
826                 raw_spin_lock(&rt_b->rt_runtime_lock);
827                 raw_spin_lock(&rt_rq->rt_runtime_lock);
828                 rt_rq->rt_runtime = rt_b->rt_runtime;
829                 rt_rq->rt_time = 0;
830                 rt_rq->rt_throttled = 0;
831                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832                 raw_spin_unlock(&rt_b->rt_runtime_lock);
833         }
834 }
835
836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838         if (!sched_feat(RT_RUNTIME_SHARE))
839                 return;
840
841         if (rt_rq->rt_time > rt_rq->rt_runtime) {
842                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
843                 do_balance_runtime(rt_rq);
844                 raw_spin_lock(&rt_rq->rt_runtime_lock);
845         }
846 }
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853         int i, idle = 1, throttled = 0;
854         const struct cpumask *span;
855
856         span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858         /*
859          * FIXME: isolated CPUs should really leave the root task group,
860          * whether they are isolcpus or were isolated via cpusets, lest
861          * the timer run on a CPU which does not service all runqueues,
862          * potentially leaving other CPUs indefinitely throttled.  If
863          * isolation is really required, the user will turn the throttle
864          * off to kill the perturbations it causes anyway.  Meanwhile,
865          * this maintains functionality for boot and/or troubleshooting.
866          */
867         if (rt_b == &root_task_group.rt_bandwidth)
868                 span = cpu_online_mask;
869 #endif
870         for_each_cpu(i, span) {
871                 int enqueue = 0;
872                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873                 struct rq *rq = rq_of_rt_rq(rt_rq);
874                 int skip;
875
876                 /*
877                  * When span == cpu_online_mask, taking each rq->lock
878                  * can be time-consuming. Try to avoid it when possible.
879                  */
880                 raw_spin_lock(&rt_rq->rt_runtime_lock);
881                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882                         rt_rq->rt_runtime = rt_b->rt_runtime;
883                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
885                 if (skip)
886                         continue;
887
888                 raw_spin_rq_lock(rq);
889                 update_rq_clock(rq);
890
891                 if (rt_rq->rt_time) {
892                         u64 runtime;
893
894                         raw_spin_lock(&rt_rq->rt_runtime_lock);
895                         if (rt_rq->rt_throttled)
896                                 balance_runtime(rt_rq);
897                         runtime = rt_rq->rt_runtime;
898                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900                                 rt_rq->rt_throttled = 0;
901                                 enqueue = 1;
902
903                                 /*
904                                  * When we're idle and a woken (rt) task is
905                                  * throttled check_preempt_curr() will set
906                                  * skip_update and the time between the wakeup
907                                  * and this unthrottle will get accounted as
908                                  * 'runtime'.
909                                  */
910                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911                                         rq_clock_cancel_skipupdate(rq);
912                         }
913                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
914                                 idle = 0;
915                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
916                 } else if (rt_rq->rt_nr_running) {
917                         idle = 0;
918                         if (!rt_rq_throttled(rt_rq))
919                                 enqueue = 1;
920                 }
921                 if (rt_rq->rt_throttled)
922                         throttled = 1;
923
924                 if (enqueue)
925                         sched_rt_rq_enqueue(rt_rq);
926                 raw_spin_rq_unlock(rq);
927         }
928
929         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930                 return 1;
931
932         return idle;
933 }
934
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938         struct rt_rq *rt_rq = group_rt_rq(rt_se);
939
940         if (rt_rq)
941                 return rt_rq->highest_prio.curr;
942 #endif
943
944         return rt_task_of(rt_se)->prio;
945 }
946
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949         u64 runtime = sched_rt_runtime(rt_rq);
950
951         if (rt_rq->rt_throttled)
952                 return rt_rq_throttled(rt_rq);
953
954         if (runtime >= sched_rt_period(rt_rq))
955                 return 0;
956
957         balance_runtime(rt_rq);
958         runtime = sched_rt_runtime(rt_rq);
959         if (runtime == RUNTIME_INF)
960                 return 0;
961
962         if (rt_rq->rt_time > runtime) {
963                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964
965                 /*
966                  * Don't actually throttle groups that have no runtime assigned
967                  * but accrue some time due to boosting.
968                  */
969                 if (likely(rt_b->rt_runtime)) {
970                         rt_rq->rt_throttled = 1;
971                         printk_deferred_once("sched: RT throttling activated\n");
972                 } else {
973                         /*
974                          * In case we did anyway, make it go away,
975                          * replenishment is a joke, since it will replenish us
976                          * with exactly 0 ns.
977                          */
978                         rt_rq->rt_time = 0;
979                 }
980
981                 if (rt_rq_throttled(rt_rq)) {
982                         sched_rt_rq_dequeue(rt_rq);
983                         return 1;
984                 }
985         }
986
987         return 0;
988 }
989
990 /*
991  * Update the current task's runtime statistics. Skip current tasks that
992  * are not in our scheduling class.
993  */
994 static void update_curr_rt(struct rq *rq)
995 {
996         struct task_struct *curr = rq->curr;
997         struct sched_rt_entity *rt_se = &curr->rt;
998         u64 delta_exec;
999         u64 now;
1000
1001         if (curr->sched_class != &rt_sched_class)
1002                 return;
1003
1004         now = rq_clock_task(rq);
1005         delta_exec = now - curr->se.exec_start;
1006         if (unlikely((s64)delta_exec <= 0))
1007                 return;
1008
1009         schedstat_set(curr->stats.exec_max,
1010                       max(curr->stats.exec_max, delta_exec));
1011
1012         trace_sched_stat_runtime(curr, delta_exec, 0);
1013
1014         curr->se.sum_exec_runtime += delta_exec;
1015         account_group_exec_runtime(curr, delta_exec);
1016
1017         curr->se.exec_start = now;
1018         cgroup_account_cputime(curr, delta_exec);
1019
1020         if (!rt_bandwidth_enabled())
1021                 return;
1022
1023         for_each_sched_rt_entity(rt_se) {
1024                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1025                 int exceeded;
1026
1027                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1028                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1029                         rt_rq->rt_time += delta_exec;
1030                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1031                         if (exceeded)
1032                                 resched_curr(rq);
1033                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1034                         if (exceeded)
1035                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1036                 }
1037         }
1038 }
1039
1040 static void
1041 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1042 {
1043         struct rq *rq = rq_of_rt_rq(rt_rq);
1044
1045         BUG_ON(&rq->rt != rt_rq);
1046
1047         if (!rt_rq->rt_queued)
1048                 return;
1049
1050         BUG_ON(!rq->nr_running);
1051
1052         sub_nr_running(rq, rt_rq->rt_nr_running);
1053         rt_rq->rt_queued = 0;
1054
1055 }
1056
1057 static void
1058 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1059 {
1060         struct rq *rq = rq_of_rt_rq(rt_rq);
1061
1062         BUG_ON(&rq->rt != rt_rq);
1063
1064         if (rt_rq->rt_queued)
1065                 return;
1066
1067         if (rt_rq_throttled(rt_rq))
1068                 return;
1069
1070         if (rt_rq->rt_nr_running) {
1071                 add_nr_running(rq, rt_rq->rt_nr_running);
1072                 rt_rq->rt_queued = 1;
1073         }
1074
1075         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1076         cpufreq_update_util(rq, 0);
1077 }
1078
1079 #if defined CONFIG_SMP
1080
1081 static void
1082 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1083 {
1084         struct rq *rq = rq_of_rt_rq(rt_rq);
1085
1086 #ifdef CONFIG_RT_GROUP_SCHED
1087         /*
1088          * Change rq's cpupri only if rt_rq is the top queue.
1089          */
1090         if (&rq->rt != rt_rq)
1091                 return;
1092 #endif
1093         if (rq->online && prio < prev_prio)
1094                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1095 }
1096
1097 static void
1098 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1099 {
1100         struct rq *rq = rq_of_rt_rq(rt_rq);
1101
1102 #ifdef CONFIG_RT_GROUP_SCHED
1103         /*
1104          * Change rq's cpupri only if rt_rq is the top queue.
1105          */
1106         if (&rq->rt != rt_rq)
1107                 return;
1108 #endif
1109         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1110                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1111 }
1112
1113 #else /* CONFIG_SMP */
1114
1115 static inline
1116 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1117 static inline
1118 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1119
1120 #endif /* CONFIG_SMP */
1121
1122 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1123 static void
1124 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1125 {
1126         int prev_prio = rt_rq->highest_prio.curr;
1127
1128         if (prio < prev_prio)
1129                 rt_rq->highest_prio.curr = prio;
1130
1131         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1132 }
1133
1134 static void
1135 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1136 {
1137         int prev_prio = rt_rq->highest_prio.curr;
1138
1139         if (rt_rq->rt_nr_running) {
1140
1141                 WARN_ON(prio < prev_prio);
1142
1143                 /*
1144                  * This may have been our highest task, and therefore
1145                  * we may have some recomputation to do
1146                  */
1147                 if (prio == prev_prio) {
1148                         struct rt_prio_array *array = &rt_rq->active;
1149
1150                         rt_rq->highest_prio.curr =
1151                                 sched_find_first_bit(array->bitmap);
1152                 }
1153
1154         } else {
1155                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1156         }
1157
1158         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1159 }
1160
1161 #else
1162
1163 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1164 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1165
1166 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1167
1168 #ifdef CONFIG_RT_GROUP_SCHED
1169
1170 static void
1171 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172 {
1173         if (rt_se_boosted(rt_se))
1174                 rt_rq->rt_nr_boosted++;
1175
1176         if (rt_rq->tg)
1177                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1178 }
1179
1180 static void
1181 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 {
1183         if (rt_se_boosted(rt_se))
1184                 rt_rq->rt_nr_boosted--;
1185
1186         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1187 }
1188
1189 #else /* CONFIG_RT_GROUP_SCHED */
1190
1191 static void
1192 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1193 {
1194         start_rt_bandwidth(&def_rt_bandwidth);
1195 }
1196
1197 static inline
1198 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1199
1200 #endif /* CONFIG_RT_GROUP_SCHED */
1201
1202 static inline
1203 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1204 {
1205         struct rt_rq *group_rq = group_rt_rq(rt_se);
1206
1207         if (group_rq)
1208                 return group_rq->rt_nr_running;
1209         else
1210                 return 1;
1211 }
1212
1213 static inline
1214 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1215 {
1216         struct rt_rq *group_rq = group_rt_rq(rt_se);
1217         struct task_struct *tsk;
1218
1219         if (group_rq)
1220                 return group_rq->rr_nr_running;
1221
1222         tsk = rt_task_of(rt_se);
1223
1224         return (tsk->policy == SCHED_RR) ? 1 : 0;
1225 }
1226
1227 static inline
1228 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229 {
1230         int prio = rt_se_prio(rt_se);
1231
1232         WARN_ON(!rt_prio(prio));
1233         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1234         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1235
1236         inc_rt_prio(rt_rq, prio);
1237         inc_rt_migration(rt_se, rt_rq);
1238         inc_rt_group(rt_se, rt_rq);
1239 }
1240
1241 static inline
1242 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1243 {
1244         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1245         WARN_ON(!rt_rq->rt_nr_running);
1246         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1247         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1248
1249         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1250         dec_rt_migration(rt_se, rt_rq);
1251         dec_rt_group(rt_se, rt_rq);
1252 }
1253
1254 /*
1255  * Change rt_se->run_list location unless SAVE && !MOVE
1256  *
1257  * assumes ENQUEUE/DEQUEUE flags match
1258  */
1259 static inline bool move_entity(unsigned int flags)
1260 {
1261         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1262                 return false;
1263
1264         return true;
1265 }
1266
1267 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1268 {
1269         list_del_init(&rt_se->run_list);
1270
1271         if (list_empty(array->queue + rt_se_prio(rt_se)))
1272                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1273
1274         rt_se->on_list = 0;
1275 }
1276
1277 static inline struct sched_statistics *
1278 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1279 {
1280 #ifdef CONFIG_RT_GROUP_SCHED
1281         /* schedstats is not supported for rt group. */
1282         if (!rt_entity_is_task(rt_se))
1283                 return NULL;
1284 #endif
1285
1286         return &rt_task_of(rt_se)->stats;
1287 }
1288
1289 static inline void
1290 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1291 {
1292         struct sched_statistics *stats;
1293         struct task_struct *p = NULL;
1294
1295         if (!schedstat_enabled())
1296                 return;
1297
1298         if (rt_entity_is_task(rt_se))
1299                 p = rt_task_of(rt_se);
1300
1301         stats = __schedstats_from_rt_se(rt_se);
1302         if (!stats)
1303                 return;
1304
1305         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1306 }
1307
1308 static inline void
1309 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1310 {
1311         struct sched_statistics *stats;
1312         struct task_struct *p = NULL;
1313
1314         if (!schedstat_enabled())
1315                 return;
1316
1317         if (rt_entity_is_task(rt_se))
1318                 p = rt_task_of(rt_se);
1319
1320         stats = __schedstats_from_rt_se(rt_se);
1321         if (!stats)
1322                 return;
1323
1324         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1325 }
1326
1327 static inline void
1328 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1329                         int flags)
1330 {
1331         if (!schedstat_enabled())
1332                 return;
1333
1334         if (flags & ENQUEUE_WAKEUP)
1335                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1336 }
1337
1338 static inline void
1339 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1340 {
1341         struct sched_statistics *stats;
1342         struct task_struct *p = NULL;
1343
1344         if (!schedstat_enabled())
1345                 return;
1346
1347         if (rt_entity_is_task(rt_se))
1348                 p = rt_task_of(rt_se);
1349
1350         stats = __schedstats_from_rt_se(rt_se);
1351         if (!stats)
1352                 return;
1353
1354         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1355 }
1356
1357 static inline void
1358 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1359                         int flags)
1360 {
1361         struct task_struct *p = NULL;
1362
1363         if (!schedstat_enabled())
1364                 return;
1365
1366         if (rt_entity_is_task(rt_se))
1367                 p = rt_task_of(rt_se);
1368
1369         if ((flags & DEQUEUE_SLEEP) && p) {
1370                 unsigned int state;
1371
1372                 state = READ_ONCE(p->__state);
1373                 if (state & TASK_INTERRUPTIBLE)
1374                         __schedstat_set(p->stats.sleep_start,
1375                                         rq_clock(rq_of_rt_rq(rt_rq)));
1376
1377                 if (state & TASK_UNINTERRUPTIBLE)
1378                         __schedstat_set(p->stats.block_start,
1379                                         rq_clock(rq_of_rt_rq(rt_rq)));
1380         }
1381 }
1382
1383 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1384 {
1385         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1386         struct rt_prio_array *array = &rt_rq->active;
1387         struct rt_rq *group_rq = group_rt_rq(rt_se);
1388         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1389
1390         /*
1391          * Don't enqueue the group if its throttled, or when empty.
1392          * The latter is a consequence of the former when a child group
1393          * get throttled and the current group doesn't have any other
1394          * active members.
1395          */
1396         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1397                 if (rt_se->on_list)
1398                         __delist_rt_entity(rt_se, array);
1399                 return;
1400         }
1401
1402         if (move_entity(flags)) {
1403                 WARN_ON_ONCE(rt_se->on_list);
1404                 if (flags & ENQUEUE_HEAD)
1405                         list_add(&rt_se->run_list, queue);
1406                 else
1407                         list_add_tail(&rt_se->run_list, queue);
1408
1409                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1410                 rt_se->on_list = 1;
1411         }
1412         rt_se->on_rq = 1;
1413
1414         inc_rt_tasks(rt_se, rt_rq);
1415 }
1416
1417 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1418 {
1419         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1420         struct rt_prio_array *array = &rt_rq->active;
1421
1422         if (move_entity(flags)) {
1423                 WARN_ON_ONCE(!rt_se->on_list);
1424                 __delist_rt_entity(rt_se, array);
1425         }
1426         rt_se->on_rq = 0;
1427
1428         dec_rt_tasks(rt_se, rt_rq);
1429 }
1430
1431 /*
1432  * Because the prio of an upper entry depends on the lower
1433  * entries, we must remove entries top - down.
1434  */
1435 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1436 {
1437         struct sched_rt_entity *back = NULL;
1438
1439         for_each_sched_rt_entity(rt_se) {
1440                 rt_se->back = back;
1441                 back = rt_se;
1442         }
1443
1444         dequeue_top_rt_rq(rt_rq_of_se(back));
1445
1446         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1447                 if (on_rt_rq(rt_se))
1448                         __dequeue_rt_entity(rt_se, flags);
1449         }
1450 }
1451
1452 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1453 {
1454         struct rq *rq = rq_of_rt_se(rt_se);
1455
1456         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1457
1458         dequeue_rt_stack(rt_se, flags);
1459         for_each_sched_rt_entity(rt_se)
1460                 __enqueue_rt_entity(rt_se, flags);
1461         enqueue_top_rt_rq(&rq->rt);
1462 }
1463
1464 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465 {
1466         struct rq *rq = rq_of_rt_se(rt_se);
1467
1468         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1469
1470         dequeue_rt_stack(rt_se, flags);
1471
1472         for_each_sched_rt_entity(rt_se) {
1473                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1474
1475                 if (rt_rq && rt_rq->rt_nr_running)
1476                         __enqueue_rt_entity(rt_se, flags);
1477         }
1478         enqueue_top_rt_rq(&rq->rt);
1479 }
1480
1481 /*
1482  * Adding/removing a task to/from a priority array:
1483  */
1484 static void
1485 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1486 {
1487         struct sched_rt_entity *rt_se = &p->rt;
1488
1489         if (flags & ENQUEUE_WAKEUP)
1490                 rt_se->timeout = 0;
1491
1492         check_schedstat_required();
1493         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1494
1495         enqueue_rt_entity(rt_se, flags);
1496
1497         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1498                 enqueue_pushable_task(rq, p);
1499 }
1500
1501 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1502 {
1503         struct sched_rt_entity *rt_se = &p->rt;
1504
1505         update_curr_rt(rq);
1506         dequeue_rt_entity(rt_se, flags);
1507
1508         dequeue_pushable_task(rq, p);
1509 }
1510
1511 /*
1512  * Put task to the head or the end of the run list without the overhead of
1513  * dequeue followed by enqueue.
1514  */
1515 static void
1516 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1517 {
1518         if (on_rt_rq(rt_se)) {
1519                 struct rt_prio_array *array = &rt_rq->active;
1520                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1521
1522                 if (head)
1523                         list_move(&rt_se->run_list, queue);
1524                 else
1525                         list_move_tail(&rt_se->run_list, queue);
1526         }
1527 }
1528
1529 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1530 {
1531         struct sched_rt_entity *rt_se = &p->rt;
1532         struct rt_rq *rt_rq;
1533
1534         for_each_sched_rt_entity(rt_se) {
1535                 rt_rq = rt_rq_of_se(rt_se);
1536                 requeue_rt_entity(rt_rq, rt_se, head);
1537         }
1538 }
1539
1540 static void yield_task_rt(struct rq *rq)
1541 {
1542         requeue_task_rt(rq, rq->curr, 0);
1543 }
1544
1545 #ifdef CONFIG_SMP
1546 static int find_lowest_rq(struct task_struct *task);
1547
1548 static int
1549 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1550 {
1551         struct task_struct *curr;
1552         struct rq *rq;
1553         bool test;
1554
1555         /* For anything but wake ups, just return the task_cpu */
1556         if (!(flags & (WF_TTWU | WF_FORK)))
1557                 goto out;
1558
1559         rq = cpu_rq(cpu);
1560
1561         rcu_read_lock();
1562         curr = READ_ONCE(rq->curr); /* unlocked access */
1563
1564         /*
1565          * If the current task on @p's runqueue is an RT task, then
1566          * try to see if we can wake this RT task up on another
1567          * runqueue. Otherwise simply start this RT task
1568          * on its current runqueue.
1569          *
1570          * We want to avoid overloading runqueues. If the woken
1571          * task is a higher priority, then it will stay on this CPU
1572          * and the lower prio task should be moved to another CPU.
1573          * Even though this will probably make the lower prio task
1574          * lose its cache, we do not want to bounce a higher task
1575          * around just because it gave up its CPU, perhaps for a
1576          * lock?
1577          *
1578          * For equal prio tasks, we just let the scheduler sort it out.
1579          *
1580          * Otherwise, just let it ride on the affined RQ and the
1581          * post-schedule router will push the preempted task away
1582          *
1583          * This test is optimistic, if we get it wrong the load-balancer
1584          * will have to sort it out.
1585          *
1586          * We take into account the capacity of the CPU to ensure it fits the
1587          * requirement of the task - which is only important on heterogeneous
1588          * systems like big.LITTLE.
1589          */
1590         test = curr &&
1591                unlikely(rt_task(curr)) &&
1592                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1593
1594         if (test || !rt_task_fits_capacity(p, cpu)) {
1595                 int target = find_lowest_rq(p);
1596
1597                 /*
1598                  * Bail out if we were forcing a migration to find a better
1599                  * fitting CPU but our search failed.
1600                  */
1601                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1602                         goto out_unlock;
1603
1604                 /*
1605                  * Don't bother moving it if the destination CPU is
1606                  * not running a lower priority task.
1607                  */
1608                 if (target != -1 &&
1609                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1610                         cpu = target;
1611         }
1612
1613 out_unlock:
1614         rcu_read_unlock();
1615
1616 out:
1617         return cpu;
1618 }
1619
1620 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1621 {
1622         /*
1623          * Current can't be migrated, useless to reschedule,
1624          * let's hope p can move out.
1625          */
1626         if (rq->curr->nr_cpus_allowed == 1 ||
1627             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1628                 return;
1629
1630         /*
1631          * p is migratable, so let's not schedule it and
1632          * see if it is pushed or pulled somewhere else.
1633          */
1634         if (p->nr_cpus_allowed != 1 &&
1635             cpupri_find(&rq->rd->cpupri, p, NULL))
1636                 return;
1637
1638         /*
1639          * There appear to be other CPUs that can accept
1640          * the current task but none can run 'p', so lets reschedule
1641          * to try and push the current task away:
1642          */
1643         requeue_task_rt(rq, p, 1);
1644         resched_curr(rq);
1645 }
1646
1647 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1648 {
1649         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1650                 /*
1651                  * This is OK, because current is on_cpu, which avoids it being
1652                  * picked for load-balance and preemption/IRQs are still
1653                  * disabled avoiding further scheduler activity on it and we've
1654                  * not yet started the picking loop.
1655                  */
1656                 rq_unpin_lock(rq, rf);
1657                 pull_rt_task(rq);
1658                 rq_repin_lock(rq, rf);
1659         }
1660
1661         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1662 }
1663 #endif /* CONFIG_SMP */
1664
1665 /*
1666  * Preempt the current task with a newly woken task if needed:
1667  */
1668 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1669 {
1670         if (p->prio < rq->curr->prio) {
1671                 resched_curr(rq);
1672                 return;
1673         }
1674
1675 #ifdef CONFIG_SMP
1676         /*
1677          * If:
1678          *
1679          * - the newly woken task is of equal priority to the current task
1680          * - the newly woken task is non-migratable while current is migratable
1681          * - current will be preempted on the next reschedule
1682          *
1683          * we should check to see if current can readily move to a different
1684          * cpu.  If so, we will reschedule to allow the push logic to try
1685          * to move current somewhere else, making room for our non-migratable
1686          * task.
1687          */
1688         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1689                 check_preempt_equal_prio(rq, p);
1690 #endif
1691 }
1692
1693 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1694 {
1695         struct sched_rt_entity *rt_se = &p->rt;
1696         struct rt_rq *rt_rq = &rq->rt;
1697
1698         p->se.exec_start = rq_clock_task(rq);
1699         if (on_rt_rq(&p->rt))
1700                 update_stats_wait_end_rt(rt_rq, rt_se);
1701
1702         /* The running task is never eligible for pushing */
1703         dequeue_pushable_task(rq, p);
1704
1705         if (!first)
1706                 return;
1707
1708         /*
1709          * If prev task was rt, put_prev_task() has already updated the
1710          * utilization. We only care of the case where we start to schedule a
1711          * rt task
1712          */
1713         if (rq->curr->sched_class != &rt_sched_class)
1714                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1715
1716         rt_queue_push_tasks(rq);
1717 }
1718
1719 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1720 {
1721         struct rt_prio_array *array = &rt_rq->active;
1722         struct sched_rt_entity *next = NULL;
1723         struct list_head *queue;
1724         int idx;
1725
1726         idx = sched_find_first_bit(array->bitmap);
1727         BUG_ON(idx >= MAX_RT_PRIO);
1728
1729         queue = array->queue + idx;
1730         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1731
1732         return next;
1733 }
1734
1735 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1736 {
1737         struct sched_rt_entity *rt_se;
1738         struct rt_rq *rt_rq  = &rq->rt;
1739
1740         do {
1741                 rt_se = pick_next_rt_entity(rt_rq);
1742                 BUG_ON(!rt_se);
1743                 rt_rq = group_rt_rq(rt_se);
1744         } while (rt_rq);
1745
1746         return rt_task_of(rt_se);
1747 }
1748
1749 static struct task_struct *pick_task_rt(struct rq *rq)
1750 {
1751         struct task_struct *p;
1752
1753         if (!sched_rt_runnable(rq))
1754                 return NULL;
1755
1756         p = _pick_next_task_rt(rq);
1757
1758         return p;
1759 }
1760
1761 static struct task_struct *pick_next_task_rt(struct rq *rq)
1762 {
1763         struct task_struct *p = pick_task_rt(rq);
1764
1765         if (p)
1766                 set_next_task_rt(rq, p, true);
1767
1768         return p;
1769 }
1770
1771 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1772 {
1773         struct sched_rt_entity *rt_se = &p->rt;
1774         struct rt_rq *rt_rq = &rq->rt;
1775
1776         if (on_rt_rq(&p->rt))
1777                 update_stats_wait_start_rt(rt_rq, rt_se);
1778
1779         update_curr_rt(rq);
1780
1781         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1782
1783         /*
1784          * The previous task needs to be made eligible for pushing
1785          * if it is still active
1786          */
1787         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1788                 enqueue_pushable_task(rq, p);
1789 }
1790
1791 #ifdef CONFIG_SMP
1792
1793 /* Only try algorithms three times */
1794 #define RT_MAX_TRIES 3
1795
1796 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1797 {
1798         if (!task_running(rq, p) &&
1799             cpumask_test_cpu(cpu, &p->cpus_mask))
1800                 return 1;
1801
1802         return 0;
1803 }
1804
1805 /*
1806  * Return the highest pushable rq's task, which is suitable to be executed
1807  * on the CPU, NULL otherwise
1808  */
1809 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1810 {
1811         struct plist_head *head = &rq->rt.pushable_tasks;
1812         struct task_struct *p;
1813
1814         if (!has_pushable_tasks(rq))
1815                 return NULL;
1816
1817         plist_for_each_entry(p, head, pushable_tasks) {
1818                 if (pick_rt_task(rq, p, cpu))
1819                         return p;
1820         }
1821
1822         return NULL;
1823 }
1824
1825 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1826
1827 static int find_lowest_rq(struct task_struct *task)
1828 {
1829         struct sched_domain *sd;
1830         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1831         int this_cpu = smp_processor_id();
1832         int cpu      = task_cpu(task);
1833         int ret;
1834
1835         /* Make sure the mask is initialized first */
1836         if (unlikely(!lowest_mask))
1837                 return -1;
1838
1839         if (task->nr_cpus_allowed == 1)
1840                 return -1; /* No other targets possible */
1841
1842         /*
1843          * If we're on asym system ensure we consider the different capacities
1844          * of the CPUs when searching for the lowest_mask.
1845          */
1846         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1847
1848                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1849                                           task, lowest_mask,
1850                                           rt_task_fits_capacity);
1851         } else {
1852
1853                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1854                                   task, lowest_mask);
1855         }
1856
1857         if (!ret)
1858                 return -1; /* No targets found */
1859
1860         /*
1861          * At this point we have built a mask of CPUs representing the
1862          * lowest priority tasks in the system.  Now we want to elect
1863          * the best one based on our affinity and topology.
1864          *
1865          * We prioritize the last CPU that the task executed on since
1866          * it is most likely cache-hot in that location.
1867          */
1868         if (cpumask_test_cpu(cpu, lowest_mask))
1869                 return cpu;
1870
1871         /*
1872          * Otherwise, we consult the sched_domains span maps to figure
1873          * out which CPU is logically closest to our hot cache data.
1874          */
1875         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1876                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1877
1878         rcu_read_lock();
1879         for_each_domain(cpu, sd) {
1880                 if (sd->flags & SD_WAKE_AFFINE) {
1881                         int best_cpu;
1882
1883                         /*
1884                          * "this_cpu" is cheaper to preempt than a
1885                          * remote processor.
1886                          */
1887                         if (this_cpu != -1 &&
1888                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1889                                 rcu_read_unlock();
1890                                 return this_cpu;
1891                         }
1892
1893                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1894                                                               sched_domain_span(sd));
1895                         if (best_cpu < nr_cpu_ids) {
1896                                 rcu_read_unlock();
1897                                 return best_cpu;
1898                         }
1899                 }
1900         }
1901         rcu_read_unlock();
1902
1903         /*
1904          * And finally, if there were no matches within the domains
1905          * just give the caller *something* to work with from the compatible
1906          * locations.
1907          */
1908         if (this_cpu != -1)
1909                 return this_cpu;
1910
1911         cpu = cpumask_any_distribute(lowest_mask);
1912         if (cpu < nr_cpu_ids)
1913                 return cpu;
1914
1915         return -1;
1916 }
1917
1918 /* Will lock the rq it finds */
1919 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1920 {
1921         struct rq *lowest_rq = NULL;
1922         int tries;
1923         int cpu;
1924
1925         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1926                 cpu = find_lowest_rq(task);
1927
1928                 if ((cpu == -1) || (cpu == rq->cpu))
1929                         break;
1930
1931                 lowest_rq = cpu_rq(cpu);
1932
1933                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1934                         /*
1935                          * Target rq has tasks of equal or higher priority,
1936                          * retrying does not release any lock and is unlikely
1937                          * to yield a different result.
1938                          */
1939                         lowest_rq = NULL;
1940                         break;
1941                 }
1942
1943                 /* if the prio of this runqueue changed, try again */
1944                 if (double_lock_balance(rq, lowest_rq)) {
1945                         /*
1946                          * We had to unlock the run queue. In
1947                          * the mean time, task could have
1948                          * migrated already or had its affinity changed.
1949                          * Also make sure that it wasn't scheduled on its rq.
1950                          */
1951                         if (unlikely(task_rq(task) != rq ||
1952                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1953                                      task_running(rq, task) ||
1954                                      !rt_task(task) ||
1955                                      !task_on_rq_queued(task))) {
1956
1957                                 double_unlock_balance(rq, lowest_rq);
1958                                 lowest_rq = NULL;
1959                                 break;
1960                         }
1961                 }
1962
1963                 /* If this rq is still suitable use it. */
1964                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1965                         break;
1966
1967                 /* try again */
1968                 double_unlock_balance(rq, lowest_rq);
1969                 lowest_rq = NULL;
1970         }
1971
1972         return lowest_rq;
1973 }
1974
1975 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1976 {
1977         struct task_struct *p;
1978
1979         if (!has_pushable_tasks(rq))
1980                 return NULL;
1981
1982         p = plist_first_entry(&rq->rt.pushable_tasks,
1983                               struct task_struct, pushable_tasks);
1984
1985         BUG_ON(rq->cpu != task_cpu(p));
1986         BUG_ON(task_current(rq, p));
1987         BUG_ON(p->nr_cpus_allowed <= 1);
1988
1989         BUG_ON(!task_on_rq_queued(p));
1990         BUG_ON(!rt_task(p));
1991
1992         return p;
1993 }
1994
1995 /*
1996  * If the current CPU has more than one RT task, see if the non
1997  * running task can migrate over to a CPU that is running a task
1998  * of lesser priority.
1999  */
2000 static int push_rt_task(struct rq *rq, bool pull)
2001 {
2002         struct task_struct *next_task;
2003         struct rq *lowest_rq;
2004         int ret = 0;
2005
2006         if (!rq->rt.overloaded)
2007                 return 0;
2008
2009         next_task = pick_next_pushable_task(rq);
2010         if (!next_task)
2011                 return 0;
2012
2013 retry:
2014         /*
2015          * It's possible that the next_task slipped in of
2016          * higher priority than current. If that's the case
2017          * just reschedule current.
2018          */
2019         if (unlikely(next_task->prio < rq->curr->prio)) {
2020                 resched_curr(rq);
2021                 return 0;
2022         }
2023
2024         if (is_migration_disabled(next_task)) {
2025                 struct task_struct *push_task = NULL;
2026                 int cpu;
2027
2028                 if (!pull || rq->push_busy)
2029                         return 0;
2030
2031                 /*
2032                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2033                  * make sense. Per the above priority check, curr has to
2034                  * be of higher priority than next_task, so no need to
2035                  * reschedule when bailing out.
2036                  *
2037                  * Note that the stoppers are masqueraded as SCHED_FIFO
2038                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2039                  */
2040                 if (rq->curr->sched_class != &rt_sched_class)
2041                         return 0;
2042
2043                 cpu = find_lowest_rq(rq->curr);
2044                 if (cpu == -1 || cpu == rq->cpu)
2045                         return 0;
2046
2047                 /*
2048                  * Given we found a CPU with lower priority than @next_task,
2049                  * therefore it should be running. However we cannot migrate it
2050                  * to this other CPU, instead attempt to push the current
2051                  * running task on this CPU away.
2052                  */
2053                 push_task = get_push_task(rq);
2054                 if (push_task) {
2055                         raw_spin_rq_unlock(rq);
2056                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2057                                             push_task, &rq->push_work);
2058                         raw_spin_rq_lock(rq);
2059                 }
2060
2061                 return 0;
2062         }
2063
2064         if (WARN_ON(next_task == rq->curr))
2065                 return 0;
2066
2067         /* We might release rq lock */
2068         get_task_struct(next_task);
2069
2070         /* find_lock_lowest_rq locks the rq if found */
2071         lowest_rq = find_lock_lowest_rq(next_task, rq);
2072         if (!lowest_rq) {
2073                 struct task_struct *task;
2074                 /*
2075                  * find_lock_lowest_rq releases rq->lock
2076                  * so it is possible that next_task has migrated.
2077                  *
2078                  * We need to make sure that the task is still on the same
2079                  * run-queue and is also still the next task eligible for
2080                  * pushing.
2081                  */
2082                 task = pick_next_pushable_task(rq);
2083                 if (task == next_task) {
2084                         /*
2085                          * The task hasn't migrated, and is still the next
2086                          * eligible task, but we failed to find a run-queue
2087                          * to push it to.  Do not retry in this case, since
2088                          * other CPUs will pull from us when ready.
2089                          */
2090                         goto out;
2091                 }
2092
2093                 if (!task)
2094                         /* No more tasks, just exit */
2095                         goto out;
2096
2097                 /*
2098                  * Something has shifted, try again.
2099                  */
2100                 put_task_struct(next_task);
2101                 next_task = task;
2102                 goto retry;
2103         }
2104
2105         deactivate_task(rq, next_task, 0);
2106         set_task_cpu(next_task, lowest_rq->cpu);
2107         activate_task(lowest_rq, next_task, 0);
2108         resched_curr(lowest_rq);
2109         ret = 1;
2110
2111         double_unlock_balance(rq, lowest_rq);
2112 out:
2113         put_task_struct(next_task);
2114
2115         return ret;
2116 }
2117
2118 static void push_rt_tasks(struct rq *rq)
2119 {
2120         /* push_rt_task will return true if it moved an RT */
2121         while (push_rt_task(rq, false))
2122                 ;
2123 }
2124
2125 #ifdef HAVE_RT_PUSH_IPI
2126
2127 /*
2128  * When a high priority task schedules out from a CPU and a lower priority
2129  * task is scheduled in, a check is made to see if there's any RT tasks
2130  * on other CPUs that are waiting to run because a higher priority RT task
2131  * is currently running on its CPU. In this case, the CPU with multiple RT
2132  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2133  * up that may be able to run one of its non-running queued RT tasks.
2134  *
2135  * All CPUs with overloaded RT tasks need to be notified as there is currently
2136  * no way to know which of these CPUs have the highest priority task waiting
2137  * to run. Instead of trying to take a spinlock on each of these CPUs,
2138  * which has shown to cause large latency when done on machines with many
2139  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2140  * RT tasks waiting to run.
2141  *
2142  * Just sending an IPI to each of the CPUs is also an issue, as on large
2143  * count CPU machines, this can cause an IPI storm on a CPU, especially
2144  * if its the only CPU with multiple RT tasks queued, and a large number
2145  * of CPUs scheduling a lower priority task at the same time.
2146  *
2147  * Each root domain has its own irq work function that can iterate over
2148  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2149  * task must be checked if there's one or many CPUs that are lowering
2150  * their priority, there's a single irq work iterator that will try to
2151  * push off RT tasks that are waiting to run.
2152  *
2153  * When a CPU schedules a lower priority task, it will kick off the
2154  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2155  * As it only takes the first CPU that schedules a lower priority task
2156  * to start the process, the rto_start variable is incremented and if
2157  * the atomic result is one, then that CPU will try to take the rto_lock.
2158  * This prevents high contention on the lock as the process handles all
2159  * CPUs scheduling lower priority tasks.
2160  *
2161  * All CPUs that are scheduling a lower priority task will increment the
2162  * rt_loop_next variable. This will make sure that the irq work iterator
2163  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2164  * priority task, even if the iterator is in the middle of a scan. Incrementing
2165  * the rt_loop_next will cause the iterator to perform another scan.
2166  *
2167  */
2168 static int rto_next_cpu(struct root_domain *rd)
2169 {
2170         int next;
2171         int cpu;
2172
2173         /*
2174          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2175          * rt_next_cpu() will simply return the first CPU found in
2176          * the rto_mask.
2177          *
2178          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2179          * will return the next CPU found in the rto_mask.
2180          *
2181          * If there are no more CPUs left in the rto_mask, then a check is made
2182          * against rto_loop and rto_loop_next. rto_loop is only updated with
2183          * the rto_lock held, but any CPU may increment the rto_loop_next
2184          * without any locking.
2185          */
2186         for (;;) {
2187
2188                 /* When rto_cpu is -1 this acts like cpumask_first() */
2189                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2190
2191                 rd->rto_cpu = cpu;
2192
2193                 if (cpu < nr_cpu_ids)
2194                         return cpu;
2195
2196                 rd->rto_cpu = -1;
2197
2198                 /*
2199                  * ACQUIRE ensures we see the @rto_mask changes
2200                  * made prior to the @next value observed.
2201                  *
2202                  * Matches WMB in rt_set_overload().
2203                  */
2204                 next = atomic_read_acquire(&rd->rto_loop_next);
2205
2206                 if (rd->rto_loop == next)
2207                         break;
2208
2209                 rd->rto_loop = next;
2210         }
2211
2212         return -1;
2213 }
2214
2215 static inline bool rto_start_trylock(atomic_t *v)
2216 {
2217         return !atomic_cmpxchg_acquire(v, 0, 1);
2218 }
2219
2220 static inline void rto_start_unlock(atomic_t *v)
2221 {
2222         atomic_set_release(v, 0);
2223 }
2224
2225 static void tell_cpu_to_push(struct rq *rq)
2226 {
2227         int cpu = -1;
2228
2229         /* Keep the loop going if the IPI is currently active */
2230         atomic_inc(&rq->rd->rto_loop_next);
2231
2232         /* Only one CPU can initiate a loop at a time */
2233         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2234                 return;
2235
2236         raw_spin_lock(&rq->rd->rto_lock);
2237
2238         /*
2239          * The rto_cpu is updated under the lock, if it has a valid CPU
2240          * then the IPI is still running and will continue due to the
2241          * update to loop_next, and nothing needs to be done here.
2242          * Otherwise it is finishing up and an ipi needs to be sent.
2243          */
2244         if (rq->rd->rto_cpu < 0)
2245                 cpu = rto_next_cpu(rq->rd);
2246
2247         raw_spin_unlock(&rq->rd->rto_lock);
2248
2249         rto_start_unlock(&rq->rd->rto_loop_start);
2250
2251         if (cpu >= 0) {
2252                 /* Make sure the rd does not get freed while pushing */
2253                 sched_get_rd(rq->rd);
2254                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2255         }
2256 }
2257
2258 /* Called from hardirq context */
2259 void rto_push_irq_work_func(struct irq_work *work)
2260 {
2261         struct root_domain *rd =
2262                 container_of(work, struct root_domain, rto_push_work);
2263         struct rq *rq;
2264         int cpu;
2265
2266         rq = this_rq();
2267
2268         /*
2269          * We do not need to grab the lock to check for has_pushable_tasks.
2270          * When it gets updated, a check is made if a push is possible.
2271          */
2272         if (has_pushable_tasks(rq)) {
2273                 raw_spin_rq_lock(rq);
2274                 while (push_rt_task(rq, true))
2275                         ;
2276                 raw_spin_rq_unlock(rq);
2277         }
2278
2279         raw_spin_lock(&rd->rto_lock);
2280
2281         /* Pass the IPI to the next rt overloaded queue */
2282         cpu = rto_next_cpu(rd);
2283
2284         raw_spin_unlock(&rd->rto_lock);
2285
2286         if (cpu < 0) {
2287                 sched_put_rd(rd);
2288                 return;
2289         }
2290
2291         /* Try the next RT overloaded CPU */
2292         irq_work_queue_on(&rd->rto_push_work, cpu);
2293 }
2294 #endif /* HAVE_RT_PUSH_IPI */
2295
2296 static void pull_rt_task(struct rq *this_rq)
2297 {
2298         int this_cpu = this_rq->cpu, cpu;
2299         bool resched = false;
2300         struct task_struct *p, *push_task;
2301         struct rq *src_rq;
2302         int rt_overload_count = rt_overloaded(this_rq);
2303
2304         if (likely(!rt_overload_count))
2305                 return;
2306
2307         /*
2308          * Match the barrier from rt_set_overloaded; this guarantees that if we
2309          * see overloaded we must also see the rto_mask bit.
2310          */
2311         smp_rmb();
2312
2313         /* If we are the only overloaded CPU do nothing */
2314         if (rt_overload_count == 1 &&
2315             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2316                 return;
2317
2318 #ifdef HAVE_RT_PUSH_IPI
2319         if (sched_feat(RT_PUSH_IPI)) {
2320                 tell_cpu_to_push(this_rq);
2321                 return;
2322         }
2323 #endif
2324
2325         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2326                 if (this_cpu == cpu)
2327                         continue;
2328
2329                 src_rq = cpu_rq(cpu);
2330
2331                 /*
2332                  * Don't bother taking the src_rq->lock if the next highest
2333                  * task is known to be lower-priority than our current task.
2334                  * This may look racy, but if this value is about to go
2335                  * logically higher, the src_rq will push this task away.
2336                  * And if its going logically lower, we do not care
2337                  */
2338                 if (src_rq->rt.highest_prio.next >=
2339                     this_rq->rt.highest_prio.curr)
2340                         continue;
2341
2342                 /*
2343                  * We can potentially drop this_rq's lock in
2344                  * double_lock_balance, and another CPU could
2345                  * alter this_rq
2346                  */
2347                 push_task = NULL;
2348                 double_lock_balance(this_rq, src_rq);
2349
2350                 /*
2351                  * We can pull only a task, which is pushable
2352                  * on its rq, and no others.
2353                  */
2354                 p = pick_highest_pushable_task(src_rq, this_cpu);
2355
2356                 /*
2357                  * Do we have an RT task that preempts
2358                  * the to-be-scheduled task?
2359                  */
2360                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2361                         WARN_ON(p == src_rq->curr);
2362                         WARN_ON(!task_on_rq_queued(p));
2363
2364                         /*
2365                          * There's a chance that p is higher in priority
2366                          * than what's currently running on its CPU.
2367                          * This is just that p is waking up and hasn't
2368                          * had a chance to schedule. We only pull
2369                          * p if it is lower in priority than the
2370                          * current task on the run queue
2371                          */
2372                         if (p->prio < src_rq->curr->prio)
2373                                 goto skip;
2374
2375                         if (is_migration_disabled(p)) {
2376                                 push_task = get_push_task(src_rq);
2377                         } else {
2378                                 deactivate_task(src_rq, p, 0);
2379                                 set_task_cpu(p, this_cpu);
2380                                 activate_task(this_rq, p, 0);
2381                                 resched = true;
2382                         }
2383                         /*
2384                          * We continue with the search, just in
2385                          * case there's an even higher prio task
2386                          * in another runqueue. (low likelihood
2387                          * but possible)
2388                          */
2389                 }
2390 skip:
2391                 double_unlock_balance(this_rq, src_rq);
2392
2393                 if (push_task) {
2394                         raw_spin_rq_unlock(this_rq);
2395                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2396                                             push_task, &src_rq->push_work);
2397                         raw_spin_rq_lock(this_rq);
2398                 }
2399         }
2400
2401         if (resched)
2402                 resched_curr(this_rq);
2403 }
2404
2405 /*
2406  * If we are not running and we are not going to reschedule soon, we should
2407  * try to push tasks away now
2408  */
2409 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2410 {
2411         bool need_to_push = !task_running(rq, p) &&
2412                             !test_tsk_need_resched(rq->curr) &&
2413                             p->nr_cpus_allowed > 1 &&
2414                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2415                             (rq->curr->nr_cpus_allowed < 2 ||
2416                              rq->curr->prio <= p->prio);
2417
2418         if (need_to_push)
2419                 push_rt_tasks(rq);
2420 }
2421
2422 /* Assumes rq->lock is held */
2423 static void rq_online_rt(struct rq *rq)
2424 {
2425         if (rq->rt.overloaded)
2426                 rt_set_overload(rq);
2427
2428         __enable_runtime(rq);
2429
2430         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2431 }
2432
2433 /* Assumes rq->lock is held */
2434 static void rq_offline_rt(struct rq *rq)
2435 {
2436         if (rq->rt.overloaded)
2437                 rt_clear_overload(rq);
2438
2439         __disable_runtime(rq);
2440
2441         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2442 }
2443
2444 /*
2445  * When switch from the rt queue, we bring ourselves to a position
2446  * that we might want to pull RT tasks from other runqueues.
2447  */
2448 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2449 {
2450         /*
2451          * If there are other RT tasks then we will reschedule
2452          * and the scheduling of the other RT tasks will handle
2453          * the balancing. But if we are the last RT task
2454          * we may need to handle the pulling of RT tasks
2455          * now.
2456          */
2457         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2458                 return;
2459
2460         rt_queue_pull_task(rq);
2461 }
2462
2463 void __init init_sched_rt_class(void)
2464 {
2465         unsigned int i;
2466
2467         for_each_possible_cpu(i) {
2468                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2469                                         GFP_KERNEL, cpu_to_node(i));
2470         }
2471 }
2472 #endif /* CONFIG_SMP */
2473
2474 /*
2475  * When switching a task to RT, we may overload the runqueue
2476  * with RT tasks. In this case we try to push them off to
2477  * other runqueues.
2478  */
2479 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2480 {
2481         /*
2482          * If we are running, update the avg_rt tracking, as the running time
2483          * will now on be accounted into the latter.
2484          */
2485         if (task_current(rq, p)) {
2486                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2487                 return;
2488         }
2489
2490         /*
2491          * If we are not running we may need to preempt the current
2492          * running task. If that current running task is also an RT task
2493          * then see if we can move to another run queue.
2494          */
2495         if (task_on_rq_queued(p)) {
2496 #ifdef CONFIG_SMP
2497                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2498                         rt_queue_push_tasks(rq);
2499 #endif /* CONFIG_SMP */
2500                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2501                         resched_curr(rq);
2502         }
2503 }
2504
2505 /*
2506  * Priority of the task has changed. This may cause
2507  * us to initiate a push or pull.
2508  */
2509 static void
2510 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2511 {
2512         if (!task_on_rq_queued(p))
2513                 return;
2514
2515         if (task_current(rq, p)) {
2516 #ifdef CONFIG_SMP
2517                 /*
2518                  * If our priority decreases while running, we
2519                  * may need to pull tasks to this runqueue.
2520                  */
2521                 if (oldprio < p->prio)
2522                         rt_queue_pull_task(rq);
2523
2524                 /*
2525                  * If there's a higher priority task waiting to run
2526                  * then reschedule.
2527                  */
2528                 if (p->prio > rq->rt.highest_prio.curr)
2529                         resched_curr(rq);
2530 #else
2531                 /* For UP simply resched on drop of prio */
2532                 if (oldprio < p->prio)
2533                         resched_curr(rq);
2534 #endif /* CONFIG_SMP */
2535         } else {
2536                 /*
2537                  * This task is not running, but if it is
2538                  * greater than the current running task
2539                  * then reschedule.
2540                  */
2541                 if (p->prio < rq->curr->prio)
2542                         resched_curr(rq);
2543         }
2544 }
2545
2546 #ifdef CONFIG_POSIX_TIMERS
2547 static void watchdog(struct rq *rq, struct task_struct *p)
2548 {
2549         unsigned long soft, hard;
2550
2551         /* max may change after cur was read, this will be fixed next tick */
2552         soft = task_rlimit(p, RLIMIT_RTTIME);
2553         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2554
2555         if (soft != RLIM_INFINITY) {
2556                 unsigned long next;
2557
2558                 if (p->rt.watchdog_stamp != jiffies) {
2559                         p->rt.timeout++;
2560                         p->rt.watchdog_stamp = jiffies;
2561                 }
2562
2563                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2564                 if (p->rt.timeout > next) {
2565                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2566                                                     p->se.sum_exec_runtime);
2567                 }
2568         }
2569 }
2570 #else
2571 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2572 #endif
2573
2574 /*
2575  * scheduler tick hitting a task of our scheduling class.
2576  *
2577  * NOTE: This function can be called remotely by the tick offload that
2578  * goes along full dynticks. Therefore no local assumption can be made
2579  * and everything must be accessed through the @rq and @curr passed in
2580  * parameters.
2581  */
2582 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2583 {
2584         struct sched_rt_entity *rt_se = &p->rt;
2585
2586         update_curr_rt(rq);
2587         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2588
2589         watchdog(rq, p);
2590
2591         /*
2592          * RR tasks need a special form of timeslice management.
2593          * FIFO tasks have no timeslices.
2594          */
2595         if (p->policy != SCHED_RR)
2596                 return;
2597
2598         if (--p->rt.time_slice)
2599                 return;
2600
2601         p->rt.time_slice = sched_rr_timeslice;
2602
2603         /*
2604          * Requeue to the end of queue if we (and all of our ancestors) are not
2605          * the only element on the queue
2606          */
2607         for_each_sched_rt_entity(rt_se) {
2608                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2609                         requeue_task_rt(rq, p, 0);
2610                         resched_curr(rq);
2611                         return;
2612                 }
2613         }
2614 }
2615
2616 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2617 {
2618         /*
2619          * Time slice is 0 for SCHED_FIFO tasks
2620          */
2621         if (task->policy == SCHED_RR)
2622                 return sched_rr_timeslice;
2623         else
2624                 return 0;
2625 }
2626
2627 DEFINE_SCHED_CLASS(rt) = {
2628
2629         .enqueue_task           = enqueue_task_rt,
2630         .dequeue_task           = dequeue_task_rt,
2631         .yield_task             = yield_task_rt,
2632
2633         .check_preempt_curr     = check_preempt_curr_rt,
2634
2635         .pick_next_task         = pick_next_task_rt,
2636         .put_prev_task          = put_prev_task_rt,
2637         .set_next_task          = set_next_task_rt,
2638
2639 #ifdef CONFIG_SMP
2640         .balance                = balance_rt,
2641         .pick_task              = pick_task_rt,
2642         .select_task_rq         = select_task_rq_rt,
2643         .set_cpus_allowed       = set_cpus_allowed_common,
2644         .rq_online              = rq_online_rt,
2645         .rq_offline             = rq_offline_rt,
2646         .task_woken             = task_woken_rt,
2647         .switched_from          = switched_from_rt,
2648         .find_lock_rq           = find_lock_lowest_rq,
2649 #endif
2650
2651         .task_tick              = task_tick_rt,
2652
2653         .get_rr_interval        = get_rr_interval_rt,
2654
2655         .prio_changed           = prio_changed_rt,
2656         .switched_to            = switched_to_rt,
2657
2658         .update_curr            = update_curr_rt,
2659
2660 #ifdef CONFIG_UCLAMP_TASK
2661         .uclamp_enabled         = 1,
2662 #endif
2663 };
2664
2665 #ifdef CONFIG_RT_GROUP_SCHED
2666 /*
2667  * Ensure that the real time constraints are schedulable.
2668  */
2669 static DEFINE_MUTEX(rt_constraints_mutex);
2670
2671 static inline int tg_has_rt_tasks(struct task_group *tg)
2672 {
2673         struct task_struct *task;
2674         struct css_task_iter it;
2675         int ret = 0;
2676
2677         /*
2678          * Autogroups do not have RT tasks; see autogroup_create().
2679          */
2680         if (task_group_is_autogroup(tg))
2681                 return 0;
2682
2683         css_task_iter_start(&tg->css, 0, &it);
2684         while (!ret && (task = css_task_iter_next(&it)))
2685                 ret |= rt_task(task);
2686         css_task_iter_end(&it);
2687
2688         return ret;
2689 }
2690
2691 struct rt_schedulable_data {
2692         struct task_group *tg;
2693         u64 rt_period;
2694         u64 rt_runtime;
2695 };
2696
2697 static int tg_rt_schedulable(struct task_group *tg, void *data)
2698 {
2699         struct rt_schedulable_data *d = data;
2700         struct task_group *child;
2701         unsigned long total, sum = 0;
2702         u64 period, runtime;
2703
2704         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2705         runtime = tg->rt_bandwidth.rt_runtime;
2706
2707         if (tg == d->tg) {
2708                 period = d->rt_period;
2709                 runtime = d->rt_runtime;
2710         }
2711
2712         /*
2713          * Cannot have more runtime than the period.
2714          */
2715         if (runtime > period && runtime != RUNTIME_INF)
2716                 return -EINVAL;
2717
2718         /*
2719          * Ensure we don't starve existing RT tasks if runtime turns zero.
2720          */
2721         if (rt_bandwidth_enabled() && !runtime &&
2722             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2723                 return -EBUSY;
2724
2725         total = to_ratio(period, runtime);
2726
2727         /*
2728          * Nobody can have more than the global setting allows.
2729          */
2730         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2731                 return -EINVAL;
2732
2733         /*
2734          * The sum of our children's runtime should not exceed our own.
2735          */
2736         list_for_each_entry_rcu(child, &tg->children, siblings) {
2737                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2738                 runtime = child->rt_bandwidth.rt_runtime;
2739
2740                 if (child == d->tg) {
2741                         period = d->rt_period;
2742                         runtime = d->rt_runtime;
2743                 }
2744
2745                 sum += to_ratio(period, runtime);
2746         }
2747
2748         if (sum > total)
2749                 return -EINVAL;
2750
2751         return 0;
2752 }
2753
2754 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2755 {
2756         int ret;
2757
2758         struct rt_schedulable_data data = {
2759                 .tg = tg,
2760                 .rt_period = period,
2761                 .rt_runtime = runtime,
2762         };
2763
2764         rcu_read_lock();
2765         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2766         rcu_read_unlock();
2767
2768         return ret;
2769 }
2770
2771 static int tg_set_rt_bandwidth(struct task_group *tg,
2772                 u64 rt_period, u64 rt_runtime)
2773 {
2774         int i, err = 0;
2775
2776         /*
2777          * Disallowing the root group RT runtime is BAD, it would disallow the
2778          * kernel creating (and or operating) RT threads.
2779          */
2780         if (tg == &root_task_group && rt_runtime == 0)
2781                 return -EINVAL;
2782
2783         /* No period doesn't make any sense. */
2784         if (rt_period == 0)
2785                 return -EINVAL;
2786
2787         /*
2788          * Bound quota to defend quota against overflow during bandwidth shift.
2789          */
2790         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2791                 return -EINVAL;
2792
2793         mutex_lock(&rt_constraints_mutex);
2794         err = __rt_schedulable(tg, rt_period, rt_runtime);
2795         if (err)
2796                 goto unlock;
2797
2798         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2799         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2800         tg->rt_bandwidth.rt_runtime = rt_runtime;
2801
2802         for_each_possible_cpu(i) {
2803                 struct rt_rq *rt_rq = tg->rt_rq[i];
2804
2805                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2806                 rt_rq->rt_runtime = rt_runtime;
2807                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2808         }
2809         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2810 unlock:
2811         mutex_unlock(&rt_constraints_mutex);
2812
2813         return err;
2814 }
2815
2816 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2817 {
2818         u64 rt_runtime, rt_period;
2819
2820         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2821         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2822         if (rt_runtime_us < 0)
2823                 rt_runtime = RUNTIME_INF;
2824         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2825                 return -EINVAL;
2826
2827         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2828 }
2829
2830 long sched_group_rt_runtime(struct task_group *tg)
2831 {
2832         u64 rt_runtime_us;
2833
2834         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2835                 return -1;
2836
2837         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2838         do_div(rt_runtime_us, NSEC_PER_USEC);
2839         return rt_runtime_us;
2840 }
2841
2842 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2843 {
2844         u64 rt_runtime, rt_period;
2845
2846         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2847                 return -EINVAL;
2848
2849         rt_period = rt_period_us * NSEC_PER_USEC;
2850         rt_runtime = tg->rt_bandwidth.rt_runtime;
2851
2852         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853 }
2854
2855 long sched_group_rt_period(struct task_group *tg)
2856 {
2857         u64 rt_period_us;
2858
2859         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2860         do_div(rt_period_us, NSEC_PER_USEC);
2861         return rt_period_us;
2862 }
2863
2864 static int sched_rt_global_constraints(void)
2865 {
2866         int ret = 0;
2867
2868         mutex_lock(&rt_constraints_mutex);
2869         ret = __rt_schedulable(NULL, 0, 0);
2870         mutex_unlock(&rt_constraints_mutex);
2871
2872         return ret;
2873 }
2874
2875 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2876 {
2877         /* Don't accept realtime tasks when there is no way for them to run */
2878         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2879                 return 0;
2880
2881         return 1;
2882 }
2883
2884 #else /* !CONFIG_RT_GROUP_SCHED */
2885 static int sched_rt_global_constraints(void)
2886 {
2887         unsigned long flags;
2888         int i;
2889
2890         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2891         for_each_possible_cpu(i) {
2892                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2893
2894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2895                 rt_rq->rt_runtime = global_rt_runtime();
2896                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2897         }
2898         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2899
2900         return 0;
2901 }
2902 #endif /* CONFIG_RT_GROUP_SCHED */
2903
2904 static int sched_rt_global_validate(void)
2905 {
2906         if (sysctl_sched_rt_period <= 0)
2907                 return -EINVAL;
2908
2909         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2910                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2911                  ((u64)sysctl_sched_rt_runtime *
2912                         NSEC_PER_USEC > max_rt_runtime)))
2913                 return -EINVAL;
2914
2915         return 0;
2916 }
2917
2918 static void sched_rt_do_global(void)
2919 {
2920         unsigned long flags;
2921
2922         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2923         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2924         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2925         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2926 }
2927
2928 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2929                 size_t *lenp, loff_t *ppos)
2930 {
2931         int old_period, old_runtime;
2932         static DEFINE_MUTEX(mutex);
2933         int ret;
2934
2935         mutex_lock(&mutex);
2936         old_period = sysctl_sched_rt_period;
2937         old_runtime = sysctl_sched_rt_runtime;
2938
2939         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2940
2941         if (!ret && write) {
2942                 ret = sched_rt_global_validate();
2943                 if (ret)
2944                         goto undo;
2945
2946                 ret = sched_dl_global_validate();
2947                 if (ret)
2948                         goto undo;
2949
2950                 ret = sched_rt_global_constraints();
2951                 if (ret)
2952                         goto undo;
2953
2954                 sched_rt_do_global();
2955                 sched_dl_do_global();
2956         }
2957         if (0) {
2958 undo:
2959                 sysctl_sched_rt_period = old_period;
2960                 sysctl_sched_rt_runtime = old_runtime;
2961         }
2962         mutex_unlock(&mutex);
2963
2964         return ret;
2965 }
2966
2967 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2968                 size_t *lenp, loff_t *ppos)
2969 {
2970         int ret;
2971         static DEFINE_MUTEX(mutex);
2972
2973         mutex_lock(&mutex);
2974         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2975         /*
2976          * Make sure that internally we keep jiffies.
2977          * Also, writing zero resets the timeslice to default:
2978          */
2979         if (!ret && write) {
2980                 sched_rr_timeslice =
2981                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2982                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2983         }
2984         mutex_unlock(&mutex);
2985
2986         return ret;
2987 }
2988
2989 #ifdef CONFIG_SCHED_DEBUG
2990 void print_rt_stats(struct seq_file *m, int cpu)
2991 {
2992         rt_rq_iter_t iter;
2993         struct rt_rq *rt_rq;
2994
2995         rcu_read_lock();
2996         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2997                 print_rt_rq(m, cpu, rt_rq);
2998         rcu_read_unlock();
2999 }
3000 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.194196 seconds and 4 git commands to generate.