1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
18 #include "transaction.h"
22 #include "dev-replace.h"
24 #include "block-group.h"
25 #include "space-info.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
33 #include "uuid-tree.h"
35 #include "relocation.h"
38 static struct kmem_cache *btrfs_trans_handle_cachep;
40 #define BTRFS_ROOT_TRANS_TAG 0
43 * Transaction states and transitions
45 * No running transaction (fs tree blocks are not modified)
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
50 * Transaction N [[TRANS_STATE_RUNNING]]
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
56 * | Call btrfs_commit_transaction() on any trans handle attached to
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
61 * | Will wait for previous running transaction to completely finish if there
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
91 * | Until all supporting trees are updated.
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
99 * | At this stage, new transaction is allowed to |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 [TRANS_STATE_RUNNING] = 0U,
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_JOIN_NOSTART),
120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
141 BUG_ON(!list_empty(&transaction->list));
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
167 WARN_ON(!list_empty(&transaction->dev_update_list));
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
184 down_write(&fs_info->commit_root_sem);
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
209 spin_unlock(&cur_trans->dropped_roots_lock);
211 up_write(&fs_info->commit_root_sem);
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
236 return atomic_read(&trans->num_extwriters);
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
248 struct btrfs_fs_info *fs_info = trans->fs_info;
250 if (!trans->chunk_bytes_reserved)
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
259 * either allocate a new transaction or hop into the existing one
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 struct btrfs_transaction *cur_trans;
266 spin_lock(&fs_info->trans_lock);
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
274 cur_trans = fs_info->running_transaction;
276 if (TRANS_ABORTED(cur_trans)) {
277 spin_unlock(&fs_info->trans_lock);
278 return cur_trans->aborted;
280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 spin_unlock(&fs_info->trans_lock);
284 refcount_inc(&cur_trans->use_count);
285 atomic_inc(&cur_trans->num_writers);
286 extwriter_counter_inc(cur_trans, type);
287 spin_unlock(&fs_info->trans_lock);
288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 spin_unlock(&fs_info->trans_lock);
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
298 if (type == TRANS_ATTACH)
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
317 * someone started a transaction after we unlocked. Make sure
318 * to redo the checks above
320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
324 } else if (BTRFS_FS_ERROR(fs_info)) {
325 spin_unlock(&fs_info->trans_lock);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
332 cur_trans->fs_info = fs_info;
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
335 atomic_set(&cur_trans->num_writers, 1);
336 extwriter_counter_init(cur_trans, type);
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
339 cur_trans->state = TRANS_STATE_RUNNING;
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
344 refcount_set(&cur_trans->use_count, 2);
345 cur_trans->flags = 0;
346 cur_trans->start_time = ktime_get_seconds();
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
359 if (!list_empty(&fs_info->tree_mod_seq_list))
360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363 atomic64_set(&fs_info->tree_mod_seq, 0);
365 spin_lock_init(&cur_trans->delayed_refs.lock);
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
369 INIT_LIST_HEAD(&cur_trans->switch_commits);
370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371 INIT_LIST_HEAD(&cur_trans->io_bgs);
372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
373 mutex_init(&cur_trans->cache_write_mutex);
374 spin_lock_init(&cur_trans->dirty_bgs_lock);
375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376 spin_lock_init(&cur_trans->dropped_roots_lock);
377 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
378 spin_lock_init(&cur_trans->releasing_ebs_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 fs_info->generation++;
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
403 struct btrfs_fs_info *fs_info = root->fs_info;
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 root->last_trans < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (root->last_trans == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)root->root_key.objectid,
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 root->last_trans = trans->transid;
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)root->root_key.objectid,
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
482 struct btrfs_fs_info *fs_info = root->fs_info;
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493 if (root->last_trans == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
504 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
511 /* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
515 static void wait_current_trans(struct btrfs_fs_info *fs_info)
517 struct btrfs_transaction *cur_trans;
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
531 spin_unlock(&fs_info->trans_lock);
535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
540 if (type == TRANS_START)
546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548 struct btrfs_fs_info *fs_info = root->fs_info;
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
559 static struct btrfs_trans_handle *
560 start_transaction(struct btrfs_root *root, unsigned int num_items,
561 unsigned int type, enum btrfs_reserve_flush_enum flush,
562 bool enforce_qgroups)
564 struct btrfs_fs_info *fs_info = root->fs_info;
565 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
566 struct btrfs_trans_handle *h;
567 struct btrfs_transaction *cur_trans;
569 u64 qgroup_reserved = 0;
570 bool reloc_reserved = false;
571 bool do_chunk_alloc = false;
574 if (BTRFS_FS_ERROR(fs_info))
575 return ERR_PTR(-EROFS);
577 if (current->journal_info) {
578 WARN_ON(type & TRANS_EXTWRITERS);
579 h = current->journal_info;
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
582 h->orig_rsv = h->block_rsv;
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
591 if (num_items && root != fs_info->chunk_root) {
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
595 qgroup_reserved = num_items * fs_info->nodesize;
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
611 delayed_refs_bytes = num_bytes;
616 * Do the reservation for the relocation root creation
618 if (need_reserve_reloc_root(root)) {
619 num_bytes += fs_info->nodesize;
620 reloc_reserved = true;
623 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
629 num_bytes -= delayed_refs_bytes;
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635 !btrfs_block_rsv_full(delayed_refs_rsv)) {
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
664 if (type & __TRANS_FREEZABLE)
665 sb_start_intwrite(fs_info->sb);
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
671 ret = join_transaction(fs_info, type);
673 wait_current_trans(fs_info);
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
678 } while (ret == -EBUSY);
683 cur_trans = fs_info->running_transaction;
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
687 refcount_set(&h->use_count, 1);
688 h->fs_info = root->fs_info;
691 INIT_LIST_HEAD(&h->new_bgs);
694 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
695 may_wait_transaction(fs_info, type)) {
696 current->journal_info = h;
697 btrfs_commit_transaction(h);
702 trace_btrfs_space_reservation(fs_info, "transaction",
703 h->transid, num_bytes, 1);
704 h->block_rsv = &fs_info->trans_block_rsv;
705 h->bytes_reserved = num_bytes;
706 h->reloc_reserved = reloc_reserved;
710 if (!current->journal_info)
711 current->journal_info = h;
714 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
715 * ALLOC_FORCE the first run through, and then we won't allocate for
716 * anybody else who races in later. We don't care about the return
719 if (do_chunk_alloc && num_bytes) {
720 u64 flags = h->block_rsv->space_info->flags;
722 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
723 CHUNK_ALLOC_NO_FORCE);
727 * btrfs_record_root_in_trans() needs to alloc new extents, and may
728 * call btrfs_join_transaction() while we're also starting a
731 * Thus it need to be called after current->journal_info initialized,
732 * or we can deadlock.
734 ret = btrfs_record_root_in_trans(h, root);
737 * The transaction handle is fully initialized and linked with
738 * other structures so it needs to be ended in case of errors,
741 btrfs_end_transaction(h);
748 if (type & __TRANS_FREEZABLE)
749 sb_end_intwrite(fs_info->sb);
750 kmem_cache_free(btrfs_trans_handle_cachep, h);
753 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
756 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
760 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
761 unsigned int num_items)
763 return start_transaction(root, num_items, TRANS_START,
764 BTRFS_RESERVE_FLUSH_ALL, true);
767 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
768 struct btrfs_root *root,
769 unsigned int num_items)
771 return start_transaction(root, num_items, TRANS_START,
772 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
775 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
777 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
781 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
783 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
784 BTRFS_RESERVE_NO_FLUSH, true);
788 * Similar to regular join but it never starts a transaction when none is
789 * running or after waiting for the current one to finish.
791 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
793 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
794 BTRFS_RESERVE_NO_FLUSH, true);
798 * btrfs_attach_transaction() - catch the running transaction
800 * It is used when we want to commit the current the transaction, but
801 * don't want to start a new one.
803 * Note: If this function return -ENOENT, it just means there is no
804 * running transaction. But it is possible that the inactive transaction
805 * is still in the memory, not fully on disk. If you hope there is no
806 * inactive transaction in the fs when -ENOENT is returned, you should
808 * btrfs_attach_transaction_barrier()
810 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
812 return start_transaction(root, 0, TRANS_ATTACH,
813 BTRFS_RESERVE_NO_FLUSH, true);
817 * btrfs_attach_transaction_barrier() - catch the running transaction
819 * It is similar to the above function, the difference is this one
820 * will wait for all the inactive transactions until they fully
823 struct btrfs_trans_handle *
824 btrfs_attach_transaction_barrier(struct btrfs_root *root)
826 struct btrfs_trans_handle *trans;
828 trans = start_transaction(root, 0, TRANS_ATTACH,
829 BTRFS_RESERVE_NO_FLUSH, true);
830 if (trans == ERR_PTR(-ENOENT))
831 btrfs_wait_for_commit(root->fs_info, 0);
836 /* Wait for a transaction commit to reach at least the given state. */
837 static noinline void wait_for_commit(struct btrfs_transaction *commit,
838 const enum btrfs_trans_state min_state)
840 struct btrfs_fs_info *fs_info = commit->fs_info;
841 u64 transid = commit->transid;
845 * At the moment this function is called with min_state either being
846 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
848 if (min_state == TRANS_STATE_COMPLETED)
849 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
851 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
854 wait_event(commit->commit_wait, commit->state >= min_state);
856 btrfs_put_transaction(commit);
858 if (min_state < TRANS_STATE_COMPLETED)
862 * A transaction isn't really completed until all of the
863 * previous transactions are completed, but with fsync we can
864 * end up with SUPER_COMMITTED transactions before a COMPLETED
865 * transaction. Wait for those.
868 spin_lock(&fs_info->trans_lock);
869 commit = list_first_entry_or_null(&fs_info->trans_list,
870 struct btrfs_transaction,
872 if (!commit || commit->transid > transid) {
873 spin_unlock(&fs_info->trans_lock);
876 refcount_inc(&commit->use_count);
878 spin_unlock(&fs_info->trans_lock);
882 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
884 struct btrfs_transaction *cur_trans = NULL, *t;
888 if (transid <= fs_info->last_trans_committed)
891 /* find specified transaction */
892 spin_lock(&fs_info->trans_lock);
893 list_for_each_entry(t, &fs_info->trans_list, list) {
894 if (t->transid == transid) {
896 refcount_inc(&cur_trans->use_count);
900 if (t->transid > transid) {
905 spin_unlock(&fs_info->trans_lock);
908 * The specified transaction doesn't exist, or we
909 * raced with btrfs_commit_transaction
912 if (transid > fs_info->last_trans_committed)
917 /* find newest transaction that is committing | committed */
918 spin_lock(&fs_info->trans_lock);
919 list_for_each_entry_reverse(t, &fs_info->trans_list,
921 if (t->state >= TRANS_STATE_COMMIT_START) {
922 if (t->state == TRANS_STATE_COMPLETED)
925 refcount_inc(&cur_trans->use_count);
929 spin_unlock(&fs_info->trans_lock);
931 goto out; /* nothing committing|committed */
934 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
935 btrfs_put_transaction(cur_trans);
940 void btrfs_throttle(struct btrfs_fs_info *fs_info)
942 wait_current_trans(fs_info);
945 static bool should_end_transaction(struct btrfs_trans_handle *trans)
947 struct btrfs_fs_info *fs_info = trans->fs_info;
949 if (btrfs_check_space_for_delayed_refs(fs_info))
952 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 50);
955 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
957 struct btrfs_transaction *cur_trans = trans->transaction;
959 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
960 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
963 return should_end_transaction(trans);
966 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
969 struct btrfs_fs_info *fs_info = trans->fs_info;
971 if (!trans->block_rsv) {
972 ASSERT(!trans->bytes_reserved);
976 if (!trans->bytes_reserved)
979 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
980 trace_btrfs_space_reservation(fs_info, "transaction",
981 trans->transid, trans->bytes_reserved, 0);
982 btrfs_block_rsv_release(fs_info, trans->block_rsv,
983 trans->bytes_reserved, NULL);
984 trans->bytes_reserved = 0;
987 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
990 struct btrfs_fs_info *info = trans->fs_info;
991 struct btrfs_transaction *cur_trans = trans->transaction;
994 if (refcount_read(&trans->use_count) > 1) {
995 refcount_dec(&trans->use_count);
996 trans->block_rsv = trans->orig_rsv;
1000 btrfs_trans_release_metadata(trans);
1001 trans->block_rsv = NULL;
1003 btrfs_create_pending_block_groups(trans);
1005 btrfs_trans_release_chunk_metadata(trans);
1007 if (trans->type & __TRANS_FREEZABLE)
1008 sb_end_intwrite(info->sb);
1010 WARN_ON(cur_trans != info->running_transaction);
1011 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1012 atomic_dec(&cur_trans->num_writers);
1013 extwriter_counter_dec(cur_trans, trans->type);
1015 cond_wake_up(&cur_trans->writer_wait);
1017 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1018 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1020 btrfs_put_transaction(cur_trans);
1022 if (current->journal_info == trans)
1023 current->journal_info = NULL;
1026 btrfs_run_delayed_iputs(info);
1028 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1029 wake_up_process(info->transaction_kthread);
1030 if (TRANS_ABORTED(trans))
1031 err = trans->aborted;
1036 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1040 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1042 return __btrfs_end_transaction(trans, 0);
1045 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1047 return __btrfs_end_transaction(trans, 1);
1051 * when btree blocks are allocated, they have some corresponding bits set for
1052 * them in one of two extent_io trees. This is used to make sure all of
1053 * those extents are sent to disk but does not wait on them
1055 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1056 struct extent_io_tree *dirty_pages, int mark)
1060 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1061 struct extent_state *cached_state = NULL;
1065 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1066 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1067 mark, &cached_state)) {
1068 bool wait_writeback = false;
1070 err = convert_extent_bit(dirty_pages, start, end,
1072 mark, &cached_state);
1074 * convert_extent_bit can return -ENOMEM, which is most of the
1075 * time a temporary error. So when it happens, ignore the error
1076 * and wait for writeback of this range to finish - because we
1077 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1078 * to __btrfs_wait_marked_extents() would not know that
1079 * writeback for this range started and therefore wouldn't
1080 * wait for it to finish - we don't want to commit a
1081 * superblock that points to btree nodes/leafs for which
1082 * writeback hasn't finished yet (and without errors).
1083 * We cleanup any entries left in the io tree when committing
1084 * the transaction (through extent_io_tree_release()).
1086 if (err == -ENOMEM) {
1088 wait_writeback = true;
1091 err = filemap_fdatawrite_range(mapping, start, end);
1094 else if (wait_writeback)
1095 werr = filemap_fdatawait_range(mapping, start, end);
1096 free_extent_state(cached_state);
1097 cached_state = NULL;
1101 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1106 * when btree blocks are allocated, they have some corresponding bits set for
1107 * them in one of two extent_io trees. This is used to make sure all of
1108 * those extents are on disk for transaction or log commit. We wait
1109 * on all the pages and clear them from the dirty pages state tree
1111 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1112 struct extent_io_tree *dirty_pages)
1116 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1117 struct extent_state *cached_state = NULL;
1121 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1122 EXTENT_NEED_WAIT, &cached_state)) {
1124 * Ignore -ENOMEM errors returned by clear_extent_bit().
1125 * When committing the transaction, we'll remove any entries
1126 * left in the io tree. For a log commit, we don't remove them
1127 * after committing the log because the tree can be accessed
1128 * concurrently - we do it only at transaction commit time when
1129 * it's safe to do it (through extent_io_tree_release()).
1131 err = clear_extent_bit(dirty_pages, start, end,
1132 EXTENT_NEED_WAIT, &cached_state);
1136 err = filemap_fdatawait_range(mapping, start, end);
1139 free_extent_state(cached_state);
1140 cached_state = NULL;
1149 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1150 struct extent_io_tree *dirty_pages)
1152 bool errors = false;
1155 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1156 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1164 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1166 struct btrfs_fs_info *fs_info = log_root->fs_info;
1167 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1168 bool errors = false;
1171 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1173 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1174 if ((mark & EXTENT_DIRTY) &&
1175 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1178 if ((mark & EXTENT_NEW) &&
1179 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1188 * When btree blocks are allocated the corresponding extents are marked dirty.
1189 * This function ensures such extents are persisted on disk for transaction or
1192 * @trans: transaction whose dirty pages we'd like to write
1194 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1198 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1199 struct btrfs_fs_info *fs_info = trans->fs_info;
1200 struct blk_plug plug;
1202 blk_start_plug(&plug);
1203 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1204 blk_finish_plug(&plug);
1205 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1207 extent_io_tree_release(&trans->transaction->dirty_pages);
1218 * this is used to update the root pointer in the tree of tree roots.
1220 * But, in the case of the extent allocation tree, updating the root
1221 * pointer may allocate blocks which may change the root of the extent
1224 * So, this loops and repeats and makes sure the cowonly root didn't
1225 * change while the root pointer was being updated in the metadata.
1227 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root)
1231 u64 old_root_bytenr;
1233 struct btrfs_fs_info *fs_info = root->fs_info;
1234 struct btrfs_root *tree_root = fs_info->tree_root;
1236 old_root_used = btrfs_root_used(&root->root_item);
1239 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1240 if (old_root_bytenr == root->node->start &&
1241 old_root_used == btrfs_root_used(&root->root_item))
1244 btrfs_set_root_node(&root->root_item, root->node);
1245 ret = btrfs_update_root(trans, tree_root,
1251 old_root_used = btrfs_root_used(&root->root_item);
1258 * update all the cowonly tree roots on disk
1260 * The error handling in this function may not be obvious. Any of the
1261 * failures will cause the file system to go offline. We still need
1262 * to clean up the delayed refs.
1264 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1266 struct btrfs_fs_info *fs_info = trans->fs_info;
1267 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1268 struct list_head *io_bgs = &trans->transaction->io_bgs;
1269 struct list_head *next;
1270 struct extent_buffer *eb;
1274 * At this point no one can be using this transaction to modify any tree
1275 * and no one can start another transaction to modify any tree either.
1277 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1279 eb = btrfs_lock_root_node(fs_info->tree_root);
1280 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1281 0, &eb, BTRFS_NESTING_COW);
1282 btrfs_tree_unlock(eb);
1283 free_extent_buffer(eb);
1288 ret = btrfs_run_dev_stats(trans);
1291 ret = btrfs_run_dev_replace(trans);
1294 ret = btrfs_run_qgroups(trans);
1298 ret = btrfs_setup_space_cache(trans);
1303 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1304 struct btrfs_root *root;
1305 next = fs_info->dirty_cowonly_roots.next;
1306 list_del_init(next);
1307 root = list_entry(next, struct btrfs_root, dirty_list);
1308 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1310 list_add_tail(&root->dirty_list,
1311 &trans->transaction->switch_commits);
1312 ret = update_cowonly_root(trans, root);
1317 /* Now flush any delayed refs generated by updating all of the roots */
1318 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1322 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1323 ret = btrfs_write_dirty_block_groups(trans);
1328 * We're writing the dirty block groups, which could generate
1329 * delayed refs, which could generate more dirty block groups,
1330 * so we want to keep this flushing in this loop to make sure
1331 * everything gets run.
1333 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1338 if (!list_empty(&fs_info->dirty_cowonly_roots))
1341 /* Update dev-replace pointer once everything is committed */
1342 fs_info->dev_replace.committed_cursor_left =
1343 fs_info->dev_replace.cursor_left_last_write_of_item;
1349 * If we had a pending drop we need to see if there are any others left in our
1350 * dead roots list, and if not clear our bit and wake any waiters.
1352 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1355 * We put the drop in progress roots at the front of the list, so if the
1356 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1359 spin_lock(&fs_info->trans_lock);
1360 if (!list_empty(&fs_info->dead_roots)) {
1361 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1364 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1365 spin_unlock(&fs_info->trans_lock);
1369 spin_unlock(&fs_info->trans_lock);
1371 btrfs_wake_unfinished_drop(fs_info);
1375 * dead roots are old snapshots that need to be deleted. This allocates
1376 * a dirty root struct and adds it into the list of dead roots that need to
1379 void btrfs_add_dead_root(struct btrfs_root *root)
1381 struct btrfs_fs_info *fs_info = root->fs_info;
1383 spin_lock(&fs_info->trans_lock);
1384 if (list_empty(&root->root_list)) {
1385 btrfs_grab_root(root);
1387 /* We want to process the partially complete drops first. */
1388 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1389 list_add(&root->root_list, &fs_info->dead_roots);
1391 list_add_tail(&root->root_list, &fs_info->dead_roots);
1393 spin_unlock(&fs_info->trans_lock);
1397 * Update each subvolume root and its relocation root, if it exists, in the tree
1398 * of tree roots. Also free log roots if they exist.
1400 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1402 struct btrfs_fs_info *fs_info = trans->fs_info;
1403 struct btrfs_root *gang[8];
1408 * At this point no one can be using this transaction to modify any tree
1409 * and no one can start another transaction to modify any tree either.
1411 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1413 spin_lock(&fs_info->fs_roots_radix_lock);
1415 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1418 BTRFS_ROOT_TRANS_TAG);
1421 for (i = 0; i < ret; i++) {
1422 struct btrfs_root *root = gang[i];
1426 * At this point we can neither have tasks logging inodes
1427 * from a root nor trying to commit a log tree.
1429 ASSERT(atomic_read(&root->log_writers) == 0);
1430 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1431 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1433 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1434 (unsigned long)root->root_key.objectid,
1435 BTRFS_ROOT_TRANS_TAG);
1436 spin_unlock(&fs_info->fs_roots_radix_lock);
1438 btrfs_free_log(trans, root);
1439 ret2 = btrfs_update_reloc_root(trans, root);
1443 /* see comments in should_cow_block() */
1444 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1445 smp_mb__after_atomic();
1447 if (root->commit_root != root->node) {
1448 list_add_tail(&root->dirty_list,
1449 &trans->transaction->switch_commits);
1450 btrfs_set_root_node(&root->root_item,
1454 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1459 spin_lock(&fs_info->fs_roots_radix_lock);
1460 btrfs_qgroup_free_meta_all_pertrans(root);
1463 spin_unlock(&fs_info->fs_roots_radix_lock);
1468 * defrag a given btree.
1469 * Every leaf in the btree is read and defragged.
1471 int btrfs_defrag_root(struct btrfs_root *root)
1473 struct btrfs_fs_info *info = root->fs_info;
1474 struct btrfs_trans_handle *trans;
1477 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1481 trans = btrfs_start_transaction(root, 0);
1482 if (IS_ERR(trans)) {
1483 ret = PTR_ERR(trans);
1487 ret = btrfs_defrag_leaves(trans, root);
1489 btrfs_end_transaction(trans);
1490 btrfs_btree_balance_dirty(info);
1493 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1496 if (btrfs_defrag_cancelled(info)) {
1497 btrfs_debug(info, "defrag_root cancelled");
1502 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1507 * Do all special snapshot related qgroup dirty hack.
1509 * Will do all needed qgroup inherit and dirty hack like switch commit
1510 * roots inside one transaction and write all btree into disk, to make
1513 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *src,
1515 struct btrfs_root *parent,
1516 struct btrfs_qgroup_inherit *inherit,
1519 struct btrfs_fs_info *fs_info = src->fs_info;
1523 * Save some performance in the case that qgroups are not
1524 * enabled. If this check races with the ioctl, rescan will
1527 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1531 * Ensure dirty @src will be committed. Or, after coming
1532 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1533 * recorded root will never be updated again, causing an outdated root
1536 ret = record_root_in_trans(trans, src, 1);
1541 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1542 * src root, so we must run the delayed refs here.
1544 * However this isn't particularly fool proof, because there's no
1545 * synchronization keeping us from changing the tree after this point
1546 * before we do the qgroup_inherit, or even from making changes while
1547 * we're doing the qgroup_inherit. But that's a problem for the future,
1548 * for now flush the delayed refs to narrow the race window where the
1549 * qgroup counters could end up wrong.
1551 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1553 btrfs_abort_transaction(trans, ret);
1557 ret = commit_fs_roots(trans);
1560 ret = btrfs_qgroup_account_extents(trans);
1564 /* Now qgroup are all updated, we can inherit it to new qgroups */
1565 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1571 * Now we do a simplified commit transaction, which will:
1572 * 1) commit all subvolume and extent tree
1573 * To ensure all subvolume and extent tree have a valid
1574 * commit_root to accounting later insert_dir_item()
1575 * 2) write all btree blocks onto disk
1576 * This is to make sure later btree modification will be cowed
1577 * Or commit_root can be populated and cause wrong qgroup numbers
1578 * In this simplified commit, we don't really care about other trees
1579 * like chunk and root tree, as they won't affect qgroup.
1580 * And we don't write super to avoid half committed status.
1582 ret = commit_cowonly_roots(trans);
1585 switch_commit_roots(trans);
1586 ret = btrfs_write_and_wait_transaction(trans);
1588 btrfs_handle_fs_error(fs_info, ret,
1589 "Error while writing out transaction for qgroup");
1593 * Force parent root to be updated, as we recorded it before so its
1594 * last_trans == cur_transid.
1595 * Or it won't be committed again onto disk after later
1599 ret = record_root_in_trans(trans, parent, 1);
1604 * new snapshots need to be created at a very specific time in the
1605 * transaction commit. This does the actual creation.
1608 * If the error which may affect the commitment of the current transaction
1609 * happens, we should return the error number. If the error which just affect
1610 * the creation of the pending snapshots, just return 0.
1612 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1613 struct btrfs_pending_snapshot *pending)
1616 struct btrfs_fs_info *fs_info = trans->fs_info;
1617 struct btrfs_key key;
1618 struct btrfs_root_item *new_root_item;
1619 struct btrfs_root *tree_root = fs_info->tree_root;
1620 struct btrfs_root *root = pending->root;
1621 struct btrfs_root *parent_root;
1622 struct btrfs_block_rsv *rsv;
1623 struct inode *parent_inode = pending->dir;
1624 struct btrfs_path *path;
1625 struct btrfs_dir_item *dir_item;
1626 struct extent_buffer *tmp;
1627 struct extent_buffer *old;
1628 struct timespec64 cur_time;
1634 unsigned int nofs_flags;
1635 struct fscrypt_name fname;
1637 ASSERT(pending->path);
1638 path = pending->path;
1640 ASSERT(pending->root_item);
1641 new_root_item = pending->root_item;
1644 * We're inside a transaction and must make sure that any potential
1645 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1648 nofs_flags = memalloc_nofs_save();
1649 pending->error = fscrypt_setup_filename(parent_inode,
1650 &pending->dentry->d_name, 0,
1652 memalloc_nofs_restore(nofs_flags);
1656 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1661 * Make qgroup to skip current new snapshot's qgroupid, as it is
1662 * accounted by later btrfs_qgroup_inherit().
1664 btrfs_set_skip_qgroup(trans, objectid);
1666 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1668 if (to_reserve > 0) {
1669 pending->error = btrfs_block_rsv_add(fs_info,
1670 &pending->block_rsv,
1672 BTRFS_RESERVE_NO_FLUSH);
1674 goto clear_skip_qgroup;
1677 key.objectid = objectid;
1678 key.offset = (u64)-1;
1679 key.type = BTRFS_ROOT_ITEM_KEY;
1681 rsv = trans->block_rsv;
1682 trans->block_rsv = &pending->block_rsv;
1683 trans->bytes_reserved = trans->block_rsv->reserved;
1684 trace_btrfs_space_reservation(fs_info, "transaction",
1686 trans->bytes_reserved, 1);
1687 parent_root = BTRFS_I(parent_inode)->root;
1688 ret = record_root_in_trans(trans, parent_root, 0);
1691 cur_time = current_time(parent_inode);
1694 * insert the directory item
1696 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1697 BUG_ON(ret); /* -ENOMEM */
1699 /* check if there is a file/dir which has the same name. */
1700 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1701 btrfs_ino(BTRFS_I(parent_inode)),
1702 &fname.disk_name, 0);
1703 if (dir_item != NULL && !IS_ERR(dir_item)) {
1704 pending->error = -EEXIST;
1705 goto dir_item_existed;
1706 } else if (IS_ERR(dir_item)) {
1707 ret = PTR_ERR(dir_item);
1708 btrfs_abort_transaction(trans, ret);
1711 btrfs_release_path(path);
1714 * pull in the delayed directory update
1715 * and the delayed inode item
1716 * otherwise we corrupt the FS during
1719 ret = btrfs_run_delayed_items(trans);
1720 if (ret) { /* Transaction aborted */
1721 btrfs_abort_transaction(trans, ret);
1725 ret = record_root_in_trans(trans, root, 0);
1727 btrfs_abort_transaction(trans, ret);
1730 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1731 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1732 btrfs_check_and_init_root_item(new_root_item);
1734 root_flags = btrfs_root_flags(new_root_item);
1735 if (pending->readonly)
1736 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1738 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1739 btrfs_set_root_flags(new_root_item, root_flags);
1741 btrfs_set_root_generation_v2(new_root_item,
1743 generate_random_guid(new_root_item->uuid);
1744 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1746 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1747 memset(new_root_item->received_uuid, 0,
1748 sizeof(new_root_item->received_uuid));
1749 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1750 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1751 btrfs_set_root_stransid(new_root_item, 0);
1752 btrfs_set_root_rtransid(new_root_item, 0);
1754 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1756 btrfs_set_root_otransid(new_root_item, trans->transid);
1758 old = btrfs_lock_root_node(root);
1759 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1762 btrfs_tree_unlock(old);
1763 free_extent_buffer(old);
1764 btrfs_abort_transaction(trans, ret);
1768 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1769 /* clean up in any case */
1770 btrfs_tree_unlock(old);
1771 free_extent_buffer(old);
1773 btrfs_abort_transaction(trans, ret);
1776 /* see comments in should_cow_block() */
1777 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1780 btrfs_set_root_node(new_root_item, tmp);
1781 /* record when the snapshot was created in key.offset */
1782 key.offset = trans->transid;
1783 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1784 btrfs_tree_unlock(tmp);
1785 free_extent_buffer(tmp);
1787 btrfs_abort_transaction(trans, ret);
1792 * insert root back/forward references
1794 ret = btrfs_add_root_ref(trans, objectid,
1795 parent_root->root_key.objectid,
1796 btrfs_ino(BTRFS_I(parent_inode)), index,
1799 btrfs_abort_transaction(trans, ret);
1803 key.offset = (u64)-1;
1804 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1805 if (IS_ERR(pending->snap)) {
1806 ret = PTR_ERR(pending->snap);
1807 pending->snap = NULL;
1808 btrfs_abort_transaction(trans, ret);
1812 ret = btrfs_reloc_post_snapshot(trans, pending);
1814 btrfs_abort_transaction(trans, ret);
1819 * Do special qgroup accounting for snapshot, as we do some qgroup
1820 * snapshot hack to do fast snapshot.
1821 * To co-operate with that hack, we do hack again.
1822 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1824 ret = qgroup_account_snapshot(trans, root, parent_root,
1825 pending->inherit, objectid);
1829 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1830 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1832 /* We have check then name at the beginning, so it is impossible. */
1833 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1835 btrfs_abort_transaction(trans, ret);
1839 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1840 fname.disk_name.len * 2);
1841 parent_inode->i_mtime = current_time(parent_inode);
1842 parent_inode->i_ctime = parent_inode->i_mtime;
1843 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1845 btrfs_abort_transaction(trans, ret);
1848 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1849 BTRFS_UUID_KEY_SUBVOL,
1852 btrfs_abort_transaction(trans, ret);
1855 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1856 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1857 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1859 if (ret && ret != -EEXIST) {
1860 btrfs_abort_transaction(trans, ret);
1866 pending->error = ret;
1868 trans->block_rsv = rsv;
1869 trans->bytes_reserved = 0;
1871 btrfs_clear_skip_qgroup(trans);
1873 fscrypt_free_filename(&fname);
1875 kfree(new_root_item);
1876 pending->root_item = NULL;
1877 btrfs_free_path(path);
1878 pending->path = NULL;
1884 * create all the snapshots we've scheduled for creation
1886 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1888 struct btrfs_pending_snapshot *pending, *next;
1889 struct list_head *head = &trans->transaction->pending_snapshots;
1892 list_for_each_entry_safe(pending, next, head, list) {
1893 list_del(&pending->list);
1894 ret = create_pending_snapshot(trans, pending);
1901 static void update_super_roots(struct btrfs_fs_info *fs_info)
1903 struct btrfs_root_item *root_item;
1904 struct btrfs_super_block *super;
1906 super = fs_info->super_copy;
1908 root_item = &fs_info->chunk_root->root_item;
1909 super->chunk_root = root_item->bytenr;
1910 super->chunk_root_generation = root_item->generation;
1911 super->chunk_root_level = root_item->level;
1913 root_item = &fs_info->tree_root->root_item;
1914 super->root = root_item->bytenr;
1915 super->generation = root_item->generation;
1916 super->root_level = root_item->level;
1917 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1918 super->cache_generation = root_item->generation;
1919 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1920 super->cache_generation = 0;
1921 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1922 super->uuid_tree_generation = root_item->generation;
1925 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1927 struct btrfs_transaction *trans;
1930 spin_lock(&info->trans_lock);
1931 trans = info->running_transaction;
1933 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1934 spin_unlock(&info->trans_lock);
1938 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1940 struct btrfs_transaction *trans;
1943 spin_lock(&info->trans_lock);
1944 trans = info->running_transaction;
1946 ret = is_transaction_blocked(trans);
1947 spin_unlock(&info->trans_lock);
1951 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1953 struct btrfs_fs_info *fs_info = trans->fs_info;
1954 struct btrfs_transaction *cur_trans;
1956 /* Kick the transaction kthread. */
1957 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1958 wake_up_process(fs_info->transaction_kthread);
1960 /* take transaction reference */
1961 cur_trans = trans->transaction;
1962 refcount_inc(&cur_trans->use_count);
1964 btrfs_end_transaction(trans);
1967 * Wait for the current transaction commit to start and block
1968 * subsequent transaction joins
1970 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1971 wait_event(fs_info->transaction_blocked_wait,
1972 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1973 TRANS_ABORTED(cur_trans));
1974 btrfs_put_transaction(cur_trans);
1977 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1979 struct btrfs_fs_info *fs_info = trans->fs_info;
1980 struct btrfs_transaction *cur_trans = trans->transaction;
1982 WARN_ON(refcount_read(&trans->use_count) > 1);
1984 btrfs_abort_transaction(trans, err);
1986 spin_lock(&fs_info->trans_lock);
1989 * If the transaction is removed from the list, it means this
1990 * transaction has been committed successfully, so it is impossible
1991 * to call the cleanup function.
1993 BUG_ON(list_empty(&cur_trans->list));
1995 if (cur_trans == fs_info->running_transaction) {
1996 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1997 spin_unlock(&fs_info->trans_lock);
2000 * The thread has already released the lockdep map as reader
2001 * already in btrfs_commit_transaction().
2003 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2004 wait_event(cur_trans->writer_wait,
2005 atomic_read(&cur_trans->num_writers) == 1);
2007 spin_lock(&fs_info->trans_lock);
2011 * Now that we know no one else is still using the transaction we can
2012 * remove the transaction from the list of transactions. This avoids
2013 * the transaction kthread from cleaning up the transaction while some
2014 * other task is still using it, which could result in a use-after-free
2015 * on things like log trees, as it forces the transaction kthread to
2016 * wait for this transaction to be cleaned up by us.
2018 list_del_init(&cur_trans->list);
2020 spin_unlock(&fs_info->trans_lock);
2022 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2024 spin_lock(&fs_info->trans_lock);
2025 if (cur_trans == fs_info->running_transaction)
2026 fs_info->running_transaction = NULL;
2027 spin_unlock(&fs_info->trans_lock);
2029 if (trans->type & __TRANS_FREEZABLE)
2030 sb_end_intwrite(fs_info->sb);
2031 btrfs_put_transaction(cur_trans);
2032 btrfs_put_transaction(cur_trans);
2034 trace_btrfs_transaction_commit(fs_info);
2036 if (current->journal_info == trans)
2037 current->journal_info = NULL;
2040 * If relocation is running, we can't cancel scrub because that will
2041 * result in a deadlock. Before relocating a block group, relocation
2042 * pauses scrub, then starts and commits a transaction before unpausing
2043 * scrub. If the transaction commit is being done by the relocation
2044 * task or triggered by another task and the relocation task is waiting
2045 * for the commit, and we end up here due to an error in the commit
2046 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2047 * asking for scrub to stop while having it asked to be paused higher
2048 * above in relocation code.
2050 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2051 btrfs_scrub_cancel(fs_info);
2053 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2057 * Release reserved delayed ref space of all pending block groups of the
2058 * transaction and remove them from the list
2060 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2062 struct btrfs_fs_info *fs_info = trans->fs_info;
2063 struct btrfs_block_group *block_group, *tmp;
2065 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2066 btrfs_delayed_refs_rsv_release(fs_info, 1);
2067 list_del_init(&block_group->bg_list);
2071 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2074 * We use try_to_writeback_inodes_sb() here because if we used
2075 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2076 * Currently are holding the fs freeze lock, if we do an async flush
2077 * we'll do btrfs_join_transaction() and deadlock because we need to
2078 * wait for the fs freeze lock. Using the direct flushing we benefit
2079 * from already being in a transaction and our join_transaction doesn't
2080 * have to re-take the fs freeze lock.
2082 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2083 * if it can read lock sb->s_umount. It will always be able to lock it,
2084 * except when the filesystem is being unmounted or being frozen, but in
2085 * those cases sync_filesystem() is called, which results in calling
2086 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2087 * Note that we don't call writeback_inodes_sb() directly, because it
2088 * will emit a warning if sb->s_umount is not locked.
2090 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2091 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2095 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2097 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2098 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2102 * Add a pending snapshot associated with the given transaction handle to the
2103 * respective handle. This must be called after the transaction commit started
2104 * and while holding fs_info->trans_lock.
2105 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2106 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2109 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2111 struct btrfs_transaction *cur_trans = trans->transaction;
2113 if (!trans->pending_snapshot)
2116 lockdep_assert_held(&trans->fs_info->trans_lock);
2117 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2119 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2122 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2124 fs_info->commit_stats.commit_count++;
2125 fs_info->commit_stats.last_commit_dur = interval;
2126 fs_info->commit_stats.max_commit_dur =
2127 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2128 fs_info->commit_stats.total_commit_dur += interval;
2131 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2133 struct btrfs_fs_info *fs_info = trans->fs_info;
2134 struct btrfs_transaction *cur_trans = trans->transaction;
2135 struct btrfs_transaction *prev_trans = NULL;
2140 ASSERT(refcount_read(&trans->use_count) == 1);
2141 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2143 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2145 /* Stop the commit early if ->aborted is set */
2146 if (TRANS_ABORTED(cur_trans)) {
2147 ret = cur_trans->aborted;
2148 goto lockdep_trans_commit_start_release;
2151 btrfs_trans_release_metadata(trans);
2152 trans->block_rsv = NULL;
2155 * We only want one transaction commit doing the flushing so we do not
2156 * waste a bunch of time on lock contention on the extent root node.
2158 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2159 &cur_trans->delayed_refs.flags)) {
2161 * Make a pass through all the delayed refs we have so far.
2162 * Any running threads may add more while we are here.
2164 ret = btrfs_run_delayed_refs(trans, 0);
2166 goto lockdep_trans_commit_start_release;
2169 btrfs_create_pending_block_groups(trans);
2171 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2174 /* this mutex is also taken before trying to set
2175 * block groups readonly. We need to make sure
2176 * that nobody has set a block group readonly
2177 * after a extents from that block group have been
2178 * allocated for cache files. btrfs_set_block_group_ro
2179 * will wait for the transaction to commit if it
2180 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2182 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2183 * only one process starts all the block group IO. It wouldn't
2184 * hurt to have more than one go through, but there's no
2185 * real advantage to it either.
2187 mutex_lock(&fs_info->ro_block_group_mutex);
2188 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2191 mutex_unlock(&fs_info->ro_block_group_mutex);
2194 ret = btrfs_start_dirty_block_groups(trans);
2196 goto lockdep_trans_commit_start_release;
2200 spin_lock(&fs_info->trans_lock);
2201 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2202 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2204 add_pending_snapshot(trans);
2206 spin_unlock(&fs_info->trans_lock);
2207 refcount_inc(&cur_trans->use_count);
2209 if (trans->in_fsync)
2210 want_state = TRANS_STATE_SUPER_COMMITTED;
2212 btrfs_trans_state_lockdep_release(fs_info,
2213 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2214 ret = btrfs_end_transaction(trans);
2215 wait_for_commit(cur_trans, want_state);
2217 if (TRANS_ABORTED(cur_trans))
2218 ret = cur_trans->aborted;
2220 btrfs_put_transaction(cur_trans);
2225 cur_trans->state = TRANS_STATE_COMMIT_START;
2226 wake_up(&fs_info->transaction_blocked_wait);
2227 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2229 if (cur_trans->list.prev != &fs_info->trans_list) {
2230 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2232 if (trans->in_fsync)
2233 want_state = TRANS_STATE_SUPER_COMMITTED;
2235 prev_trans = list_entry(cur_trans->list.prev,
2236 struct btrfs_transaction, list);
2237 if (prev_trans->state < want_state) {
2238 refcount_inc(&prev_trans->use_count);
2239 spin_unlock(&fs_info->trans_lock);
2241 wait_for_commit(prev_trans, want_state);
2243 ret = READ_ONCE(prev_trans->aborted);
2245 btrfs_put_transaction(prev_trans);
2247 goto lockdep_release;
2249 spin_unlock(&fs_info->trans_lock);
2252 spin_unlock(&fs_info->trans_lock);
2254 * The previous transaction was aborted and was already removed
2255 * from the list of transactions at fs_info->trans_list. So we
2256 * abort to prevent writing a new superblock that reflects a
2257 * corrupt state (pointing to trees with unwritten nodes/leafs).
2259 if (BTRFS_FS_ERROR(fs_info)) {
2261 goto lockdep_release;
2266 * Get the time spent on the work done by the commit thread and not
2267 * the time spent waiting on a previous commit
2269 start_time = ktime_get_ns();
2271 extwriter_counter_dec(cur_trans, trans->type);
2273 ret = btrfs_start_delalloc_flush(fs_info);
2275 goto lockdep_release;
2277 ret = btrfs_run_delayed_items(trans);
2279 goto lockdep_release;
2282 * The thread has started/joined the transaction thus it holds the
2283 * lockdep map as a reader. It has to release it before acquiring the
2284 * lockdep map as a writer.
2286 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2287 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2288 wait_event(cur_trans->writer_wait,
2289 extwriter_counter_read(cur_trans) == 0);
2291 /* some pending stuffs might be added after the previous flush. */
2292 ret = btrfs_run_delayed_items(trans);
2294 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2295 goto cleanup_transaction;
2298 btrfs_wait_delalloc_flush(fs_info);
2301 * Wait for all ordered extents started by a fast fsync that joined this
2302 * transaction. Otherwise if this transaction commits before the ordered
2303 * extents complete we lose logged data after a power failure.
2305 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2306 wait_event(cur_trans->pending_wait,
2307 atomic_read(&cur_trans->pending_ordered) == 0);
2309 btrfs_scrub_pause(fs_info);
2311 * Ok now we need to make sure to block out any other joins while we
2312 * commit the transaction. We could have started a join before setting
2313 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2315 spin_lock(&fs_info->trans_lock);
2316 add_pending_snapshot(trans);
2317 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2318 spin_unlock(&fs_info->trans_lock);
2321 * The thread has started/joined the transaction thus it holds the
2322 * lockdep map as a reader. It has to release it before acquiring the
2323 * lockdep map as a writer.
2325 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2326 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2327 wait_event(cur_trans->writer_wait,
2328 atomic_read(&cur_trans->num_writers) == 1);
2331 * Make lockdep happy by acquiring the state locks after
2332 * btrfs_trans_num_writers is released. If we acquired the state locks
2333 * before releasing the btrfs_trans_num_writers lock then lockdep would
2334 * complain because we did not follow the reverse order unlocking rule.
2336 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2337 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2338 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2341 * We've started the commit, clear the flag in case we were triggered to
2342 * do an async commit but somebody else started before the transaction
2343 * kthread could do the work.
2345 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2347 if (TRANS_ABORTED(cur_trans)) {
2348 ret = cur_trans->aborted;
2349 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2350 goto scrub_continue;
2353 * the reloc mutex makes sure that we stop
2354 * the balancing code from coming in and moving
2355 * extents around in the middle of the commit
2357 mutex_lock(&fs_info->reloc_mutex);
2360 * We needn't worry about the delayed items because we will
2361 * deal with them in create_pending_snapshot(), which is the
2362 * core function of the snapshot creation.
2364 ret = create_pending_snapshots(trans);
2369 * We insert the dir indexes of the snapshots and update the inode
2370 * of the snapshots' parents after the snapshot creation, so there
2371 * are some delayed items which are not dealt with. Now deal with
2374 * We needn't worry that this operation will corrupt the snapshots,
2375 * because all the tree which are snapshoted will be forced to COW
2376 * the nodes and leaves.
2378 ret = btrfs_run_delayed_items(trans);
2382 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2387 * make sure none of the code above managed to slip in a
2390 btrfs_assert_delayed_root_empty(fs_info);
2392 WARN_ON(cur_trans != trans->transaction);
2394 ret = commit_fs_roots(trans);
2398 /* commit_fs_roots gets rid of all the tree log roots, it is now
2399 * safe to free the root of tree log roots
2401 btrfs_free_log_root_tree(trans, fs_info);
2404 * Since fs roots are all committed, we can get a quite accurate
2405 * new_roots. So let's do quota accounting.
2407 ret = btrfs_qgroup_account_extents(trans);
2411 ret = commit_cowonly_roots(trans);
2416 * The tasks which save the space cache and inode cache may also
2417 * update ->aborted, check it.
2419 if (TRANS_ABORTED(cur_trans)) {
2420 ret = cur_trans->aborted;
2424 cur_trans = fs_info->running_transaction;
2426 btrfs_set_root_node(&fs_info->tree_root->root_item,
2427 fs_info->tree_root->node);
2428 list_add_tail(&fs_info->tree_root->dirty_list,
2429 &cur_trans->switch_commits);
2431 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2432 fs_info->chunk_root->node);
2433 list_add_tail(&fs_info->chunk_root->dirty_list,
2434 &cur_trans->switch_commits);
2436 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2437 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2438 fs_info->block_group_root->node);
2439 list_add_tail(&fs_info->block_group_root->dirty_list,
2440 &cur_trans->switch_commits);
2443 switch_commit_roots(trans);
2445 ASSERT(list_empty(&cur_trans->dirty_bgs));
2446 ASSERT(list_empty(&cur_trans->io_bgs));
2447 update_super_roots(fs_info);
2449 btrfs_set_super_log_root(fs_info->super_copy, 0);
2450 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2451 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2452 sizeof(*fs_info->super_copy));
2454 btrfs_commit_device_sizes(cur_trans);
2456 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2457 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2459 btrfs_trans_release_chunk_metadata(trans);
2462 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2463 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2464 * make sure that before we commit our superblock, no other task can
2465 * start a new transaction and commit a log tree before we commit our
2466 * superblock. Anyone trying to commit a log tree locks this mutex before
2467 * writing its superblock.
2469 mutex_lock(&fs_info->tree_log_mutex);
2471 spin_lock(&fs_info->trans_lock);
2472 cur_trans->state = TRANS_STATE_UNBLOCKED;
2473 fs_info->running_transaction = NULL;
2474 spin_unlock(&fs_info->trans_lock);
2475 mutex_unlock(&fs_info->reloc_mutex);
2477 wake_up(&fs_info->transaction_wait);
2478 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2480 /* If we have features changed, wake up the cleaner to update sysfs. */
2481 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2482 fs_info->cleaner_kthread)
2483 wake_up_process(fs_info->cleaner_kthread);
2485 ret = btrfs_write_and_wait_transaction(trans);
2487 btrfs_handle_fs_error(fs_info, ret,
2488 "Error while writing out transaction");
2489 mutex_unlock(&fs_info->tree_log_mutex);
2490 goto scrub_continue;
2494 * At this point, we should have written all the tree blocks allocated
2495 * in this transaction. So it's now safe to free the redirtyied extent
2498 btrfs_free_redirty_list(cur_trans);
2500 ret = write_all_supers(fs_info, 0);
2502 * the super is written, we can safely allow the tree-loggers
2503 * to go about their business
2505 mutex_unlock(&fs_info->tree_log_mutex);
2507 goto scrub_continue;
2510 * We needn't acquire the lock here because there is no other task
2511 * which can change it.
2513 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2514 wake_up(&cur_trans->commit_wait);
2515 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2517 btrfs_finish_extent_commit(trans);
2519 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2520 btrfs_clear_space_info_full(fs_info);
2522 fs_info->last_trans_committed = cur_trans->transid;
2524 * We needn't acquire the lock here because there is no other task
2525 * which can change it.
2527 cur_trans->state = TRANS_STATE_COMPLETED;
2528 wake_up(&cur_trans->commit_wait);
2529 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2531 spin_lock(&fs_info->trans_lock);
2532 list_del_init(&cur_trans->list);
2533 spin_unlock(&fs_info->trans_lock);
2535 btrfs_put_transaction(cur_trans);
2536 btrfs_put_transaction(cur_trans);
2538 if (trans->type & __TRANS_FREEZABLE)
2539 sb_end_intwrite(fs_info->sb);
2541 trace_btrfs_transaction_commit(fs_info);
2543 interval = ktime_get_ns() - start_time;
2545 btrfs_scrub_continue(fs_info);
2547 if (current->journal_info == trans)
2548 current->journal_info = NULL;
2550 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2552 update_commit_stats(fs_info, interval);
2557 mutex_unlock(&fs_info->reloc_mutex);
2558 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2560 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2561 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2562 btrfs_scrub_continue(fs_info);
2563 cleanup_transaction:
2564 btrfs_trans_release_metadata(trans);
2565 btrfs_cleanup_pending_block_groups(trans);
2566 btrfs_trans_release_chunk_metadata(trans);
2567 trans->block_rsv = NULL;
2568 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2569 if (current->journal_info == trans)
2570 current->journal_info = NULL;
2571 cleanup_transaction(trans, ret);
2576 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2577 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2578 goto cleanup_transaction;
2580 lockdep_trans_commit_start_release:
2581 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2582 btrfs_end_transaction(trans);
2587 * return < 0 if error
2588 * 0 if there are no more dead_roots at the time of call
2589 * 1 there are more to be processed, call me again
2591 * The return value indicates there are certainly more snapshots to delete, but
2592 * if there comes a new one during processing, it may return 0. We don't mind,
2593 * because btrfs_commit_super will poke cleaner thread and it will process it a
2594 * few seconds later.
2596 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2598 struct btrfs_root *root;
2601 spin_lock(&fs_info->trans_lock);
2602 if (list_empty(&fs_info->dead_roots)) {
2603 spin_unlock(&fs_info->trans_lock);
2606 root = list_first_entry(&fs_info->dead_roots,
2607 struct btrfs_root, root_list);
2608 list_del_init(&root->root_list);
2609 spin_unlock(&fs_info->trans_lock);
2611 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2613 btrfs_kill_all_delayed_nodes(root);
2615 if (btrfs_header_backref_rev(root->node) <
2616 BTRFS_MIXED_BACKREF_REV)
2617 ret = btrfs_drop_snapshot(root, 0, 0);
2619 ret = btrfs_drop_snapshot(root, 1, 0);
2621 btrfs_put_root(root);
2622 return (ret < 0) ? 0 : 1;
2626 * We only mark the transaction aborted and then set the file system read-only.
2627 * This will prevent new transactions from starting or trying to join this
2630 * This means that error recovery at the call site is limited to freeing
2631 * any local memory allocations and passing the error code up without
2632 * further cleanup. The transaction should complete as it normally would
2633 * in the call path but will return -EIO.
2635 * We'll complete the cleanup in btrfs_end_transaction and
2636 * btrfs_commit_transaction.
2638 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2639 const char *function,
2640 unsigned int line, int errno, bool first_hit)
2642 struct btrfs_fs_info *fs_info = trans->fs_info;
2644 WRITE_ONCE(trans->aborted, errno);
2645 WRITE_ONCE(trans->transaction->aborted, errno);
2646 if (first_hit && errno == -ENOSPC)
2647 btrfs_dump_space_info_for_trans_abort(fs_info);
2648 /* Wake up anybody who may be waiting on this transaction */
2649 wake_up(&fs_info->transaction_wait);
2650 wake_up(&fs_info->transaction_blocked_wait);
2651 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2654 int __init btrfs_transaction_init(void)
2656 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2657 sizeof(struct btrfs_trans_handle), 0,
2658 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2659 if (!btrfs_trans_handle_cachep)
2664 void __cold btrfs_transaction_exit(void)
2666 kmem_cache_destroy(btrfs_trans_handle_cachep);