2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 # define CHECK_DEVLOCK()
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio *bio)
107 return bio->bi_phys_segments & 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio *bio)
112 return (bio->bi_phys_segments >> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 unsigned short val = raid5_bi_hw_segments(bio);
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
139 /* ddf always start from first device */
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
145 return sh->qd_idx + 1;
147 static inline int raid6_next_disk(int disk, int raid_disks)
150 return (disk < raid_disks) ? disk : 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
174 static void return_io(struct bio *return_bi)
176 struct bio *bi = return_bi;
179 return_bi = bi->bi_next;
187 static void print_raid5_conf (raid5_conf_t *conf);
189 static int stripe_operations_active(struct stripe_head *sh)
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 blk_plug_device(conf->mddev->queue);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 sh->bm_seq - conf->seq_write > 0) {
207 list_add_tail(&sh->lru, &conf->bitmap_list);
208 blk_plug_device(conf->mddev->queue);
210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 list_add_tail(&sh->lru, &conf->handle_list);
213 md_wakeup_thread(conf->mddev->thread);
215 BUG_ON(stripe_operations_active(sh));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
221 atomic_dec(&conf->active_stripes);
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
224 wake_up(&conf->wait_for_stripe);
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
232 static void release_stripe(struct stripe_head *sh)
234 raid5_conf_t *conf = sh->raid_conf;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
242 static inline void remove_hash(struct stripe_head *sh)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
247 hlist_del_init(&sh->hash);
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
258 hlist_add_head(&sh->hash, hp);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
269 if (list_empty(&conf->inactive_list))
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
275 atomic_inc(&conf->active_stripes);
280 static void shrink_buffers(struct stripe_head *sh)
284 int num = sh->raid_conf->pool_size;
286 for (i = 0; i < num ; i++) {
290 sh->dev[i].page = NULL;
295 static int grow_buffers(struct stripe_head *sh)
298 int num = sh->raid_conf->pool_size;
300 for (i = 0; i < num; i++) {
303 if (!(page = alloc_page(GFP_KERNEL))) {
306 sh->dev[i].page = page;
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
317 raid5_conf_t *conf = sh->raid_conf;
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 BUG_ON(stripe_operations_active(sh));
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh->sector);
330 sh->generation = conf->generation - previous;
331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
333 stripe_set_idx(sector, conf, previous, sh);
337 for (i = sh->disks; i--; ) {
338 struct r5dev *dev = &sh->dev[i];
340 if (dev->toread || dev->read || dev->towrite || dev->written ||
341 test_bit(R5_LOCKED, &dev->flags)) {
342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh->sector, i, dev->toread,
344 dev->read, dev->towrite, dev->written,
345 test_bit(R5_LOCKED, &dev->flags));
349 raid5_build_block(sh, i, previous);
351 insert_hash(conf, sh);
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
357 struct stripe_head *sh;
358 struct hlist_node *hn;
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 if (sh->sector == sector && sh->generation == generation)
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
369 static void unplug_slaves(mddev_t *mddev);
370 static void raid5_unplug_device(struct request_queue *q);
372 static struct stripe_head *
373 get_active_stripe(raid5_conf_t *conf, sector_t sector,
374 int previous, int noblock, int noquiesce)
376 struct stripe_head *sh;
378 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
380 spin_lock_irq(&conf->device_lock);
383 wait_event_lock_irq(conf->wait_for_stripe,
384 conf->quiesce == 0 || noquiesce,
385 conf->device_lock, /* nothing */);
386 sh = __find_stripe(conf, sector, conf->generation - previous);
388 if (!conf->inactive_blocked)
389 sh = get_free_stripe(conf);
390 if (noblock && sh == NULL)
393 conf->inactive_blocked = 1;
394 wait_event_lock_irq(conf->wait_for_stripe,
395 !list_empty(&conf->inactive_list) &&
396 (atomic_read(&conf->active_stripes)
397 < (conf->max_nr_stripes *3/4)
398 || !conf->inactive_blocked),
400 raid5_unplug_device(conf->mddev->queue)
402 conf->inactive_blocked = 0;
404 init_stripe(sh, sector, previous);
406 if (atomic_read(&sh->count)) {
407 BUG_ON(!list_empty(&sh->lru)
408 && !test_bit(STRIPE_EXPANDING, &sh->state));
410 if (!test_bit(STRIPE_HANDLE, &sh->state))
411 atomic_inc(&conf->active_stripes);
412 if (list_empty(&sh->lru) &&
413 !test_bit(STRIPE_EXPANDING, &sh->state))
415 list_del_init(&sh->lru);
418 } while (sh == NULL);
421 atomic_inc(&sh->count);
423 spin_unlock_irq(&conf->device_lock);
428 raid5_end_read_request(struct bio *bi, int error);
430 raid5_end_write_request(struct bio *bi, int error);
432 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
434 raid5_conf_t *conf = sh->raid_conf;
435 int i, disks = sh->disks;
439 for (i = disks; i--; ) {
443 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
445 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
450 bi = &sh->dev[i].req;
454 bi->bi_end_io = raid5_end_write_request;
456 bi->bi_end_io = raid5_end_read_request;
459 rdev = rcu_dereference(conf->disks[i].rdev);
460 if (rdev && test_bit(Faulty, &rdev->flags))
463 atomic_inc(&rdev->nr_pending);
467 if (s->syncing || s->expanding || s->expanded)
468 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
470 set_bit(STRIPE_IO_STARTED, &sh->state);
472 bi->bi_bdev = rdev->bdev;
473 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
474 __func__, (unsigned long long)sh->sector,
476 atomic_inc(&sh->count);
477 bi->bi_sector = sh->sector + rdev->data_offset;
478 bi->bi_flags = 1 << BIO_UPTODATE;
482 bi->bi_io_vec = &sh->dev[i].vec;
483 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
484 bi->bi_io_vec[0].bv_offset = 0;
485 bi->bi_size = STRIPE_SIZE;
488 test_bit(R5_ReWrite, &sh->dev[i].flags))
489 atomic_add(STRIPE_SECTORS,
490 &rdev->corrected_errors);
491 generic_make_request(bi);
494 set_bit(STRIPE_DEGRADED, &sh->state);
495 pr_debug("skip op %ld on disc %d for sector %llu\n",
496 bi->bi_rw, i, (unsigned long long)sh->sector);
497 clear_bit(R5_LOCKED, &sh->dev[i].flags);
498 set_bit(STRIPE_HANDLE, &sh->state);
503 static struct dma_async_tx_descriptor *
504 async_copy_data(int frombio, struct bio *bio, struct page *page,
505 sector_t sector, struct dma_async_tx_descriptor *tx)
508 struct page *bio_page;
511 struct async_submit_ctl submit;
512 enum async_tx_flags flags = 0;
514 if (bio->bi_sector >= sector)
515 page_offset = (signed)(bio->bi_sector - sector) * 512;
517 page_offset = (signed)(sector - bio->bi_sector) * -512;
520 flags |= ASYNC_TX_FENCE;
521 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
523 bio_for_each_segment(bvl, bio, i) {
524 int len = bio_iovec_idx(bio, i)->bv_len;
528 if (page_offset < 0) {
529 b_offset = -page_offset;
530 page_offset += b_offset;
534 if (len > 0 && page_offset + len > STRIPE_SIZE)
535 clen = STRIPE_SIZE - page_offset;
540 b_offset += bio_iovec_idx(bio, i)->bv_offset;
541 bio_page = bio_iovec_idx(bio, i)->bv_page;
543 tx = async_memcpy(page, bio_page, page_offset,
544 b_offset, clen, &submit);
546 tx = async_memcpy(bio_page, page, b_offset,
547 page_offset, clen, &submit);
549 /* chain the operations */
550 submit.depend_tx = tx;
552 if (clen < len) /* hit end of page */
560 static void ops_complete_biofill(void *stripe_head_ref)
562 struct stripe_head *sh = stripe_head_ref;
563 struct bio *return_bi = NULL;
564 raid5_conf_t *conf = sh->raid_conf;
567 pr_debug("%s: stripe %llu\n", __func__,
568 (unsigned long long)sh->sector);
570 /* clear completed biofills */
571 spin_lock_irq(&conf->device_lock);
572 for (i = sh->disks; i--; ) {
573 struct r5dev *dev = &sh->dev[i];
575 /* acknowledge completion of a biofill operation */
576 /* and check if we need to reply to a read request,
577 * new R5_Wantfill requests are held off until
578 * !STRIPE_BIOFILL_RUN
580 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
581 struct bio *rbi, *rbi2;
586 while (rbi && rbi->bi_sector <
587 dev->sector + STRIPE_SECTORS) {
588 rbi2 = r5_next_bio(rbi, dev->sector);
589 if (!raid5_dec_bi_phys_segments(rbi)) {
590 rbi->bi_next = return_bi;
597 spin_unlock_irq(&conf->device_lock);
598 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
600 return_io(return_bi);
602 set_bit(STRIPE_HANDLE, &sh->state);
606 static void ops_run_biofill(struct stripe_head *sh)
608 struct dma_async_tx_descriptor *tx = NULL;
609 raid5_conf_t *conf = sh->raid_conf;
610 struct async_submit_ctl submit;
613 pr_debug("%s: stripe %llu\n", __func__,
614 (unsigned long long)sh->sector);
616 for (i = sh->disks; i--; ) {
617 struct r5dev *dev = &sh->dev[i];
618 if (test_bit(R5_Wantfill, &dev->flags)) {
620 spin_lock_irq(&conf->device_lock);
621 dev->read = rbi = dev->toread;
623 spin_unlock_irq(&conf->device_lock);
624 while (rbi && rbi->bi_sector <
625 dev->sector + STRIPE_SECTORS) {
626 tx = async_copy_data(0, rbi, dev->page,
628 rbi = r5_next_bio(rbi, dev->sector);
633 atomic_inc(&sh->count);
634 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
635 async_trigger_callback(&submit);
638 static void mark_target_uptodate(struct stripe_head *sh, int target)
645 tgt = &sh->dev[target];
646 set_bit(R5_UPTODATE, &tgt->flags);
647 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
648 clear_bit(R5_Wantcompute, &tgt->flags);
651 static void ops_complete_compute(void *stripe_head_ref)
653 struct stripe_head *sh = stripe_head_ref;
655 pr_debug("%s: stripe %llu\n", __func__,
656 (unsigned long long)sh->sector);
658 /* mark the computed target(s) as uptodate */
659 mark_target_uptodate(sh, sh->ops.target);
660 mark_target_uptodate(sh, sh->ops.target2);
662 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
663 if (sh->check_state == check_state_compute_run)
664 sh->check_state = check_state_compute_result;
665 set_bit(STRIPE_HANDLE, &sh->state);
669 /* return a pointer to the address conversion region of the scribble buffer */
670 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
671 struct raid5_percpu *percpu)
673 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
676 static struct dma_async_tx_descriptor *
677 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
679 int disks = sh->disks;
680 struct page **xor_srcs = percpu->scribble;
681 int target = sh->ops.target;
682 struct r5dev *tgt = &sh->dev[target];
683 struct page *xor_dest = tgt->page;
685 struct dma_async_tx_descriptor *tx;
686 struct async_submit_ctl submit;
689 pr_debug("%s: stripe %llu block: %d\n",
690 __func__, (unsigned long long)sh->sector, target);
691 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
693 for (i = disks; i--; )
695 xor_srcs[count++] = sh->dev[i].page;
697 atomic_inc(&sh->count);
699 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
700 ops_complete_compute, sh, to_addr_conv(sh, percpu));
701 if (unlikely(count == 1))
702 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
704 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
709 /* set_syndrome_sources - populate source buffers for gen_syndrome
710 * @srcs - (struct page *) array of size sh->disks
711 * @sh - stripe_head to parse
713 * Populates srcs in proper layout order for the stripe and returns the
714 * 'count' of sources to be used in a call to async_gen_syndrome. The P
715 * destination buffer is recorded in srcs[count] and the Q destination
716 * is recorded in srcs[count+1]].
718 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
720 int disks = sh->disks;
721 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
722 int d0_idx = raid6_d0(sh);
726 for (i = 0; i < disks; i++)
732 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
734 srcs[slot] = sh->dev[i].page;
735 i = raid6_next_disk(i, disks);
736 } while (i != d0_idx);
738 return syndrome_disks;
741 static struct dma_async_tx_descriptor *
742 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
744 int disks = sh->disks;
745 struct page **blocks = percpu->scribble;
747 int qd_idx = sh->qd_idx;
748 struct dma_async_tx_descriptor *tx;
749 struct async_submit_ctl submit;
755 if (sh->ops.target < 0)
756 target = sh->ops.target2;
757 else if (sh->ops.target2 < 0)
758 target = sh->ops.target;
760 /* we should only have one valid target */
763 pr_debug("%s: stripe %llu block: %d\n",
764 __func__, (unsigned long long)sh->sector, target);
766 tgt = &sh->dev[target];
767 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
770 atomic_inc(&sh->count);
772 if (target == qd_idx) {
773 count = set_syndrome_sources(blocks, sh);
774 blocks[count] = NULL; /* regenerating p is not necessary */
775 BUG_ON(blocks[count+1] != dest); /* q should already be set */
776 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
777 ops_complete_compute, sh,
778 to_addr_conv(sh, percpu));
779 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
781 /* Compute any data- or p-drive using XOR */
783 for (i = disks; i-- ; ) {
784 if (i == target || i == qd_idx)
786 blocks[count++] = sh->dev[i].page;
789 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
790 NULL, ops_complete_compute, sh,
791 to_addr_conv(sh, percpu));
792 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
798 static struct dma_async_tx_descriptor *
799 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
801 int i, count, disks = sh->disks;
802 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
803 int d0_idx = raid6_d0(sh);
804 int faila = -1, failb = -1;
805 int target = sh->ops.target;
806 int target2 = sh->ops.target2;
807 struct r5dev *tgt = &sh->dev[target];
808 struct r5dev *tgt2 = &sh->dev[target2];
809 struct dma_async_tx_descriptor *tx;
810 struct page **blocks = percpu->scribble;
811 struct async_submit_ctl submit;
813 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
814 __func__, (unsigned long long)sh->sector, target, target2);
815 BUG_ON(target < 0 || target2 < 0);
816 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
817 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
819 /* we need to open-code set_syndrome_sources to handle the
820 * slot number conversion for 'faila' and 'failb'
822 for (i = 0; i < disks ; i++)
827 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
829 blocks[slot] = sh->dev[i].page;
835 i = raid6_next_disk(i, disks);
836 } while (i != d0_idx);
838 BUG_ON(faila == failb);
841 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
842 __func__, (unsigned long long)sh->sector, faila, failb);
844 atomic_inc(&sh->count);
846 if (failb == syndrome_disks+1) {
847 /* Q disk is one of the missing disks */
848 if (faila == syndrome_disks) {
849 /* Missing P+Q, just recompute */
850 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
851 ops_complete_compute, sh,
852 to_addr_conv(sh, percpu));
853 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
854 STRIPE_SIZE, &submit);
858 int qd_idx = sh->qd_idx;
860 /* Missing D+Q: recompute D from P, then recompute Q */
861 if (target == qd_idx)
862 data_target = target2;
864 data_target = target;
867 for (i = disks; i-- ; ) {
868 if (i == data_target || i == qd_idx)
870 blocks[count++] = sh->dev[i].page;
872 dest = sh->dev[data_target].page;
873 init_async_submit(&submit,
874 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
876 to_addr_conv(sh, percpu));
877 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
880 count = set_syndrome_sources(blocks, sh);
881 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
882 ops_complete_compute, sh,
883 to_addr_conv(sh, percpu));
884 return async_gen_syndrome(blocks, 0, count+2,
885 STRIPE_SIZE, &submit);
888 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
889 ops_complete_compute, sh,
890 to_addr_conv(sh, percpu));
891 if (failb == syndrome_disks) {
892 /* We're missing D+P. */
893 return async_raid6_datap_recov(syndrome_disks+2,
897 /* We're missing D+D. */
898 return async_raid6_2data_recov(syndrome_disks+2,
899 STRIPE_SIZE, faila, failb,
906 static void ops_complete_prexor(void *stripe_head_ref)
908 struct stripe_head *sh = stripe_head_ref;
910 pr_debug("%s: stripe %llu\n", __func__,
911 (unsigned long long)sh->sector);
914 static struct dma_async_tx_descriptor *
915 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
916 struct dma_async_tx_descriptor *tx)
918 int disks = sh->disks;
919 struct page **xor_srcs = percpu->scribble;
920 int count = 0, pd_idx = sh->pd_idx, i;
921 struct async_submit_ctl submit;
923 /* existing parity data subtracted */
924 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
926 pr_debug("%s: stripe %llu\n", __func__,
927 (unsigned long long)sh->sector);
929 for (i = disks; i--; ) {
930 struct r5dev *dev = &sh->dev[i];
931 /* Only process blocks that are known to be uptodate */
932 if (test_bit(R5_Wantdrain, &dev->flags))
933 xor_srcs[count++] = dev->page;
936 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
937 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
938 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
943 static struct dma_async_tx_descriptor *
944 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
946 int disks = sh->disks;
949 pr_debug("%s: stripe %llu\n", __func__,
950 (unsigned long long)sh->sector);
952 for (i = disks; i--; ) {
953 struct r5dev *dev = &sh->dev[i];
956 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
959 spin_lock(&sh->lock);
960 chosen = dev->towrite;
962 BUG_ON(dev->written);
963 wbi = dev->written = chosen;
964 spin_unlock(&sh->lock);
966 while (wbi && wbi->bi_sector <
967 dev->sector + STRIPE_SECTORS) {
968 tx = async_copy_data(1, wbi, dev->page,
970 wbi = r5_next_bio(wbi, dev->sector);
978 static void ops_complete_reconstruct(void *stripe_head_ref)
980 struct stripe_head *sh = stripe_head_ref;
981 int disks = sh->disks;
982 int pd_idx = sh->pd_idx;
983 int qd_idx = sh->qd_idx;
986 pr_debug("%s: stripe %llu\n", __func__,
987 (unsigned long long)sh->sector);
989 for (i = disks; i--; ) {
990 struct r5dev *dev = &sh->dev[i];
992 if (dev->written || i == pd_idx || i == qd_idx)
993 set_bit(R5_UPTODATE, &dev->flags);
996 if (sh->reconstruct_state == reconstruct_state_drain_run)
997 sh->reconstruct_state = reconstruct_state_drain_result;
998 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
999 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1001 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1002 sh->reconstruct_state = reconstruct_state_result;
1005 set_bit(STRIPE_HANDLE, &sh->state);
1010 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1011 struct dma_async_tx_descriptor *tx)
1013 int disks = sh->disks;
1014 struct page **xor_srcs = percpu->scribble;
1015 struct async_submit_ctl submit;
1016 int count = 0, pd_idx = sh->pd_idx, i;
1017 struct page *xor_dest;
1019 unsigned long flags;
1021 pr_debug("%s: stripe %llu\n", __func__,
1022 (unsigned long long)sh->sector);
1024 /* check if prexor is active which means only process blocks
1025 * that are part of a read-modify-write (written)
1027 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1029 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1030 for (i = disks; i--; ) {
1031 struct r5dev *dev = &sh->dev[i];
1033 xor_srcs[count++] = dev->page;
1036 xor_dest = sh->dev[pd_idx].page;
1037 for (i = disks; i--; ) {
1038 struct r5dev *dev = &sh->dev[i];
1040 xor_srcs[count++] = dev->page;
1044 /* 1/ if we prexor'd then the dest is reused as a source
1045 * 2/ if we did not prexor then we are redoing the parity
1046 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1047 * for the synchronous xor case
1049 flags = ASYNC_TX_ACK |
1050 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1052 atomic_inc(&sh->count);
1054 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1055 to_addr_conv(sh, percpu));
1056 if (unlikely(count == 1))
1057 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1059 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1063 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1064 struct dma_async_tx_descriptor *tx)
1066 struct async_submit_ctl submit;
1067 struct page **blocks = percpu->scribble;
1070 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1072 count = set_syndrome_sources(blocks, sh);
1074 atomic_inc(&sh->count);
1076 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1077 sh, to_addr_conv(sh, percpu));
1078 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1081 static void ops_complete_check(void *stripe_head_ref)
1083 struct stripe_head *sh = stripe_head_ref;
1085 pr_debug("%s: stripe %llu\n", __func__,
1086 (unsigned long long)sh->sector);
1088 sh->check_state = check_state_check_result;
1089 set_bit(STRIPE_HANDLE, &sh->state);
1093 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1095 int disks = sh->disks;
1096 int pd_idx = sh->pd_idx;
1097 int qd_idx = sh->qd_idx;
1098 struct page *xor_dest;
1099 struct page **xor_srcs = percpu->scribble;
1100 struct dma_async_tx_descriptor *tx;
1101 struct async_submit_ctl submit;
1105 pr_debug("%s: stripe %llu\n", __func__,
1106 (unsigned long long)sh->sector);
1109 xor_dest = sh->dev[pd_idx].page;
1110 xor_srcs[count++] = xor_dest;
1111 for (i = disks; i--; ) {
1112 if (i == pd_idx || i == qd_idx)
1114 xor_srcs[count++] = sh->dev[i].page;
1117 init_async_submit(&submit, 0, NULL, NULL, NULL,
1118 to_addr_conv(sh, percpu));
1119 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1120 &sh->ops.zero_sum_result, &submit);
1122 atomic_inc(&sh->count);
1123 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1124 tx = async_trigger_callback(&submit);
1127 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1129 struct page **srcs = percpu->scribble;
1130 struct async_submit_ctl submit;
1133 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1134 (unsigned long long)sh->sector, checkp);
1136 count = set_syndrome_sources(srcs, sh);
1140 atomic_inc(&sh->count);
1141 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1142 sh, to_addr_conv(sh, percpu));
1143 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1144 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1147 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1149 int overlap_clear = 0, i, disks = sh->disks;
1150 struct dma_async_tx_descriptor *tx = NULL;
1151 raid5_conf_t *conf = sh->raid_conf;
1152 int level = conf->level;
1153 struct raid5_percpu *percpu;
1157 percpu = per_cpu_ptr(conf->percpu, cpu);
1158 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1159 ops_run_biofill(sh);
1163 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1165 tx = ops_run_compute5(sh, percpu);
1167 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1168 tx = ops_run_compute6_1(sh, percpu);
1170 tx = ops_run_compute6_2(sh, percpu);
1172 /* terminate the chain if reconstruct is not set to be run */
1173 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1177 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1178 tx = ops_run_prexor(sh, percpu, tx);
1180 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1181 tx = ops_run_biodrain(sh, tx);
1185 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1187 ops_run_reconstruct5(sh, percpu, tx);
1189 ops_run_reconstruct6(sh, percpu, tx);
1192 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1193 if (sh->check_state == check_state_run)
1194 ops_run_check_p(sh, percpu);
1195 else if (sh->check_state == check_state_run_q)
1196 ops_run_check_pq(sh, percpu, 0);
1197 else if (sh->check_state == check_state_run_pq)
1198 ops_run_check_pq(sh, percpu, 1);
1204 for (i = disks; i--; ) {
1205 struct r5dev *dev = &sh->dev[i];
1206 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1207 wake_up(&sh->raid_conf->wait_for_overlap);
1212 #ifdef CONFIG_MULTICORE_RAID456
1213 static void async_run_ops(void *param, async_cookie_t cookie)
1215 struct stripe_head *sh = param;
1216 unsigned long ops_request = sh->ops.request;
1218 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1219 wake_up(&sh->ops.wait_for_ops);
1221 __raid_run_ops(sh, ops_request);
1225 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1227 /* since handle_stripe can be called outside of raid5d context
1228 * we need to ensure sh->ops.request is de-staged before another
1231 wait_event(sh->ops.wait_for_ops,
1232 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1233 sh->ops.request = ops_request;
1235 atomic_inc(&sh->count);
1236 async_schedule(async_run_ops, sh);
1239 #define raid_run_ops __raid_run_ops
1242 static int grow_one_stripe(raid5_conf_t *conf)
1244 struct stripe_head *sh;
1245 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1248 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1249 sh->raid_conf = conf;
1250 spin_lock_init(&sh->lock);
1251 #ifdef CONFIG_MULTICORE_RAID456
1252 init_waitqueue_head(&sh->ops.wait_for_ops);
1255 if (grow_buffers(sh)) {
1257 kmem_cache_free(conf->slab_cache, sh);
1260 /* we just created an active stripe so... */
1261 atomic_set(&sh->count, 1);
1262 atomic_inc(&conf->active_stripes);
1263 INIT_LIST_HEAD(&sh->lru);
1268 static int grow_stripes(raid5_conf_t *conf, int num)
1270 struct kmem_cache *sc;
1271 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1273 sprintf(conf->cache_name[0],
1274 "raid%d-%s", conf->level, mdname(conf->mddev));
1275 sprintf(conf->cache_name[1],
1276 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1277 conf->active_name = 0;
1278 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1279 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1283 conf->slab_cache = sc;
1284 conf->pool_size = devs;
1286 if (!grow_one_stripe(conf))
1292 * scribble_len - return the required size of the scribble region
1293 * @num - total number of disks in the array
1295 * The size must be enough to contain:
1296 * 1/ a struct page pointer for each device in the array +2
1297 * 2/ room to convert each entry in (1) to its corresponding dma
1298 * (dma_map_page()) or page (page_address()) address.
1300 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1301 * calculate over all devices (not just the data blocks), using zeros in place
1302 * of the P and Q blocks.
1304 static size_t scribble_len(int num)
1308 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1313 static int resize_stripes(raid5_conf_t *conf, int newsize)
1315 /* Make all the stripes able to hold 'newsize' devices.
1316 * New slots in each stripe get 'page' set to a new page.
1318 * This happens in stages:
1319 * 1/ create a new kmem_cache and allocate the required number of
1321 * 2/ gather all the old stripe_heads and tranfer the pages across
1322 * to the new stripe_heads. This will have the side effect of
1323 * freezing the array as once all stripe_heads have been collected,
1324 * no IO will be possible. Old stripe heads are freed once their
1325 * pages have been transferred over, and the old kmem_cache is
1326 * freed when all stripes are done.
1327 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1328 * we simple return a failre status - no need to clean anything up.
1329 * 4/ allocate new pages for the new slots in the new stripe_heads.
1330 * If this fails, we don't bother trying the shrink the
1331 * stripe_heads down again, we just leave them as they are.
1332 * As each stripe_head is processed the new one is released into
1335 * Once step2 is started, we cannot afford to wait for a write,
1336 * so we use GFP_NOIO allocations.
1338 struct stripe_head *osh, *nsh;
1339 LIST_HEAD(newstripes);
1340 struct disk_info *ndisks;
1343 struct kmem_cache *sc;
1346 if (newsize <= conf->pool_size)
1347 return 0; /* never bother to shrink */
1349 err = md_allow_write(conf->mddev);
1354 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1355 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1360 for (i = conf->max_nr_stripes; i; i--) {
1361 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1365 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1367 nsh->raid_conf = conf;
1368 spin_lock_init(&nsh->lock);
1369 #ifdef CONFIG_MULTICORE_RAID456
1370 init_waitqueue_head(&nsh->ops.wait_for_ops);
1373 list_add(&nsh->lru, &newstripes);
1376 /* didn't get enough, give up */
1377 while (!list_empty(&newstripes)) {
1378 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1379 list_del(&nsh->lru);
1380 kmem_cache_free(sc, nsh);
1382 kmem_cache_destroy(sc);
1385 /* Step 2 - Must use GFP_NOIO now.
1386 * OK, we have enough stripes, start collecting inactive
1387 * stripes and copying them over
1389 list_for_each_entry(nsh, &newstripes, lru) {
1390 spin_lock_irq(&conf->device_lock);
1391 wait_event_lock_irq(conf->wait_for_stripe,
1392 !list_empty(&conf->inactive_list),
1394 unplug_slaves(conf->mddev)
1396 osh = get_free_stripe(conf);
1397 spin_unlock_irq(&conf->device_lock);
1398 atomic_set(&nsh->count, 1);
1399 for(i=0; i<conf->pool_size; i++)
1400 nsh->dev[i].page = osh->dev[i].page;
1401 for( ; i<newsize; i++)
1402 nsh->dev[i].page = NULL;
1403 kmem_cache_free(conf->slab_cache, osh);
1405 kmem_cache_destroy(conf->slab_cache);
1408 * At this point, we are holding all the stripes so the array
1409 * is completely stalled, so now is a good time to resize
1410 * conf->disks and the scribble region
1412 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1414 for (i=0; i<conf->raid_disks; i++)
1415 ndisks[i] = conf->disks[i];
1417 conf->disks = ndisks;
1422 conf->scribble_len = scribble_len(newsize);
1423 for_each_present_cpu(cpu) {
1424 struct raid5_percpu *percpu;
1427 percpu = per_cpu_ptr(conf->percpu, cpu);
1428 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1431 kfree(percpu->scribble);
1432 percpu->scribble = scribble;
1440 /* Step 4, return new stripes to service */
1441 while(!list_empty(&newstripes)) {
1442 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1443 list_del_init(&nsh->lru);
1445 for (i=conf->raid_disks; i < newsize; i++)
1446 if (nsh->dev[i].page == NULL) {
1447 struct page *p = alloc_page(GFP_NOIO);
1448 nsh->dev[i].page = p;
1452 release_stripe(nsh);
1454 /* critical section pass, GFP_NOIO no longer needed */
1456 conf->slab_cache = sc;
1457 conf->active_name = 1-conf->active_name;
1458 conf->pool_size = newsize;
1462 static int drop_one_stripe(raid5_conf_t *conf)
1464 struct stripe_head *sh;
1466 spin_lock_irq(&conf->device_lock);
1467 sh = get_free_stripe(conf);
1468 spin_unlock_irq(&conf->device_lock);
1471 BUG_ON(atomic_read(&sh->count));
1473 kmem_cache_free(conf->slab_cache, sh);
1474 atomic_dec(&conf->active_stripes);
1478 static void shrink_stripes(raid5_conf_t *conf)
1480 while (drop_one_stripe(conf))
1483 if (conf->slab_cache)
1484 kmem_cache_destroy(conf->slab_cache);
1485 conf->slab_cache = NULL;
1488 static void raid5_end_read_request(struct bio * bi, int error)
1490 struct stripe_head *sh = bi->bi_private;
1491 raid5_conf_t *conf = sh->raid_conf;
1492 int disks = sh->disks, i;
1493 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1494 char b[BDEVNAME_SIZE];
1498 for (i=0 ; i<disks; i++)
1499 if (bi == &sh->dev[i].req)
1502 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1503 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1511 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1512 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1513 rdev = conf->disks[i].rdev;
1514 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1515 " (%lu sectors at %llu on %s)\n",
1516 mdname(conf->mddev), STRIPE_SECTORS,
1517 (unsigned long long)(sh->sector
1518 + rdev->data_offset),
1519 bdevname(rdev->bdev, b));
1520 clear_bit(R5_ReadError, &sh->dev[i].flags);
1521 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1523 if (atomic_read(&conf->disks[i].rdev->read_errors))
1524 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1526 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1528 rdev = conf->disks[i].rdev;
1530 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1531 atomic_inc(&rdev->read_errors);
1532 if (conf->mddev->degraded >= conf->max_degraded)
1533 printk_rl(KERN_WARNING
1534 "md/raid:%s: read error not correctable "
1535 "(sector %llu on %s).\n",
1536 mdname(conf->mddev),
1537 (unsigned long long)(sh->sector
1538 + rdev->data_offset),
1540 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1542 printk_rl(KERN_WARNING
1543 "md/raid:%s: read error NOT corrected!! "
1544 "(sector %llu on %s).\n",
1545 mdname(conf->mddev),
1546 (unsigned long long)(sh->sector
1547 + rdev->data_offset),
1549 else if (atomic_read(&rdev->read_errors)
1550 > conf->max_nr_stripes)
1552 "md/raid:%s: Too many read errors, failing device %s.\n",
1553 mdname(conf->mddev), bdn);
1557 set_bit(R5_ReadError, &sh->dev[i].flags);
1559 clear_bit(R5_ReadError, &sh->dev[i].flags);
1560 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1561 md_error(conf->mddev, rdev);
1564 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1565 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1566 set_bit(STRIPE_HANDLE, &sh->state);
1570 static void raid5_end_write_request(struct bio *bi, int error)
1572 struct stripe_head *sh = bi->bi_private;
1573 raid5_conf_t *conf = sh->raid_conf;
1574 int disks = sh->disks, i;
1575 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1577 for (i=0 ; i<disks; i++)
1578 if (bi == &sh->dev[i].req)
1581 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1582 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1590 md_error(conf->mddev, conf->disks[i].rdev);
1592 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1594 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1595 set_bit(STRIPE_HANDLE, &sh->state);
1600 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1602 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1604 struct r5dev *dev = &sh->dev[i];
1606 bio_init(&dev->req);
1607 dev->req.bi_io_vec = &dev->vec;
1609 dev->req.bi_max_vecs++;
1610 dev->vec.bv_page = dev->page;
1611 dev->vec.bv_len = STRIPE_SIZE;
1612 dev->vec.bv_offset = 0;
1614 dev->req.bi_sector = sh->sector;
1615 dev->req.bi_private = sh;
1618 dev->sector = compute_blocknr(sh, i, previous);
1621 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1623 char b[BDEVNAME_SIZE];
1624 raid5_conf_t *conf = mddev->private;
1625 pr_debug("raid456: error called\n");
1627 if (!test_bit(Faulty, &rdev->flags)) {
1628 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1629 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1630 unsigned long flags;
1631 spin_lock_irqsave(&conf->device_lock, flags);
1633 spin_unlock_irqrestore(&conf->device_lock, flags);
1635 * if recovery was running, make sure it aborts.
1637 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1639 set_bit(Faulty, &rdev->flags);
1641 "md/raid:%s: Disk failure on %s, disabling device.\n"
1643 "md/raid:%s: Operation continuing on %d devices.\n",
1645 bdevname(rdev->bdev, b),
1647 conf->raid_disks - mddev->degraded);
1652 * Input: a 'big' sector number,
1653 * Output: index of the data and parity disk, and the sector # in them.
1655 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1656 int previous, int *dd_idx,
1657 struct stripe_head *sh)
1659 sector_t stripe, stripe2;
1660 sector_t chunk_number;
1661 unsigned int chunk_offset;
1664 sector_t new_sector;
1665 int algorithm = previous ? conf->prev_algo
1667 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1668 : conf->chunk_sectors;
1669 int raid_disks = previous ? conf->previous_raid_disks
1671 int data_disks = raid_disks - conf->max_degraded;
1673 /* First compute the information on this sector */
1676 * Compute the chunk number and the sector offset inside the chunk
1678 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1679 chunk_number = r_sector;
1682 * Compute the stripe number
1684 stripe = chunk_number;
1685 *dd_idx = sector_div(stripe, data_disks);
1688 * Select the parity disk based on the user selected algorithm.
1690 pd_idx = qd_idx = ~0;
1691 switch(conf->level) {
1693 pd_idx = data_disks;
1696 switch (algorithm) {
1697 case ALGORITHM_LEFT_ASYMMETRIC:
1698 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1699 if (*dd_idx >= pd_idx)
1702 case ALGORITHM_RIGHT_ASYMMETRIC:
1703 pd_idx = sector_div(stripe2, raid_disks);
1704 if (*dd_idx >= pd_idx)
1707 case ALGORITHM_LEFT_SYMMETRIC:
1708 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1709 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1711 case ALGORITHM_RIGHT_SYMMETRIC:
1712 pd_idx = sector_div(stripe2, raid_disks);
1713 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1715 case ALGORITHM_PARITY_0:
1719 case ALGORITHM_PARITY_N:
1720 pd_idx = data_disks;
1728 switch (algorithm) {
1729 case ALGORITHM_LEFT_ASYMMETRIC:
1730 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1731 qd_idx = pd_idx + 1;
1732 if (pd_idx == raid_disks-1) {
1733 (*dd_idx)++; /* Q D D D P */
1735 } else if (*dd_idx >= pd_idx)
1736 (*dd_idx) += 2; /* D D P Q D */
1738 case ALGORITHM_RIGHT_ASYMMETRIC:
1739 pd_idx = sector_div(stripe2, raid_disks);
1740 qd_idx = pd_idx + 1;
1741 if (pd_idx == raid_disks-1) {
1742 (*dd_idx)++; /* Q D D D P */
1744 } else if (*dd_idx >= pd_idx)
1745 (*dd_idx) += 2; /* D D P Q D */
1747 case ALGORITHM_LEFT_SYMMETRIC:
1748 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1749 qd_idx = (pd_idx + 1) % raid_disks;
1750 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752 case ALGORITHM_RIGHT_SYMMETRIC:
1753 pd_idx = sector_div(stripe2, raid_disks);
1754 qd_idx = (pd_idx + 1) % raid_disks;
1755 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1758 case ALGORITHM_PARITY_0:
1763 case ALGORITHM_PARITY_N:
1764 pd_idx = data_disks;
1765 qd_idx = data_disks + 1;
1768 case ALGORITHM_ROTATING_ZERO_RESTART:
1769 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1770 * of blocks for computing Q is different.
1772 pd_idx = sector_div(stripe2, raid_disks);
1773 qd_idx = pd_idx + 1;
1774 if (pd_idx == raid_disks-1) {
1775 (*dd_idx)++; /* Q D D D P */
1777 } else if (*dd_idx >= pd_idx)
1778 (*dd_idx) += 2; /* D D P Q D */
1782 case ALGORITHM_ROTATING_N_RESTART:
1783 /* Same a left_asymmetric, by first stripe is
1784 * D D D P Q rather than
1788 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1789 qd_idx = pd_idx + 1;
1790 if (pd_idx == raid_disks-1) {
1791 (*dd_idx)++; /* Q D D D P */
1793 } else if (*dd_idx >= pd_idx)
1794 (*dd_idx) += 2; /* D D P Q D */
1798 case ALGORITHM_ROTATING_N_CONTINUE:
1799 /* Same as left_symmetric but Q is before P */
1800 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1801 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1802 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1806 case ALGORITHM_LEFT_ASYMMETRIC_6:
1807 /* RAID5 left_asymmetric, with Q on last device */
1808 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1809 if (*dd_idx >= pd_idx)
1811 qd_idx = raid_disks - 1;
1814 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1815 pd_idx = sector_div(stripe2, raid_disks-1);
1816 if (*dd_idx >= pd_idx)
1818 qd_idx = raid_disks - 1;
1821 case ALGORITHM_LEFT_SYMMETRIC_6:
1822 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1823 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1824 qd_idx = raid_disks - 1;
1827 case ALGORITHM_RIGHT_SYMMETRIC_6:
1828 pd_idx = sector_div(stripe2, raid_disks-1);
1829 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1830 qd_idx = raid_disks - 1;
1833 case ALGORITHM_PARITY_0_6:
1836 qd_idx = raid_disks - 1;
1846 sh->pd_idx = pd_idx;
1847 sh->qd_idx = qd_idx;
1848 sh->ddf_layout = ddf_layout;
1851 * Finally, compute the new sector number
1853 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1858 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1860 raid5_conf_t *conf = sh->raid_conf;
1861 int raid_disks = sh->disks;
1862 int data_disks = raid_disks - conf->max_degraded;
1863 sector_t new_sector = sh->sector, check;
1864 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1865 : conf->chunk_sectors;
1866 int algorithm = previous ? conf->prev_algo
1870 sector_t chunk_number;
1871 int dummy1, dd_idx = i;
1873 struct stripe_head sh2;
1876 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1877 stripe = new_sector;
1879 if (i == sh->pd_idx)
1881 switch(conf->level) {
1884 switch (algorithm) {
1885 case ALGORITHM_LEFT_ASYMMETRIC:
1886 case ALGORITHM_RIGHT_ASYMMETRIC:
1890 case ALGORITHM_LEFT_SYMMETRIC:
1891 case ALGORITHM_RIGHT_SYMMETRIC:
1894 i -= (sh->pd_idx + 1);
1896 case ALGORITHM_PARITY_0:
1899 case ALGORITHM_PARITY_N:
1906 if (i == sh->qd_idx)
1907 return 0; /* It is the Q disk */
1908 switch (algorithm) {
1909 case ALGORITHM_LEFT_ASYMMETRIC:
1910 case ALGORITHM_RIGHT_ASYMMETRIC:
1911 case ALGORITHM_ROTATING_ZERO_RESTART:
1912 case ALGORITHM_ROTATING_N_RESTART:
1913 if (sh->pd_idx == raid_disks-1)
1914 i--; /* Q D D D P */
1915 else if (i > sh->pd_idx)
1916 i -= 2; /* D D P Q D */
1918 case ALGORITHM_LEFT_SYMMETRIC:
1919 case ALGORITHM_RIGHT_SYMMETRIC:
1920 if (sh->pd_idx == raid_disks-1)
1921 i--; /* Q D D D P */
1926 i -= (sh->pd_idx + 2);
1929 case ALGORITHM_PARITY_0:
1932 case ALGORITHM_PARITY_N:
1934 case ALGORITHM_ROTATING_N_CONTINUE:
1935 /* Like left_symmetric, but P is before Q */
1936 if (sh->pd_idx == 0)
1937 i--; /* P D D D Q */
1942 i -= (sh->pd_idx + 1);
1945 case ALGORITHM_LEFT_ASYMMETRIC_6:
1946 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1950 case ALGORITHM_LEFT_SYMMETRIC_6:
1951 case ALGORITHM_RIGHT_SYMMETRIC_6:
1953 i += data_disks + 1;
1954 i -= (sh->pd_idx + 1);
1956 case ALGORITHM_PARITY_0_6:
1965 chunk_number = stripe * data_disks + i;
1966 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1968 check = raid5_compute_sector(conf, r_sector,
1969 previous, &dummy1, &sh2);
1970 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1971 || sh2.qd_idx != sh->qd_idx) {
1972 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
1973 mdname(conf->mddev));
1981 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1982 int rcw, int expand)
1984 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1985 raid5_conf_t *conf = sh->raid_conf;
1986 int level = conf->level;
1989 /* if we are not expanding this is a proper write request, and
1990 * there will be bios with new data to be drained into the
1994 sh->reconstruct_state = reconstruct_state_drain_run;
1995 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997 sh->reconstruct_state = reconstruct_state_run;
1999 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2001 for (i = disks; i--; ) {
2002 struct r5dev *dev = &sh->dev[i];
2005 set_bit(R5_LOCKED, &dev->flags);
2006 set_bit(R5_Wantdrain, &dev->flags);
2008 clear_bit(R5_UPTODATE, &dev->flags);
2012 if (s->locked + conf->max_degraded == disks)
2013 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2014 atomic_inc(&conf->pending_full_writes);
2017 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2018 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2020 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2021 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2022 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2023 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2025 for (i = disks; i--; ) {
2026 struct r5dev *dev = &sh->dev[i];
2031 (test_bit(R5_UPTODATE, &dev->flags) ||
2032 test_bit(R5_Wantcompute, &dev->flags))) {
2033 set_bit(R5_Wantdrain, &dev->flags);
2034 set_bit(R5_LOCKED, &dev->flags);
2035 clear_bit(R5_UPTODATE, &dev->flags);
2041 /* keep the parity disk(s) locked while asynchronous operations
2044 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2045 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2049 int qd_idx = sh->qd_idx;
2050 struct r5dev *dev = &sh->dev[qd_idx];
2052 set_bit(R5_LOCKED, &dev->flags);
2053 clear_bit(R5_UPTODATE, &dev->flags);
2057 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2058 __func__, (unsigned long long)sh->sector,
2059 s->locked, s->ops_request);
2063 * Each stripe/dev can have one or more bion attached.
2064 * toread/towrite point to the first in a chain.
2065 * The bi_next chain must be in order.
2067 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2070 raid5_conf_t *conf = sh->raid_conf;
2073 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2074 (unsigned long long)bi->bi_sector,
2075 (unsigned long long)sh->sector);
2078 spin_lock(&sh->lock);
2079 spin_lock_irq(&conf->device_lock);
2081 bip = &sh->dev[dd_idx].towrite;
2082 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2085 bip = &sh->dev[dd_idx].toread;
2086 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2087 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089 bip = & (*bip)->bi_next;
2091 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2094 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2098 bi->bi_phys_segments++;
2099 spin_unlock_irq(&conf->device_lock);
2100 spin_unlock(&sh->lock);
2102 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2103 (unsigned long long)bi->bi_sector,
2104 (unsigned long long)sh->sector, dd_idx);
2106 if (conf->mddev->bitmap && firstwrite) {
2107 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109 sh->bm_seq = conf->seq_flush+1;
2110 set_bit(STRIPE_BIT_DELAY, &sh->state);
2114 /* check if page is covered */
2115 sector_t sector = sh->dev[dd_idx].sector;
2116 for (bi=sh->dev[dd_idx].towrite;
2117 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2118 bi && bi->bi_sector <= sector;
2119 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2120 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2121 sector = bi->bi_sector + (bi->bi_size>>9);
2123 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2124 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2129 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2130 spin_unlock_irq(&conf->device_lock);
2131 spin_unlock(&sh->lock);
2135 static void end_reshape(raid5_conf_t *conf);
2137 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2138 struct stripe_head *sh)
2140 int sectors_per_chunk =
2141 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2144 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2146 raid5_compute_sector(conf,
2147 stripe * (disks - conf->max_degraded)
2148 *sectors_per_chunk + chunk_offset,
2154 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2155 struct stripe_head_state *s, int disks,
2156 struct bio **return_bi)
2159 for (i = disks; i--; ) {
2163 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2166 rdev = rcu_dereference(conf->disks[i].rdev);
2167 if (rdev && test_bit(In_sync, &rdev->flags))
2168 /* multiple read failures in one stripe */
2169 md_error(conf->mddev, rdev);
2172 spin_lock_irq(&conf->device_lock);
2173 /* fail all writes first */
2174 bi = sh->dev[i].towrite;
2175 sh->dev[i].towrite = NULL;
2181 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2182 wake_up(&conf->wait_for_overlap);
2184 while (bi && bi->bi_sector <
2185 sh->dev[i].sector + STRIPE_SECTORS) {
2186 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2187 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2188 if (!raid5_dec_bi_phys_segments(bi)) {
2189 md_write_end(conf->mddev);
2190 bi->bi_next = *return_bi;
2195 /* and fail all 'written' */
2196 bi = sh->dev[i].written;
2197 sh->dev[i].written = NULL;
2198 if (bi) bitmap_end = 1;
2199 while (bi && bi->bi_sector <
2200 sh->dev[i].sector + STRIPE_SECTORS) {
2201 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2202 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2203 if (!raid5_dec_bi_phys_segments(bi)) {
2204 md_write_end(conf->mddev);
2205 bi->bi_next = *return_bi;
2211 /* fail any reads if this device is non-operational and
2212 * the data has not reached the cache yet.
2214 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2215 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2216 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2217 bi = sh->dev[i].toread;
2218 sh->dev[i].toread = NULL;
2219 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2220 wake_up(&conf->wait_for_overlap);
2221 if (bi) s->to_read--;
2222 while (bi && bi->bi_sector <
2223 sh->dev[i].sector + STRIPE_SECTORS) {
2224 struct bio *nextbi =
2225 r5_next_bio(bi, sh->dev[i].sector);
2226 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2227 if (!raid5_dec_bi_phys_segments(bi)) {
2228 bi->bi_next = *return_bi;
2234 spin_unlock_irq(&conf->device_lock);
2236 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2237 STRIPE_SECTORS, 0, 0);
2240 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2241 if (atomic_dec_and_test(&conf->pending_full_writes))
2242 md_wakeup_thread(conf->mddev->thread);
2245 /* fetch_block5 - checks the given member device to see if its data needs
2246 * to be read or computed to satisfy a request.
2248 * Returns 1 when no more member devices need to be checked, otherwise returns
2249 * 0 to tell the loop in handle_stripe_fill5 to continue
2251 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2252 int disk_idx, int disks)
2254 struct r5dev *dev = &sh->dev[disk_idx];
2255 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2257 /* is the data in this block needed, and can we get it? */
2258 if (!test_bit(R5_LOCKED, &dev->flags) &&
2259 !test_bit(R5_UPTODATE, &dev->flags) &&
2261 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2262 s->syncing || s->expanding ||
2264 (failed_dev->toread ||
2265 (failed_dev->towrite &&
2266 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2267 /* We would like to get this block, possibly by computing it,
2268 * otherwise read it if the backing disk is insync
2270 if ((s->uptodate == disks - 1) &&
2271 (s->failed && disk_idx == s->failed_num)) {
2272 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2273 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2274 set_bit(R5_Wantcompute, &dev->flags);
2275 sh->ops.target = disk_idx;
2276 sh->ops.target2 = -1;
2278 /* Careful: from this point on 'uptodate' is in the eye
2279 * of raid_run_ops which services 'compute' operations
2280 * before writes. R5_Wantcompute flags a block that will
2281 * be R5_UPTODATE by the time it is needed for a
2282 * subsequent operation.
2285 return 1; /* uptodate + compute == disks */
2286 } else if (test_bit(R5_Insync, &dev->flags)) {
2287 set_bit(R5_LOCKED, &dev->flags);
2288 set_bit(R5_Wantread, &dev->flags);
2290 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2299 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2301 static void handle_stripe_fill5(struct stripe_head *sh,
2302 struct stripe_head_state *s, int disks)
2306 /* look for blocks to read/compute, skip this if a compute
2307 * is already in flight, or if the stripe contents are in the
2308 * midst of changing due to a write
2310 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2311 !sh->reconstruct_state)
2312 for (i = disks; i--; )
2313 if (fetch_block5(sh, s, i, disks))
2315 set_bit(STRIPE_HANDLE, &sh->state);
2318 /* fetch_block6 - checks the given member device to see if its data needs
2319 * to be read or computed to satisfy a request.
2321 * Returns 1 when no more member devices need to be checked, otherwise returns
2322 * 0 to tell the loop in handle_stripe_fill6 to continue
2324 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2325 struct r6_state *r6s, int disk_idx, int disks)
2327 struct r5dev *dev = &sh->dev[disk_idx];
2328 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2329 &sh->dev[r6s->failed_num[1]] };
2331 if (!test_bit(R5_LOCKED, &dev->flags) &&
2332 !test_bit(R5_UPTODATE, &dev->flags) &&
2334 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2335 s->syncing || s->expanding ||
2337 (fdev[0]->toread || s->to_write)) ||
2339 (fdev[1]->toread || s->to_write)))) {
2340 /* we would like to get this block, possibly by computing it,
2341 * otherwise read it if the backing disk is insync
2343 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2344 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2345 if ((s->uptodate == disks - 1) &&
2346 (s->failed && (disk_idx == r6s->failed_num[0] ||
2347 disk_idx == r6s->failed_num[1]))) {
2348 /* have disk failed, and we're requested to fetch it;
2351 pr_debug("Computing stripe %llu block %d\n",
2352 (unsigned long long)sh->sector, disk_idx);
2353 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2354 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2355 set_bit(R5_Wantcompute, &dev->flags);
2356 sh->ops.target = disk_idx;
2357 sh->ops.target2 = -1; /* no 2nd target */
2361 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2362 /* Computing 2-failure is *very* expensive; only
2363 * do it if failed >= 2
2366 for (other = disks; other--; ) {
2367 if (other == disk_idx)
2369 if (!test_bit(R5_UPTODATE,
2370 &sh->dev[other].flags))
2374 pr_debug("Computing stripe %llu blocks %d,%d\n",
2375 (unsigned long long)sh->sector,
2377 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2378 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2379 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2380 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2381 sh->ops.target = disk_idx;
2382 sh->ops.target2 = other;
2386 } else if (test_bit(R5_Insync, &dev->flags)) {
2387 set_bit(R5_LOCKED, &dev->flags);
2388 set_bit(R5_Wantread, &dev->flags);
2390 pr_debug("Reading block %d (sync=%d)\n",
2391 disk_idx, s->syncing);
2399 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2401 static void handle_stripe_fill6(struct stripe_head *sh,
2402 struct stripe_head_state *s, struct r6_state *r6s,
2407 /* look for blocks to read/compute, skip this if a compute
2408 * is already in flight, or if the stripe contents are in the
2409 * midst of changing due to a write
2411 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2412 !sh->reconstruct_state)
2413 for (i = disks; i--; )
2414 if (fetch_block6(sh, s, r6s, i, disks))
2416 set_bit(STRIPE_HANDLE, &sh->state);
2420 /* handle_stripe_clean_event
2421 * any written block on an uptodate or failed drive can be returned.
2422 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2423 * never LOCKED, so we don't need to test 'failed' directly.
2425 static void handle_stripe_clean_event(raid5_conf_t *conf,
2426 struct stripe_head *sh, int disks, struct bio **return_bi)
2431 for (i = disks; i--; )
2432 if (sh->dev[i].written) {
2434 if (!test_bit(R5_LOCKED, &dev->flags) &&
2435 test_bit(R5_UPTODATE, &dev->flags)) {
2436 /* We can return any write requests */
2437 struct bio *wbi, *wbi2;
2439 pr_debug("Return write for disc %d\n", i);
2440 spin_lock_irq(&conf->device_lock);
2442 dev->written = NULL;
2443 while (wbi && wbi->bi_sector <
2444 dev->sector + STRIPE_SECTORS) {
2445 wbi2 = r5_next_bio(wbi, dev->sector);
2446 if (!raid5_dec_bi_phys_segments(wbi)) {
2447 md_write_end(conf->mddev);
2448 wbi->bi_next = *return_bi;
2453 if (dev->towrite == NULL)
2455 spin_unlock_irq(&conf->device_lock);
2457 bitmap_endwrite(conf->mddev->bitmap,
2460 !test_bit(STRIPE_DEGRADED, &sh->state),
2465 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2466 if (atomic_dec_and_test(&conf->pending_full_writes))
2467 md_wakeup_thread(conf->mddev->thread);
2470 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2471 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2473 int rmw = 0, rcw = 0, i;
2474 for (i = disks; i--; ) {
2475 /* would I have to read this buffer for read_modify_write */
2476 struct r5dev *dev = &sh->dev[i];
2477 if ((dev->towrite || i == sh->pd_idx) &&
2478 !test_bit(R5_LOCKED, &dev->flags) &&
2479 !(test_bit(R5_UPTODATE, &dev->flags) ||
2480 test_bit(R5_Wantcompute, &dev->flags))) {
2481 if (test_bit(R5_Insync, &dev->flags))
2484 rmw += 2*disks; /* cannot read it */
2486 /* Would I have to read this buffer for reconstruct_write */
2487 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2488 !test_bit(R5_LOCKED, &dev->flags) &&
2489 !(test_bit(R5_UPTODATE, &dev->flags) ||
2490 test_bit(R5_Wantcompute, &dev->flags))) {
2491 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2496 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2497 (unsigned long long)sh->sector, rmw, rcw);
2498 set_bit(STRIPE_HANDLE, &sh->state);
2499 if (rmw < rcw && rmw > 0)
2500 /* prefer read-modify-write, but need to get some data */
2501 for (i = disks; i--; ) {
2502 struct r5dev *dev = &sh->dev[i];
2503 if ((dev->towrite || i == sh->pd_idx) &&
2504 !test_bit(R5_LOCKED, &dev->flags) &&
2505 !(test_bit(R5_UPTODATE, &dev->flags) ||
2506 test_bit(R5_Wantcompute, &dev->flags)) &&
2507 test_bit(R5_Insync, &dev->flags)) {
2509 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2510 pr_debug("Read_old block "
2511 "%d for r-m-w\n", i);
2512 set_bit(R5_LOCKED, &dev->flags);
2513 set_bit(R5_Wantread, &dev->flags);
2516 set_bit(STRIPE_DELAYED, &sh->state);
2517 set_bit(STRIPE_HANDLE, &sh->state);
2521 if (rcw <= rmw && rcw > 0)
2522 /* want reconstruct write, but need to get some data */
2523 for (i = disks; i--; ) {
2524 struct r5dev *dev = &sh->dev[i];
2525 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527 !test_bit(R5_LOCKED, &dev->flags) &&
2528 !(test_bit(R5_UPTODATE, &dev->flags) ||
2529 test_bit(R5_Wantcompute, &dev->flags)) &&
2530 test_bit(R5_Insync, &dev->flags)) {
2532 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2533 pr_debug("Read_old block "
2534 "%d for Reconstruct\n", i);
2535 set_bit(R5_LOCKED, &dev->flags);
2536 set_bit(R5_Wantread, &dev->flags);
2539 set_bit(STRIPE_DELAYED, &sh->state);
2540 set_bit(STRIPE_HANDLE, &sh->state);
2544 /* now if nothing is locked, and if we have enough data,
2545 * we can start a write request
2547 /* since handle_stripe can be called at any time we need to handle the
2548 * case where a compute block operation has been submitted and then a
2549 * subsequent call wants to start a write request. raid_run_ops only
2550 * handles the case where compute block and reconstruct are requested
2551 * simultaneously. If this is not the case then new writes need to be
2552 * held off until the compute completes.
2554 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2555 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2556 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2557 schedule_reconstruction(sh, s, rcw == 0, 0);
2560 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2561 struct stripe_head *sh, struct stripe_head_state *s,
2562 struct r6_state *r6s, int disks)
2564 int rcw = 0, pd_idx = sh->pd_idx, i;
2565 int qd_idx = sh->qd_idx;
2567 set_bit(STRIPE_HANDLE, &sh->state);
2568 for (i = disks; i--; ) {
2569 struct r5dev *dev = &sh->dev[i];
2570 /* check if we haven't enough data */
2571 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2572 i != pd_idx && i != qd_idx &&
2573 !test_bit(R5_LOCKED, &dev->flags) &&
2574 !(test_bit(R5_UPTODATE, &dev->flags) ||
2575 test_bit(R5_Wantcompute, &dev->flags))) {
2577 if (!test_bit(R5_Insync, &dev->flags))
2578 continue; /* it's a failed drive */
2581 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2582 pr_debug("Read_old stripe %llu "
2583 "block %d for Reconstruct\n",
2584 (unsigned long long)sh->sector, i);
2585 set_bit(R5_LOCKED, &dev->flags);
2586 set_bit(R5_Wantread, &dev->flags);
2589 pr_debug("Request delayed stripe %llu "
2590 "block %d for Reconstruct\n",
2591 (unsigned long long)sh->sector, i);
2592 set_bit(STRIPE_DELAYED, &sh->state);
2593 set_bit(STRIPE_HANDLE, &sh->state);
2597 /* now if nothing is locked, and if we have enough data, we can start a
2600 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2601 s->locked == 0 && rcw == 0 &&
2602 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2603 schedule_reconstruction(sh, s, 1, 0);
2607 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2608 struct stripe_head_state *s, int disks)
2610 struct r5dev *dev = NULL;
2612 set_bit(STRIPE_HANDLE, &sh->state);
2614 switch (sh->check_state) {
2615 case check_state_idle:
2616 /* start a new check operation if there are no failures */
2617 if (s->failed == 0) {
2618 BUG_ON(s->uptodate != disks);
2619 sh->check_state = check_state_run;
2620 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2621 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2625 dev = &sh->dev[s->failed_num];
2627 case check_state_compute_result:
2628 sh->check_state = check_state_idle;
2630 dev = &sh->dev[sh->pd_idx];
2632 /* check that a write has not made the stripe insync */
2633 if (test_bit(STRIPE_INSYNC, &sh->state))
2636 /* either failed parity check, or recovery is happening */
2637 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2638 BUG_ON(s->uptodate != disks);
2640 set_bit(R5_LOCKED, &dev->flags);
2642 set_bit(R5_Wantwrite, &dev->flags);
2644 clear_bit(STRIPE_DEGRADED, &sh->state);
2645 set_bit(STRIPE_INSYNC, &sh->state);
2647 case check_state_run:
2648 break; /* we will be called again upon completion */
2649 case check_state_check_result:
2650 sh->check_state = check_state_idle;
2652 /* if a failure occurred during the check operation, leave
2653 * STRIPE_INSYNC not set and let the stripe be handled again
2658 /* handle a successful check operation, if parity is correct
2659 * we are done. Otherwise update the mismatch count and repair
2660 * parity if !MD_RECOVERY_CHECK
2662 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2663 /* parity is correct (on disc,
2664 * not in buffer any more)
2666 set_bit(STRIPE_INSYNC, &sh->state);
2668 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2669 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2670 /* don't try to repair!! */
2671 set_bit(STRIPE_INSYNC, &sh->state);
2673 sh->check_state = check_state_compute_run;
2674 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2675 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2676 set_bit(R5_Wantcompute,
2677 &sh->dev[sh->pd_idx].flags);
2678 sh->ops.target = sh->pd_idx;
2679 sh->ops.target2 = -1;
2684 case check_state_compute_run:
2687 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2688 __func__, sh->check_state,
2689 (unsigned long long) sh->sector);
2695 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2696 struct stripe_head_state *s,
2697 struct r6_state *r6s, int disks)
2699 int pd_idx = sh->pd_idx;
2700 int qd_idx = sh->qd_idx;
2703 set_bit(STRIPE_HANDLE, &sh->state);
2705 BUG_ON(s->failed > 2);
2707 /* Want to check and possibly repair P and Q.
2708 * However there could be one 'failed' device, in which
2709 * case we can only check one of them, possibly using the
2710 * other to generate missing data
2713 switch (sh->check_state) {
2714 case check_state_idle:
2715 /* start a new check operation if there are < 2 failures */
2716 if (s->failed == r6s->q_failed) {
2717 /* The only possible failed device holds Q, so it
2718 * makes sense to check P (If anything else were failed,
2719 * we would have used P to recreate it).
2721 sh->check_state = check_state_run;
2723 if (!r6s->q_failed && s->failed < 2) {
2724 /* Q is not failed, and we didn't use it to generate
2725 * anything, so it makes sense to check it
2727 if (sh->check_state == check_state_run)
2728 sh->check_state = check_state_run_pq;
2730 sh->check_state = check_state_run_q;
2733 /* discard potentially stale zero_sum_result */
2734 sh->ops.zero_sum_result = 0;
2736 if (sh->check_state == check_state_run) {
2737 /* async_xor_zero_sum destroys the contents of P */
2738 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2741 if (sh->check_state >= check_state_run &&
2742 sh->check_state <= check_state_run_pq) {
2743 /* async_syndrome_zero_sum preserves P and Q, so
2744 * no need to mark them !uptodate here
2746 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2750 /* we have 2-disk failure */
2751 BUG_ON(s->failed != 2);
2753 case check_state_compute_result:
2754 sh->check_state = check_state_idle;
2756 /* check that a write has not made the stripe insync */
2757 if (test_bit(STRIPE_INSYNC, &sh->state))
2760 /* now write out any block on a failed drive,
2761 * or P or Q if they were recomputed
2763 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2764 if (s->failed == 2) {
2765 dev = &sh->dev[r6s->failed_num[1]];
2767 set_bit(R5_LOCKED, &dev->flags);
2768 set_bit(R5_Wantwrite, &dev->flags);
2770 if (s->failed >= 1) {
2771 dev = &sh->dev[r6s->failed_num[0]];
2773 set_bit(R5_LOCKED, &dev->flags);
2774 set_bit(R5_Wantwrite, &dev->flags);
2776 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2777 dev = &sh->dev[pd_idx];
2779 set_bit(R5_LOCKED, &dev->flags);
2780 set_bit(R5_Wantwrite, &dev->flags);
2782 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2783 dev = &sh->dev[qd_idx];
2785 set_bit(R5_LOCKED, &dev->flags);
2786 set_bit(R5_Wantwrite, &dev->flags);
2788 clear_bit(STRIPE_DEGRADED, &sh->state);
2790 set_bit(STRIPE_INSYNC, &sh->state);
2792 case check_state_run:
2793 case check_state_run_q:
2794 case check_state_run_pq:
2795 break; /* we will be called again upon completion */
2796 case check_state_check_result:
2797 sh->check_state = check_state_idle;
2799 /* handle a successful check operation, if parity is correct
2800 * we are done. Otherwise update the mismatch count and repair
2801 * parity if !MD_RECOVERY_CHECK
2803 if (sh->ops.zero_sum_result == 0) {
2804 /* both parities are correct */
2806 set_bit(STRIPE_INSYNC, &sh->state);
2808 /* in contrast to the raid5 case we can validate
2809 * parity, but still have a failure to write
2812 sh->check_state = check_state_compute_result;
2813 /* Returning at this point means that we may go
2814 * off and bring p and/or q uptodate again so
2815 * we make sure to check zero_sum_result again
2816 * to verify if p or q need writeback
2820 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2821 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2822 /* don't try to repair!! */
2823 set_bit(STRIPE_INSYNC, &sh->state);
2825 int *target = &sh->ops.target;
2827 sh->ops.target = -1;
2828 sh->ops.target2 = -1;
2829 sh->check_state = check_state_compute_run;
2830 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2831 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2832 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2833 set_bit(R5_Wantcompute,
2834 &sh->dev[pd_idx].flags);
2836 target = &sh->ops.target2;
2839 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2840 set_bit(R5_Wantcompute,
2841 &sh->dev[qd_idx].flags);
2848 case check_state_compute_run:
2851 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2852 __func__, sh->check_state,
2853 (unsigned long long) sh->sector);
2858 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2859 struct r6_state *r6s)
2863 /* We have read all the blocks in this stripe and now we need to
2864 * copy some of them into a target stripe for expand.
2866 struct dma_async_tx_descriptor *tx = NULL;
2867 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2868 for (i = 0; i < sh->disks; i++)
2869 if (i != sh->pd_idx && i != sh->qd_idx) {
2871 struct stripe_head *sh2;
2872 struct async_submit_ctl submit;
2874 sector_t bn = compute_blocknr(sh, i, 1);
2875 sector_t s = raid5_compute_sector(conf, bn, 0,
2877 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879 /* so far only the early blocks of this stripe
2880 * have been requested. When later blocks
2881 * get requested, we will try again
2884 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2885 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2886 /* must have already done this block */
2887 release_stripe(sh2);
2891 /* place all the copies on one channel */
2892 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2893 tx = async_memcpy(sh2->dev[dd_idx].page,
2894 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2897 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2898 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2899 for (j = 0; j < conf->raid_disks; j++)
2900 if (j != sh2->pd_idx &&
2901 (!r6s || j != sh2->qd_idx) &&
2902 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904 if (j == conf->raid_disks) {
2905 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2906 set_bit(STRIPE_HANDLE, &sh2->state);
2908 release_stripe(sh2);
2911 /* done submitting copies, wait for them to complete */
2914 dma_wait_for_async_tx(tx);
2920 * handle_stripe - do things to a stripe.
2922 * We lock the stripe and then examine the state of various bits
2923 * to see what needs to be done.
2925 * return some read request which now have data
2926 * return some write requests which are safely on disc
2927 * schedule a read on some buffers
2928 * schedule a write of some buffers
2929 * return confirmation of parity correctness
2931 * buffers are taken off read_list or write_list, and bh_cache buffers
2932 * get BH_Lock set before the stripe lock is released.
2936 static void handle_stripe5(struct stripe_head *sh)
2938 raid5_conf_t *conf = sh->raid_conf;
2939 int disks = sh->disks, i;
2940 struct bio *return_bi = NULL;
2941 struct stripe_head_state s;
2943 mdk_rdev_t *blocked_rdev = NULL;
2945 int dec_preread_active = 0;
2947 memset(&s, 0, sizeof(s));
2948 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2949 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2950 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2951 sh->reconstruct_state);
2953 spin_lock(&sh->lock);
2954 clear_bit(STRIPE_HANDLE, &sh->state);
2955 clear_bit(STRIPE_DELAYED, &sh->state);
2957 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2958 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2959 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2961 /* Now to look around and see what can be done */
2963 for (i=disks; i--; ) {
2967 clear_bit(R5_Insync, &dev->flags);
2969 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2970 "written %p\n", i, dev->flags, dev->toread, dev->read,
2971 dev->towrite, dev->written);
2973 /* maybe we can request a biofill operation
2975 * new wantfill requests are only permitted while
2976 * ops_complete_biofill is guaranteed to be inactive
2978 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2979 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2980 set_bit(R5_Wantfill, &dev->flags);
2982 /* now count some things */
2983 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2984 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2985 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2987 if (test_bit(R5_Wantfill, &dev->flags))
2989 else if (dev->toread)
2993 if (!test_bit(R5_OVERWRITE, &dev->flags))
2998 rdev = rcu_dereference(conf->disks[i].rdev);
2999 if (blocked_rdev == NULL &&
3000 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3001 blocked_rdev = rdev;
3002 atomic_inc(&rdev->nr_pending);
3004 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3005 /* The ReadError flag will just be confusing now */
3006 clear_bit(R5_ReadError, &dev->flags);
3007 clear_bit(R5_ReWrite, &dev->flags);
3009 if (!rdev || !test_bit(In_sync, &rdev->flags)
3010 || test_bit(R5_ReadError, &dev->flags)) {
3014 set_bit(R5_Insync, &dev->flags);
3018 if (unlikely(blocked_rdev)) {
3019 if (s.syncing || s.expanding || s.expanded ||
3020 s.to_write || s.written) {
3021 set_bit(STRIPE_HANDLE, &sh->state);
3024 /* There is nothing for the blocked_rdev to block */
3025 rdev_dec_pending(blocked_rdev, conf->mddev);
3026 blocked_rdev = NULL;
3029 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3030 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3031 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3034 pr_debug("locked=%d uptodate=%d to_read=%d"
3035 " to_write=%d failed=%d failed_num=%d\n",
3036 s.locked, s.uptodate, s.to_read, s.to_write,
3037 s.failed, s.failed_num);
3038 /* check if the array has lost two devices and, if so, some requests might
3041 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3042 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3043 if (s.failed > 1 && s.syncing) {
3044 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3045 clear_bit(STRIPE_SYNCING, &sh->state);
3049 /* might be able to return some write requests if the parity block
3050 * is safe, or on a failed drive
3052 dev = &sh->dev[sh->pd_idx];
3054 ((test_bit(R5_Insync, &dev->flags) &&
3055 !test_bit(R5_LOCKED, &dev->flags) &&
3056 test_bit(R5_UPTODATE, &dev->flags)) ||
3057 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3058 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3060 /* Now we might consider reading some blocks, either to check/generate
3061 * parity, or to satisfy requests
3062 * or to load a block that is being partially written.
3064 if (s.to_read || s.non_overwrite ||
3065 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3066 handle_stripe_fill5(sh, &s, disks);
3068 /* Now we check to see if any write operations have recently
3072 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3074 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3075 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3076 sh->reconstruct_state = reconstruct_state_idle;
3078 /* All the 'written' buffers and the parity block are ready to
3079 * be written back to disk
3081 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3082 for (i = disks; i--; ) {
3084 if (test_bit(R5_LOCKED, &dev->flags) &&
3085 (i == sh->pd_idx || dev->written)) {
3086 pr_debug("Writing block %d\n", i);
3087 set_bit(R5_Wantwrite, &dev->flags);
3090 if (!test_bit(R5_Insync, &dev->flags) ||
3091 (i == sh->pd_idx && s.failed == 0))
3092 set_bit(STRIPE_INSYNC, &sh->state);
3095 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3096 dec_preread_active = 1;
3099 /* Now to consider new write requests and what else, if anything
3100 * should be read. We do not handle new writes when:
3101 * 1/ A 'write' operation (copy+xor) is already in flight.
3102 * 2/ A 'check' operation is in flight, as it may clobber the parity
3105 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3106 handle_stripe_dirtying5(conf, sh, &s, disks);
3108 /* maybe we need to check and possibly fix the parity for this stripe
3109 * Any reads will already have been scheduled, so we just see if enough
3110 * data is available. The parity check is held off while parity
3111 * dependent operations are in flight.
3113 if (sh->check_state ||
3114 (s.syncing && s.locked == 0 &&
3115 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3116 !test_bit(STRIPE_INSYNC, &sh->state)))
3117 handle_parity_checks5(conf, sh, &s, disks);
3119 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3120 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3121 clear_bit(STRIPE_SYNCING, &sh->state);
3124 /* If the failed drive is just a ReadError, then we might need to progress
3125 * the repair/check process
3127 if (s.failed == 1 && !conf->mddev->ro &&
3128 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3129 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3130 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3132 dev = &sh->dev[s.failed_num];
3133 if (!test_bit(R5_ReWrite, &dev->flags)) {
3134 set_bit(R5_Wantwrite, &dev->flags);
3135 set_bit(R5_ReWrite, &dev->flags);
3136 set_bit(R5_LOCKED, &dev->flags);
3139 /* let's read it back */
3140 set_bit(R5_Wantread, &dev->flags);
3141 set_bit(R5_LOCKED, &dev->flags);
3146 /* Finish reconstruct operations initiated by the expansion process */
3147 if (sh->reconstruct_state == reconstruct_state_result) {
3148 struct stripe_head *sh2
3149 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3150 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3151 /* sh cannot be written until sh2 has been read.
3152 * so arrange for sh to be delayed a little
3154 set_bit(STRIPE_DELAYED, &sh->state);
3155 set_bit(STRIPE_HANDLE, &sh->state);
3156 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3158 atomic_inc(&conf->preread_active_stripes);
3159 release_stripe(sh2);
3163 release_stripe(sh2);
3165 sh->reconstruct_state = reconstruct_state_idle;
3166 clear_bit(STRIPE_EXPANDING, &sh->state);
3167 for (i = conf->raid_disks; i--; ) {
3168 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3169 set_bit(R5_LOCKED, &sh->dev[i].flags);
3174 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3175 !sh->reconstruct_state) {
3176 /* Need to write out all blocks after computing parity */
3177 sh->disks = conf->raid_disks;
3178 stripe_set_idx(sh->sector, conf, 0, sh);
3179 schedule_reconstruction(sh, &s, 1, 1);
3180 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3181 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3182 atomic_dec(&conf->reshape_stripes);
3183 wake_up(&conf->wait_for_overlap);
3184 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3187 if (s.expanding && s.locked == 0 &&
3188 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3189 handle_stripe_expansion(conf, sh, NULL);
3192 spin_unlock(&sh->lock);
3194 /* wait for this device to become unblocked */
3195 if (unlikely(blocked_rdev))
3196 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3199 raid_run_ops(sh, s.ops_request);
3203 if (dec_preread_active) {
3204 /* We delay this until after ops_run_io so that if make_request
3205 * is waiting on a barrier, it won't continue until the writes
3206 * have actually been submitted.
3208 atomic_dec(&conf->preread_active_stripes);
3209 if (atomic_read(&conf->preread_active_stripes) <
3211 md_wakeup_thread(conf->mddev->thread);
3213 return_io(return_bi);
3216 static void handle_stripe6(struct stripe_head *sh)
3218 raid5_conf_t *conf = sh->raid_conf;
3219 int disks = sh->disks;
3220 struct bio *return_bi = NULL;
3221 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3222 struct stripe_head_state s;
3223 struct r6_state r6s;
3224 struct r5dev *dev, *pdev, *qdev;
3225 mdk_rdev_t *blocked_rdev = NULL;
3226 int dec_preread_active = 0;
3228 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3229 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3230 (unsigned long long)sh->sector, sh->state,
3231 atomic_read(&sh->count), pd_idx, qd_idx,
3232 sh->check_state, sh->reconstruct_state);
3233 memset(&s, 0, sizeof(s));
3235 spin_lock(&sh->lock);
3236 clear_bit(STRIPE_HANDLE, &sh->state);
3237 clear_bit(STRIPE_DELAYED, &sh->state);
3239 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3240 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3241 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3242 /* Now to look around and see what can be done */
3245 for (i=disks; i--; ) {
3248 clear_bit(R5_Insync, &dev->flags);
3250 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3251 i, dev->flags, dev->toread, dev->towrite, dev->written);
3252 /* maybe we can reply to a read
3254 * new wantfill requests are only permitted while
3255 * ops_complete_biofill is guaranteed to be inactive
3257 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3258 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3259 set_bit(R5_Wantfill, &dev->flags);
3261 /* now count some things */
3262 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3263 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3264 if (test_bit(R5_Wantcompute, &dev->flags)) {
3266 BUG_ON(s.compute > 2);
3269 if (test_bit(R5_Wantfill, &dev->flags)) {
3271 } else if (dev->toread)
3275 if (!test_bit(R5_OVERWRITE, &dev->flags))
3280 rdev = rcu_dereference(conf->disks[i].rdev);
3281 if (blocked_rdev == NULL &&
3282 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3283 blocked_rdev = rdev;
3284 atomic_inc(&rdev->nr_pending);
3286 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3287 /* The ReadError flag will just be confusing now */
3288 clear_bit(R5_ReadError, &dev->flags);
3289 clear_bit(R5_ReWrite, &dev->flags);
3291 if (!rdev || !test_bit(In_sync, &rdev->flags)
3292 || test_bit(R5_ReadError, &dev->flags)) {
3294 r6s.failed_num[s.failed] = i;
3297 set_bit(R5_Insync, &dev->flags);
3301 if (unlikely(blocked_rdev)) {
3302 if (s.syncing || s.expanding || s.expanded ||
3303 s.to_write || s.written) {
3304 set_bit(STRIPE_HANDLE, &sh->state);
3307 /* There is nothing for the blocked_rdev to block */
3308 rdev_dec_pending(blocked_rdev, conf->mddev);
3309 blocked_rdev = NULL;
3312 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3313 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3314 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3317 pr_debug("locked=%d uptodate=%d to_read=%d"
3318 " to_write=%d failed=%d failed_num=%d,%d\n",
3319 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3320 r6s.failed_num[0], r6s.failed_num[1]);
3321 /* check if the array has lost >2 devices and, if so, some requests
3322 * might need to be failed
3324 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3325 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3326 if (s.failed > 2 && s.syncing) {
3327 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3328 clear_bit(STRIPE_SYNCING, &sh->state);
3333 * might be able to return some write requests if the parity blocks
3334 * are safe, or on a failed drive
3336 pdev = &sh->dev[pd_idx];
3337 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3338 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3339 qdev = &sh->dev[qd_idx];
3340 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3341 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3344 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3345 && !test_bit(R5_LOCKED, &pdev->flags)
3346 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3347 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3348 && !test_bit(R5_LOCKED, &qdev->flags)
3349 && test_bit(R5_UPTODATE, &qdev->flags)))))
3350 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3352 /* Now we might consider reading some blocks, either to check/generate
3353 * parity, or to satisfy requests
3354 * or to load a block that is being partially written.
3356 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3357 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3358 handle_stripe_fill6(sh, &s, &r6s, disks);
3360 /* Now we check to see if any write operations have recently
3363 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3365 sh->reconstruct_state = reconstruct_state_idle;
3366 /* All the 'written' buffers and the parity blocks are ready to
3367 * be written back to disk
3369 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3370 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3371 for (i = disks; i--; ) {
3373 if (test_bit(R5_LOCKED, &dev->flags) &&
3374 (i == sh->pd_idx || i == qd_idx ||
3376 pr_debug("Writing block %d\n", i);
3377 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3378 set_bit(R5_Wantwrite, &dev->flags);
3379 if (!test_bit(R5_Insync, &dev->flags) ||
3380 ((i == sh->pd_idx || i == qd_idx) &&
3382 set_bit(STRIPE_INSYNC, &sh->state);
3385 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3386 dec_preread_active = 1;
3389 /* Now to consider new write requests and what else, if anything
3390 * should be read. We do not handle new writes when:
3391 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3392 * 2/ A 'check' operation is in flight, as it may clobber the parity
3395 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3396 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3398 /* maybe we need to check and possibly fix the parity for this stripe
3399 * Any reads will already have been scheduled, so we just see if enough
3400 * data is available. The parity check is held off while parity
3401 * dependent operations are in flight.
3403 if (sh->check_state ||
3404 (s.syncing && s.locked == 0 &&
3405 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3406 !test_bit(STRIPE_INSYNC, &sh->state)))
3407 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3409 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3410 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3411 clear_bit(STRIPE_SYNCING, &sh->state);
3414 /* If the failed drives are just a ReadError, then we might need
3415 * to progress the repair/check process
3417 if (s.failed <= 2 && !conf->mddev->ro)
3418 for (i = 0; i < s.failed; i++) {
3419 dev = &sh->dev[r6s.failed_num[i]];
3420 if (test_bit(R5_ReadError, &dev->flags)
3421 && !test_bit(R5_LOCKED, &dev->flags)
3422 && test_bit(R5_UPTODATE, &dev->flags)
3424 if (!test_bit(R5_ReWrite, &dev->flags)) {
3425 set_bit(R5_Wantwrite, &dev->flags);
3426 set_bit(R5_ReWrite, &dev->flags);
3427 set_bit(R5_LOCKED, &dev->flags);
3430 /* let's read it back */
3431 set_bit(R5_Wantread, &dev->flags);
3432 set_bit(R5_LOCKED, &dev->flags);
3438 /* Finish reconstruct operations initiated by the expansion process */
3439 if (sh->reconstruct_state == reconstruct_state_result) {
3440 sh->reconstruct_state = reconstruct_state_idle;
3441 clear_bit(STRIPE_EXPANDING, &sh->state);
3442 for (i = conf->raid_disks; i--; ) {
3443 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3444 set_bit(R5_LOCKED, &sh->dev[i].flags);
3449 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3450 !sh->reconstruct_state) {
3451 struct stripe_head *sh2
3452 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3453 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3454 /* sh cannot be written until sh2 has been read.
3455 * so arrange for sh to be delayed a little
3457 set_bit(STRIPE_DELAYED, &sh->state);
3458 set_bit(STRIPE_HANDLE, &sh->state);
3459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3461 atomic_inc(&conf->preread_active_stripes);
3462 release_stripe(sh2);
3466 release_stripe(sh2);
3468 /* Need to write out all blocks after computing P&Q */
3469 sh->disks = conf->raid_disks;
3470 stripe_set_idx(sh->sector, conf, 0, sh);
3471 schedule_reconstruction(sh, &s, 1, 1);
3472 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3473 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3474 atomic_dec(&conf->reshape_stripes);
3475 wake_up(&conf->wait_for_overlap);
3476 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3479 if (s.expanding && s.locked == 0 &&
3480 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3481 handle_stripe_expansion(conf, sh, &r6s);
3484 spin_unlock(&sh->lock);
3486 /* wait for this device to become unblocked */
3487 if (unlikely(blocked_rdev))
3488 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3491 raid_run_ops(sh, s.ops_request);
3496 if (dec_preread_active) {
3497 /* We delay this until after ops_run_io so that if make_request
3498 * is waiting on a barrier, it won't continue until the writes
3499 * have actually been submitted.
3501 atomic_dec(&conf->preread_active_stripes);
3502 if (atomic_read(&conf->preread_active_stripes) <
3504 md_wakeup_thread(conf->mddev->thread);
3507 return_io(return_bi);
3510 static void handle_stripe(struct stripe_head *sh)
3512 if (sh->raid_conf->level == 6)
3518 static void raid5_activate_delayed(raid5_conf_t *conf)
3520 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3521 while (!list_empty(&conf->delayed_list)) {
3522 struct list_head *l = conf->delayed_list.next;
3523 struct stripe_head *sh;
3524 sh = list_entry(l, struct stripe_head, lru);
3526 clear_bit(STRIPE_DELAYED, &sh->state);
3527 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3528 atomic_inc(&conf->preread_active_stripes);
3529 list_add_tail(&sh->lru, &conf->hold_list);
3532 blk_plug_device(conf->mddev->queue);
3535 static void activate_bit_delay(raid5_conf_t *conf)
3537 /* device_lock is held */
3538 struct list_head head;
3539 list_add(&head, &conf->bitmap_list);
3540 list_del_init(&conf->bitmap_list);
3541 while (!list_empty(&head)) {
3542 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3543 list_del_init(&sh->lru);
3544 atomic_inc(&sh->count);
3545 __release_stripe(conf, sh);
3549 static void unplug_slaves(mddev_t *mddev)
3551 raid5_conf_t *conf = mddev->private;
3553 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3556 for (i = 0; i < devs; i++) {
3557 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3558 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3559 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3561 atomic_inc(&rdev->nr_pending);
3564 blk_unplug(r_queue);
3566 rdev_dec_pending(rdev, mddev);
3573 static void raid5_unplug_device(struct request_queue *q)
3575 mddev_t *mddev = q->queuedata;
3576 raid5_conf_t *conf = mddev->private;
3577 unsigned long flags;
3579 spin_lock_irqsave(&conf->device_lock, flags);
3581 if (blk_remove_plug(q)) {
3583 raid5_activate_delayed(conf);
3585 md_wakeup_thread(mddev->thread);
3587 spin_unlock_irqrestore(&conf->device_lock, flags);
3589 unplug_slaves(mddev);
3592 static int raid5_congested(void *data, int bits)
3594 mddev_t *mddev = data;
3595 raid5_conf_t *conf = mddev->private;
3597 /* No difference between reads and writes. Just check
3598 * how busy the stripe_cache is
3601 if (mddev_congested(mddev, bits))
3603 if (conf->inactive_blocked)
3607 if (list_empty_careful(&conf->inactive_list))
3613 /* We want read requests to align with chunks where possible,
3614 * but write requests don't need to.
3616 static int raid5_mergeable_bvec(struct request_queue *q,
3617 struct bvec_merge_data *bvm,
3618 struct bio_vec *biovec)
3620 mddev_t *mddev = q->queuedata;
3621 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3623 unsigned int chunk_sectors = mddev->chunk_sectors;
3624 unsigned int bio_sectors = bvm->bi_size >> 9;
3626 if ((bvm->bi_rw & 1) == WRITE)
3627 return biovec->bv_len; /* always allow writes to be mergeable */
3629 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3630 chunk_sectors = mddev->new_chunk_sectors;
3631 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3632 if (max < 0) max = 0;
3633 if (max <= biovec->bv_len && bio_sectors == 0)
3634 return biovec->bv_len;
3640 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3642 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3643 unsigned int chunk_sectors = mddev->chunk_sectors;
3644 unsigned int bio_sectors = bio->bi_size >> 9;
3646 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3647 chunk_sectors = mddev->new_chunk_sectors;
3648 return chunk_sectors >=
3649 ((sector & (chunk_sectors - 1)) + bio_sectors);
3653 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3654 * later sampled by raid5d.
3656 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3658 unsigned long flags;
3660 spin_lock_irqsave(&conf->device_lock, flags);
3662 bi->bi_next = conf->retry_read_aligned_list;
3663 conf->retry_read_aligned_list = bi;
3665 spin_unlock_irqrestore(&conf->device_lock, flags);
3666 md_wakeup_thread(conf->mddev->thread);
3670 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3674 bi = conf->retry_read_aligned;
3676 conf->retry_read_aligned = NULL;
3679 bi = conf->retry_read_aligned_list;
3681 conf->retry_read_aligned_list = bi->bi_next;
3684 * this sets the active strip count to 1 and the processed
3685 * strip count to zero (upper 8 bits)
3687 bi->bi_phys_segments = 1; /* biased count of active stripes */
3695 * The "raid5_align_endio" should check if the read succeeded and if it
3696 * did, call bio_endio on the original bio (having bio_put the new bio
3698 * If the read failed..
3700 static void raid5_align_endio(struct bio *bi, int error)
3702 struct bio* raid_bi = bi->bi_private;
3705 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3710 rdev = (void*)raid_bi->bi_next;
3711 raid_bi->bi_next = NULL;
3712 mddev = rdev->mddev;
3713 conf = mddev->private;
3715 rdev_dec_pending(rdev, conf->mddev);
3717 if (!error && uptodate) {
3718 bio_endio(raid_bi, 0);
3719 if (atomic_dec_and_test(&conf->active_aligned_reads))
3720 wake_up(&conf->wait_for_stripe);
3725 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3727 add_bio_to_retry(raid_bi, conf);
3730 static int bio_fits_rdev(struct bio *bi)
3732 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3734 if ((bi->bi_size>>9) > queue_max_sectors(q))
3736 blk_recount_segments(q, bi);
3737 if (bi->bi_phys_segments > queue_max_segments(q))
3740 if (q->merge_bvec_fn)
3741 /* it's too hard to apply the merge_bvec_fn at this stage,
3750 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3752 raid5_conf_t *conf = mddev->private;
3754 struct bio* align_bi;
3757 if (!in_chunk_boundary(mddev, raid_bio)) {
3758 pr_debug("chunk_aligned_read : non aligned\n");
3762 * use bio_clone to make a copy of the bio
3764 align_bi = bio_clone(raid_bio, GFP_NOIO);
3768 * set bi_end_io to a new function, and set bi_private to the
3771 align_bi->bi_end_io = raid5_align_endio;
3772 align_bi->bi_private = raid_bio;
3776 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3781 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3782 if (rdev && test_bit(In_sync, &rdev->flags)) {
3783 atomic_inc(&rdev->nr_pending);
3785 raid_bio->bi_next = (void*)rdev;
3786 align_bi->bi_bdev = rdev->bdev;
3787 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3788 align_bi->bi_sector += rdev->data_offset;
3790 if (!bio_fits_rdev(align_bi)) {
3791 /* too big in some way */
3793 rdev_dec_pending(rdev, mddev);
3797 spin_lock_irq(&conf->device_lock);
3798 wait_event_lock_irq(conf->wait_for_stripe,
3800 conf->device_lock, /* nothing */);
3801 atomic_inc(&conf->active_aligned_reads);
3802 spin_unlock_irq(&conf->device_lock);
3804 generic_make_request(align_bi);
3813 /* __get_priority_stripe - get the next stripe to process
3815 * Full stripe writes are allowed to pass preread active stripes up until
3816 * the bypass_threshold is exceeded. In general the bypass_count
3817 * increments when the handle_list is handled before the hold_list; however, it
3818 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3819 * stripe with in flight i/o. The bypass_count will be reset when the
3820 * head of the hold_list has changed, i.e. the head was promoted to the
3823 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3825 struct stripe_head *sh;
3827 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3829 list_empty(&conf->handle_list) ? "empty" : "busy",
3830 list_empty(&conf->hold_list) ? "empty" : "busy",
3831 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3833 if (!list_empty(&conf->handle_list)) {
3834 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3836 if (list_empty(&conf->hold_list))
3837 conf->bypass_count = 0;
3838 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3839 if (conf->hold_list.next == conf->last_hold)
3840 conf->bypass_count++;
3842 conf->last_hold = conf->hold_list.next;
3843 conf->bypass_count -= conf->bypass_threshold;
3844 if (conf->bypass_count < 0)
3845 conf->bypass_count = 0;
3848 } else if (!list_empty(&conf->hold_list) &&
3849 ((conf->bypass_threshold &&
3850 conf->bypass_count > conf->bypass_threshold) ||
3851 atomic_read(&conf->pending_full_writes) == 0)) {
3852 sh = list_entry(conf->hold_list.next,
3854 conf->bypass_count -= conf->bypass_threshold;
3855 if (conf->bypass_count < 0)
3856 conf->bypass_count = 0;
3860 list_del_init(&sh->lru);
3861 atomic_inc(&sh->count);
3862 BUG_ON(atomic_read(&sh->count) != 1);
3866 static int make_request(mddev_t *mddev, struct bio * bi)
3868 raid5_conf_t *conf = mddev->private;
3870 sector_t new_sector;
3871 sector_t logical_sector, last_sector;
3872 struct stripe_head *sh;
3873 const int rw = bio_data_dir(bi);
3876 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3877 /* Drain all pending writes. We only really need
3878 * to ensure they have been submitted, but this is
3881 mddev->pers->quiesce(mddev, 1);
3882 mddev->pers->quiesce(mddev, 0);
3883 md_barrier_request(mddev, bi);
3887 md_write_start(mddev, bi);
3890 mddev->reshape_position == MaxSector &&
3891 chunk_aligned_read(mddev,bi))
3894 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3895 last_sector = bi->bi_sector + (bi->bi_size>>9);
3897 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3899 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3901 int disks, data_disks;
3906 disks = conf->raid_disks;
3907 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3908 if (unlikely(conf->reshape_progress != MaxSector)) {
3909 /* spinlock is needed as reshape_progress may be
3910 * 64bit on a 32bit platform, and so it might be
3911 * possible to see a half-updated value
3912 * Ofcourse reshape_progress could change after
3913 * the lock is dropped, so once we get a reference
3914 * to the stripe that we think it is, we will have
3917 spin_lock_irq(&conf->device_lock);
3918 if (mddev->delta_disks < 0
3919 ? logical_sector < conf->reshape_progress
3920 : logical_sector >= conf->reshape_progress) {
3921 disks = conf->previous_raid_disks;
3924 if (mddev->delta_disks < 0
3925 ? logical_sector < conf->reshape_safe
3926 : logical_sector >= conf->reshape_safe) {
3927 spin_unlock_irq(&conf->device_lock);
3932 spin_unlock_irq(&conf->device_lock);
3934 data_disks = disks - conf->max_degraded;
3936 new_sector = raid5_compute_sector(conf, logical_sector,
3939 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3940 (unsigned long long)new_sector,
3941 (unsigned long long)logical_sector);
3943 sh = get_active_stripe(conf, new_sector, previous,
3944 (bi->bi_rw&RWA_MASK), 0);
3946 if (unlikely(previous)) {
3947 /* expansion might have moved on while waiting for a
3948 * stripe, so we must do the range check again.
3949 * Expansion could still move past after this
3950 * test, but as we are holding a reference to
3951 * 'sh', we know that if that happens,
3952 * STRIPE_EXPANDING will get set and the expansion
3953 * won't proceed until we finish with the stripe.
3956 spin_lock_irq(&conf->device_lock);
3957 if (mddev->delta_disks < 0
3958 ? logical_sector >= conf->reshape_progress
3959 : logical_sector < conf->reshape_progress)
3960 /* mismatch, need to try again */
3962 spin_unlock_irq(&conf->device_lock);
3970 if (bio_data_dir(bi) == WRITE &&
3971 logical_sector >= mddev->suspend_lo &&
3972 logical_sector < mddev->suspend_hi) {
3974 /* As the suspend_* range is controlled by
3975 * userspace, we want an interruptible
3978 flush_signals(current);
3979 prepare_to_wait(&conf->wait_for_overlap,
3980 &w, TASK_INTERRUPTIBLE);
3981 if (logical_sector >= mddev->suspend_lo &&
3982 logical_sector < mddev->suspend_hi)
3987 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3988 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3989 /* Stripe is busy expanding or
3990 * add failed due to overlap. Flush everything
3993 raid5_unplug_device(mddev->queue);
3998 finish_wait(&conf->wait_for_overlap, &w);
3999 set_bit(STRIPE_HANDLE, &sh->state);
4000 clear_bit(STRIPE_DELAYED, &sh->state);
4001 if (mddev->barrier &&
4002 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003 atomic_inc(&conf->preread_active_stripes);
4006 /* cannot get stripe for read-ahead, just give-up */
4007 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4008 finish_wait(&conf->wait_for_overlap, &w);
4013 spin_lock_irq(&conf->device_lock);
4014 remaining = raid5_dec_bi_phys_segments(bi);
4015 spin_unlock_irq(&conf->device_lock);
4016 if (remaining == 0) {
4019 md_write_end(mddev);
4024 if (mddev->barrier) {
4025 /* We need to wait for the stripes to all be handled.
4026 * So: wait for preread_active_stripes to drop to 0.
4028 wait_event(mddev->thread->wqueue,
4029 atomic_read(&conf->preread_active_stripes) == 0);
4034 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4036 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4038 /* reshaping is quite different to recovery/resync so it is
4039 * handled quite separately ... here.
4041 * On each call to sync_request, we gather one chunk worth of
4042 * destination stripes and flag them as expanding.
4043 * Then we find all the source stripes and request reads.
4044 * As the reads complete, handle_stripe will copy the data
4045 * into the destination stripe and release that stripe.
4047 raid5_conf_t *conf = mddev->private;
4048 struct stripe_head *sh;
4049 sector_t first_sector, last_sector;
4050 int raid_disks = conf->previous_raid_disks;
4051 int data_disks = raid_disks - conf->max_degraded;
4052 int new_data_disks = conf->raid_disks - conf->max_degraded;
4055 sector_t writepos, readpos, safepos;
4056 sector_t stripe_addr;
4057 int reshape_sectors;
4058 struct list_head stripes;
4060 if (sector_nr == 0) {
4061 /* If restarting in the middle, skip the initial sectors */
4062 if (mddev->delta_disks < 0 &&
4063 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4064 sector_nr = raid5_size(mddev, 0, 0)
4065 - conf->reshape_progress;
4066 } else if (mddev->delta_disks >= 0 &&
4067 conf->reshape_progress > 0)
4068 sector_nr = conf->reshape_progress;
4069 sector_div(sector_nr, new_data_disks);
4071 mddev->curr_resync_completed = sector_nr;
4072 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4078 /* We need to process a full chunk at a time.
4079 * If old and new chunk sizes differ, we need to process the
4082 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4083 reshape_sectors = mddev->new_chunk_sectors;
4085 reshape_sectors = mddev->chunk_sectors;
4087 /* we update the metadata when there is more than 3Meg
4088 * in the block range (that is rather arbitrary, should
4089 * probably be time based) or when the data about to be
4090 * copied would over-write the source of the data at
4091 * the front of the range.
4092 * i.e. one new_stripe along from reshape_progress new_maps
4093 * to after where reshape_safe old_maps to
4095 writepos = conf->reshape_progress;
4096 sector_div(writepos, new_data_disks);
4097 readpos = conf->reshape_progress;
4098 sector_div(readpos, data_disks);
4099 safepos = conf->reshape_safe;
4100 sector_div(safepos, data_disks);
4101 if (mddev->delta_disks < 0) {
4102 writepos -= min_t(sector_t, reshape_sectors, writepos);
4103 readpos += reshape_sectors;
4104 safepos += reshape_sectors;
4106 writepos += reshape_sectors;
4107 readpos -= min_t(sector_t, reshape_sectors, readpos);
4108 safepos -= min_t(sector_t, reshape_sectors, safepos);
4111 /* 'writepos' is the most advanced device address we might write.
4112 * 'readpos' is the least advanced device address we might read.
4113 * 'safepos' is the least address recorded in the metadata as having
4115 * If 'readpos' is behind 'writepos', then there is no way that we can
4116 * ensure safety in the face of a crash - that must be done by userspace
4117 * making a backup of the data. So in that case there is no particular
4118 * rush to update metadata.
4119 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4120 * update the metadata to advance 'safepos' to match 'readpos' so that
4121 * we can be safe in the event of a crash.
4122 * So we insist on updating metadata if safepos is behind writepos and
4123 * readpos is beyond writepos.
4124 * In any case, update the metadata every 10 seconds.
4125 * Maybe that number should be configurable, but I'm not sure it is
4126 * worth it.... maybe it could be a multiple of safemode_delay???
4128 if ((mddev->delta_disks < 0
4129 ? (safepos > writepos && readpos < writepos)
4130 : (safepos < writepos && readpos > writepos)) ||
4131 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4132 /* Cannot proceed until we've updated the superblock... */
4133 wait_event(conf->wait_for_overlap,
4134 atomic_read(&conf->reshape_stripes)==0);
4135 mddev->reshape_position = conf->reshape_progress;
4136 mddev->curr_resync_completed = mddev->curr_resync;
4137 conf->reshape_checkpoint = jiffies;
4138 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4139 md_wakeup_thread(mddev->thread);
4140 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4141 kthread_should_stop());
4142 spin_lock_irq(&conf->device_lock);
4143 conf->reshape_safe = mddev->reshape_position;
4144 spin_unlock_irq(&conf->device_lock);
4145 wake_up(&conf->wait_for_overlap);
4146 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4149 if (mddev->delta_disks < 0) {
4150 BUG_ON(conf->reshape_progress == 0);
4151 stripe_addr = writepos;
4152 BUG_ON((mddev->dev_sectors &
4153 ~((sector_t)reshape_sectors - 1))
4154 - reshape_sectors - stripe_addr
4157 BUG_ON(writepos != sector_nr + reshape_sectors);
4158 stripe_addr = sector_nr;
4160 INIT_LIST_HEAD(&stripes);
4161 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4163 int skipped_disk = 0;
4164 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4165 set_bit(STRIPE_EXPANDING, &sh->state);
4166 atomic_inc(&conf->reshape_stripes);
4167 /* If any of this stripe is beyond the end of the old
4168 * array, then we need to zero those blocks
4170 for (j=sh->disks; j--;) {
4172 if (j == sh->pd_idx)
4174 if (conf->level == 6 &&
4177 s = compute_blocknr(sh, j, 0);
4178 if (s < raid5_size(mddev, 0, 0)) {
4182 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4183 set_bit(R5_Expanded, &sh->dev[j].flags);
4184 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4186 if (!skipped_disk) {
4187 set_bit(STRIPE_EXPAND_READY, &sh->state);
4188 set_bit(STRIPE_HANDLE, &sh->state);
4190 list_add(&sh->lru, &stripes);
4192 spin_lock_irq(&conf->device_lock);
4193 if (mddev->delta_disks < 0)
4194 conf->reshape_progress -= reshape_sectors * new_data_disks;
4196 conf->reshape_progress += reshape_sectors * new_data_disks;
4197 spin_unlock_irq(&conf->device_lock);
4198 /* Ok, those stripe are ready. We can start scheduling
4199 * reads on the source stripes.
4200 * The source stripes are determined by mapping the first and last
4201 * block on the destination stripes.
4204 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4207 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4208 * new_data_disks - 1),
4210 if (last_sector >= mddev->dev_sectors)
4211 last_sector = mddev->dev_sectors - 1;
4212 while (first_sector <= last_sector) {
4213 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4214 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4215 set_bit(STRIPE_HANDLE, &sh->state);
4217 first_sector += STRIPE_SECTORS;
4219 /* Now that the sources are clearly marked, we can release
4220 * the destination stripes
4222 while (!list_empty(&stripes)) {
4223 sh = list_entry(stripes.next, struct stripe_head, lru);
4224 list_del_init(&sh->lru);
4227 /* If this takes us to the resync_max point where we have to pause,
4228 * then we need to write out the superblock.
4230 sector_nr += reshape_sectors;
4231 if ((sector_nr - mddev->curr_resync_completed) * 2
4232 >= mddev->resync_max - mddev->curr_resync_completed) {
4233 /* Cannot proceed until we've updated the superblock... */
4234 wait_event(conf->wait_for_overlap,
4235 atomic_read(&conf->reshape_stripes) == 0);
4236 mddev->reshape_position = conf->reshape_progress;
4237 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4238 conf->reshape_checkpoint = jiffies;
4239 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4240 md_wakeup_thread(mddev->thread);
4241 wait_event(mddev->sb_wait,
4242 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4243 || kthread_should_stop());
4244 spin_lock_irq(&conf->device_lock);
4245 conf->reshape_safe = mddev->reshape_position;
4246 spin_unlock_irq(&conf->device_lock);
4247 wake_up(&conf->wait_for_overlap);
4248 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4250 return reshape_sectors;
4253 /* FIXME go_faster isn't used */
4254 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4256 raid5_conf_t *conf = mddev->private;
4257 struct stripe_head *sh;
4258 sector_t max_sector = mddev->dev_sectors;
4260 int still_degraded = 0;
4263 if (sector_nr >= max_sector) {
4264 /* just being told to finish up .. nothing much to do */
4265 unplug_slaves(mddev);
4267 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4272 if (mddev->curr_resync < max_sector) /* aborted */
4273 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4275 else /* completed sync */
4277 bitmap_close_sync(mddev->bitmap);
4282 /* Allow raid5_quiesce to complete */
4283 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4285 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4286 return reshape_request(mddev, sector_nr, skipped);
4288 /* No need to check resync_max as we never do more than one
4289 * stripe, and as resync_max will always be on a chunk boundary,
4290 * if the check in md_do_sync didn't fire, there is no chance
4291 * of overstepping resync_max here
4294 /* if there is too many failed drives and we are trying
4295 * to resync, then assert that we are finished, because there is
4296 * nothing we can do.
4298 if (mddev->degraded >= conf->max_degraded &&
4299 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4300 sector_t rv = mddev->dev_sectors - sector_nr;
4304 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4305 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4306 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4307 /* we can skip this block, and probably more */
4308 sync_blocks /= STRIPE_SECTORS;
4310 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4314 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4316 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4318 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4319 /* make sure we don't swamp the stripe cache if someone else
4320 * is trying to get access
4322 schedule_timeout_uninterruptible(1);
4324 /* Need to check if array will still be degraded after recovery/resync
4325 * We don't need to check the 'failed' flag as when that gets set,
4328 for (i = 0; i < conf->raid_disks; i++)
4329 if (conf->disks[i].rdev == NULL)
4332 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4334 spin_lock(&sh->lock);
4335 set_bit(STRIPE_SYNCING, &sh->state);
4336 clear_bit(STRIPE_INSYNC, &sh->state);
4337 spin_unlock(&sh->lock);
4342 return STRIPE_SECTORS;
4345 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4347 /* We may not be able to submit a whole bio at once as there
4348 * may not be enough stripe_heads available.
4349 * We cannot pre-allocate enough stripe_heads as we may need
4350 * more than exist in the cache (if we allow ever large chunks).
4351 * So we do one stripe head at a time and record in
4352 * ->bi_hw_segments how many have been done.
4354 * We *know* that this entire raid_bio is in one chunk, so
4355 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4357 struct stripe_head *sh;
4359 sector_t sector, logical_sector, last_sector;
4364 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4365 sector = raid5_compute_sector(conf, logical_sector,
4367 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4369 for (; logical_sector < last_sector;
4370 logical_sector += STRIPE_SECTORS,
4371 sector += STRIPE_SECTORS,
4374 if (scnt < raid5_bi_hw_segments(raid_bio))
4375 /* already done this stripe */
4378 sh = get_active_stripe(conf, sector, 0, 1, 0);
4381 /* failed to get a stripe - must wait */
4382 raid5_set_bi_hw_segments(raid_bio, scnt);
4383 conf->retry_read_aligned = raid_bio;
4387 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4388 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4390 raid5_set_bi_hw_segments(raid_bio, scnt);
4391 conf->retry_read_aligned = raid_bio;
4399 spin_lock_irq(&conf->device_lock);
4400 remaining = raid5_dec_bi_phys_segments(raid_bio);
4401 spin_unlock_irq(&conf->device_lock);
4403 bio_endio(raid_bio, 0);
4404 if (atomic_dec_and_test(&conf->active_aligned_reads))
4405 wake_up(&conf->wait_for_stripe);
4411 * This is our raid5 kernel thread.
4413 * We scan the hash table for stripes which can be handled now.
4414 * During the scan, completed stripes are saved for us by the interrupt
4415 * handler, so that they will not have to wait for our next wakeup.
4417 static void raid5d(mddev_t *mddev)
4419 struct stripe_head *sh;
4420 raid5_conf_t *conf = mddev->private;
4423 pr_debug("+++ raid5d active\n");
4425 md_check_recovery(mddev);
4428 spin_lock_irq(&conf->device_lock);
4432 if (conf->seq_flush != conf->seq_write) {
4433 int seq = conf->seq_flush;
4434 spin_unlock_irq(&conf->device_lock);
4435 bitmap_unplug(mddev->bitmap);
4436 spin_lock_irq(&conf->device_lock);
4437 conf->seq_write = seq;
4438 activate_bit_delay(conf);
4441 while ((bio = remove_bio_from_retry(conf))) {
4443 spin_unlock_irq(&conf->device_lock);
4444 ok = retry_aligned_read(conf, bio);
4445 spin_lock_irq(&conf->device_lock);
4451 sh = __get_priority_stripe(conf);
4455 spin_unlock_irq(&conf->device_lock);
4462 spin_lock_irq(&conf->device_lock);
4464 pr_debug("%d stripes handled\n", handled);
4466 spin_unlock_irq(&conf->device_lock);
4468 async_tx_issue_pending_all();
4469 unplug_slaves(mddev);
4471 pr_debug("--- raid5d inactive\n");
4475 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4477 raid5_conf_t *conf = mddev->private;
4479 return sprintf(page, "%d\n", conf->max_nr_stripes);
4485 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4487 raid5_conf_t *conf = mddev->private;
4491 if (len >= PAGE_SIZE)
4496 if (strict_strtoul(page, 10, &new))
4498 if (new <= 16 || new > 32768)
4500 while (new < conf->max_nr_stripes) {
4501 if (drop_one_stripe(conf))
4502 conf->max_nr_stripes--;
4506 err = md_allow_write(mddev);
4509 while (new > conf->max_nr_stripes) {
4510 if (grow_one_stripe(conf))
4511 conf->max_nr_stripes++;
4517 static struct md_sysfs_entry
4518 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4519 raid5_show_stripe_cache_size,
4520 raid5_store_stripe_cache_size);
4523 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4525 raid5_conf_t *conf = mddev->private;
4527 return sprintf(page, "%d\n", conf->bypass_threshold);
4533 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4535 raid5_conf_t *conf = mddev->private;
4537 if (len >= PAGE_SIZE)
4542 if (strict_strtoul(page, 10, &new))
4544 if (new > conf->max_nr_stripes)
4546 conf->bypass_threshold = new;
4550 static struct md_sysfs_entry
4551 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4553 raid5_show_preread_threshold,
4554 raid5_store_preread_threshold);
4557 stripe_cache_active_show(mddev_t *mddev, char *page)
4559 raid5_conf_t *conf = mddev->private;
4561 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4566 static struct md_sysfs_entry
4567 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4569 static struct attribute *raid5_attrs[] = {
4570 &raid5_stripecache_size.attr,
4571 &raid5_stripecache_active.attr,
4572 &raid5_preread_bypass_threshold.attr,
4575 static struct attribute_group raid5_attrs_group = {
4577 .attrs = raid5_attrs,
4581 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4583 raid5_conf_t *conf = mddev->private;
4586 sectors = mddev->dev_sectors;
4588 /* size is defined by the smallest of previous and new size */
4589 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4591 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4592 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4593 return sectors * (raid_disks - conf->max_degraded);
4596 static void raid5_free_percpu(raid5_conf_t *conf)
4598 struct raid5_percpu *percpu;
4605 for_each_possible_cpu(cpu) {
4606 percpu = per_cpu_ptr(conf->percpu, cpu);
4607 safe_put_page(percpu->spare_page);
4608 kfree(percpu->scribble);
4610 #ifdef CONFIG_HOTPLUG_CPU
4611 unregister_cpu_notifier(&conf->cpu_notify);
4615 free_percpu(conf->percpu);
4618 static void free_conf(raid5_conf_t *conf)
4620 shrink_stripes(conf);
4621 raid5_free_percpu(conf);
4623 kfree(conf->stripe_hashtbl);
4627 #ifdef CONFIG_HOTPLUG_CPU
4628 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4631 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4632 long cpu = (long)hcpu;
4633 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4636 case CPU_UP_PREPARE:
4637 case CPU_UP_PREPARE_FROZEN:
4638 if (conf->level == 6 && !percpu->spare_page)
4639 percpu->spare_page = alloc_page(GFP_KERNEL);
4640 if (!percpu->scribble)
4641 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4643 if (!percpu->scribble ||
4644 (conf->level == 6 && !percpu->spare_page)) {
4645 safe_put_page(percpu->spare_page);
4646 kfree(percpu->scribble);
4647 pr_err("%s: failed memory allocation for cpu%ld\n",
4649 return notifier_from_errno(-ENOMEM);
4653 case CPU_DEAD_FROZEN:
4654 safe_put_page(percpu->spare_page);
4655 kfree(percpu->scribble);
4656 percpu->spare_page = NULL;
4657 percpu->scribble = NULL;
4666 static int raid5_alloc_percpu(raid5_conf_t *conf)
4669 struct page *spare_page;
4670 struct raid5_percpu __percpu *allcpus;
4674 allcpus = alloc_percpu(struct raid5_percpu);
4677 conf->percpu = allcpus;
4681 for_each_present_cpu(cpu) {
4682 if (conf->level == 6) {
4683 spare_page = alloc_page(GFP_KERNEL);
4688 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4690 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4695 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4697 #ifdef CONFIG_HOTPLUG_CPU
4698 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4699 conf->cpu_notify.priority = 0;
4701 err = register_cpu_notifier(&conf->cpu_notify);
4708 static raid5_conf_t *setup_conf(mddev_t *mddev)
4711 int raid_disk, memory, max_disks;
4713 struct disk_info *disk;
4715 if (mddev->new_level != 5
4716 && mddev->new_level != 4
4717 && mddev->new_level != 6) {
4718 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4719 mdname(mddev), mddev->new_level);
4720 return ERR_PTR(-EIO);
4722 if ((mddev->new_level == 5
4723 && !algorithm_valid_raid5(mddev->new_layout)) ||
4724 (mddev->new_level == 6
4725 && !algorithm_valid_raid6(mddev->new_layout))) {
4726 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4727 mdname(mddev), mddev->new_layout);
4728 return ERR_PTR(-EIO);
4730 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4731 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4732 mdname(mddev), mddev->raid_disks);
4733 return ERR_PTR(-EINVAL);
4736 if (!mddev->new_chunk_sectors ||
4737 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4738 !is_power_of_2(mddev->new_chunk_sectors)) {
4739 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4740 mdname(mddev), mddev->new_chunk_sectors << 9);
4741 return ERR_PTR(-EINVAL);
4744 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4747 spin_lock_init(&conf->device_lock);
4748 init_waitqueue_head(&conf->wait_for_stripe);
4749 init_waitqueue_head(&conf->wait_for_overlap);
4750 INIT_LIST_HEAD(&conf->handle_list);
4751 INIT_LIST_HEAD(&conf->hold_list);
4752 INIT_LIST_HEAD(&conf->delayed_list);
4753 INIT_LIST_HEAD(&conf->bitmap_list);
4754 INIT_LIST_HEAD(&conf->inactive_list);
4755 atomic_set(&conf->active_stripes, 0);
4756 atomic_set(&conf->preread_active_stripes, 0);
4757 atomic_set(&conf->active_aligned_reads, 0);
4758 conf->bypass_threshold = BYPASS_THRESHOLD;
4760 conf->raid_disks = mddev->raid_disks;
4761 if (mddev->reshape_position == MaxSector)
4762 conf->previous_raid_disks = mddev->raid_disks;
4764 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4765 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4766 conf->scribble_len = scribble_len(max_disks);
4768 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4773 conf->mddev = mddev;
4775 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4778 conf->level = mddev->new_level;
4779 if (raid5_alloc_percpu(conf) != 0)
4782 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4784 list_for_each_entry(rdev, &mddev->disks, same_set) {
4785 raid_disk = rdev->raid_disk;
4786 if (raid_disk >= max_disks
4789 disk = conf->disks + raid_disk;
4793 if (test_bit(In_sync, &rdev->flags)) {
4794 char b[BDEVNAME_SIZE];
4795 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4797 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4799 /* Cannot rely on bitmap to complete recovery */
4803 conf->chunk_sectors = mddev->new_chunk_sectors;
4804 conf->level = mddev->new_level;
4805 if (conf->level == 6)
4806 conf->max_degraded = 2;
4808 conf->max_degraded = 1;
4809 conf->algorithm = mddev->new_layout;
4810 conf->max_nr_stripes = NR_STRIPES;
4811 conf->reshape_progress = mddev->reshape_position;
4812 if (conf->reshape_progress != MaxSector) {
4813 conf->prev_chunk_sectors = mddev->chunk_sectors;
4814 conf->prev_algo = mddev->layout;
4817 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4818 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4819 if (grow_stripes(conf, conf->max_nr_stripes)) {
4821 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4822 mdname(mddev), memory);
4825 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4826 mdname(mddev), memory);
4828 conf->thread = md_register_thread(raid5d, mddev, NULL);
4829 if (!conf->thread) {
4831 "md/raid:%s: couldn't allocate thread.\n",
4841 return ERR_PTR(-EIO);
4843 return ERR_PTR(-ENOMEM);
4847 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4850 case ALGORITHM_PARITY_0:
4851 if (raid_disk < max_degraded)
4854 case ALGORITHM_PARITY_N:
4855 if (raid_disk >= raid_disks - max_degraded)
4858 case ALGORITHM_PARITY_0_6:
4859 if (raid_disk == 0 ||
4860 raid_disk == raid_disks - 1)
4863 case ALGORITHM_LEFT_ASYMMETRIC_6:
4864 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4865 case ALGORITHM_LEFT_SYMMETRIC_6:
4866 case ALGORITHM_RIGHT_SYMMETRIC_6:
4867 if (raid_disk == raid_disks - 1)
4873 static int run(mddev_t *mddev)
4876 int working_disks = 0, chunk_size;
4877 int dirty_parity_disks = 0;
4879 sector_t reshape_offset = 0;
4881 if (mddev->recovery_cp != MaxSector)
4882 printk(KERN_NOTICE "md/raid:%s: not clean"
4883 " -- starting background reconstruction\n",
4885 if (mddev->reshape_position != MaxSector) {
4886 /* Check that we can continue the reshape.
4887 * Currently only disks can change, it must
4888 * increase, and we must be past the point where
4889 * a stripe over-writes itself
4891 sector_t here_new, here_old;
4893 int max_degraded = (mddev->level == 6 ? 2 : 1);
4895 if (mddev->new_level != mddev->level) {
4896 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4897 "required - aborting.\n",
4901 old_disks = mddev->raid_disks - mddev->delta_disks;
4902 /* reshape_position must be on a new-stripe boundary, and one
4903 * further up in new geometry must map after here in old
4906 here_new = mddev->reshape_position;
4907 if (sector_div(here_new, mddev->new_chunk_sectors *
4908 (mddev->raid_disks - max_degraded))) {
4909 printk(KERN_ERR "md/raid:%s: reshape_position not "
4910 "on a stripe boundary\n", mdname(mddev));
4913 reshape_offset = here_new * mddev->new_chunk_sectors;
4914 /* here_new is the stripe we will write to */
4915 here_old = mddev->reshape_position;
4916 sector_div(here_old, mddev->chunk_sectors *
4917 (old_disks-max_degraded));
4918 /* here_old is the first stripe that we might need to read
4920 if (mddev->delta_disks == 0) {
4921 /* We cannot be sure it is safe to start an in-place
4922 * reshape. It is only safe if user-space if monitoring
4923 * and taking constant backups.
4924 * mdadm always starts a situation like this in
4925 * readonly mode so it can take control before
4926 * allowing any writes. So just check for that.
4928 if ((here_new * mddev->new_chunk_sectors !=
4929 here_old * mddev->chunk_sectors) ||
4931 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4932 " in read-only mode - aborting\n",
4936 } else if (mddev->delta_disks < 0
4937 ? (here_new * mddev->new_chunk_sectors <=
4938 here_old * mddev->chunk_sectors)
4939 : (here_new * mddev->new_chunk_sectors >=
4940 here_old * mddev->chunk_sectors)) {
4941 /* Reading from the same stripe as writing to - bad */
4942 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4943 "auto-recovery - aborting.\n",
4947 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4949 /* OK, we should be able to continue; */
4951 BUG_ON(mddev->level != mddev->new_level);
4952 BUG_ON(mddev->layout != mddev->new_layout);
4953 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4954 BUG_ON(mddev->delta_disks != 0);
4957 if (mddev->private == NULL)
4958 conf = setup_conf(mddev);
4960 conf = mddev->private;
4963 return PTR_ERR(conf);
4965 mddev->thread = conf->thread;
4966 conf->thread = NULL;
4967 mddev->private = conf;
4970 * 0 for a fully functional array, 1 or 2 for a degraded array.
4972 list_for_each_entry(rdev, &mddev->disks, same_set) {
4973 if (rdev->raid_disk < 0)
4975 if (test_bit(In_sync, &rdev->flags))
4977 /* This disc is not fully in-sync. However if it
4978 * just stored parity (beyond the recovery_offset),
4979 * when we don't need to be concerned about the
4980 * array being dirty.
4981 * When reshape goes 'backwards', we never have
4982 * partially completed devices, so we only need
4983 * to worry about reshape going forwards.
4985 /* Hack because v0.91 doesn't store recovery_offset properly. */
4986 if (mddev->major_version == 0 &&
4987 mddev->minor_version > 90)
4988 rdev->recovery_offset = reshape_offset;
4990 if (rdev->recovery_offset < reshape_offset) {
4991 /* We need to check old and new layout */
4992 if (!only_parity(rdev->raid_disk,
4995 conf->max_degraded))
4998 if (!only_parity(rdev->raid_disk,
5000 conf->previous_raid_disks,
5001 conf->max_degraded))
5003 dirty_parity_disks++;
5006 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5009 if (mddev->degraded > conf->max_degraded) {
5010 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5011 " (%d/%d failed)\n",
5012 mdname(mddev), mddev->degraded, conf->raid_disks);
5016 /* device size must be a multiple of chunk size */
5017 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5018 mddev->resync_max_sectors = mddev->dev_sectors;
5020 if (mddev->degraded > dirty_parity_disks &&
5021 mddev->recovery_cp != MaxSector) {
5022 if (mddev->ok_start_degraded)
5024 "md/raid:%s: starting dirty degraded array"
5025 " - data corruption possible.\n",
5029 "md/raid:%s: cannot start dirty degraded array.\n",
5035 if (mddev->degraded == 0)
5036 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5037 " devices, algorithm %d\n", mdname(mddev), conf->level,
5038 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5041 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5042 " out of %d devices, algorithm %d\n",
5043 mdname(mddev), conf->level,
5044 mddev->raid_disks - mddev->degraded,
5045 mddev->raid_disks, mddev->new_layout);
5047 print_raid5_conf(conf);
5049 if (conf->reshape_progress != MaxSector) {
5050 conf->reshape_safe = conf->reshape_progress;
5051 atomic_set(&conf->reshape_stripes, 0);
5052 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5053 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5054 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5055 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5056 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5060 /* read-ahead size must cover two whole stripes, which is
5061 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5064 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5065 int stripe = data_disks *
5066 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5067 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5068 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5071 /* Ok, everything is just fine now */
5072 if (mddev->to_remove == &raid5_attrs_group)
5073 mddev->to_remove = NULL;
5074 else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5076 "md/raid:%s: failed to create sysfs attributes.\n",
5079 mddev->queue->queue_lock = &conf->device_lock;
5081 mddev->queue->unplug_fn = raid5_unplug_device;
5082 mddev->queue->backing_dev_info.congested_data = mddev;
5083 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5085 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5087 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5088 chunk_size = mddev->chunk_sectors << 9;
5089 blk_queue_io_min(mddev->queue, chunk_size);
5090 blk_queue_io_opt(mddev->queue, chunk_size *
5091 (conf->raid_disks - conf->max_degraded));
5093 list_for_each_entry(rdev, &mddev->disks, same_set)
5094 disk_stack_limits(mddev->gendisk, rdev->bdev,
5095 rdev->data_offset << 9);
5099 md_unregister_thread(mddev->thread);
5100 mddev->thread = NULL;
5102 print_raid5_conf(conf);
5105 mddev->private = NULL;
5106 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5110 static int stop(mddev_t *mddev)
5112 raid5_conf_t *conf = mddev->private;
5114 md_unregister_thread(mddev->thread);
5115 mddev->thread = NULL;
5116 mddev->queue->backing_dev_info.congested_fn = NULL;
5117 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5119 mddev->private = NULL;
5120 mddev->to_remove = &raid5_attrs_group;
5125 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5129 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5130 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5131 seq_printf(seq, "sh %llu, count %d.\n",
5132 (unsigned long long)sh->sector, atomic_read(&sh->count));
5133 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5134 for (i = 0; i < sh->disks; i++) {
5135 seq_printf(seq, "(cache%d: %p %ld) ",
5136 i, sh->dev[i].page, sh->dev[i].flags);
5138 seq_printf(seq, "\n");
5141 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5143 struct stripe_head *sh;
5144 struct hlist_node *hn;
5147 spin_lock_irq(&conf->device_lock);
5148 for (i = 0; i < NR_HASH; i++) {
5149 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5150 if (sh->raid_conf != conf)
5155 spin_unlock_irq(&conf->device_lock);
5159 static void status(struct seq_file *seq, mddev_t *mddev)
5161 raid5_conf_t *conf = mddev->private;
5164 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5165 mddev->chunk_sectors / 2, mddev->layout);
5166 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5167 for (i = 0; i < conf->raid_disks; i++)
5168 seq_printf (seq, "%s",
5169 conf->disks[i].rdev &&
5170 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5171 seq_printf (seq, "]");
5173 seq_printf (seq, "\n");
5174 printall(seq, conf);
5178 static void print_raid5_conf (raid5_conf_t *conf)
5181 struct disk_info *tmp;
5183 printk(KERN_DEBUG "RAID conf printout:\n");
5185 printk("(conf==NULL)\n");
5188 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5190 conf->raid_disks - conf->mddev->degraded);
5192 for (i = 0; i < conf->raid_disks; i++) {
5193 char b[BDEVNAME_SIZE];
5194 tmp = conf->disks + i;
5196 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5197 i, !test_bit(Faulty, &tmp->rdev->flags),
5198 bdevname(tmp->rdev->bdev, b));
5202 static int raid5_spare_active(mddev_t *mddev)
5205 raid5_conf_t *conf = mddev->private;
5206 struct disk_info *tmp;
5208 for (i = 0; i < conf->raid_disks; i++) {
5209 tmp = conf->disks + i;
5211 && !test_bit(Faulty, &tmp->rdev->flags)
5212 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5213 unsigned long flags;
5214 spin_lock_irqsave(&conf->device_lock, flags);
5216 spin_unlock_irqrestore(&conf->device_lock, flags);
5219 print_raid5_conf(conf);
5223 static int raid5_remove_disk(mddev_t *mddev, int number)
5225 raid5_conf_t *conf = mddev->private;
5228 struct disk_info *p = conf->disks + number;
5230 print_raid5_conf(conf);
5233 if (number >= conf->raid_disks &&
5234 conf->reshape_progress == MaxSector)
5235 clear_bit(In_sync, &rdev->flags);
5237 if (test_bit(In_sync, &rdev->flags) ||
5238 atomic_read(&rdev->nr_pending)) {
5242 /* Only remove non-faulty devices if recovery
5245 if (!test_bit(Faulty, &rdev->flags) &&
5246 mddev->degraded <= conf->max_degraded &&
5247 number < conf->raid_disks) {
5253 if (atomic_read(&rdev->nr_pending)) {
5254 /* lost the race, try later */
5261 print_raid5_conf(conf);
5265 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5267 raid5_conf_t *conf = mddev->private;
5270 struct disk_info *p;
5272 int last = conf->raid_disks - 1;
5274 if (mddev->degraded > conf->max_degraded)
5275 /* no point adding a device */
5278 if (rdev->raid_disk >= 0)
5279 first = last = rdev->raid_disk;
5282 * find the disk ... but prefer rdev->saved_raid_disk
5285 if (rdev->saved_raid_disk >= 0 &&
5286 rdev->saved_raid_disk >= first &&
5287 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5288 disk = rdev->saved_raid_disk;
5291 for ( ; disk <= last ; disk++)
5292 if ((p=conf->disks + disk)->rdev == NULL) {
5293 clear_bit(In_sync, &rdev->flags);
5294 rdev->raid_disk = disk;
5296 if (rdev->saved_raid_disk != disk)
5298 rcu_assign_pointer(p->rdev, rdev);
5301 print_raid5_conf(conf);
5305 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5307 /* no resync is happening, and there is enough space
5308 * on all devices, so we can resize.
5309 * We need to make sure resync covers any new space.
5310 * If the array is shrinking we should possibly wait until
5311 * any io in the removed space completes, but it hardly seems
5314 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5315 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5316 mddev->raid_disks));
5317 if (mddev->array_sectors >
5318 raid5_size(mddev, sectors, mddev->raid_disks))
5320 set_capacity(mddev->gendisk, mddev->array_sectors);
5321 revalidate_disk(mddev->gendisk);
5322 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5323 mddev->recovery_cp = mddev->dev_sectors;
5324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5326 mddev->dev_sectors = sectors;
5327 mddev->resync_max_sectors = sectors;
5331 static int check_stripe_cache(mddev_t *mddev)
5333 /* Can only proceed if there are plenty of stripe_heads.
5334 * We need a minimum of one full stripe,, and for sensible progress
5335 * it is best to have about 4 times that.
5336 * If we require 4 times, then the default 256 4K stripe_heads will
5337 * allow for chunk sizes up to 256K, which is probably OK.
5338 * If the chunk size is greater, user-space should request more
5339 * stripe_heads first.
5341 raid5_conf_t *conf = mddev->private;
5342 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5343 > conf->max_nr_stripes ||
5344 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5345 > conf->max_nr_stripes) {
5346 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5348 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5355 static int check_reshape(mddev_t *mddev)
5357 raid5_conf_t *conf = mddev->private;
5359 if (mddev->delta_disks == 0 &&
5360 mddev->new_layout == mddev->layout &&
5361 mddev->new_chunk_sectors == mddev->chunk_sectors)
5362 return 0; /* nothing to do */
5364 /* Cannot grow a bitmap yet */
5366 if (mddev->degraded > conf->max_degraded)
5368 if (mddev->delta_disks < 0) {
5369 /* We might be able to shrink, but the devices must
5370 * be made bigger first.
5371 * For raid6, 4 is the minimum size.
5372 * Otherwise 2 is the minimum
5375 if (mddev->level == 6)
5377 if (mddev->raid_disks + mddev->delta_disks < min)
5381 if (!check_stripe_cache(mddev))
5384 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5387 static int raid5_start_reshape(mddev_t *mddev)
5389 raid5_conf_t *conf = mddev->private;
5392 int added_devices = 0;
5393 unsigned long flags;
5395 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5398 if (!check_stripe_cache(mddev))
5401 list_for_each_entry(rdev, &mddev->disks, same_set)
5402 if (rdev->raid_disk < 0 &&
5403 !test_bit(Faulty, &rdev->flags))
5406 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5407 /* Not enough devices even to make a degraded array
5412 /* Refuse to reduce size of the array. Any reductions in
5413 * array size must be through explicit setting of array_size
5416 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5417 < mddev->array_sectors) {
5418 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5419 "before number of disks\n", mdname(mddev));
5423 atomic_set(&conf->reshape_stripes, 0);
5424 spin_lock_irq(&conf->device_lock);
5425 conf->previous_raid_disks = conf->raid_disks;
5426 conf->raid_disks += mddev->delta_disks;
5427 conf->prev_chunk_sectors = conf->chunk_sectors;
5428 conf->chunk_sectors = mddev->new_chunk_sectors;
5429 conf->prev_algo = conf->algorithm;
5430 conf->algorithm = mddev->new_layout;
5431 if (mddev->delta_disks < 0)
5432 conf->reshape_progress = raid5_size(mddev, 0, 0);
5434 conf->reshape_progress = 0;
5435 conf->reshape_safe = conf->reshape_progress;
5437 spin_unlock_irq(&conf->device_lock);
5439 /* Add some new drives, as many as will fit.
5440 * We know there are enough to make the newly sized array work.
5442 list_for_each_entry(rdev, &mddev->disks, same_set)
5443 if (rdev->raid_disk < 0 &&
5444 !test_bit(Faulty, &rdev->flags)) {
5445 if (raid5_add_disk(mddev, rdev) == 0) {
5447 if (rdev->raid_disk >= conf->previous_raid_disks) {
5448 set_bit(In_sync, &rdev->flags);
5451 rdev->recovery_offset = 0;
5452 sprintf(nm, "rd%d", rdev->raid_disk);
5453 if (sysfs_create_link(&mddev->kobj,
5456 "md/raid:%s: failed to create "
5463 /* When a reshape changes the number of devices, ->degraded
5464 * is measured against the large of the pre and post number of
5466 if (mddev->delta_disks > 0) {
5467 spin_lock_irqsave(&conf->device_lock, flags);
5468 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5470 spin_unlock_irqrestore(&conf->device_lock, flags);
5472 mddev->raid_disks = conf->raid_disks;
5473 mddev->reshape_position = conf->reshape_progress;
5474 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5476 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5477 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5478 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5479 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5480 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5482 if (!mddev->sync_thread) {
5483 mddev->recovery = 0;
5484 spin_lock_irq(&conf->device_lock);
5485 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5486 conf->reshape_progress = MaxSector;
5487 spin_unlock_irq(&conf->device_lock);
5490 conf->reshape_checkpoint = jiffies;
5491 md_wakeup_thread(mddev->sync_thread);
5492 md_new_event(mddev);
5496 /* This is called from the reshape thread and should make any
5497 * changes needed in 'conf'
5499 static void end_reshape(raid5_conf_t *conf)
5502 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5504 spin_lock_irq(&conf->device_lock);
5505 conf->previous_raid_disks = conf->raid_disks;
5506 conf->reshape_progress = MaxSector;
5507 spin_unlock_irq(&conf->device_lock);
5508 wake_up(&conf->wait_for_overlap);
5510 /* read-ahead size must cover two whole stripes, which is
5511 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5514 int data_disks = conf->raid_disks - conf->max_degraded;
5515 int stripe = data_disks * ((conf->chunk_sectors << 9)
5517 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5518 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5523 /* This is called from the raid5d thread with mddev_lock held.
5524 * It makes config changes to the device.
5526 static void raid5_finish_reshape(mddev_t *mddev)
5528 raid5_conf_t *conf = mddev->private;
5530 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5532 if (mddev->delta_disks > 0) {
5533 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5534 set_capacity(mddev->gendisk, mddev->array_sectors);
5535 revalidate_disk(mddev->gendisk);
5538 mddev->degraded = conf->raid_disks;
5539 for (d = 0; d < conf->raid_disks ; d++)
5540 if (conf->disks[d].rdev &&
5542 &conf->disks[d].rdev->flags))
5544 for (d = conf->raid_disks ;
5545 d < conf->raid_disks - mddev->delta_disks;
5547 mdk_rdev_t *rdev = conf->disks[d].rdev;
5548 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5550 sprintf(nm, "rd%d", rdev->raid_disk);
5551 sysfs_remove_link(&mddev->kobj, nm);
5552 rdev->raid_disk = -1;
5556 mddev->layout = conf->algorithm;
5557 mddev->chunk_sectors = conf->chunk_sectors;
5558 mddev->reshape_position = MaxSector;
5559 mddev->delta_disks = 0;
5563 static void raid5_quiesce(mddev_t *mddev, int state)
5565 raid5_conf_t *conf = mddev->private;
5568 case 2: /* resume for a suspend */
5569 wake_up(&conf->wait_for_overlap);
5572 case 1: /* stop all writes */
5573 spin_lock_irq(&conf->device_lock);
5574 /* '2' tells resync/reshape to pause so that all
5575 * active stripes can drain
5578 wait_event_lock_irq(conf->wait_for_stripe,
5579 atomic_read(&conf->active_stripes) == 0 &&
5580 atomic_read(&conf->active_aligned_reads) == 0,
5581 conf->device_lock, /* nothing */);
5583 spin_unlock_irq(&conf->device_lock);
5584 /* allow reshape to continue */
5585 wake_up(&conf->wait_for_overlap);
5588 case 0: /* re-enable writes */
5589 spin_lock_irq(&conf->device_lock);
5591 wake_up(&conf->wait_for_stripe);
5592 wake_up(&conf->wait_for_overlap);
5593 spin_unlock_irq(&conf->device_lock);
5599 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5601 struct raid0_private_data *raid0_priv = mddev->private;
5603 /* for raid0 takeover only one zone is supported */
5604 if (raid0_priv->nr_strip_zones > 1) {
5605 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5607 return ERR_PTR(-EINVAL);
5610 mddev->new_level = level;
5611 mddev->new_layout = ALGORITHM_PARITY_N;
5612 mddev->new_chunk_sectors = mddev->chunk_sectors;
5613 mddev->raid_disks += 1;
5614 mddev->delta_disks = 1;
5615 /* make sure it will be not marked as dirty */
5616 mddev->recovery_cp = MaxSector;
5618 return setup_conf(mddev);
5622 static void *raid5_takeover_raid1(mddev_t *mddev)
5626 if (mddev->raid_disks != 2 ||
5627 mddev->degraded > 1)
5628 return ERR_PTR(-EINVAL);
5630 /* Should check if there are write-behind devices? */
5632 chunksect = 64*2; /* 64K by default */
5634 /* The array must be an exact multiple of chunksize */
5635 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5638 if ((chunksect<<9) < STRIPE_SIZE)
5639 /* array size does not allow a suitable chunk size */
5640 return ERR_PTR(-EINVAL);
5642 mddev->new_level = 5;
5643 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5644 mddev->new_chunk_sectors = chunksect;
5646 return setup_conf(mddev);
5649 static void *raid5_takeover_raid6(mddev_t *mddev)
5653 switch (mddev->layout) {
5654 case ALGORITHM_LEFT_ASYMMETRIC_6:
5655 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5657 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5658 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5660 case ALGORITHM_LEFT_SYMMETRIC_6:
5661 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5663 case ALGORITHM_RIGHT_SYMMETRIC_6:
5664 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5666 case ALGORITHM_PARITY_0_6:
5667 new_layout = ALGORITHM_PARITY_0;
5669 case ALGORITHM_PARITY_N:
5670 new_layout = ALGORITHM_PARITY_N;
5673 return ERR_PTR(-EINVAL);
5675 mddev->new_level = 5;
5676 mddev->new_layout = new_layout;
5677 mddev->delta_disks = -1;
5678 mddev->raid_disks -= 1;
5679 return setup_conf(mddev);
5683 static int raid5_check_reshape(mddev_t *mddev)
5685 /* For a 2-drive array, the layout and chunk size can be changed
5686 * immediately as not restriping is needed.
5687 * For larger arrays we record the new value - after validation
5688 * to be used by a reshape pass.
5690 raid5_conf_t *conf = mddev->private;
5691 int new_chunk = mddev->new_chunk_sectors;
5693 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5695 if (new_chunk > 0) {
5696 if (!is_power_of_2(new_chunk))
5698 if (new_chunk < (PAGE_SIZE>>9))
5700 if (mddev->array_sectors & (new_chunk-1))
5701 /* not factor of array size */
5705 /* They look valid */
5707 if (mddev->raid_disks == 2) {
5708 /* can make the change immediately */
5709 if (mddev->new_layout >= 0) {
5710 conf->algorithm = mddev->new_layout;
5711 mddev->layout = mddev->new_layout;
5713 if (new_chunk > 0) {
5714 conf->chunk_sectors = new_chunk ;
5715 mddev->chunk_sectors = new_chunk;
5717 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5718 md_wakeup_thread(mddev->thread);
5720 return check_reshape(mddev);
5723 static int raid6_check_reshape(mddev_t *mddev)
5725 int new_chunk = mddev->new_chunk_sectors;
5727 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5729 if (new_chunk > 0) {
5730 if (!is_power_of_2(new_chunk))
5732 if (new_chunk < (PAGE_SIZE >> 9))
5734 if (mddev->array_sectors & (new_chunk-1))
5735 /* not factor of array size */
5739 /* They look valid */
5740 return check_reshape(mddev);
5743 static void *raid5_takeover(mddev_t *mddev)
5745 /* raid5 can take over:
5746 * raid0 - if there is only one strip zone - make it a raid4 layout
5747 * raid1 - if there are two drives. We need to know the chunk size
5748 * raid4 - trivial - just use a raid4 layout.
5749 * raid6 - Providing it is a *_6 layout
5751 if (mddev->level == 0)
5752 return raid45_takeover_raid0(mddev, 5);
5753 if (mddev->level == 1)
5754 return raid5_takeover_raid1(mddev);
5755 if (mddev->level == 4) {
5756 mddev->new_layout = ALGORITHM_PARITY_N;
5757 mddev->new_level = 5;
5758 return setup_conf(mddev);
5760 if (mddev->level == 6)
5761 return raid5_takeover_raid6(mddev);
5763 return ERR_PTR(-EINVAL);
5766 static void *raid4_takeover(mddev_t *mddev)
5768 /* raid4 can take over:
5769 * raid0 - if there is only one strip zone
5770 * raid5 - if layout is right
5772 if (mddev->level == 0)
5773 return raid45_takeover_raid0(mddev, 4);
5774 if (mddev->level == 5 &&
5775 mddev->layout == ALGORITHM_PARITY_N) {
5776 mddev->new_layout = 0;
5777 mddev->new_level = 4;
5778 return setup_conf(mddev);
5780 return ERR_PTR(-EINVAL);
5783 static struct mdk_personality raid5_personality;
5785 static void *raid6_takeover(mddev_t *mddev)
5787 /* Currently can only take over a raid5. We map the
5788 * personality to an equivalent raid6 personality
5789 * with the Q block at the end.
5793 if (mddev->pers != &raid5_personality)
5794 return ERR_PTR(-EINVAL);
5795 if (mddev->degraded > 1)
5796 return ERR_PTR(-EINVAL);
5797 if (mddev->raid_disks > 253)
5798 return ERR_PTR(-EINVAL);
5799 if (mddev->raid_disks < 3)
5800 return ERR_PTR(-EINVAL);
5802 switch (mddev->layout) {
5803 case ALGORITHM_LEFT_ASYMMETRIC:
5804 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5806 case ALGORITHM_RIGHT_ASYMMETRIC:
5807 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5809 case ALGORITHM_LEFT_SYMMETRIC:
5810 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5812 case ALGORITHM_RIGHT_SYMMETRIC:
5813 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5815 case ALGORITHM_PARITY_0:
5816 new_layout = ALGORITHM_PARITY_0_6;
5818 case ALGORITHM_PARITY_N:
5819 new_layout = ALGORITHM_PARITY_N;
5822 return ERR_PTR(-EINVAL);
5824 mddev->new_level = 6;
5825 mddev->new_layout = new_layout;
5826 mddev->delta_disks = 1;
5827 mddev->raid_disks += 1;
5828 return setup_conf(mddev);
5832 static struct mdk_personality raid6_personality =
5836 .owner = THIS_MODULE,
5837 .make_request = make_request,
5841 .error_handler = error,
5842 .hot_add_disk = raid5_add_disk,
5843 .hot_remove_disk= raid5_remove_disk,
5844 .spare_active = raid5_spare_active,
5845 .sync_request = sync_request,
5846 .resize = raid5_resize,
5848 .check_reshape = raid6_check_reshape,
5849 .start_reshape = raid5_start_reshape,
5850 .finish_reshape = raid5_finish_reshape,
5851 .quiesce = raid5_quiesce,
5852 .takeover = raid6_takeover,
5854 static struct mdk_personality raid5_personality =
5858 .owner = THIS_MODULE,
5859 .make_request = make_request,
5863 .error_handler = error,
5864 .hot_add_disk = raid5_add_disk,
5865 .hot_remove_disk= raid5_remove_disk,
5866 .spare_active = raid5_spare_active,
5867 .sync_request = sync_request,
5868 .resize = raid5_resize,
5870 .check_reshape = raid5_check_reshape,
5871 .start_reshape = raid5_start_reshape,
5872 .finish_reshape = raid5_finish_reshape,
5873 .quiesce = raid5_quiesce,
5874 .takeover = raid5_takeover,
5877 static struct mdk_personality raid4_personality =
5881 .owner = THIS_MODULE,
5882 .make_request = make_request,
5886 .error_handler = error,
5887 .hot_add_disk = raid5_add_disk,
5888 .hot_remove_disk= raid5_remove_disk,
5889 .spare_active = raid5_spare_active,
5890 .sync_request = sync_request,
5891 .resize = raid5_resize,
5893 .check_reshape = raid5_check_reshape,
5894 .start_reshape = raid5_start_reshape,
5895 .finish_reshape = raid5_finish_reshape,
5896 .quiesce = raid5_quiesce,
5897 .takeover = raid4_takeover,
5900 static int __init raid5_init(void)
5902 register_md_personality(&raid6_personality);
5903 register_md_personality(&raid5_personality);
5904 register_md_personality(&raid4_personality);
5908 static void raid5_exit(void)
5910 unregister_md_personality(&raid6_personality);
5911 unregister_md_personality(&raid5_personality);
5912 unregister_md_personality(&raid4_personality);
5915 module_init(raid5_init);
5916 module_exit(raid5_exit);
5917 MODULE_LICENSE("GPL");
5918 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5919 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5920 MODULE_ALIAS("md-raid5");
5921 MODULE_ALIAS("md-raid4");
5922 MODULE_ALIAS("md-level-5");
5923 MODULE_ALIAS("md-level-4");
5924 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5925 MODULE_ALIAS("md-raid6");
5926 MODULE_ALIAS("md-level-6");
5928 /* This used to be two separate modules, they were: */
5929 MODULE_ALIAS("raid5");
5930 MODULE_ALIAS("raid6");