21f2cfc55bf8d8013aac6a09e58d62dfa31894de
[linux.git] / drivers / iio / temperature / ltc2983.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4  * driver
5  *
6  * Copyright 2019 Analog Devices Inc.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/errno.h>
13 #include <linux/kernel.h>
14 #include <linux/iio/iio.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/spi/spi.h>
23
24 #include <asm/byteorder.h>
25 #include <asm/unaligned.h>
26
27 /* register map */
28 #define LTC2983_STATUS_REG                      0x0000
29 #define LTC2983_TEMP_RES_START_REG              0x0010
30 #define LTC2983_TEMP_RES_END_REG                0x005F
31 #define LTC2983_EEPROM_KEY_REG                  0x00B0
32 #define LTC2983_EEPROM_READ_STATUS_REG          0x00D0
33 #define LTC2983_GLOBAL_CONFIG_REG               0x00F0
34 #define LTC2983_MULT_CHANNEL_START_REG          0x00F4
35 #define LTC2983_MULT_CHANNEL_END_REG            0x00F7
36 #define LTC2986_EEPROM_STATUS_REG               0x00F9
37 #define LTC2983_MUX_CONFIG_REG                  0x00FF
38 #define LTC2983_CHAN_ASSIGN_START_REG           0x0200
39 #define LTC2983_CHAN_ASSIGN_END_REG             0x024F
40 #define LTC2983_CUST_SENS_TBL_START_REG         0x0250
41 #define LTC2983_CUST_SENS_TBL_END_REG           0x03CF
42
43 #define LTC2983_DIFFERENTIAL_CHAN_MIN           2
44 #define LTC2983_MIN_CHANNELS_NR                 1
45 #define LTC2983_SLEEP                           0x97
46 #define LTC2983_CUSTOM_STEINHART_SIZE           24
47 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ          6
48 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ       4
49
50 #define LTC2983_EEPROM_KEY                      0xA53C0F5A
51 #define LTC2983_EEPROM_WRITE_CMD                0x15
52 #define LTC2983_EEPROM_READ_CMD                 0x16
53 #define LTC2983_EEPROM_STATUS_FAILURE_MASK      GENMASK(3, 1)
54 #define LTC2983_EEPROM_READ_FAILURE_MASK        GENMASK(7, 0)
55
56 #define LTC2983_EEPROM_WRITE_TIME_MS            2600
57 #define LTC2983_EEPROM_READ_TIME_MS             20
58
59 #define LTC2983_CHAN_START_ADDR(chan) \
60                         (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
61 #define LTC2983_CHAN_RES_ADDR(chan) \
62                         (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
63 #define LTC2983_THERMOCOUPLE_DIFF_MASK          BIT(3)
64 #define LTC2983_THERMOCOUPLE_SGL(x) \
65                                 FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
66 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK       GENMASK(1, 0)
67 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
68                                 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
69 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK      BIT(2)
70 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
71                         FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
72
73 #define LTC2983_THERMISTOR_DIFF_MASK            BIT(2)
74 #define LTC2983_THERMISTOR_SGL(x) \
75                                 FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
76 #define LTC2983_THERMISTOR_R_SHARE_MASK         BIT(1)
77 #define LTC2983_THERMISTOR_R_SHARE(x) \
78                                 FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
79 #define LTC2983_THERMISTOR_C_ROTATE_MASK        BIT(0)
80 #define LTC2983_THERMISTOR_C_ROTATE(x) \
81                                 FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
82
83 #define LTC2983_DIODE_DIFF_MASK                 BIT(2)
84 #define LTC2983_DIODE_SGL(x) \
85                         FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
86 #define LTC2983_DIODE_3_CONV_CYCLE_MASK         BIT(1)
87 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
88                                 FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
89 #define LTC2983_DIODE_AVERAGE_ON_MASK           BIT(0)
90 #define LTC2983_DIODE_AVERAGE_ON(x) \
91                                 FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
92
93 #define LTC2983_RTD_4_WIRE_MASK                 BIT(3)
94 #define LTC2983_RTD_ROTATION_MASK               BIT(1)
95 #define LTC2983_RTD_C_ROTATE(x) \
96                         FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
97 #define LTC2983_RTD_KELVIN_R_SENSE_MASK         GENMASK(3, 2)
98 #define LTC2983_RTD_N_WIRES_MASK                GENMASK(3, 2)
99 #define LTC2983_RTD_N_WIRES(x) \
100                         FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
101 #define LTC2983_RTD_R_SHARE_MASK                BIT(0)
102 #define LTC2983_RTD_R_SHARE(x) \
103                         FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
104
105 #define LTC2983_COMMON_HARD_FAULT_MASK  GENMASK(31, 30)
106 #define LTC2983_COMMON_SOFT_FAULT_MASK  GENMASK(27, 25)
107
108 #define LTC2983_STATUS_START_MASK       BIT(7)
109 #define LTC2983_STATUS_START(x)         FIELD_PREP(LTC2983_STATUS_START_MASK, x)
110 #define LTC2983_STATUS_UP_MASK          GENMASK(7, 6)
111 #define LTC2983_STATUS_UP(reg)          FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
112
113 #define LTC2983_STATUS_CHAN_SEL_MASK    GENMASK(4, 0)
114 #define LTC2983_STATUS_CHAN_SEL(x) \
115                                 FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
116
117 #define LTC2983_TEMP_UNITS_MASK         BIT(2)
118 #define LTC2983_TEMP_UNITS(x)           FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
119
120 #define LTC2983_NOTCH_FREQ_MASK         GENMASK(1, 0)
121 #define LTC2983_NOTCH_FREQ(x)           FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
122
123 #define LTC2983_RES_VALID_MASK          BIT(24)
124 #define LTC2983_DATA_MASK               GENMASK(23, 0)
125 #define LTC2983_DATA_SIGN_BIT           23
126
127 #define LTC2983_CHAN_TYPE_MASK          GENMASK(31, 27)
128 #define LTC2983_CHAN_TYPE(x)            FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
129
130 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
131 #define LTC2983_CHAN_ASSIGN_MASK        GENMASK(26, 22)
132 #define LTC2983_CHAN_ASSIGN(x)          FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
133
134 #define LTC2983_CUSTOM_LEN_MASK         GENMASK(5, 0)
135 #define LTC2983_CUSTOM_LEN(x)           FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
136
137 #define LTC2983_CUSTOM_ADDR_MASK        GENMASK(11, 6)
138 #define LTC2983_CUSTOM_ADDR(x)          FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
139
140 #define LTC2983_THERMOCOUPLE_CFG_MASK   GENMASK(21, 18)
141 #define LTC2983_THERMOCOUPLE_CFG(x) \
142                                 FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
143 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK    GENMASK(31, 29)
144 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK    GENMASK(28, 25)
145
146 #define LTC2983_RTD_CFG_MASK            GENMASK(21, 18)
147 #define LTC2983_RTD_CFG(x)              FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
148 #define LTC2983_RTD_EXC_CURRENT_MASK    GENMASK(17, 14)
149 #define LTC2983_RTD_EXC_CURRENT(x) \
150                                 FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
151 #define LTC2983_RTD_CURVE_MASK          GENMASK(13, 12)
152 #define LTC2983_RTD_CURVE(x)            FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
153
154 #define LTC2983_THERMISTOR_CFG_MASK     GENMASK(21, 19)
155 #define LTC2983_THERMISTOR_CFG(x) \
156                                 FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
157 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK     GENMASK(18, 15)
158 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
159                         FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
160
161 #define LTC2983_DIODE_CFG_MASK          GENMASK(26, 24)
162 #define LTC2983_DIODE_CFG(x)            FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
163 #define LTC2983_DIODE_EXC_CURRENT_MASK  GENMASK(23, 22)
164 #define LTC2983_DIODE_EXC_CURRENT(x) \
165                                 FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
166 #define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
167 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
168                                 FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
169
170 #define LTC2983_R_SENSE_VAL_MASK        GENMASK(26, 0)
171 #define LTC2983_R_SENSE_VAL(x)          FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
172
173 #define LTC2983_ADC_SINGLE_ENDED_MASK   BIT(26)
174 #define LTC2983_ADC_SINGLE_ENDED(x) \
175                                 FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
176
177 enum {
178         LTC2983_SENSOR_THERMOCOUPLE = 1,
179         LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
180         LTC2983_SENSOR_RTD = 10,
181         LTC2983_SENSOR_RTD_CUSTOM = 18,
182         LTC2983_SENSOR_THERMISTOR = 19,
183         LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
184         LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
185         LTC2983_SENSOR_DIODE = 28,
186         LTC2983_SENSOR_SENSE_RESISTOR = 29,
187         LTC2983_SENSOR_DIRECT_ADC = 30,
188         LTC2983_SENSOR_ACTIVE_TEMP = 31,
189 };
190
191 #define to_thermocouple(_sensor) \
192                 container_of(_sensor, struct ltc2983_thermocouple, sensor)
193
194 #define to_rtd(_sensor) \
195                 container_of(_sensor, struct ltc2983_rtd, sensor)
196
197 #define to_thermistor(_sensor) \
198                 container_of(_sensor, struct ltc2983_thermistor, sensor)
199
200 #define to_diode(_sensor) \
201                 container_of(_sensor, struct ltc2983_diode, sensor)
202
203 #define to_rsense(_sensor) \
204                 container_of(_sensor, struct ltc2983_rsense, sensor)
205
206 #define to_adc(_sensor) \
207                 container_of(_sensor, struct ltc2983_adc, sensor)
208
209 #define to_temp(_sensor) \
210                 container_of(_sensor, struct ltc2983_temp, sensor)
211
212 struct ltc2983_chip_info {
213         const char *name;
214         unsigned int max_channels_nr;
215         bool has_temp;
216         bool has_eeprom;
217 };
218
219 struct ltc2983_data {
220         const struct ltc2983_chip_info *info;
221         struct regmap *regmap;
222         struct spi_device *spi;
223         struct mutex lock;
224         struct completion completion;
225         struct iio_chan_spec *iio_chan;
226         struct ltc2983_sensor **sensors;
227         u32 mux_delay_config;
228         u32 filter_notch_freq;
229         u16 custom_table_size;
230         u8 num_channels;
231         u8 iio_channels;
232         /*
233          * DMA (thus cache coherency maintenance) may require the
234          * transfer buffers to live in their own cache lines.
235          * Holds the converted temperature
236          */
237         __be32 temp __aligned(IIO_DMA_MINALIGN);
238         __be32 chan_val;
239         __be32 eeprom_key;
240 };
241
242 struct ltc2983_sensor {
243         int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
244         int (*assign_chan)(struct ltc2983_data *st,
245                            const struct ltc2983_sensor *sensor);
246         /* specifies the sensor channel */
247         u32 chan;
248         /* sensor type */
249         u32 type;
250 };
251
252 struct ltc2983_custom_sensor {
253         /* raw table sensor data */
254         void *table;
255         size_t size;
256         /* address offset */
257         s8 offset;
258         bool is_steinhart;
259 };
260
261 struct ltc2983_thermocouple {
262         struct ltc2983_sensor sensor;
263         struct ltc2983_custom_sensor *custom;
264         u32 sensor_config;
265         u32 cold_junction_chan;
266 };
267
268 struct ltc2983_rtd {
269         struct ltc2983_sensor sensor;
270         struct ltc2983_custom_sensor *custom;
271         u32 sensor_config;
272         u32 r_sense_chan;
273         u32 excitation_current;
274         u32 rtd_curve;
275 };
276
277 struct ltc2983_thermistor {
278         struct ltc2983_sensor sensor;
279         struct ltc2983_custom_sensor *custom;
280         u32 sensor_config;
281         u32 r_sense_chan;
282         u32 excitation_current;
283 };
284
285 struct ltc2983_diode {
286         struct ltc2983_sensor sensor;
287         u32 sensor_config;
288         u32 excitation_current;
289         u32 ideal_factor_value;
290 };
291
292 struct ltc2983_rsense {
293         struct ltc2983_sensor sensor;
294         u32 r_sense_val;
295 };
296
297 struct ltc2983_adc {
298         struct ltc2983_sensor sensor;
299         bool single_ended;
300 };
301
302 struct ltc2983_temp {
303         struct ltc2983_sensor sensor;
304         struct ltc2983_custom_sensor *custom;
305         bool single_ended;
306 };
307
308 /*
309  * Convert to Q format numbers. These number's are integers where
310  * the number of integer and fractional bits are specified. The resolution
311  * is given by 1/@resolution and tell us the number of fractional bits. For
312  * instance a resolution of 2^-10 means we have 10 fractional bits.
313  */
314 static u32 __convert_to_raw(const u64 val, const u32 resolution)
315 {
316         u64 __res = val * resolution;
317
318         /* all values are multiplied by 1000000 to remove the fraction */
319         do_div(__res, 1000000);
320
321         return __res;
322 }
323
324 static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
325 {
326         s64 __res = -(s32)val;
327
328         __res = __convert_to_raw(__res, resolution);
329
330         return (u32)-__res;
331 }
332
333 static int __ltc2983_fault_handler(const struct ltc2983_data *st,
334                                    const u32 result, const u32 hard_mask,
335                                    const u32 soft_mask)
336 {
337         const struct device *dev = &st->spi->dev;
338
339         if (result & hard_mask) {
340                 dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
341                 return -EIO;
342         } else if (result & soft_mask) {
343                 /* just print a warning */
344                 dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
345         }
346
347         return 0;
348 }
349
350 static int __ltc2983_chan_assign_common(struct ltc2983_data *st,
351                                         const struct ltc2983_sensor *sensor,
352                                         u32 chan_val)
353 {
354         u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
355
356         chan_val |= LTC2983_CHAN_TYPE(sensor->type);
357         dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
358                 chan_val);
359         st->chan_val = cpu_to_be32(chan_val);
360         return regmap_bulk_write(st->regmap, reg, &st->chan_val,
361                                  sizeof(st->chan_val));
362 }
363
364 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
365                                           struct ltc2983_custom_sensor *custom,
366                                           u32 *chan_val)
367 {
368         u32 reg;
369         u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
370                 LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
371         const struct device *dev = &st->spi->dev;
372         /*
373          * custom->size holds the raw size of the table. However, when
374          * configuring the sensor channel, we must write the number of
375          * entries of the table minus 1. For steinhart sensors 0 is written
376          * since the size is constant!
377          */
378         const u8 len = custom->is_steinhart ? 0 :
379                 (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
380         /*
381          * Check if the offset was assigned already. It should be for steinhart
382          * sensors. When coming from sleep, it should be assigned for all.
383          */
384         if (custom->offset < 0) {
385                 /*
386                  * This needs to be done again here because, from the moment
387                  * when this test was done (successfully) for this custom
388                  * sensor, a steinhart sensor might have been added changing
389                  * custom_table_size...
390                  */
391                 if (st->custom_table_size + custom->size >
392                     (LTC2983_CUST_SENS_TBL_END_REG -
393                      LTC2983_CUST_SENS_TBL_START_REG) + 1) {
394                         dev_err(dev,
395                                 "Not space left(%d) for new custom sensor(%zu)",
396                                 st->custom_table_size,
397                                 custom->size);
398                         return -EINVAL;
399                 }
400
401                 custom->offset = st->custom_table_size /
402                                         LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
403                 st->custom_table_size += custom->size;
404         }
405
406         reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
407
408         *chan_val |= LTC2983_CUSTOM_LEN(len);
409         *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
410         dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
411                 reg, custom->offset,
412                 custom->size);
413         /* write custom sensor table */
414         return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
415 }
416
417 static struct ltc2983_custom_sensor *
418 __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn,
419                             const char *propname, const bool is_steinhart,
420                             const u32 resolution, const bool has_signed)
421 {
422         struct ltc2983_custom_sensor *new_custom;
423         struct device *dev = &st->spi->dev;
424         /*
425          * For custom steinhart, the full u32 is taken. For all the others
426          * the MSB is discarded.
427          */
428         const u8 n_size = is_steinhart ? 4 : 3;
429         u8 index, n_entries;
430         int ret;
431
432         if (is_steinhart)
433                 n_entries = fwnode_property_count_u32(fn, propname);
434         else
435                 n_entries = fwnode_property_count_u64(fn, propname);
436         /* n_entries must be an even number */
437         if (!n_entries || (n_entries % 2) != 0)
438                 return dev_err_ptr_probe(dev, -EINVAL,
439                                          "Number of entries either 0 or not even\n");
440
441         new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
442         if (!new_custom)
443                 return ERR_PTR(-ENOMEM);
444
445         new_custom->size = n_entries * n_size;
446         /* check Steinhart size */
447         if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE)
448                 return dev_err_ptr_probe(dev, -EINVAL,
449                                          "Steinhart sensors size(%zu) must be %u\n",
450                                          new_custom->size, LTC2983_CUSTOM_STEINHART_SIZE);
451
452         /* Check space on the table. */
453         if (st->custom_table_size + new_custom->size >
454             (LTC2983_CUST_SENS_TBL_END_REG - LTC2983_CUST_SENS_TBL_START_REG) + 1)
455                 return dev_err_ptr_probe(dev, -EINVAL,
456                                          "No space left(%d) for new custom sensor(%zu)\n",
457                                          st->custom_table_size, new_custom->size);
458
459         /* allocate the table */
460         if (is_steinhart)
461                 new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL);
462         else
463                 new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL);
464         if (!new_custom->table)
465                 return ERR_PTR(-ENOMEM);
466
467         /*
468          * Steinhart sensors are configured with raw values in the firmware
469          * node. For the other sensors we must convert the value to raw.
470          * The odd index's correspond to temperatures and always have 1/1024
471          * of resolution. Temperatures also come in Kelvin, so signed values
472          * are not possible.
473          */
474         if (is_steinhart) {
475                 ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries);
476                 if (ret < 0)
477                         return ERR_PTR(ret);
478
479                 cpu_to_be32_array(new_custom->table, new_custom->table, n_entries);
480         } else {
481                 ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries);
482                 if (ret < 0)
483                         return ERR_PTR(ret);
484
485                 for (index = 0; index < n_entries; index++) {
486                         u64 temp = ((u64 *)new_custom->table)[index];
487
488                         if ((index % 2) != 0)
489                                 temp = __convert_to_raw(temp, 1024);
490                         else if (has_signed && (s64)temp < 0)
491                                 temp = __convert_to_raw_sign(temp, resolution);
492                         else
493                                 temp = __convert_to_raw(temp, resolution);
494
495                         put_unaligned_be24(temp, new_custom->table + index * 3);
496                 }
497         }
498
499         new_custom->is_steinhart = is_steinhart;
500         /*
501          * This is done to first add all the steinhart sensors to the table,
502          * in order to maximize the table usage. If we mix adding steinhart
503          * with the other sensors, we might have to do some roundup to make
504          * sure that sensor_addr - 0x250(start address) is a multiple of 4
505          * (for steinhart), and a multiple of 6 for all the other sensors.
506          * Since we have const 24 bytes for steinhart sensors and 24 is
507          * also a multiple of 6, we guarantee that the first non-steinhart
508          * sensor will sit in a correct address without the need of filling
509          * addresses.
510          */
511         if (is_steinhart) {
512                 new_custom->offset = st->custom_table_size /
513                                         LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
514                 st->custom_table_size += new_custom->size;
515         } else {
516                 /* mark as unset. This is checked later on the assign phase */
517                 new_custom->offset = -1;
518         }
519
520         return new_custom;
521 }
522
523 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
524                                               const u32 result)
525 {
526         return __ltc2983_fault_handler(st, result,
527                                        LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
528                                        LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
529 }
530
531 static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
532                                         const u32 result)
533 {
534         return __ltc2983_fault_handler(st, result,
535                                        LTC2983_COMMON_HARD_FAULT_MASK,
536                                        LTC2983_COMMON_SOFT_FAULT_MASK);
537 }
538
539 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
540                                 const struct ltc2983_sensor *sensor)
541 {
542         struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
543         u32 chan_val;
544
545         chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
546         chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
547
548         if (thermo->custom) {
549                 int ret;
550
551                 ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
552                                                           &chan_val);
553                 if (ret)
554                         return ret;
555         }
556         return __ltc2983_chan_assign_common(st, sensor, chan_val);
557 }
558
559 static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
560                                    const struct ltc2983_sensor *sensor)
561 {
562         struct ltc2983_rtd *rtd = to_rtd(sensor);
563         u32 chan_val;
564
565         chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
566         chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
567         chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
568         chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
569
570         if (rtd->custom) {
571                 int ret;
572
573                 ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
574                                                           &chan_val);
575                 if (ret)
576                         return ret;
577         }
578         return __ltc2983_chan_assign_common(st, sensor, chan_val);
579 }
580
581 static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
582                                           const struct ltc2983_sensor *sensor)
583 {
584         struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
585         u32 chan_val;
586
587         chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
588         chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
589         chan_val |=
590                 LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
591
592         if (thermistor->custom) {
593                 int ret;
594
595                 ret = __ltc2983_chan_custom_sensor_assign(st,
596                                                           thermistor->custom,
597                                                           &chan_val);
598                 if (ret)
599                         return ret;
600         }
601         return __ltc2983_chan_assign_common(st, sensor, chan_val);
602 }
603
604 static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
605                                      const struct ltc2983_sensor *sensor)
606 {
607         struct ltc2983_diode *diode = to_diode(sensor);
608         u32 chan_val;
609
610         chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
611         chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
612         chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
613
614         return __ltc2983_chan_assign_common(st, sensor, chan_val);
615 }
616
617 static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
618                                        const struct ltc2983_sensor *sensor)
619 {
620         struct ltc2983_rsense *rsense = to_rsense(sensor);
621         u32 chan_val;
622
623         chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
624
625         return __ltc2983_chan_assign_common(st, sensor, chan_val);
626 }
627
628 static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
629                                    const struct ltc2983_sensor *sensor)
630 {
631         struct ltc2983_adc *adc = to_adc(sensor);
632         u32 chan_val;
633
634         chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
635
636         return __ltc2983_chan_assign_common(st, sensor, chan_val);
637 }
638
639 static int ltc2983_temp_assign_chan(struct ltc2983_data *st,
640                                     const struct ltc2983_sensor *sensor)
641 {
642         struct ltc2983_temp *temp = to_temp(sensor);
643         u32 chan_val;
644         int ret;
645
646         chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended);
647
648         ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val);
649         if (ret)
650                 return ret;
651
652         return __ltc2983_chan_assign_common(st, sensor, chan_val);
653 }
654
655 static struct ltc2983_sensor *
656 ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st,
657                          const struct ltc2983_sensor *sensor)
658 {
659         struct ltc2983_thermocouple *thermo;
660         u32 oc_current;
661         int ret;
662
663         thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
664         if (!thermo)
665                 return ERR_PTR(-ENOMEM);
666
667         if (fwnode_property_read_bool(child, "adi,single-ended"))
668                 thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
669
670         ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current);
671         if (!ret) {
672                 switch (oc_current) {
673                 case 10:
674                         thermo->sensor_config |=
675                                         LTC2983_THERMOCOUPLE_OC_CURR(0);
676                         break;
677                 case 100:
678                         thermo->sensor_config |=
679                                         LTC2983_THERMOCOUPLE_OC_CURR(1);
680                         break;
681                 case 500:
682                         thermo->sensor_config |=
683                                         LTC2983_THERMOCOUPLE_OC_CURR(2);
684                         break;
685                 case 1000:
686                         thermo->sensor_config |=
687                                         LTC2983_THERMOCOUPLE_OC_CURR(3);
688                         break;
689                 default:
690                         return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
691                                                  "Invalid open circuit current:%u\n",
692                                                  oc_current);
693                 }
694
695                 thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
696         }
697         /* validate channel index */
698         if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
699             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
700                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
701                                          "Invalid chann:%d for differential thermocouple\n",
702                                          sensor->chan);
703
704         struct fwnode_handle *ref __free(fwnode_handle) =
705                 fwnode_find_reference(child, "adi,cold-junction-handle", 0);
706         if (IS_ERR(ref)) {
707                 ref = NULL;
708         } else {
709                 ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan);
710                 if (ret)
711                         /*
712                          * This would be catched later but we can just return
713                          * the error right away.
714                          */
715                         return dev_err_ptr_probe(&st->spi->dev, ret,
716                                                  "Property reg must be given\n");
717         }
718
719         /* check custom sensor */
720         if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
721                 const char *propname = "adi,custom-thermocouple";
722
723                 thermo->custom = __ltc2983_custom_sensor_new(st, child,
724                                                              propname, false,
725                                                              16384, true);
726                 if (IS_ERR(thermo->custom))
727                         return ERR_CAST(thermo->custom);
728         }
729
730         /* set common parameters */
731         thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
732         thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
733
734         return &thermo->sensor;
735 }
736
737 static struct ltc2983_sensor *
738 ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st,
739                 const struct ltc2983_sensor *sensor)
740 {
741         struct ltc2983_rtd *rtd;
742         int ret = 0;
743         struct device *dev = &st->spi->dev;
744         u32 excitation_current = 0, n_wires = 0;
745
746         rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
747         if (!rtd)
748                 return ERR_PTR(-ENOMEM);
749
750         struct fwnode_handle *ref __free(fwnode_handle) =
751                 fwnode_find_reference(child, "adi,rsense-handle", 0);
752         if (IS_ERR(ref))
753                 return dev_err_cast_probe(dev, ref,
754                                           "Property adi,rsense-handle missing or invalid\n");
755
756         ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan);
757         if (ret)
758                 return dev_err_ptr_probe(dev, ret,
759                                          "Property reg must be given\n");
760
761         ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires);
762         if (!ret) {
763                 switch (n_wires) {
764                 case 2:
765                         rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
766                         break;
767                 case 3:
768                         rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
769                         break;
770                 case 4:
771                         rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
772                         break;
773                 case 5:
774                         /* 4 wires, Kelvin Rsense */
775                         rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
776                         break;
777                 default:
778                         return dev_err_ptr_probe(dev, -EINVAL,
779                                                  "Invalid number of wires:%u\n",
780                                                  n_wires);
781                 }
782         }
783
784         if (fwnode_property_read_bool(child, "adi,rsense-share")) {
785                 /* Current rotation is only available with rsense sharing */
786                 if (fwnode_property_read_bool(child, "adi,current-rotate")) {
787                         if (n_wires == 2 || n_wires == 3)
788                                 return dev_err_ptr_probe(dev, -EINVAL,
789                                                          "Rotation not allowed for 2/3 Wire RTDs\n");
790
791                         rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
792                 } else {
793                         rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
794                 }
795         }
796         /*
797          * rtd channel indexes are a bit more complicated to validate.
798          * For 4wire RTD with rotation, the channel selection cannot be
799          * >=19 since the chann + 1 is used in this configuration.
800          * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
801          * <=1 since chanel - 1 and channel - 2 are used.
802          */
803         if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
804                 /* 4-wire */
805                 u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
806                         max = st->info->max_channels_nr;
807
808                 if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
809                         max = st->info->max_channels_nr - 1;
810
811                 if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
812                      == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
813                     (rtd->r_sense_chan <=  min))
814                         /* kelvin rsense*/
815                         return dev_err_ptr_probe(dev, -EINVAL,
816                                                  "Invalid rsense chann:%d to use in kelvin rsense\n",
817                                                  rtd->r_sense_chan);
818
819                 if (sensor->chan < min || sensor->chan > max)
820                         return dev_err_ptr_probe(dev, -EINVAL,
821                                                  "Invalid chann:%d for the rtd config\n",
822                                                  sensor->chan);
823         } else {
824                 /* same as differential case */
825                 if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
826                         return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
827                                                  "Invalid chann:%d for RTD\n",
828                                                  sensor->chan);
829         }
830
831         /* check custom sensor */
832         if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
833                 rtd->custom = __ltc2983_custom_sensor_new(st, child,
834                                                           "adi,custom-rtd",
835                                                           false, 2048, false);
836                 if (IS_ERR(rtd->custom))
837                         return ERR_CAST(rtd->custom);
838         }
839
840         /* set common parameters */
841         rtd->sensor.fault_handler = ltc2983_common_fault_handler;
842         rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
843
844         ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
845                                        &excitation_current);
846         if (ret) {
847                 /* default to 5uA */
848                 rtd->excitation_current = 1;
849         } else {
850                 switch (excitation_current) {
851                 case 5:
852                         rtd->excitation_current = 0x01;
853                         break;
854                 case 10:
855                         rtd->excitation_current = 0x02;
856                         break;
857                 case 25:
858                         rtd->excitation_current = 0x03;
859                         break;
860                 case 50:
861                         rtd->excitation_current = 0x04;
862                         break;
863                 case 100:
864                         rtd->excitation_current = 0x05;
865                         break;
866                 case 250:
867                         rtd->excitation_current = 0x06;
868                         break;
869                 case 500:
870                         rtd->excitation_current = 0x07;
871                         break;
872                 case 1000:
873                         rtd->excitation_current = 0x08;
874                         break;
875                 default:
876                         return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
877                                                  "Invalid value for excitation current(%u)\n",
878                                                  excitation_current);
879                 }
880         }
881
882         fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
883
884         return &rtd->sensor;
885 }
886
887 static struct ltc2983_sensor *
888 ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st,
889                        const struct ltc2983_sensor *sensor)
890 {
891         struct ltc2983_thermistor *thermistor;
892         struct device *dev = &st->spi->dev;
893         u32 excitation_current = 0;
894         int ret = 0;
895
896         thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
897         if (!thermistor)
898                 return ERR_PTR(-ENOMEM);
899
900         struct fwnode_handle *ref __free(fwnode_handle) =
901                 fwnode_find_reference(child, "adi,rsense-handle", 0);
902         if (IS_ERR(ref))
903                 return dev_err_cast_probe(dev, ref,
904                                           "Property adi,rsense-handle missing or invalid\n");
905
906         ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan);
907         if (ret)
908                 return dev_err_ptr_probe(dev, ret,
909                                          "rsense channel must be configured...\n");
910
911         if (fwnode_property_read_bool(child, "adi,single-ended")) {
912                 thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
913         } else if (fwnode_property_read_bool(child, "adi,rsense-share")) {
914                 /* rotation is only possible if sharing rsense */
915                 if (fwnode_property_read_bool(child, "adi,current-rotate"))
916                         thermistor->sensor_config =
917                                                 LTC2983_THERMISTOR_C_ROTATE(1);
918                 else
919                         thermistor->sensor_config =
920                                                 LTC2983_THERMISTOR_R_SHARE(1);
921         }
922         /* validate channel index */
923         if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
924             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
925                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
926                                          "Invalid chann:%d for differential thermistor\n",
927                                          sensor->chan);
928
929         /* check custom sensor */
930         if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
931                 bool steinhart = false;
932                 const char *propname;
933
934                 if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
935                         steinhart = true;
936                         propname = "adi,custom-steinhart";
937                 } else {
938                         propname = "adi,custom-thermistor";
939                 }
940
941                 thermistor->custom = __ltc2983_custom_sensor_new(st, child,
942                                                                  propname,
943                                                                  steinhart,
944                                                                  64, false);
945                 if (IS_ERR(thermistor->custom))
946                         return ERR_CAST(thermistor->custom);
947         }
948         /* set common parameters */
949         thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
950         thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
951
952         ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp",
953                                        &excitation_current);
954         if (ret) {
955                 /* Auto range is not allowed for custom sensors */
956                 if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
957                         /* default to 1uA */
958                         thermistor->excitation_current = 0x03;
959                 else
960                         /* default to auto-range */
961                         thermistor->excitation_current = 0x0c;
962         } else {
963                 switch (excitation_current) {
964                 case 0:
965                         /* auto range */
966                         if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
967                                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
968                                                          "Auto Range not allowed for custom sensors\n");
969
970                         thermistor->excitation_current = 0x0c;
971                         break;
972                 case 250:
973                         thermistor->excitation_current = 0x01;
974                         break;
975                 case 500:
976                         thermistor->excitation_current = 0x02;
977                         break;
978                 case 1000:
979                         thermistor->excitation_current = 0x03;
980                         break;
981                 case 5000:
982                         thermistor->excitation_current = 0x04;
983                         break;
984                 case 10000:
985                         thermistor->excitation_current = 0x05;
986                         break;
987                 case 25000:
988                         thermistor->excitation_current = 0x06;
989                         break;
990                 case 50000:
991                         thermistor->excitation_current = 0x07;
992                         break;
993                 case 100000:
994                         thermistor->excitation_current = 0x08;
995                         break;
996                 case 250000:
997                         thermistor->excitation_current = 0x09;
998                         break;
999                 case 500000:
1000                         thermistor->excitation_current = 0x0a;
1001                         break;
1002                 case 1000000:
1003                         thermistor->excitation_current = 0x0b;
1004                         break;
1005                 default:
1006                         return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1007                                                  "Invalid value for excitation current(%u)\n",
1008                                                  excitation_current);
1009                 }
1010         }
1011
1012         return &thermistor->sensor;
1013 }
1014
1015 static struct ltc2983_sensor *
1016 ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st,
1017                   const struct ltc2983_sensor *sensor)
1018 {
1019         struct ltc2983_diode *diode;
1020         u32 temp = 0, excitation_current = 0;
1021         int ret;
1022
1023         diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1024         if (!diode)
1025                 return ERR_PTR(-ENOMEM);
1026
1027         if (fwnode_property_read_bool(child, "adi,single-ended"))
1028                 diode->sensor_config = LTC2983_DIODE_SGL(1);
1029
1030         if (fwnode_property_read_bool(child, "adi,three-conversion-cycles"))
1031                 diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1032
1033         if (fwnode_property_read_bool(child, "adi,average-on"))
1034                 diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1035
1036         /* validate channel index */
1037         if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1038             sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
1039                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1040                                          "Invalid chann:%d for differential thermistor\n",
1041                                          sensor->chan);
1042
1043         /* set common parameters */
1044         diode->sensor.fault_handler = ltc2983_common_fault_handler;
1045         diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1046
1047         ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
1048                                        &excitation_current);
1049         if (!ret) {
1050                 switch (excitation_current) {
1051                 case 10:
1052                         diode->excitation_current = 0x00;
1053                         break;
1054                 case 20:
1055                         diode->excitation_current = 0x01;
1056                         break;
1057                 case 40:
1058                         diode->excitation_current = 0x02;
1059                         break;
1060                 case 80:
1061                         diode->excitation_current = 0x03;
1062                         break;
1063                 default:
1064                         return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1065                                                  "Invalid value for excitation current(%u)\n",
1066                                                  excitation_current);
1067                 }
1068         }
1069
1070         fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp);
1071
1072         /* 2^20 resolution */
1073         diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1074
1075         return &diode->sensor;
1076 }
1077
1078 static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child,
1079                                         struct ltc2983_data *st,
1080                                         const struct ltc2983_sensor *sensor)
1081 {
1082         struct ltc2983_rsense *rsense;
1083         int ret;
1084         u32 temp;
1085
1086         rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1087         if (!rsense)
1088                 return ERR_PTR(-ENOMEM);
1089
1090         /* validate channel index */
1091         if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
1092                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1093                                          "Invalid chann:%d for r_sense\n",
1094                                          sensor->chan);
1095
1096         ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1097         if (ret)
1098                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1099                                          "Property adi,rsense-val-milli-ohms missing\n");
1100         /*
1101          * Times 1000 because we have milli-ohms and __convert_to_raw
1102          * expects scales of 1000000 which are used for all other
1103          * properties.
1104          * 2^10 resolution
1105          */
1106         rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1107
1108         /* set common parameters */
1109         rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1110
1111         return &rsense->sensor;
1112 }
1113
1114 static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child,
1115                                          struct ltc2983_data *st,
1116                                          const struct ltc2983_sensor *sensor)
1117 {
1118         struct ltc2983_adc *adc;
1119
1120         adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1121         if (!adc)
1122                 return ERR_PTR(-ENOMEM);
1123
1124         if (fwnode_property_read_bool(child, "adi,single-ended"))
1125                 adc->single_ended = true;
1126
1127         if (!adc->single_ended && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
1128                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1129                                          "Invalid chan:%d for differential adc\n",
1130                                          sensor->chan);
1131
1132         /* set common parameters */
1133         adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1134         adc->sensor.fault_handler = ltc2983_common_fault_handler;
1135
1136         return &adc->sensor;
1137 }
1138
1139 static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child,
1140                                                struct ltc2983_data *st,
1141                                                const struct ltc2983_sensor *sensor)
1142 {
1143         struct ltc2983_temp *temp;
1144
1145         temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL);
1146         if (!temp)
1147                 return ERR_PTR(-ENOMEM);
1148
1149         if (fwnode_property_read_bool(child, "adi,single-ended"))
1150                 temp->single_ended = true;
1151
1152         if (!temp->single_ended && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN)
1153                 return dev_err_ptr_probe(&st->spi->dev, -EINVAL,
1154                                          "Invalid chan:%d for differential temp\n",
1155                                          sensor->chan);
1156
1157         temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp",
1158                                                    false, 4096, true);
1159         if (IS_ERR(temp->custom))
1160                 return ERR_CAST(temp->custom);
1161
1162         /* set common parameters */
1163         temp->sensor.assign_chan = ltc2983_temp_assign_chan;
1164         temp->sensor.fault_handler = ltc2983_common_fault_handler;
1165
1166         return &temp->sensor;
1167 }
1168
1169 static int ltc2983_chan_read(struct ltc2983_data *st,
1170                         const struct ltc2983_sensor *sensor, int *val)
1171 {
1172         u32 start_conversion = 0;
1173         int ret;
1174         unsigned long time;
1175
1176         start_conversion = LTC2983_STATUS_START(true);
1177         start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1178         dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1179                 sensor->chan, start_conversion);
1180         /* start conversion */
1181         ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1182         if (ret)
1183                 return ret;
1184
1185         reinit_completion(&st->completion);
1186         /*
1187          * wait for conversion to complete.
1188          * 300 ms should be more than enough to complete the conversion.
1189          * Depending on the sensor configuration, there are 2/3 conversions
1190          * cycles of 82ms.
1191          */
1192         time = wait_for_completion_timeout(&st->completion,
1193                                            msecs_to_jiffies(300));
1194         if (!time) {
1195                 dev_warn(&st->spi->dev, "Conversion timed out\n");
1196                 return -ETIMEDOUT;
1197         }
1198
1199         /* read the converted data */
1200         ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1201                                &st->temp, sizeof(st->temp));
1202         if (ret)
1203                 return ret;
1204
1205         *val = __be32_to_cpu(st->temp);
1206
1207         if (!(LTC2983_RES_VALID_MASK & *val)) {
1208                 dev_err(&st->spi->dev, "Invalid conversion detected\n");
1209                 return -EIO;
1210         }
1211
1212         ret = sensor->fault_handler(st, *val);
1213         if (ret)
1214                 return ret;
1215
1216         *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1217         return 0;
1218 }
1219
1220 static int ltc2983_read_raw(struct iio_dev *indio_dev,
1221                             struct iio_chan_spec const *chan,
1222                             int *val, int *val2, long mask)
1223 {
1224         struct ltc2983_data *st = iio_priv(indio_dev);
1225         int ret;
1226
1227         /* sanity check */
1228         if (chan->address >= st->num_channels) {
1229                 dev_err(&st->spi->dev, "Invalid chan address:%ld",
1230                         chan->address);
1231                 return -EINVAL;
1232         }
1233
1234         switch (mask) {
1235         case IIO_CHAN_INFO_RAW:
1236                 mutex_lock(&st->lock);
1237                 ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1238                 mutex_unlock(&st->lock);
1239                 return ret ?: IIO_VAL_INT;
1240         case IIO_CHAN_INFO_SCALE:
1241                 switch (chan->type) {
1242                 case IIO_TEMP:
1243                         /* value in milli degrees */
1244                         *val = 1000;
1245                         /* 2^10 */
1246                         *val2 = 1024;
1247                         return IIO_VAL_FRACTIONAL;
1248                 case IIO_VOLTAGE:
1249                         /* value in millivolt */
1250                         *val = 1000;
1251                         /* 2^21 */
1252                         *val2 = 2097152;
1253                         return IIO_VAL_FRACTIONAL;
1254                 default:
1255                         return -EINVAL;
1256                 }
1257         }
1258
1259         return -EINVAL;
1260 }
1261
1262 static int ltc2983_reg_access(struct iio_dev *indio_dev,
1263                               unsigned int reg,
1264                               unsigned int writeval,
1265                               unsigned int *readval)
1266 {
1267         struct ltc2983_data *st = iio_priv(indio_dev);
1268
1269         if (readval)
1270                 return regmap_read(st->regmap, reg, readval);
1271
1272         return regmap_write(st->regmap, reg, writeval);
1273 }
1274
1275 static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1276 {
1277         struct ltc2983_data *st = data;
1278
1279         complete(&st->completion);
1280         return IRQ_HANDLED;
1281 }
1282
1283 #define LTC2983_CHAN(__type, index, __address) ({ \
1284         struct iio_chan_spec __chan = { \
1285                 .type = __type, \
1286                 .indexed = 1, \
1287                 .channel = index, \
1288                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1289                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1290                 .address = __address, \
1291         }; \
1292         __chan; \
1293 })
1294
1295 static int ltc2983_parse_fw(struct ltc2983_data *st)
1296 {
1297         struct device *dev = &st->spi->dev;
1298         int ret, chan = 0, channel_avail_mask = 0;
1299
1300         device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config);
1301
1302         device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq);
1303
1304         st->num_channels = device_get_child_node_count(dev);
1305         if (!st->num_channels)
1306                 return dev_err_probe(&st->spi->dev, -EINVAL,
1307                                      "At least one channel must be given!\n");
1308
1309         st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1310                                    GFP_KERNEL);
1311         if (!st->sensors)
1312                 return -ENOMEM;
1313
1314         st->iio_channels = st->num_channels;
1315         device_for_each_child_node_scoped(dev, child) {
1316                 struct ltc2983_sensor sensor;
1317
1318                 ret = fwnode_property_read_u32(child, "reg", &sensor.chan);
1319                 if (ret)
1320                         return dev_err_probe(dev, ret,
1321                                 "reg property must given for child nodes\n");
1322
1323                 /* check if we have a valid channel */
1324                 if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1325                     sensor.chan > st->info->max_channels_nr)
1326                         return dev_err_probe(dev, -EINVAL,
1327                                              "chan:%d must be from %u to %u\n",
1328                                              sensor.chan,
1329                                              LTC2983_MIN_CHANNELS_NR,
1330                                              st->info->max_channels_nr);
1331
1332                 if (channel_avail_mask & BIT(sensor.chan))
1333                         return dev_err_probe(dev, -EINVAL,
1334                                              "chan:%d already in use\n",
1335                                              sensor.chan);
1336
1337                 ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type);
1338                 if (ret)
1339                         return dev_err_probe(dev, ret,
1340                                 "adi,sensor-type property must given for child nodes\n");
1341
1342                 dev_dbg(dev, "Create new sensor, type %u, chann %u",
1343                         sensor.type, sensor.chan);
1344
1345                 if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1346                     sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1347                         st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1348                                                                      &sensor);
1349                 } else if (sensor.type >= LTC2983_SENSOR_RTD &&
1350                            sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1351                         st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1352                 } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1353                            sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1354                         st->sensors[chan] = ltc2983_thermistor_new(child, st,
1355                                                                    &sensor);
1356                 } else if (sensor.type == LTC2983_SENSOR_DIODE) {
1357                         st->sensors[chan] = ltc2983_diode_new(child, st,
1358                                                               &sensor);
1359                 } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1360                         st->sensors[chan] = ltc2983_r_sense_new(child, st,
1361                                                                 &sensor);
1362                         /* don't add rsense to iio */
1363                         st->iio_channels--;
1364                 } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1365                         st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1366                 } else if (st->info->has_temp &&
1367                            sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) {
1368                         st->sensors[chan] = ltc2983_temp_new(child, st, &sensor);
1369                 } else {
1370                         return dev_err_probe(dev, -EINVAL,
1371                                              "Unknown sensor type %d\n",
1372                                              sensor.type);
1373                 }
1374
1375                 if (IS_ERR(st->sensors[chan]))
1376                         return dev_err_probe(dev, PTR_ERR(st->sensors[chan]),
1377                                              "Failed to create sensor\n");
1378
1379                 /* set generic sensor parameters */
1380                 st->sensors[chan]->chan = sensor.chan;
1381                 st->sensors[chan]->type = sensor.type;
1382
1383                 channel_avail_mask |= BIT(sensor.chan);
1384                 chan++;
1385         }
1386
1387         return 0;
1388 }
1389
1390 static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd,
1391                               unsigned int wait_time, unsigned int status_reg,
1392                               unsigned long status_fail_mask)
1393 {
1394         unsigned long time;
1395         unsigned int val;
1396         int ret;
1397
1398         ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG,
1399                                 &st->eeprom_key, sizeof(st->eeprom_key));
1400         if (ret)
1401                 return ret;
1402
1403         reinit_completion(&st->completion);
1404
1405         ret = regmap_write(st->regmap, LTC2983_STATUS_REG,
1406                            LTC2983_STATUS_START(true) | cmd);
1407         if (ret)
1408                 return ret;
1409
1410         time = wait_for_completion_timeout(&st->completion,
1411                                            msecs_to_jiffies(wait_time));
1412         if (!time)
1413                 return dev_err_probe(&st->spi->dev, -ETIMEDOUT,
1414                                      "EEPROM command timed out\n");
1415
1416         ret = regmap_read(st->regmap, status_reg, &val);
1417         if (ret)
1418                 return ret;
1419
1420         if (val & status_fail_mask)
1421                 return dev_err_probe(&st->spi->dev, -EINVAL,
1422                                      "EEPROM command failed: 0x%02X\n", val);
1423
1424         return 0;
1425 }
1426
1427 static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1428 {
1429         u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1430         int ret;
1431
1432         /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1433         ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1434                                        LTC2983_STATUS_UP(status) == 1, 25000,
1435                                        25000 * 10);
1436         if (ret)
1437                 return dev_err_probe(&st->spi->dev, ret,
1438                                      "Device startup timed out\n");
1439
1440         ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1441                                  LTC2983_NOTCH_FREQ_MASK,
1442                                  LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1443         if (ret)
1444                 return ret;
1445
1446         ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1447                            st->mux_delay_config);
1448         if (ret)
1449                 return ret;
1450
1451         if (st->info->has_eeprom && !assign_iio) {
1452                 ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD,
1453                                          LTC2983_EEPROM_READ_TIME_MS,
1454                                          LTC2983_EEPROM_READ_STATUS_REG,
1455                                          LTC2983_EEPROM_READ_FAILURE_MASK);
1456                 if (!ret)
1457                         return 0;
1458         }
1459
1460         for (chan = 0; chan < st->num_channels; chan++) {
1461                 u32 chan_type = 0, *iio_chan;
1462
1463                 ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1464                 if (ret)
1465                         return ret;
1466                 /*
1467                  * The assign_iio flag is necessary for when the device is
1468                  * coming out of sleep. In that case, we just need to
1469                  * re-configure the device channels.
1470                  * We also don't assign iio channels for rsense.
1471                  */
1472                 if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1473                     !assign_iio)
1474                         continue;
1475
1476                 /* assign iio channel */
1477                 if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1478                         chan_type = IIO_TEMP;
1479                         iio_chan = &iio_chan_t;
1480                 } else {
1481                         chan_type = IIO_VOLTAGE;
1482                         iio_chan = &iio_chan_v;
1483                 }
1484
1485                 /*
1486                  * add chan as the iio .address so that, we can directly
1487                  * reference the sensor given the iio_chan_spec
1488                  */
1489                 st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1490                                                        chan);
1491         }
1492
1493         return 0;
1494 }
1495
1496 static const struct regmap_range ltc2983_reg_ranges[] = {
1497         regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1498         regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1499         regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG),
1500         regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG,
1501                          LTC2983_EEPROM_READ_STATUS_REG),
1502         regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1503         regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1504                          LTC2983_MULT_CHANNEL_END_REG),
1505         regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG),
1506         regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1507         regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1508                          LTC2983_CHAN_ASSIGN_END_REG),
1509         regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1510                          LTC2983_CUST_SENS_TBL_END_REG),
1511 };
1512
1513 static const struct regmap_access_table ltc2983_reg_table = {
1514         .yes_ranges = ltc2983_reg_ranges,
1515         .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1516 };
1517
1518 /*
1519  *  The reg_bits are actually 12 but the device needs the first *complete*
1520  *  byte for the command (R/W).
1521  */
1522 static const struct regmap_config ltc2983_regmap_config = {
1523         .reg_bits = 24,
1524         .val_bits = 8,
1525         .wr_table = &ltc2983_reg_table,
1526         .rd_table = &ltc2983_reg_table,
1527         .read_flag_mask = GENMASK(1, 0),
1528         .write_flag_mask = BIT(1),
1529 };
1530
1531 static const struct  iio_info ltc2983_iio_info = {
1532         .read_raw = ltc2983_read_raw,
1533         .debugfs_reg_access = ltc2983_reg_access,
1534 };
1535
1536 static int ltc2983_probe(struct spi_device *spi)
1537 {
1538         struct ltc2983_data *st;
1539         struct iio_dev *indio_dev;
1540         struct gpio_desc *gpio;
1541         int ret;
1542
1543         indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1544         if (!indio_dev)
1545                 return -ENOMEM;
1546
1547         st = iio_priv(indio_dev);
1548
1549         st->info = spi_get_device_match_data(spi);
1550         if (!st->info)
1551                 return -ENODEV;
1552
1553         st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1554         if (IS_ERR(st->regmap))
1555                 return dev_err_probe(&spi->dev, PTR_ERR(st->regmap),
1556                                      "Failed to initialize regmap\n");
1557
1558         mutex_init(&st->lock);
1559         init_completion(&st->completion);
1560         st->spi = spi;
1561         st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY);
1562         spi_set_drvdata(spi, st);
1563
1564         ret = ltc2983_parse_fw(st);
1565         if (ret)
1566                 return ret;
1567
1568         ret = devm_regulator_get_enable(&spi->dev, "vdd");
1569         if (ret)
1570                 return ret;
1571
1572         gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
1573         if (IS_ERR(gpio))
1574                 return PTR_ERR(gpio);
1575
1576         if (gpio) {
1577                 /* bring the device out of reset */
1578                 usleep_range(1000, 1200);
1579                 gpiod_set_value_cansleep(gpio, 0);
1580         }
1581
1582         st->iio_chan = devm_kzalloc(&spi->dev,
1583                                     st->iio_channels * sizeof(*st->iio_chan),
1584                                     GFP_KERNEL);
1585         if (!st->iio_chan)
1586                 return -ENOMEM;
1587
1588         ret = ltc2983_setup(st, true);
1589         if (ret)
1590                 return ret;
1591
1592         ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1593                                IRQF_TRIGGER_RISING, st->info->name, st);
1594         if (ret)
1595                 return dev_err_probe(&spi->dev, ret,
1596                                      "failed to request an irq\n");
1597
1598         if (st->info->has_eeprom) {
1599                 ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD,
1600                                          LTC2983_EEPROM_WRITE_TIME_MS,
1601                                          LTC2986_EEPROM_STATUS_REG,
1602                                          LTC2983_EEPROM_STATUS_FAILURE_MASK);
1603                 if (ret)
1604                         return ret;
1605         }
1606
1607         indio_dev->name = st->info->name;
1608         indio_dev->num_channels = st->iio_channels;
1609         indio_dev->channels = st->iio_chan;
1610         indio_dev->modes = INDIO_DIRECT_MODE;
1611         indio_dev->info = &ltc2983_iio_info;
1612
1613         return devm_iio_device_register(&spi->dev, indio_dev);
1614 }
1615
1616 static int ltc2983_resume(struct device *dev)
1617 {
1618         struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1619         int dummy;
1620
1621         /* dummy read to bring the device out of sleep */
1622         regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1623         /* we need to re-assign the channels */
1624         return ltc2983_setup(st, false);
1625 }
1626
1627 static int ltc2983_suspend(struct device *dev)
1628 {
1629         struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1630
1631         return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1632 }
1633
1634 static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend,
1635                                 ltc2983_resume);
1636
1637 static const struct ltc2983_chip_info ltc2983_chip_info_data = {
1638         .name = "ltc2983",
1639         .max_channels_nr = 20,
1640 };
1641
1642 static const struct ltc2983_chip_info ltc2984_chip_info_data = {
1643         .name = "ltc2984",
1644         .max_channels_nr = 20,
1645         .has_eeprom = true,
1646 };
1647
1648 static const struct ltc2983_chip_info ltc2986_chip_info_data = {
1649         .name = "ltc2986",
1650         .max_channels_nr = 10,
1651         .has_temp = true,
1652         .has_eeprom = true,
1653 };
1654
1655 static const struct ltc2983_chip_info ltm2985_chip_info_data = {
1656         .name = "ltm2985",
1657         .max_channels_nr = 10,
1658         .has_temp = true,
1659         .has_eeprom = true,
1660 };
1661
1662 static const struct spi_device_id ltc2983_id_table[] = {
1663         { "ltc2983", (kernel_ulong_t)&ltc2983_chip_info_data },
1664         { "ltc2984", (kernel_ulong_t)&ltc2984_chip_info_data },
1665         { "ltc2986", (kernel_ulong_t)&ltc2986_chip_info_data },
1666         { "ltm2985", (kernel_ulong_t)&ltm2985_chip_info_data },
1667         {},
1668 };
1669 MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1670
1671 static const struct of_device_id ltc2983_of_match[] = {
1672         { .compatible = "adi,ltc2983", .data = &ltc2983_chip_info_data },
1673         { .compatible = "adi,ltc2984", .data = &ltc2984_chip_info_data },
1674         { .compatible = "adi,ltc2986", .data = &ltc2986_chip_info_data },
1675         { .compatible = "adi,ltm2985", .data = &ltm2985_chip_info_data },
1676         {},
1677 };
1678 MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1679
1680 static struct spi_driver ltc2983_driver = {
1681         .driver = {
1682                 .name = "ltc2983",
1683                 .of_match_table = ltc2983_of_match,
1684                 .pm = pm_sleep_ptr(&ltc2983_pm_ops),
1685         },
1686         .probe = ltc2983_probe,
1687         .id_table = ltc2983_id_table,
1688 };
1689
1690 module_spi_driver(ltc2983_driver);
1691
1692 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1693 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1694 MODULE_LICENSE("GPL");
This page took 0.121045 seconds and 2 git commands to generate.